
Mercurial 3.4 Sprint Notes
Documentation

Release 0.1

Sean Farley, Pierre-Yves David, and Augie Fackler

Nov 18, 2017

Contents

1 General 3

2 Patch Review 5

3 Manifest discussions 7
3.1 Day 1 . 7
3.2 Day 2 . 8

4 Manifest Feature Matrix 11

5 Bikeshed Discussion 13

6 Indices and tables 15

i

ii

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

Contents:

Contents 1

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

2 Contents

CHAPTER 1

General

• How to handle new features for OSS projects (basically detecting client versions)? eg: mozilla may enforce
using bundle2 at some point.

• Manifest Storage: change other things at same time as manifestv2/tree-hashes?

– How to handle differing manifest/changelog versions?

– Since manifestv2 changes, hashes, time for a changelogv2?

• .hgtags and .hgignore with narrow checkouts?

• Commit signing

• Obsolesence marker discovery

• Evolve UI discussion

• Handling evolve divergence

• Including “reflog” in core

• Remote bookmarks in core

• Automated package building for python 2.4

– rpms with embedded python

– OS X builds

• Stricter author field validation

– Conclusion: best left as a commit hook on the server

3

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

4 Chapter 1. General

CHAPTER 2

Patch Review

We need to:

• Have a single source of Truth (unify: inflight, patchbot, patchwork)

• A way for non-email-nerd to review patches

• A way for new people to submit patches

• A way to track multiple version/comment on patch

• Herald rules! (automatic triage)

We need a two-way synchronization:

• Things will get bad so they can get better,

• We need to put more actual resources on that.

5

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

6 Chapter 2. Patch Review

CHAPTER 3

Manifest discussions

3.1 Day 1

• ‘Schema’ is what is exchanged on the wire protocol. It’s not been broken in the past, so that old clients can still
work with it.

• Tree manifests: It’s possible to calculate both hashes (tree hash and flat manifest hashes).

• Mozilla central needs 25MB of mapping from old to new hash scheme for both changeset and manifest

• Having the mapping might cause people to reimplement git alias (spectral note: I don’t know what this is
;))

• Two switches: new manifest format, and new manifest hash

– Mozilla can use the new format (trees, manifest v2) without a new hash

• While we’re changing the ‘schema’ (hashes), what do we want from changeset v2?

– “extra” key/value pairs on individual lines

– Support n in filenames

– Rename information?

– add/edit/delete status in changesest (no need to touch manifest)?

– More strict author field validation (require email/rfc format?)

• hg log on directories becomes faster with tree manifests

• rename cache to store that a file has not been renamed, so that a lot of checks become much quicker

• Historical note: the reason for the file list in the changeset is that it’s for push/pull, so deletes didn’t originally
show up there, because it didn’t change the filelog.

• sid0: do we want to store ‘this got deleted’ information in the filelogs, so that hg log <file> shows that it
happened?

• Default is ‘flat manifests’ since gut-feel is ~98% of projects this is the best one for them

7

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

• Certain projects want tree manifests on disk (client? or server? or both (separately? concurrently?))

• Could make a read-only copy using old hash to do a more gradual migration to exchanging tree manifests?

Three use cases:

1. Mozilla central today: flag to turn on that uses a new disk format, but no hash changes, so exchange is unaffected.

2. Google soon: start from scratch with new hashes

3. Transition from 1->2

Two flags:

1. Storing tree manifests locally (old hashing)

2. Break the schema

For flag #1 without #2: The manifest revlog (root-level 00manifest.{i,d}) would have the old hash as its nodeid, and it
wouldn’t strictly match the contents at that version.

An extension (client and server side) that can maintain a map for old-hashes in bug trackers?

For getting to Flag #2:

• Default on the server is that it does not accept manifest v2

• no v1 children with v2 parents

• Server then enables v2 pushes to it, the next change with v2 will upgrade all future changes

• Upgrade during exchange v1->v2? Maybe not needed?

• Command to downgrade from v1->v2 if you get ‘infected’ with the virus should be pretty easy.

• flat-hashing a tree manifest would be more difficult than it might seem at first, because parent revisions

• A new challenger appears! (4th use case?)

• Matrix: flat-right-now vs. flat-with-subdir-hashes vs. tree manifests, manifestv1 vs. manifestv2, hashv1 vs.
hashv2

– Are deltas going to be broken in any of these?

– Manifest Feature Maxtrix

– So we’re thinking implement 6, 8/9, 14 on the way to 17, benchmark them, see if the benefits make it so
that implementing the conversion-during-exchange makes sense.

* benchmarks need to consider clone time, server cpu usage, on-disk size

* 6=14 and 8=17 if we don’t care about breaking hashes, 8=9 if we don’t care about exchange

• Client version announcement (User-Agent string?)

– As a ‘backport extension’?

– Include hg version, extensions? python version? platform?

3.2 Day 2

Google wants new tree-structure manifests.

It’d be nice to not break old clients. Can compute old format hash for tree manifest on disk.

Three use cases:

8 Chapter 3. Manifest discussions

manifest-feature-matrix.html

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

1. mozilla-central today

2. Google soon

• Never accept v1 manifests, ever.

3. Transition from 1 to 2 case

• (~2 years out, needs time for clients to upgrade naturally)

4. prevention use case

• Implementation-wise, this really means you don’t set the schema change flag on the server.

• Idea: server could rewrite as v1 when receiving push using v2, tell client (using bundle2)

Two flags:

1. Store tree manifests locally but use old hashing

• Transcode to old manifest format over the wire

• store old hash in the changelog entry

2. Break the schema

• allow new hashing scheme to be recorded in changelog

• exchange the new revlogs

MAY enforce a changeset schema change when we do flag 2? Not sure if it really matters.

Layout v2: orthogonal from all of these concerns?

• Puts file hashes on separate lines for compression benefits

3.2. Day 2 9

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

10 Chapter 3. Manifest discussions

CHAPTER 4

Manifest Feature Matrix

Original spreadsheet

Num Hash Client
On-Disk
Manifest
Format

Client
Tree
Manifest
On-Desk

Tree
Mani-
fest in
Ex-
change

Conse-
quences:
Read-delta
works

Sane?Use Case Benefits In-
ter-
est-
ing?

2 Cur-
rent

V1 No No Yes Yes Existing Projects Mostly
read-delta

Ob-
vi-
ously

6 Cur-
rent

V2 No No No ? Size: 30%
smaller without
general delta

?

8 Cur-
rent

V2 Yes No No Yes Mozilla Rebase et. al
faster on client,
old clients won’t
break

?

9 Cur-
rent

V2 Yes Yes No Kind
of

Exchange for
modern client
and server in
above case

14 Tree V2 No No No MaybeSmall new
project

Compact
representation,
less disk seeks

17 Tree V2 Yes Yes No Yes Google Narrow clones Ob-
vi-
ously

• Next step: analyze storange and perf of 14 and 17 on normal-size and mozilla-size repos to see if we should
support 6 and 8.

• Concern: if exchange uses v1 format and disk uses v2, we have to do transformation between formats to apply
deltas.

11

https://docs.google.com/a/atlassian.com/spreadsheets/d/1GMc3nPhACFLJIYAU-tRXdq58U1khjnkWWbq7WCTfZtg/edit#gid=0

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

• If we can’t do old client compat, then we should only do row 2 and 17

• New delta encoding might also be worth considering, but completely orthogonal to this.

12 Chapter 4. Manifest Feature Matrix

CHAPTER 5

Bikeshed Discussion

Long-standing issues about what functionality to bring into core.

• (Approved) Facebook’s reflog extension

– renamed to ‘journal’

• (Approved) progress bar (held up by bug; assigned to Augie)

• (Approved) color in core (256 color patches will be accepted)

• (Approved) pager in core (held up by editor / piping bugs)

• (Approved) backups (finding and restoring bundles)

– rename to something but what?

– probably as a flag to unbundle

• (Approved) smart log

– eliding / ellipses in graph

– topological sorter

– revset

– new template

• (Approved) templates

– new, easy to discover templates needed

– oneline, twoline, etc.

• (Possibly) share extension

– everything on by default

– hg clone –share?

• (Approved) new paths

– needs to respect [auth] sections

13

Mercurial 3.4 Sprint Notes Documentation, Release 0.1

– path aliases

– Use [uri] section for naming?

• (Approved) remote bookmarks

– built on top of journarl and new paths

– can be used to propagate deletion (using a merge-like operation)

– change hg update to hg update -B?

• (Possibly) terse status

– needs discussion on the mailing list after 3.4 code freeze

• (Approved) hg config -l 'section.name = value'

– after much, much, much discussion mpm could agree to “doing the dumbest thing possible” -> appending
to the end of the .hgrc file

14 Chapter 5. Bikeshed Discussion

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	General
	Patch Review
	Manifest discussions
	Day 1
	Day 2

	Manifest Feature Matrix
	Bikeshed Discussion
	Indices and tables

