

Welcome

What is Meshy?

MeshyDB gives you a fully functional API backend in minutes. We take care of the bulky time-consuming API, letting you focus on the front-end design. Build apps faster by leveraging the MeshyDB backend.

Before you get started!

This documentation assumes you have an active MeshyDB account. If you do not, please create a free account at https://meshydb.com [https://meshydb.com/].

Once your account is verified, you will need to gather your Public Key from the Clients page under your default tenant. See image below:

[image: Public Key under Clients default tenant]

Next Steps

Now that you have your public key, you can begin with any of our language specific quick starts:

	C# [https://docs.meshydb.com/en/latest/intro/getting_started_csharp.html#install-sdk]

	NodeJS [https://docs.meshydb.com/en/latest/intro/getting_started_nodejs.html#install-sdk]

	REST [https://docs.meshydb.com/en/latest/intro/getting_started_rest.html#registering-anonymous-user]

C#

Before you get started!

This documentation assumes you have an active MeshyDB account. If you do not, please create a free account at https://meshydb.com [https://meshydb.com/].

Once you verify your account you will need to gather your Account Name and Public Key.

Identify Account Name

Your Account Name can be found under the Account page. See image below:

[image: Account Name under Account]

Identify Public Key

Your Public Key can be found under the Clients page under your default tenant. See image below:

[image: Public Key under Clients default tenant]

In the following we will assume no other configuration has been made to your account or tenants so we can just begin!

Install SDK

The supporting SDK is open source and you are able to use .Net Framework 4.7.1+ or .Net Core 2.x.

Let’s install the MeshyDB.SDK [https://www.nuget.org/packages/MeshyDB.SDK/] NuGet package with the following command:

Install-Package MeshyDb.SDK

Initialize

The client is used to establish a connection to the API. You will need to provide your Account Name and Public Key from your account and client.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

Register Anonymous User

Anonymous users are great for associating data to people or devices without having them go through any type of user registration.

The example below shows verifying a username is available and registering an anonymous user if the username does not exist.

C#

var username = "mctesterton";

var userExists = await client.CheckUserExistAsync(username);

if (!userExists.Exists)
{
 await client.RegisterAnonymousUserAsync(username);
}

Parameters

	usernamestring

	Unique user name for authentication. If it is not provided a username will be automatically generated.

Responses

	201Created

	
	New user has been registered and is now available for use.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Username is a required field.

	Anonymous registration is not enabled.

	Username must be unique.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Login

All data interaction must be done on behalf of a user. This is done to ensure proper authorized access of your data.

The example below shows logging in an anonymous user.

C#

var connection = await client.LoginAnonymouslyAsync(username);

Parameters

	usernamestring, required

	Unique user name for authentication.

Responses

	200OK

	
	Generates new credentials for authorized user.

Example Result

{
 "access_token": "ey...",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "ab23cd3343e9328g"
}

	400Bad request

	
	Token is invalid.

	Client id is invalid.

	Grant type is invalid.

	User is no longer active.

	Invalid Scope.

	Username is invalid.

	Password is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Once we login we can access our connection through a static member.

C#

connection = MeshyClient.CurrentConnection;

Retrieving Self

When a user is created they have some profile information that helps identify them. We can use this information to link their id back to data that has been created.

The example below shows retrieving information of the user.

C#

var user = await connection.Users.GetSelfAsync();

Parameters

No parameters provided.

Responses

	200OK

	
	Retrieves information about the authorized user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Create data

Now that a user connection is established you can begin making API requests.

The MeshyDB SDK requires all data extend the MeshData class.

The example below shows a Person represented by a first name, last name and user id.

C#

// Mesh Name can be overridden by attribute, otherwise by default it is derived from class name
[MeshName("Person")]
public class Person : MeshData
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string UserId { get; set; }
}

Now that we have a representation of a person we can start making data to write to the API.

The example below shows committing a new person.

C#

var model = new Person()
{
 FirstName = "Bob",
 LastName = "Bobson",
 UserId = user.Id
};

model = await connection.Meshes.CreateAsync(model);

Parameters

	modelobject, required

	Representation of data that must extend MeshData.

Responses

	201Created

	
	Result of newly created mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Bob",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Update data

The API allows you to make updates to specific MeshData by targeting the id.

The SDK makes this even simpler since the id can be derived from the object itself along with all it’s modifications.

The example below shows modifying the first name and committing those changes to the API.

C#

model.FirstName = "Robert";

model = await connection.Meshes.UpdateAsync(model);

Parameters

	modelobject, required

	Representation of data that must extend MeshData.

Responses

	200OK

	
	Result of updated mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Search data

The API allows you to search MeshData using a Linq expression.

The example below shows searching based where the first name starts with Rob.

C#

Expression<Func<Person, bool>> filter = (Person x) => x.FirstName.StartsWith("Rob");

var pagedPersonResult = await connection.Meshes
 .SearchAsync<Person>(filter);

Parameters

	filterobject

	Criteria provided in a Linq expression to limit results.

Responses

	200OK

	
	Mesh data found with given search criteria.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
 }],
 "totalRecords": 1
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter is in an invalid format. It must be in a valid Mongo DB format.

	Order by is in an invalid format. It must be in a valid Mongo DB format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

In some cases you may need more control on your filtering or ordering. You can optionally provide this criteria in a MongoDB format.

Delete data

The API allows you to delete a specific MeshData by targeting the id.

The example below shows deleting the data from the API by providing the object.

Deleted data is not able to be recovered. If you anticipate the need to recover this data please implementing a Soft Delete.

C#

var id = model.Id;

await connection.Meshes.DeleteAsync<Person>(id);

Parameters

	idstring, required

	Identifier of record that must be deleted.

Responses

	204No Content

	
	Mesh has been deleted successfully.

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete meshes or mesh.

	404Not Found

	
	Mesh data was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Sign out

The MeshyDB SDK manages a single connection to the API.

The Meshy SDK handles token management, this includes refresh tokens used to maintain a user’s connection.

As a result it is recommended to implement Sign Out to ensure the current user is logged out and all refresh tokens are revoked.

The example below shows signing out of the currently established connection.

C#

await connection.SignoutAsync();

Parameters

No parameters provided. The connection is aware of who needs to be signed out.

Responses

	200OK

	
	Identifies successful logout.

	400Bad request

	
	Invalid client id.

	Token is missing.

	Unsupported Token type.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Not seeing something you need? Feel free to give us a chat or contact us at support@meshydb.com.

NodeJS

Before you get started!

This documentation assumes you have an active MeshyDB account. If you do not, please create a free account at https://meshydb.com [https://meshydb.com/].

Once you verify your account you will need to gather your Account Name and Public Key.

Identify Account Name

Your Account Name can be found under the Account page. See image below:

[image: Account Name under Account]

Identify Public Key

Your Public Key can be found under the Clients page under your default tenant. See image below:

[image: Public Key under Clients default tenant]

In the following we will assume no other configuration has been made to your account or tenants so we can just begin!

Install SDK

The supporting SDK is open source and you are able to use a browser or NodeJS application.

Let’s install the MeshyDB.SDK [https://www.npmjs.com/package/@meshydb/sdk/] NPM package with the following command:

npm install @meshydb/sdk

Initialize

The client is used to establish a connection to the API. You will need to provide your Account Name and Public Key from your account and client.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

Register Anonymous User

Anonymous users are great for associating data to people or devices without having them go through any type of user registration.

The example below shows verifying a username is available and registering an anonymous user if the username does not exist.

NodeJS

var username = "mctesterton";

var userExists = await client.checkUserExist(username);

if (!userExists.exists) {
 await client.registerAnonymousUser(username);
}

Parameters

	usernamestring

	Unique user name for authentication. If it is not provided a username will be automatically generated.

Responses

	201Created

	
	New user has been registered and is now available for use.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Username is a required field.

	Anonymous registration is not enabled.

	Username must be unique.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Login

All data interaction must be done on behalf of a user. This is done to ensure proper authorized access of your data.

The example below shows logging in an anonymous user.

NodeJS

var connection = await client.loginAnonymously(username);

Parameters

	usernamestring, required

	Unique user name for authentication.

Responses

	200OK

	
	Generates new credentials for authorized user.

Example Result

{
 "access_token": "ey...",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "ab23cd3343e9328g"
}

	400Bad request

	
	Token is invalid.

	Client id is invalid.

	Grant type is invalid.

	User is no longer active.

	Invalid Scope.

	Username is invalid.

	Password is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Once we login we can access our connection through a static member.

NodeJS

connection = MeshyClient.currentConnection;

Retrieving Self

When a user is created they have some profile information that helps identify them. We can use this information to link their id back to data that has been created.

The example below shows retrieving information of the user.

NodeJS

var user = await connection.usersService.getSelf();

Parameters

No parameters provided.

Responses

	200OK

	
	Retrieves information about the authorized user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Create data

Now that a user connection is established you can begin making API requests.

The example below shows committing a new person.

NodeJS

var model = {
 _id: undefined,
 firstName: "Bob",
 lastName: "Bobson",
 userId: user.id
 };

var meshName = "person";

model = await connection.meshesService.create(meshName, model);

Parameters

	meshNamestring, required

	Identifies which mesh collection to manage.

	modelobject, required

	Represents a person in this example.

Responses

	201Created

	
	Result of newly created mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Bob",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Update data

The API allows you to make updates to specific Mesh Data by targeting the id.

The SDK makes this even simpler since the id can be derived from the object itself along with all it’s modifications.

The example below shows modifying the first name and committing those changes to the API.

NodeJS

model.firstName = "Robert";

model = await connection.meshesService.update(meshName, model);

Parameters

	meshNamestring, required

	Identifies which mesh collection to manage.

	modelobject, required

	Represents a person in this example.

Responses

	200OK

	
	Result of updated mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Search data

The API allows you to search a mesh collection using a MongoDB expression.

The example below shows searching based where the first name starts with Rob.

NodeJS

var filter = { 'firstName': { "$regex": "^Rob" } };

var pagedPersonResult = await connection.meshesService
 .search(meshName, { filter: filter });

Parameters

	meshNamestring, required

	Identifies which mesh collection to manage.

	filterobject

	Criteria provided in a MongoDB expression to limit results.

Responses

	200OK

	
	Mesh data found with given search criteria.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
 }],
 "totalRecords": 1
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter is in an invalid format. It must be in a valid Mongo DB format.

	Order by is in an invalid format. It must be in a valid Mongo DB format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Delete data

The API allows you to delete a specific Mesh Data by targeting the id.

The example below shows deleting the data from the API by providing the object.

Deleted data is not able to be recovered. If you anticipate the need to recover this data please implementing a Soft Delete.

NodeJS

var id = model._id;

await connection.meshesService.delete(meshName, id);

Parameters

	meshNamestring, required

	Identifies which mesh collection to manage.

	idstring, required

	Identifier of record that must be deleted.

Responses

	204No Content

	
	Mesh has been deleted successfully.

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete meshes or mesh.

	404Not Found

	
	Mesh data was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Sign out

The MeshyDB SDK manages a single connection to the API.

The Meshy SDK handles token management, this includes refresh tokens used to maintain a user’s connection.

As a result it is recommended to implement Sign Out to ensure the current user is logged out and all refresh tokens are revoked.

The example below shows signing out of the currently established connection.

NodeJS

await connection.signout();

Parameters

No parameters provided. The connection is aware of who needs to be signed out.

Responses

	200OK

	
	Identifies successful logout.

	400Bad request

	
	Invalid client id.

	Token is missing.

	Unsupported Token type.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Not seeing something you need? Feel free to give us a chat or contact us at support@meshydb.com.

REST

Before you get started!

This documentation assumes you have an active MeshyDB account. If you do not, please create a free account at https://meshydb.com [https://meshydb.com/].

Once you verify your account you will need to gather your Account Name and Public Key.

Identify Account Name

Your Account Name can be found under the Account page. See image below:

[image: Account Name under Account]

Identify Public Key

Your Public Key can be found under the Clients page under your default tenant. See image below:

[image: Public Key under Clients default tenant]

In the following we will assume no other configuration has been made to your account or tenants so we can just begin!

Checking Username Exists

Checking username helps identify if a device or user has already registered.

The example below shows verifying a username is available.

REST

GET https://api.meshydb.com/{accountName}/users/{username}/exists HTTP/1.1

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

Responses

	201Created

	
	Identifies if username already exists.

Example Result

{
 "exists": false
}

	400Bad request

	
	Username is required.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Register Anonymous User

Anonymous users are great for associating data to people or devices without having them go through any type of user registration.

The example below shows registering an anonymous user.

REST

POST https://api.meshydb.com/{accountName}/users/register/anonymous HTTP/1.1
Content-Type: application/json

 {
 "username": "mctesterton"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

Responses

	201Created

	
	New user has been registered and is now available for use.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Username is a required field.

	Anonymous registration is not enabled.

	Username must be unique.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Login

All data interaction must be done on behalf of a user. This is done to ensure proper authorized access of your data.

The example below shows logging in an anonymous user.

REST

POST https://auth.meshydb.com/{accountName}/connect/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

 client_id={publicKey}&
 grant_type=password&
 username={username}&
 password=nopassword&
 scope=meshy.api offline_access

(Form-encoding removed, and line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

Responses

	200OK

	
	Generates new credentials for authorized user. The token will expire and will need to be refreshed.

Example Result

{
 "access_token": "ey...",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "ab23cd3343e9328g"
}

	400Bad request

	
	Token is invalid.

	Client id is invalid.

	Grant type is invalid.

	User is no longer active.

	Invalid Scope.

	Username is invalid.

	Password is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Retrieving Self

When a user is created they have some profile information that helps identify them. We can use this information to link their id back to data that has been created.

The example below shows retrieving information of the user.

REST

GET https://api.meshydb.com/{accountName}/users/me HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

Responses

	200OK

	
	Retrieves information about the authorized user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "mctesterton",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Create data

Now that a user is authorized you can begin making API requests.

The example below shows committing a new Mesh Data such as a person.

REST

POST https://api.meshydb.com/{accountName}/meshes/{meshName} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "firstName": "Bob",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Login.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

Responses

	201Created

	
	Result of newly created mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Bob",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Update data

The API allows you to make updates to specific Mesh Data by targeting the id.

The example below shows modifying the first name and committing those changes to the API.

REST

PUT https://api.meshydb.com/{accountName}/meshes/{meshName}/{id} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "firstName": "Robert",
 "lastName": "Bobson"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Login.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to replace.

Responses

	200OK

	
	Result of updated mesh data.

Example Result

{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Search data

The API allows you to search Mesh Data using a MongoDB expression.

The example below shows searching based where the first name starts with Rob.

REST

GET https://api.meshydb.com/{accountName}/meshes/{meshName}?filter={ 'firstName': { "$regex": "^Rob" } } HTTP/1.1
Authorization: Bearer {access_token}

(Encoding removed for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Login.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordering and direction in a MongoDB format.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Mesh data found with given search criteria.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "_id":"5d438ff23b0b7dd957a765ce",
 "firstName": "Robert",
 "lastName": "Bobson",
 "userId": "5c78cc81dd870827a8e7b6c4"
 }],
 "totalRecords": 1
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter is in an invalid format. It must be in a valid Mongo DB format.

	Order by is in an invalid format. It must be in a valid Mongo DB format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Delete data

The API allows you to delete a specific Mesh Data by targeting the id.

The example below shows deleting the data from the API by providing the object.

Deleted data is not able to be recovered. If you anticipate the need to recover this data please implementing a Soft Delete.

REST

DELETE https://api.meshydb.com/{accountName}/meshes/{meshName}/{id} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Login.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to remove.

Responses

	204No Content

	
	Mesh has been deleted successfully.

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete meshes or mesh.

	404Not Found

	
	Mesh data was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Sign out

When a user is authenticated a refresh token is generated. The refresh token allows a user to be silently authenticated.

As a result it is recommended to implement Sign Out to ensure the current user is logged out and all refresh tokens are revoked.

The example below shows revoking the refresh token. The access token is short lived and will expire within an hour.

REST

POST https://auth.meshydb.com/{accountName}/connect/revocation HTTP/1.1
Content-Type: application/x-www-form-urlencoded

 client_id={accountName}&
 grant_type=refresh_token&
 token={refresh_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	refresh_tokenstring, required

	Token to allow reauthorization with MeshyDB after the access token expires requested during Login.

Responses

	200OK

	
	Identifies successful logout.

	400Bad request

	
	Invalid client id.

	Token is missing.

	Unsupported Token type.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Not seeing something you need? Feel free to give us a chat or contact us at support@meshydb.com.

Generating Token

Create a short lived access token to be used for authorized API calls. Typically a token will last 3600 seconds(one hour).

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = client.LoginWithPassword(username, password);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.login(username,password);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

REST

POST https://auth.meshydb.com/{accountName}/connect/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

 client_id={publicKey}&
 grant_type=password&
 username={username}&
 password={password}&
 scope=meshy.api offline_access

(Form-encoding removed, and line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

Responses

	200OK

	
	Generates new credentials for authorized user.

Example Result

{
 "access_token": "ey...",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "ab23cd3343e9328g"
}

	400Bad request

	
	Token is invalid.

	Client id is invalid.

	Grant type is invalid.

	User is no longer active.

	Invalid Scope.

	Username is invalid.

	Password is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Refreshing Token

Using the token request made to generate an access token, a refresh token will also be generated.

Once the token expires the refresh token can be used to generate a new set of credentials for authorized calls.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = client.LoginWithPassword(username, password);
var refreshToken = connection.RetrieveRefreshToken();

connection = await client.LoginWithRefreshAsync(refreshToken);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

	refreshTokenstring, required

	Refresh token generated from previous access token generation.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.login(username,password);

var refreshToken = meshyConnection.retrieveRefreshToken();

var refreshedMeshyConnection = await client.loginWithRefresh(refreshToken);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

	refreshTokenstring, required

	Refresh token generated from previous access token generation.

REST

POST https://auth.meshydb.com/{accountName}/connect/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

 client_id={publicKey}&
 grant_type=refresh_token&
 refresh_token={refresh_token}

(Form-encoding removed, and line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	refresh_tokenstring, required

	Refresh token generated from previous access token generation.

Responses

	200OK

	
	Generates new refresh credentials for authorized user.

Example Result

{
 "access_token": "ey...",
 "expires_in": 3600,
 "token_type": "Bearer",
 "refresh_token": "ab23cd3343e9328g"
}

	400Bad request

	
	Token is invalid.

	Client id is invalid.

	Grant type is invalid.

	User is no longer active.

	Refresh token is expired.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Creating Users

A user can be authenticated with the system for ensuring they are authorized to interact with the system.

You can either generate an anonymous user, or device user with limited functionality. Otherwise you can register a new user with full credentials.

Checking Username Available

Before identifying a device or unique user you can check to see if they already were registered.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var userExists = await client.CheckUserExistAsync(username);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var userExists = await client.checkUserExist(username);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

REST

GET https://api.meshydb.com/{accountName}/users/{username}/exists HTTP/1.1

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

Responses

	201Created

	
	Identifies if username already exists.

Example Result

{
 "exists": false
}

	400Bad request

	
	Username is required.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Registering Anonymous User

An anonymous user can identify a device or unique user without requiring user interaction.

This kind of user has limited functionality such as not having the ability to be verified or be assigned roles.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var anonymousUser = await client.RegisterAnonymousUserAsync(userName);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser(username);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

REST

POST https://api.meshydb.com/{accountName}/users/register/anonymous HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

Responses

	201Created

	
	New user has been registered and is now available for use.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "username_testermctesterson",
 "firstName": null,
 "lastName": null,
 "verified": false,
 "isActive": true,
 "phoneNumber": null,
 "emailAddress": null,
 "roles": [],
 "securityQuestions": [],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Username is a required field.

	Anonymous registration is not enabled.

	Username must be unique.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Registering User

Registering a user allows user defined credentials to access the system.

If email or text verification is configured, they will be prompted to verify their account.

The user will not be able to be authenticated until verification has been completed. The verification request lasts one hour before it expires.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var user = new RegisterUser();

await client.RegisterUserAsync(user);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var user = await client.registerUser({
 username: username,
 newPassword: newPassword,
 firstName: firstName,
 lastName: lastName,
 phoneNumber: phoneNumber,
 emailAddress: emailAddress,
 securityQuestions: securityQuestions
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

REST

POST https://api.meshydb.com/{accountName}/users/register HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com",
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "mceasy123"
 }
],
 "newPassword": "newPassword"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

Responses

	201Created

	
	
	New user has been registered and must be verified before use.

	
	This will only occur when Email or Text verification is enabled.

Example Result

{
 "username": "username_testermctesterson",
 "attempt": 1,
 "hash": "...",
 "expires": "1/1/1900",
 "hint": "..."
}

	204No Content

	
	
	New user has been registered and is now available for use.

	
	This will only occur when Question verification is enabled.

	400Bad request

	
	Public registration is not enabled.

	Email address is required when Email recovery is enabled.

	Phone number is required when Text recovery is enabled.

	At least one Security Questions is required when Question recovery is enabled.

	Username is a required field.

	Email address must be in a valid format.

	Phone number must be in an international format.

	Username must be unique.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

New User

Creating a user is a controlled way where another user can grant access to someone else.

C#

 var client = MeshyClient.Initialize(accountName, publicKey);
 var connection = await client.LoginAnonymouslyAsync(username);

var user = new NewUser();

await connection.Users.CreateAsync(user);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

	verifiedboolean, default: false

	Identifies if the user is verified. The user must be verified to login if the verification method is email or phone number.

	isActiveboolean, default: false

	Identifies if the user is active. The user must be active to allow login.

	rolesobject

	Collection of roles and when they were added to give user permissions within the system.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var user = await client.create({
 username: username,
 newPassword: newPassword,
 firstName: firstName,
 lastName: lastName,
 phoneNumber: phoneNumber,
 emailAddress: emailAddress,
 securityQuestions: securityQuestions,
 verified: verified,
 isActive: isActive,
 roles: roles
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

	verifiedboolean, default: false

	Identifies if the user is verified. The user must be verified to login if the verification method is email or phone number.

	isActiveboolean, default: false

	Identifies if the user is active. The user must be active to allow login.

	rolesobject

	Collection of roles and when they were added to give user permissions within the system.

REST

POST https://api.meshydb.com/{accountName}/users HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com",
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "mceasy123"
 }
],
 "newPassword": "newPassword",
 verified: true,
 isActive: true,
 roles: []
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	newPasswordstring, required

	New user secret credentials for login.

	firstNamestring

	First name of registering user.

	lastNamestring

	Last name of registering user.

	phoneNumberstring, required if using phone verification

	Phone number of registering user.

	emailAddressstring, required if using email verification

	Email address of registering user.

	securityQuestionsobject[], required if using question verification

	New set of questions and answers for registering user in password recovery.

	verifiedboolean, default: false

	Identifies if the user is verified. The user must be verified to login if the verification method is email or phone number.

	isActiveboolean, default: false

	Identifies if the user is active. The user must be active to allow login.

	rolesobject

	Collection of roles and when they were added to give user permissions within the system.

Responses

	201Created

	
	New user must be verified before use.

Example Result

{
 "username":"test",
 "firstName":null,
 "lastName":null,
 "verified":true,
 "isActive":true,
 "phoneNumber":null,
 "emailAddress":null,
 "roles":[
 {
 "name":"meshy.user",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 }
],
 "securityQuestions":[
 {
 "question":"test",
 "answerHash":"..."
 }
],
 "anonymous":false,
 "lastAccessed":null,
 "id":"5db..."
}

	400Bad request

	
	Email address is required when Email recovery is enabled.

	Phone number is required when Text recovery is enabled.

	At least one Security Questions is required when Question recovery is enabled.

	Username is a required field.

	Email address must be in a valid format.

	Phone number must be in an international format.

	Username must be unique.

	User cannot add roles they do not already have assigned. If a user has the update role permission they can assign any role to any user. However if they do not have this permission they can only assign roles they currently have assigned to themselves.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create users.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Check Hash

Optionally, before verifying the request you can choose to check if the verification code provided is valid.

You may want to provide this flow if you still need to collect more information about the user before finalizing verification.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var check = new UserVerificationCheck();

var isValid = await client.CheckHashAsync(check);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

await client.checkHash({
 username: username,
 attempt: attempt:
 hash: hash,
 expires: expires,
 hint: hint,
 verificationCode: verificationCode
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

REST

POST https://api.meshydb.com/{accountName}/users/checkhash HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "attempt": 1,
 "hash": "...",
 "expires": "1/1/1900",
 "hint": "...",
 "verificationCode": "...",
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

Responses

	200OK

	
	Identifies if hash with verification code is valid.

Example Result

true

	400Bad request

	
	Username is required.

	Hash is required.

	Expires is required.

	Verification code is required.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Verify

If email or text verification is configured the registered user must be verified. The resulting request lasts one hour.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var check = new UserVerificationCheck();

await client.VerifyAsync(check);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

await client.verify({
 username: username,
 attempt: attempt:
 hash: hash,
 expires: expires,
 hint: hint,
 verificationCode: verificationCode
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

REST

POST https://api.meshydb.com/{accountName}/users/verify HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "attempt": 1,
 "hash": "...",
 "expires": "1/1/1900",
 "hint": "...",
 "verificationCode": "...",
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, required

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring, required

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

Responses

	204No Content

	
	User has been verified successfully.

	400Bad request

	
	Username is required.

	Hash is required.

	Expires is required.

	Verification code is required.

	Hash is expired.

	Anonymous user cannot be verified.

	User has already been verified.

	Request hash is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Retrieving

Retrieving information about a user.

Self

Retrieve details about the authenticated user.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Users.GetSelfAsync();

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var self = await meshyConnection.usersService.getSelf();

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

REST

GET https://api.meshydb.com/{accountName}/users/me HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

Responses

	200OK

	
	Retrieves information about the authorized user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "verified": true,
 "isActive": true,
 "phoneNumber": "5555555555",
 "roles" : [
 {
 "name":"admin",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 },
 {
 "name":"test",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 }
],
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Existing

Retrieve details about an existing user by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Users.GetAsync(id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	idstring, required

	Identifies id of user.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var user = await meshyConnection.usersService.get(id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	idstring, required

	Identifies id of user.

REST

GET https://api.meshydb.com/{accountName}/users/{id} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	idstring, required

	Identifies id of user.

Responses

	200OK

	
	Retrieves information about the existing user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "verified": true,
 "isActive": true,
 "phoneNumber": "5555555555",
 "roles" : [
 {
 "name":"admin",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 },
 {
 "name":"test",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 }
],
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
],
 "anonymous": true,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read users.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Searching

Filter User data based on query parameters.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Users.SearchAsync(name, roleId, orderBy, activeOnly, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring

	Case-insensitive partial name search.

	roleIdstring

	Filters users with defined role identifier.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	activeOnlyboolean, default: true

	Filters users that are not active. Setting to false will include all users regardless of active status.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

await meshyConnection.usersService.search({
 name: name,
 roleId: roleId,
 orderBy: orderBy,
 activeOnly: activeOnly,
 page: page,
 pageSize: pageSize
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring

	Case-insensitive partial name search.

	roleIdstring

	Filters users with defined role identifier.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	activeOnlyboolean, default: true

	Filters users that are not active. Setting to false will include all users regardless of active status.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

 GET https://api.meshydb.com/{accountName}/users?name={name}&
 roleId={roleId}&
 orderBy={orderBy}&
 activeOnly={activeOnly}&
 page={page}&
 pageSize={pageSize} HTTP/1.1
 Authorization: Bearer {access_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	namestring

	Case-insensitive partial name search.

	roleIdstring

	Filters users with defined role identifier.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	activeOnlyboolean, default: true

	Filters users that are not active. Setting to false will include all users regardless of active status.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Identifies if users were found.

Example Result

{
 "results":[
 {
 "username":"test",
 "firstName":null,
 "lastName":null,
 "verified":true,
 "isActive":true,
 "phoneNumber":null,
 "emailAddress":null,
 "roles":[
 {
 "name":"meshy.user",
 "addedDate":"2019-10-18T15:11:55.2413015-05:00"
 }
],
 "securityQuestions":[
 {
 "question":"Test 1",
 "answerHash":"..."
 }
],
 "anonymous":false,
 "lastAccessed":null,
 "id":"5d4..."
 }
],
 "page":1,
 "pageSize":25,
 "totalRecords":1
}

	400Bad request

	
	User is not able to delete self.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read users.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Updating

Updating self allows the ability to update the authenticated user’s information.

This might be personal or security questions for password recovery later.

My Personal Information

The following can be used to update an authenticated user’s personal information such as name, phone number, and email address.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var user = new User();

await connection.Users.UpdateSelfAsync(user);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var self = await meshyConnection.usersService.updateSelf({
 firstName: firstName,
 lastName: lastName,
 phoneNumber: phoneNumber,
 emailAddress: emailAddress
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

REST

PUT https://api.meshydb.com/{accountName}/users/me HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "firstName": "Tester",
 "lastName": "McTesterton",
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

Responses

	200OK

	Updated information of updated authorized user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "verified": true,
 "isActive": true,
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com",
 "roles" : [
 {
 "name":"admin",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 },
 {
 "name":"test",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 }
],
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
],
 "anonymous": false,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Email address is required when Email recovery is enabled and the user is not anonymous.

	Phone number is required when Text recovery is enabled and the user is not anonymous.

	Username is a required field.

	Email address must be in a valid format.

	Phone number must be in an international format.

	Unable to change user roles via API.

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Existing Personal Information

The following can be used to update an existing user’s personal information such as name, phone number, and email address.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var user = new User();

await connection.Users.UpdateAsync(id, user);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	idstring, required

	Identifies id of user.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

var self = await meshyConnection.usersService.update(id,
 {
 firstName: firstName,
 lastName: lastName,
 phoneNumber: phoneNumber,
 emailAddress: emailAddress
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	idstring, required

	Identifies id of user.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

REST

PUT https://api.meshydb.com/{accountName}/users/{id} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "firstName": "Tester",
 "lastName": "McTesterton",
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	idstring, required

	Identifies id of user.

	firstNamestring

	First name of authenticated user.

	lastNamestring

	Last name of authenticated user.

	phoneNumberstring, required if using phone verification

	Phone number of authenticated user.

	emailAddressstring, required if using email verification

	Email address of authenticated user.

Responses

	200OK

	Updated information of updated existing user.

Example Result

{
 "id": "5c78cc81dd870827a8e7b6c4",
 "username": "username_testermctesterson",
 "firstName": "Tester",
 "lastName": "McTesterton",
 "verified": true,
 "isActive": true,
 "phoneNumber": "+15555555555",
 "emailAddress": "test@test.com",
 "roles" : [
 {
 "name":"admin",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 },
 {
 "name":"test",
 "addedDate":"2019-01-01T00:00:00.0000000+00:00"
 }
],
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
],
 "anonymous": false,
 "lastAccessed":"2019-01-01T00:00:00.0000+00:00"
}

	400Bad request

	
	Email address is required when Email recovery is enabled and the user is not anonymous.

	Phone number is required when Text recovery is enabled and the user is not anonymous.

	Username is a required field.

	Email address must be in a valid format.

	Phone number must be in an international format.

	Unable to change user roles via API.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update users.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

My Security Questions

The following can be used to change the authenticated user’s security questions to be used for password recovery.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var questions = new UserSecurityQuestionUpdate();

questions.SecurityQuestions.Add(new SecurityQuestion(){
 Question = "What should this be?",
 Answer = "This seems like an ok example"
 };

await connection.Users.UpdateSecurityQuestionsAsync(questions);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	securityQuestionsobject[], required

	New set of questions and answers for authenticated user in password recovery.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.login(username, password);

await meshyConnection.usersService.updateSecurityQuestion({
 securityQuestions: securityQuestions
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	securityQuestionsobject[], required

	Collection of questions and answers used for password recovery if question security is configured.

REST

POST https://api.meshydb.com/{accountName}/users/me/questions HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
]
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	securityQuestionsobject[], required

	New set of questions and answers for authenticated user in password recovery.

Responses

	204No Content

	
	Updated information of updated authorized user.

	400Bad request

	
	Unable to update security questions if question verification is not configured.

	Anonymous user cannot have security questions.

	At least one question is required.

	Question text is required.

	Answer is required.

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Existing Security Questions

The following can be used to change the authenticated user’s security questions to be used for password recovery.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var questions = new UserSecurityQuestionUpdate();

questions.SecurityQuestions.Add(new SecurityQuestion(){
 Question = "What should this be?",
 Answer = "This seems like an ok example"
 };

await connection.Users.UpdateSecurityQuestionsAsync(id, questions);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	idstring, required

	Identifies id of user.

	securityQuestionsobject[], required

	New set of questions and answers for authenticated user in password recovery.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.login(username, password);

await meshyConnection.usersService.updateUserSecurityQuestion(id,
 {
 securityQuestions: securityQuestions
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	idstring, required

	Identifies id of user.

	securityQuestionsobject[], required

	Collection of questions and answers used for password recovery if question security is configured.

REST

POST https://api.meshydb.com/{accountName}/users/{id}/questions HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "securityQuestions": [
 {
 "question": "What would you say to this question?",
 "answer": "..."
 }
]
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	idstring, required

	Identifies id of user.

	securityQuestionsobject[], required

	New set of questions and answers for authenticated user in password recovery.

Responses

	204No Content

	
	Updated information of updated existing user.

	400Bad request

	
	Unable to update security questions if question verification is not configured.

	Anonymous user cannot have security questions.

	At least one question is required.

	Question text is required.

	Answer is required.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update users.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Changing Password

Allows the authenticated user to change their password.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginWithPasswordAsync(username, password);

await connection.UpdatePasswordAsync(previousPassword, newPassword);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

	previousPasswordstring, required

	Previous user secret credentials for login.

	newPasswordstring, required

	New user secret credentials for login.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.login(username, password);

await meshyConnection.updatePassword(previousPassword, newPassword);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	passwordstring, required

	User secret credentials for login. When anonymous it is static as nopassword.

	previousPasswordstring, required

	Previous user secret credentials for login.

	newPasswordstring, required

	New user secret credentials for login.

REST

POST https://api.meshydb.com/{accountName}/users/me/password HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "newPassword": "newPassword",
 "previousPassword": "previousPassword"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_token: string, required

	Token identifying authorization with MeshyDB requested during Generate Access Token.

	previousPasswordstring, required

	Previous user secret credentials for login.

	newPasswordstring, required

	New user secret credentials for login.

Responses

	204No Content

	
	Identifies password was updated successfully.

	400Bad request

	
	Anonymous user cannot change password.

	New password is required.

	Previous password is required.

	Previous password does not match existing password.

	401Unauthorized

	
	User is not authorized to make call.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Password Recovery

When a previously authenticated user used the system, they may need to recover their password. The request will be valid for one hour.

They will first need to request a forgot password before they are able to reset it.

Depending on your verification flow, whether it be email, text or security questions the user will need to either provide a code or answer to question to prove their knowledge of the request.

Forgetting Password

Creates a request for password reset that must have the matching data to reset to ensure request parity.

If using security questions, you can provide an attempt number to select which question is used for verification.

The attempt will load the question into the hint field to be asked of the user.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

await client.ForgotPasswordAsync(username, attempt);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies how many times a request has been made.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

await client.forgotPassword(username, attempt);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies how many times a request has been made.

REST

POST https://api.meshydb.com/{accountName}/users/forgotpassword HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "attempt": 1
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies how many times a request has been made.

Responses

	200OK

	
	Generates forgot password response to be used for password reset.

Example Result

{
 "username": "username_testermctesterson",
 "attempt": 1,
 "hash": "...",
 "expires": "1900-01-01T00:00:00.000Z",
 "hint": "..."
}

	400Bad request

	
	Username is required.

	Anonymous user cannot recover password.

	404Not Found

	
	User was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Check Hash

Optionally, before the user’s password is reset you can check if the verification code, they provide is valid.

This would allow a user to verify their code before requiring a reset.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var check = new UserVerificationCheck();

var isValid = await client.CheckHashAsync(check);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

await client.checkHash({
 username: username,
 attempt: attempt,
 hash: hash,
 expires: expires,
 verificationCode: verificationCode
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

REST

POST https://api.meshydb.com/{accountName}/users/checkhash HTTP/1.1
Content-Type: application/json

 {
 "username": "username_testermctesterson",
 "attempt": 1,
 "hash": "...",
 "expires": "1900-01-01T00:00:00.000Z",
 "verificationCode": "..."
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

Responses

	200OK

	
	Identifies if hash with verification code is valid.

Example Result

true

	400Bad request

	
	Username is required.

	Hash is required.

	Expires is required.

	Verification code is required.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Resetting Password

Take result from forgot password and application verification code generated from email/text or security question answer, along with a new password to be used for login.

C#

var client = MeshyClient.Initialize(accountName, publicKey);

var passwordResetHash = await client.ForgotPasswordAsync(username, attempt);

var resetPassword = new ResetPassword() {
 Username = passwordResetHash.Username,
 Attempt = passwordResetHash.Attempt,
 Hash = passwordResetHash.Hash,
 Expires = passwordResetHash.Expires,
 VerificationCode = verificationCode,
 NewPassword = newPassword
 };

await client.ResetPasswordAsync(resetPassword);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

	newPasswordstring, required

	New user secret credentials for login.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var passwordResetHash = await client.forgotPassword(username);

await client.resetPassword({
 username: passwordResetHash.username,
 attempt: passwordResetHash.attempt,
 hash: passwordResetHash.hash,
 expires: passwordResetHash.expires,
 verificationCode: verificationCode,
 newPassword: newPassword
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

	newPasswordstring, required

	New user secret credentials for login.

REST

POST https://api.meshydb.com/{accountName}/users/resetpassword HTTP/1.1
Content-Type: application/json

 {
 username: "username_testermctesterson",
 attempt: 1,
 hash: "...",
 expires: "1900-01-01T00:00:00.000Z",
 verificationCode: "...",
 newPassword: "..."
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	attemptinteger, default: 1

	Identifies which attempt hash was generated against.

	hashstring, required

	Generated hash from verification request.

	expiresdate, required

	Identifies when the request expires.

	hintstring

	Hint for verification code was generated.

	verificationCodestring, required

	Value to verify against verification request.

	newPasswordstring, required

	New user secret credentials for login.

Responses

	204No Content

	
	Identifies password reset is successful.

	400Bad request

	
	Username is required.

	Hash is required.

	Expires is required.

	Verification code is required.

	Hash is expired.

	New password is required.

	Anonymous user cannot be reset.

	User has already been verified.

	Request hash is invalid.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Logging Out

Log authenticated user out.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.SignoutAsync();

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

await meshyConnection.signout();

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

REST

POST https://api.meshydb.com/{accountName}/connect/revocation HTTP/1.1
Content-Type: application/x-www-form-urlencoded

 token={refresh_token}&
 token_type_hint=refresh_token&
 client_id={publicKey}

(Form-encoding removed, and line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	refresh_tokenstring, required

	Refresh token identifying authorization with MeshyDB requested during Generating Token.

	publicKeystring, required

	Public identifier of connecting service.

Responses

	200OK

	
	Identifies successful logout.

	400Bad request

	
	Invalid client id.

	Token is missing.

	Unsupported Token type.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Deleting

Remove user from system permanently.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Users.DeleteAsync(id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	idstring, required

	Identifies id of user.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.usersService.delete(id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	idstring, required

	Identifies id of user.

REST

DELETE https://api.meshydb.com/{accountName}/users/{id} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	idstring, required

	Identifies id of user.

Responses

	204No Content

	
	Identifies if user was deleted.

	400Bad request

	
	User is not able to delete self.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete users.

	404Not Found

	
	User is not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Creating

Create new custom mesh data into specified mesh name.

Single

Create a specific record.

C#

// Mesh is derived from class name
public class Person: MeshData
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var person = await connection.Meshes.CreateAsync(new Person(){
 FirstName="Bob",
 LastName="Bobberson"
});

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, default: class name

	Identifies name of mesh collection. e.g. person.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var createdMesh = await meshyConnection.meshes.create(meshName,
 {
 firstName:"Bob",
 lastName:"Bobberson"
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

REST

POST https://api.meshydb.com/{accountName}/meshes/{mesh} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 {
 "firstName": "Bob",
 "lastName": "Bobberson"
 }

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

Responses

	201Created

	
	Result of newly created mesh data.

Example Result

{
 "_id": "5c78cc81dd870827a8e7b6c4",
 "firstName": "Bob",
 "lastName": "Bobberson"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	Mesh already exists for provided id.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create meshes or specific mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Many

Bulk create many objects.

C#

// Mesh is derived from class name
public class Person: MeshData
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);
var data = new List<Person>();

data.Add(new Person(){
 FirstName="Bob",
 LastName="Bobberson"
});

var result = await connection.Meshes.CreateMany(data);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, default: class name

	Identifies name of mesh collection. e.g. person.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var anonymousUser = await client.registerAnonymousUser();
var connection = await client.loginAnonymously(anonymousUser.username);

var result = await connection.meshesService.createMany(meshName, [{
 firstName:"Bob",
 lastName:"Bobberson"
 }]);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

REST

POST https://api.meshydb.com/{accountName}/meshes/{mesh} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

 [{
 "firstName": "Bob",
 "lastName": "Bobberson"
 }]

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

Responses

	201Created

	
	Result of newly created mesh data.

Example Result

{
 "createdCount": 1
}

	400Bad request

	
	No data was provided.

	
	Data is in an invalid format. The status of each object will be brought back to identify the error. The errors are as follows:

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	Mesh already exists for provided id.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create meshes or specific mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Retrieving

Retrieve single item from Mesh collection.

C#

// Mesh is derived from class name
public class Person: MeshData
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var person = await connection.Meshes.GetData<Person>(id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, default: class name

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies location of what Mesh data to retrieve.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var meshData = await meshyConnection.meshes.get(meshName, id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies location of what Mesh data to retrieve.

REST

GET https://api.meshydb.com/{accountName}/meshes/{mesh}/{id} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies location of what Mesh data to retrieve.

Responses

	200OK

	
	Mesh data found with given identifier.

Example Result

{
 "_id":"5c78cc81dd870827a8e7b6c4",
 "firstName": "Bob",
 "lastName": "Bobberson"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read meshes or mesh.

	404Not Found

	
	Mesh data was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Updating

Update Mesh data in collection.

Single

Update single mesh data record.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);
var person = await connection.Meshes.GetDataAsync<Person>(id);

person.FirstName = "Bobbo";

person = await connection.Meshes.UpdateAsync(person);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to replace.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var meshData = await meshyConnection.meshes.update(meshName,
 {
 firstName:"Bob",
 lastName:"Bobberson"
 },
 id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to replace.

REST

PUT https://api.meshydb.com/{accountName}/meshes/{mesh}/{id} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "firstName": "Bobbo",
 "lastName": "Bobberson"
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to replace.

Responses

	200OK

	
	Result of updated mesh data.

Example Result

{
 "_id":"5c78cc81dd870827a8e7b6c4",
 "firstName": "Bobbo",
 "lastName": "Bobberson"
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Mesh property cannot begin with ‘$’ or contain ‘.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Many

Bulk update data based on provided filter.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var result = await connection.Meshes.UpdateManyAsync<Person>(filter, update);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	filterstring, required

	Criteria provided in a MongoDB format to limit results.

	updatestring, required

	Update command provided in a MongoDB format.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var anonymousUser = await client.registerAnonymousUser();
var connection = await client.loginAnonymously(anonymousUser.username);

var result = await connection.meshesService.updateMany(meshName, filter, update);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	filterstring, required

	Criteria provided in a MongoDB format to limit results.

	updatestring, required

	Update command provided in a MongoDB format.

REST

PATCH https://api.meshydb.com/{accountName}/meshes/{mesh} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "filter": filter,
 "update": update
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	filterstring, required

	Criteria provided in a MongoDB format to limit results.

	updatestring, required

	Update command provided in a MongoDB format.

Responses

	200OK

	
	Result of updated mesh data.

Example Result

{
 "isAcknowledged": true,
 "isModifiedCountAvailable": true,
 "matchedCount": 5,
 "modifiedCount": 3,
 "upsertedId": null
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter is required.

	Update is required.

	Filter is in an invalid format. It must be in a valid Mongo DB format.

	Update is in an invalid format. It must be in a valid Mongo DB format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Searching

Filter Mesh data from collection based on query parameters.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var pagedPersonResult = await connection.Meshes.SearchAsync<Person>(filter, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var pagedResults = await meshyConnection.meshes.search(meshName,
 {
 filter: filter,
 orderBy: orderBy,
 pageNumber: page,
 pageSize: pageSize
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	meshNamestring, required

	Identifies name of mesh collection. e.g. person.

	usernamestring

	Unique user name for authentication.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

GET https://api.meshydb.com/{accountName}/meshes/{mesh}?filter={filter}&
 orderBy={orderBy}&
 page={page}&
 pageSize={pageSize} HTTP/1.1
Authorization: Bearer {access_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Mesh data found with given search criteria.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "_id":"5c78cc81dd870827a8e7b6c4",
 "firstName": "Bobbo",
 "lastName": "Bobberson"
 }],
 "totalRecords": 1
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter is in an invalid format. It must be in a valid Mongo DB format.

	Order by is in an invalid format. It must be in a valid Mongo DB format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Deleting

Delete mesh data from a collection is permanent. If you desire to retain your data one possible pattern to consider would be a soft-delete pattern.

Single

Delete a specific record of data.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Meshes.DeleteAsync(person);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to remove.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

await meshyConnection.meshes.delete(meshName, id);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to remove.

REST

DELETE https://api.meshydb.com/{accountName}/meshes/{mesh}/{id} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	idstring, required

	Identifies unique record of Mesh data to remove.

Responses

	204No Content

	
	Mesh has been deleted successfully.

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete meshes or mesh.

	404Not Found

	
	Mesh data was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Many

Delete all objects with the provided filter.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var result = connection.Meshes.DeleteMany<DeleteManyTest>(filter);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	filterstring, required

	Criteria provided in a MongoDB format to limit results.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var anonymousUser = await client.registerAnonymousUser();
var connection = await client.loginAnonymously(anonymousUser.username);

var data = await connection.meshesService.deleteMany(meshName, filter)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	meshNamestring, required, default: class name

	Identifies name of mesh collection. e.g. person.

	filterobject, required

	Criteria provided in a MongoDB format to limit results.

REST

DELETE https://api.meshydb.com/{accountName}/meshes/{mesh}?filter={filter} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	filterstring, required

	Criteria provided in a MongoDB format to limit results.

Responses

	200OK

	
	Mesh data found with given search criteria and successfully deleted.

Example Result

{
 "deletedCount": 5,
 "isAcknowledged": true
}

	400Bad request

	
	Mesh name is invalid and must be alpha characters only.

	Filter was not provided.

	Filter is in an invalid format.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete meshes or mesh.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Projecting

A projection is a stored MongoDB query that can contain aggregations, filtering and lookups. It’s great for reporting or simply re-using queries throughout your application. Projections also give you the ability to control access to data by allowing you to explicitly define the data you want to make accessible to end-users.

You can create your query your Mesh Data using the admin portal under the Projections tab.

Please review the following for supported aggregations.

API Reference

C#

public class PopularState
{
 [JsonProperty("state")]
 public string State { get; set; }

 [JsonProperty("attractions")]
 public int Attractions { get; set; }
}

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var stateAttractions = await connection.Projections.Get<PopularState>(projectionName,
 filter,
 orderBy,
 page,
 pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	projectionNamestring, required

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderByobject

	Defines which fields need to be ordered and direction. Review more ways to use ordering.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var anonymousUser = await client.registerAnonymousUser();

var meshyConnection = await client.loginAnonymously(anonymousUser.username);

var popularStates = await meshyConnection.projections.get<any>(projectionName,
 {
 filter: filter,
 orderBy: orderBy,
 page: page,
 pageSize: pageSize
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	projectionNamestring, required

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format. Review more ways to use ordering.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

GET https://api.meshydb.com/{accountName}/projections/{projectionName} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	meshstring, required

	Identifies name of mesh collection. e.g. person.

	projectionNamestring, required

	Identifies name of mesh collection. e.g. person.

	filterstring

	Criteria provided in a MongoDB format to limit results.

	orderBystring

	Defines which fields need to be ordered and direction in a MongoDB format. Review more ways to use ordering.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Projection found with given identifier.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "state":"WI",
 "attractions":"24"
 }],
 "totalRecords": 1
}

	400Bad request

	
	Projection name is required.

	Order by is invalid.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read projections.

	404Not Found

	
	Projection was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Ordering Data

Ordering is supported in a MongoDB format. This format is as an object with a -1 or 1 to identify descending or ascending format respectively.

The following example shows how to sort an object by Name in descending order.

C#

var orderBy = OrderByDefinition<PopularState>.OrderByDescending("Name");

// Or

orderBy = OrderByDefinition<PopularState>.OrderByDescending(x => x.Name);

var popularStates = await connection.Projections.Get<PopularState>(projectionName,
 orderBy,
 page,
 pageSize);

Alternatively you can use MongoDB syntax.

var orderBy = "{ \"Name\": -1 }";

var popularStates = await connection.Projections.Get<PopularState>(projectionName,
 orderBy,
 page,
 pageSize);

NodeJS

var orderBy = { "Name": -1 };

var popularStates = await meshyConnection.projections.get<any>(projectionName,
 {
 orderBy: orderBy,
 page: page,
 pageSize: pageSize
 });

REST

GET https://api.meshydb.com/{accountName}/projections/{projectionName}?orderBy={ "Name": -1 } HTTP/1.1
Authorization: Bearer {access_token}

Additional filters can be extended as follows.

This example will order by Name descending then Age ascending.

C#

var orderBy = OrderByDefinition<Person>.OrderByDescending("Name").ThenBy("Age");

// Or

orderBy = OrderByDefinition<Person>.OrderByDescending(x => x.Name).ThenBy(x=> x.Age);

var popularStates = await connection.Projections.Get<PopularState>(projectionName,
 orderBy,
 page,
 pageSize);

Alternatively you can use MongoDB syntax

var orderBy = "{ \"Name\": -1, \"Age\": 1 }";

var popularStates = await connection.Projections.Get<PopularState>(projectionName,
 orderBy,
 page,
 pageSize);

NodeJS

var orderBy = { "Name": -1, "Age": 1 };

var popularStates = await meshyConnection.projections.get<any>(projectionName,
 {
 orderBy: orderBy,
 page: page,
 pageSize: pageSize
 });

REST

GET https://api.meshydb.com/{accountName}/projections/{projectionName}?orderBy={ "Name": -1, "Age": 1 } HTTP/1.1
Authorization: Bearer {access_token}

Supported Aggregates

The following aggregates are from MongoDB and more detailed explanation can be found here [https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/].

	$addFields

	$bucket

	$bucketAuto

	$count

	$graphLookup

	$facet

	$group

	$limit

	$lookup

	$match

	$project

	$redact

	$replaceRoot

	$sample

	$skip

	$sort

	$sortByCount

	$unwind

Creating

Roles allow the ability to setup specific permissions for users.

These permissions can either be set as a blanket allow for data or be granlar to specific data sets.

Role

Creating a role allows it to be assignable to a user.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var role = new Role();

await connection.Roles.CreateAsync(role);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring, required

	Name of the role.

	descriptionstring

	Describes the purpose of the role.

	numberOfUsersstring

	Read-only count of users assigned to the role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.create(role);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring, required

	Name of the role.

	descriptionstring

	Describes the purpose of the role.

	numberOfUsersstring

	Read-only count of users assigned to the role.

REST

POST https://api.meshydb.com/{accountName}/roles HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "name":"test",
 "description":"..."
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	usernamestring, required

	Unique user name for authentication.

	namestring, required

	Name of the role.

	descriptionstring

	Describes the purpose of the role.

Responses

	201Created

	
	Identifies if role was created.

Example Result

{
 "name":"test",
 "description":"...",
 "id":"5db..."
}

	400Bad request

	
	Name is required.

	Name can only be alpha characters only.

	Role cannot start with ‘meshy.’.

	Role already exists.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create roles.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permission

When creating a permission it is assigned to a role. When a user has the role this permission will take effect on their next signin/token refresh.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var permission = new Permission();

await connection.Roles.CreatePermissionAsync(roleId, permission);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);
var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.createPermission(roleId, permission);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

REST

POST https://api.meshydb.com/{accountName}/roles/{roleId}/permissions HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "permissibleName":"meshes",
 "create":"true",
 "update":"true",
 "read":"true",
 "delete":"true"
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

Responses

	201Created

	
	Identifies if role was created.

Example Result

{
 "id":"5db...",
 "permissibleName":"meshes",
 "create":"true",
 "update":"true",
 "read":"true",
 "delete":"true"
}

	400Bad request

	
	Permissible name is required.

	At least one of the following must be set: Create, Update, Read, Delete.

	Permissible does not exist.

	Permisisble does not support the permission configuration.

	Role does not exist.

	Permissible was already configured for role.

	A higher permissible cannot be assigned to a role with a specific permission already. IE you cannot have ‘meshes’ and ‘meshes.person’ for the role.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to create permissions.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Retrieving

Retrieve information for specific role.

Role

Retrieve details about role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.GetAsync(roleId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.get(roleId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

REST

GET https://api.meshydb.com/{accountName}/roles/{roleId} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

Responses

	200OK

	
	Identifies if role was found.

Example Result

{
 "name":"test",
 "description":"...",
 "id":"5db..."
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permission

Get specific permission from role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var permission = await connection.Roles.GetPermissionAsync(roleId, permissionId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

var permission = await meshyConnection.rolesService.getPermission(roleId, permissionId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

REST

GET https://api.meshydb.com/{accountName}/roles/{roleId}/permissions/{permissionId} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

Responses

	200OK

	
	Identifies if permission was found.

Example Result

{
 "id":"5db...",
 "permissibleName":"meshes",
 "create":"true",
 "update":"true",
 "read":"true",
 "delete":"true"
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read roles.

	404Not Found

	
	Permission was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Updating

Update information for specific role.

Role

Update details about role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.UpdateAsync(roleId, role);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	namestring, required

	Name of the role.

	descriptionstring

	Describes the purpose of the role.

	numberOfUsersstring

	Read-only count of users assigned to the role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.update(roleId, role);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

REST

PUT https://api.meshydb.com/{accountName}/roles/{roleId} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "name":"test",
 "description":"..."
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

Responses

	200OK

	
	Identifies if role was updated.

Example Result

{
 "name":"test",
 "description":"...",
 "id":"5db..."
}

	400Bad request

	
	Name is required.

	Name can only be alpha characters only.

	Role cannot start with ‘meshy.’.

	Role already exists.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permission

Update specific permission from role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.UpdatePermissionAsync(roleId, permissionId, permission);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.deletePermission(roleId, permissionId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

REST

PUT https://api.meshydb.com/{accountName}/roles/{roleId}/permissions/{permissionId} HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "permissibleName":"meshes",
 "create":"true",
 "update":"true",
 "read":"true",
 "delete":"true"
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

	permissibleNamestring, required

	Name of permissible reference. An example would be ‘meshes’ or ‘meshes.{meshName}’ to identify access to a specific mesh.

	createtype:boolean

	Identifies if role can create data.

	updatetype:boolean

	Identifies if role can update data.

	readtype:boolean

	Identifies if role can read data.

	deletetype:boolean

	Identifies if role can delete data.

Responses

	200OK

	
	Identifies if permission was updated.

Example Result

{
 "id":"5db...",
 "permissibleName":"meshes",
 "create":"true",
 "update":"true",
 "read":"true",
 "delete":"true"
}

	400Bad request

	
	Permissible name is required.

	At least one of the following must be set: Create, Update, Read, Delete.

	Permissible does not exist.

	Permisisble does not support the permission configuration.

	Role does not exist.

	Permissible was already configured for role.

	A higher permissible cannot be assigned to a role with a specific permission already. IE you cannot have ‘meshes’ and ‘meshes.person’ for the role.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update roles.

	404Not Found

	
	Permission was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Add Users

Add users from specific role.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var batchRoleAdd = new BatchRoleAdd();

await connection.Roles.AddUsersAsync(roleId, batchRoleAdd);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	batchRoleAddobject, required

	Batch object of user ids to be added from role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.addUsers(roleId, batchRoleAdd);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	batchRoleAddobject, required

	Batch object of user ids to be added from role.

REST

POST https://api.meshydb.com/{accountName}/roles/{roleId}/users HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "users": [
 {
 "id":"5db..."
 }
]
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

Responses

	204No Content

	
	Identifies if role is added.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Searching

Search for information related to roles.

Role

Search details about roles.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.SearchAsync(name, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.search({
 name: name,
 page: page,
 pageSize: pageSize
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

GET https://api.meshydb.com/{accountName}/roles?name={name}&
 page={page}&
 pageSize={pageSize} HTTP/1.1
Authorization: Bearer {access_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Identifies if role were found.

Example Result

{
 "page": 1,
 "pageSize": 25,
 "results": [{
 "name":"test",
 "description":"...",
 "id":"5db...",
 "numberOfUsers": 0
 }],
 "totalRecords": 1
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read roles.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permission

Search permissions from role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.SearchPermissionAsync(roleId, permissibleName, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring

	Case-insensitive partial name search of permissible.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.searchPermission(roleId, {
 permissibleName: permissibleName,
 page: page,
 pageSize: pageSize
 });

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring

	Case-insensitive partial name search of permissible.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

GET https://api.meshydb.com/{accountName}/roles/{roleId}/permissions?permissibleName={permissibleName}&
 page={page}&
 pageSize={pageSize} HTTP/1.1
Authorization: Bearer {access_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

	permissibleNamestring

	Case-insensitive partial name search of permissible.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Identifies if permissions were found.

Example Result

{
 "results":[
 {
 "permissibleName":"meshes",
 "create":true,
 "update":true,
 "read":true,
 "delete":true,
 "id":"5d9..."
 }
],
 "page":1,
 "pageSize":25,
 "totalRecords":1
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read roles.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permissibles

Search for permissible to assign to a permission.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.SearchPermissibleAsync(name, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.searchPermissible(name, page, pageSize);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

REST

GET https://api.meshydb.com/{accountName}/permissibles?name={name}&
 page={page}&
 pageSize={pageSize} HTTP/1.1
Authorization: Bearer {access_token}

(Line breaks added for readability)

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	namestring

	Case-insensitive partial name search.

	pageinteger, default: 1

	Page number of results to bring back.

	pageSizeinteger, max: 200, default: 25

	Number of results to bring back per page.

Responses

	200OK

	
	Identifies if permissibles were found.

Example Result

{
 "results":[
 {
 "name":"meshes",
 "canCreate":true,
 "canUpdate":true,
 "canRead":true,
 "canDelete":true
 }
],
 "page":1,
 "pageSize":25,
 "totalRecords":1
}

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to read roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Deleting

Delete information for specific role.

Role

Delete details about role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.DeleteAsync(roleId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.delete(roleId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

REST

DELETE https://api.meshydb.com/{accountName}/roles/{roleId} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

Responses

	204No Content

	
	Identifies if role was deleted.

	400Bad request

	
	Unable to delete role that starts with ‘meshy.’.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Permission

Delete specific permission from role by id.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

await connection.Roles.DeletePermissionAsync(roleId, permissionId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.deletePermission(roleId, permissionId);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

REST

DELETE https://api.meshydb.com/{accountName}/roles/{roleId}/permissions/{permissionId} HTTP/1.1
Authorization: Bearer {access_token}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

	permissionIdstring, required

	Identifies id of permission.

Responses

	204No Content

	
	Identifies if permission was deleted.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to delete roles.

	404Not Found

	
	Permission was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Remove Users

Remove users from specific role.

C#

var client = MeshyClient.Initialize(accountName, publicKey);
var connection = await client.LoginAnonymouslyAsync(username);

var batchRoleRemove = new BatchRoleRemove();

await connection.Roles.RemoveUsersAsync(roleId, batchRoleRemove);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	roleIdstring, required

	Identifies id of role.

	batchRoleRemoveobject, required

	Batch object of user ids to be removed from role.

NodeJS

var client = MeshyClient.initialize(accountName, publicKey);

var meshyConnection = await client.loginAnonymously(username);

await meshyConnection.rolesService.removeUsers(roleId, batchRoleRemove);

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	publicKeystring, required

	Public identifier of connecting service.

	usernamestring, required

	Unique user name for authentication.

	roleIdstring, required

	Identifies id of role.

	batchRoleRemoveobject, required

	Batch object of user ids to be removed from role.

REST

DELETE https://api.meshydb.com/{accountName}/roles/{roleId}/users HTTP/1.1
Authorization: Bearer {access_token}
Content-Type: application/json

{
 "users": [
 {
 "id":"5db..."
 }
]
}

Parameters

	accountNamestring, required

	Indicates which account you are connecting to.

	access_tokenstring, required

	Token identifying authorization with MeshyDB requested during Generating Token.

	roleIdstring, required

	Identifies id of role.

Responses

	204No Content

	
	Identifies if role is removed.

	401Unauthorized

	
	User is not authorized to make call.

	403Forbidden

	
	User has insufficent permission to update roles.

	404Not Found

	
	Role was not found.

	429Too many request

	
	You have either hit your API or Database limit. Please review your account.

Index

 _static/down-pressed.png

_static/down.png

_static/file.png

_static/minus.png

_static/favicon-32.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome

_images/getting-started-client.png
& MESHYDB

TENANTS

e you@email.com v

<+ Add New Client

55 default 2

~ Dashboard

Filters
= Meshes [J Include disabled clients
i Logs
Name default

_ Public Key c4f9a1f58dd64d929d7bd22e5d279a93

3= Configuration

5 new > Items per page: 20 1-10f1 1€ < > >

_static/ajax-loader.gif

_static/up-pressed.png

_images/getting-started-account.png
b MESHYDB

e you@email.com v

TENANTS
25 default >
=
§ new bd . e
= Info Invoices Communication
55 test >

Account _ Sl
+ Add new tenant

[J show only used

Name dev

ACCOUNT

_ - -
Payment Source No payment source entered

O Profile

_static/up.png

