

Melody

Melody is a lightweight parameter search and optimisation tool
originally designed to support searching and optimising over the
performance landscape of software. In particular, it is being designed
to support code composition options (loop ordering, loop fusion etc),
code compilation and link options (compilers and compiler flags) and
code configuration options (tunable parameters such as a cut off
radius, or preconditioner). However Melody has been written in a
relatively generic way so can be used to search over, or optimise any
search space.

Melody takes its name from the fact that optimisation is often called
tuning and most good tunes rely on a great melody!

Contents:

	Installation
	Python version

	Using pip

	Downloading and installing

	Testing

	Running
	Melody

	Example

	Inputs
	Supported

	Multiple input objects

	Extending

	Contributing

	Objective Function
	API

	Example

	Support

	Method
	Methods

	Extending

Installation

Python version

Melody is currently tested with Python 2.7.

Using pip

You can install and uninstall using pip.

$ sudo pip install melody
$ sudo pip uninstall melody

If you don’t have admin rights you can install and uninstall locally.

$ pip install melody --user
$ pip uninstall melody

Note

In some systems the resultant installation directory for a local
install is not automatically added to the PYTHONPATH so must be
done manually. The installation path will be
${HOME}/.local/lib/pythonx.y/site-packages where x.y is the
version of Python being used.

Downloading and installing

We recommend using pip for installation but if you would prefer to
download and install locally then follow the instructions in this
section.

Latest release

First download the source from github. You can download a zip file ...

$ wget https://github.com/rupertford/melody/archive/0.1.1.zip
$ unzip 0.1.1.zip

or clone the repository and switch to the latest release ...

$ git clone https://github.com/rupertford/melody.git
$ git checkout tags/0.1.1

Latest stable version

First download the source from github. You can download a zip file ...

$ wget https://github.com/rupertford/melody/archive/master.zip
$ unzip master.zip

or clone the repository and switch to the latest release ...

$ git clone https://github.com/rupertford/melody.git

Installation

Using setup.py

Melody includes an installation setup file called setup.py in its top level
directory.

$ cd <melody_dir>
$ python setup.py install

If you do not have appropriate permissions you can perform a local
installation instead

$ cd <melody_dir>
$ python setup.py install --user

Note

In some systems the resultant installation directory is not
automatically added to the PYTHONPATH so must be done manually. The
installation path will be
${HOME}/.local/lib/pythonx.y/site-packages where x.y is the
version of Python being used.

If you would like to uninstall melody (after installing using the setup.py
script) you can do so using pip. You may see a number of error messages but
the removal should complete successfully.

$ pip uninstall melody

Local pip install

This installation relies on you not moving or modifying the downloaded
source code. In the top level directory type:

$ cd <melody_dir>
$ pip install -e .

Manual setup

This solution also relies on you not moving or modifying the
downloaded source code. In this case you simply set your python path
appropriately.

$ export PYTHONPATH=<melody_dir>/src

Testing

If you have successfully installed melody then you should be able to import it from Python.

$ python
>>> import melody
>>>

There is also a test suite, written to use pytest, that can be used to
test the installation. Note, the tests are not included in the pip
installation procedure. If you do not have pytest you can install it
using pip install pytest.

$ py.test
============================= test session starts ==============================
platform linux2 -- Python 2.7.12, pytest-2.8.7, py-1.4.31, pluggy-0.3.1
rootdir: /xxx/melody, inifile:
plugins: cov-2.4.0
collected 33 items

src/melody/tests/inputs/choice_test.py ..
src/melody/tests/inputs/create_input_test.py
src/melody/tests/inputs/fixed_test.py .
src/melody/tests/inputs/floatrange_test.py .
src/melody/tests/inputs/input_test.py ..
src/melody/tests/inputs/intrange_test.py .
src/melody/tests/inputs/subsets_test.py .
src/melody/tests/inputs/switch_test.py
src/melody/tests/main/melody_test.py
src/melody/tests/search/bruteforce_test.py .x..
src/melody/tests/search/searchmethod_test.py

===================== 32 passed, 1 xfailed in 0.25 seconds =====================

Running

Melody supports 3 main concepts, inputs, an objective function and
a method.

Melody inputs define the search space over which the user would like
to search. A number of pre-existing classes are provided to capture
this space. These can also be written by the user. The Inputs
section discusses inputs in more detail.

The user writes the Melody objective function to perform the
particular task that requires analysis. Melody calls this function
with appropriate inputs and expects to receive two return values once
the function has completed. The Objective Function section discusses
writing a Melody objective function in more detail.

The Melody method defines how to search the input space. Currently
there is only one option here, which is brute force. The user may
write their own search/optimisation method if they so choose. The
Method section discusses Melody methods in more detail.

Melody

A Melody convenience class binds the three concepts (inputs,
objective function and method) together and can be used to
initiate the search.

Note

Please ignore the state argument in the Melody class. This is
not used at the moment and is a placeholder for future
developments.

Example

This section presents a simple Melody example which iterates over all
possible combinations of two types of input, a choice of specified
values and a range of integer values. The empty objective function
simply returns True and a 0 each time it is called.

>>> from melody.inputs import Choice, IntRange
>>> from melody.search import BruteForce
>>> from melody.main import Melody
>>> inputs = [Choice(name="input1", inputs=["a", "b", "c"]),
 IntRange(name="input2", low=1, high=3, step=1)]
>>> def function(values):
>>> return True, 0
>>> method = BruteForce
>>> melody = Melody(inputs=inputs, function=function, method=method)
>>> melody.search()
[{'input1': 'a'}, {'input2': 1}] True 0
[{'input1': 'a'}, {'input2': 2}] True 0
[{'input1': 'b'}, {'input2': 1}] True 0
[{'input1': 'b'}, {'input2': 2}] True 0
[{'input1': 'c'}, {'input2': 1}] True 0
[{'input1': 'c'}, {'input2': 2}] True 0

Inputs

Melody inputs allow the user to specify the space that they would like
to search. Inputs are specified as a list of individual input objects.

Supported

The following input classes are currently supported.

Fixed

For example

>>> from melody.inputs import Fixed
>>> inputs = [Fixed(name="option1", value="value1")]

The above example will generate an input named option1 with the value
value1.

Switch

For example

>>> from melody.inputs import Switch
>>> inputs = [Switch(name="option1", off="dark", on="light")]

The above example will generate an input named option1 which can
take one of two values, dark and light. If one of the
arguments off or on is not provided then an empty string is
returned for that option. If both of the arguments off and on
are not provided then a Runtime exception is raised.

Choice

For example

>>> from melody.inputs import Choice
>>> inputs = [Choice(name="input2", inputs=["a", "b", "c"])]

The above example will generate an input named input2 which can
take one of three values, a, b and c. The list can be
arbitrarily long.

The optional pre argument will prepend all inputs with the value
contained in the string. For example

>>> from melody.inputs import Choice
>>> inputs = [Choice(name="in", inputs=["a", "b", "c"], pre="val_")]

The above example will generate an input named in with three
values, val_a, val_b and val_c.

IntRange

For example

>>> from melody.inputs import IntRange
>>> inputs = [IntRange(name="range1", low=0, high=3, step=1)]

The above example will generate an input named range1 with three
integer values, 0, 1 and 2.

Warning

One might expect the integer 3 to appear, however, in keeping with
the Python range function, this value is excluded.

IntRange

For example

>>> from melody.inputs import FloatRange
>>> inputs = [FloatRange(name="range2", low=0.0, high=0.4, step=0.1)]

The above example will generate an input named range2 with four
floating point values, 0.0, 0.1, 0.2 and 0.3.

Warning

One might expect the value 0.4 to appear, however, in keeping with
the Python range function, this value is excluded.

Subsets

For example

>>> from melody.inputs import Subsets
>>> inputs = [Subsets(name="combinations", inputs=["a", "b", "c"])]

The above example will generate an input named combinations with 8
combinations of values [], ["a"], ["b"], ["c"],
["a", "b"], ["a", "c"], ["b", "c"] and ["a", "b", "c"].

This option is useful when you have a set of inputs that are optional
and can be used with each other in any combination e.g. compiler
flags.

Multiple input objects

So far each of the supported input options has been presented
individually. You might naturally be wondering why inputs has been
defined as a list of input objects.

The reason for this is that an arbitrary number of input objects can
be included in the inputs list. The implication of doing this is that
all combinations of options are potentially valid inputs.

If we combine two of the earlier examples into one ...

>>> from melody.inputs import Fixed, Choice
>>> inputs = [FloatRange(name="range2", low=0.0, high=0.4, step=0.1),
 Choice(name="input2", inputs=["a", "b", "c"])]

we will be specifying the following valid combinations for range2
and input2: 0.0, "a", 0.0, "b", 0.0, "c", 0.1,
"a", 0.1, "b", 0.1, "c", 0.2, "a", 0.2, "b", 0.2,
"c", 0.3, "a", 0.3, "b" and 0.3, "c".

Note

The last input object specified in the list iterates fastest,
followed by the penultimate one etc. So, in the above example the
values for input2 are changing more rapidly than the values for
range2.

Extending

If the supported input classes do not cover your requirements then you
can create your own input classes. All of the input classes inherit
from the Input base class.

Note

Please ignore the state argument and method in the Input
class. These are not used at the moment and are placeholders for
future developments.

You can subclass the input class. For example, if you wanted to
provide all values greater than a tolerance as inputs from a list of values:

>>> from melody.inputs import Input
>>> class IntTolerance(Input):
 ''' returns values if they are greater than a tolerance '''
 def __init__(self, name, inputs, tolerance):
 options = []
 for value in inputs:
 if value>tolerance:
 options.append(value)
 Input.__init__(self, name, options)
>>> inputs = [IntTolerance("tolerance", [8, 9, 2, 4, 10], 7)]

Alternatively you can subclass one of the supporting input types if
that is simpler. For example, if you wanted to append a string to all
Switch values:

>>> from melody.inputs import Switch
>>> class SwitchAppend(Switch):
 ''' append a string to all switch values '''
 def __init__(self, name, off, on, append):
 Switch.__init__(self, name, off+append, on+append)
>>> inputs = [SwitchAppend("switch", "a", "b", "_value")]

Contributing

If you do create your own subclass and you think it might be a
useful addition we ask that you consider contributing your code so
that it can be incorporated into Melody for others to use.

Objective Function

Melody objective functions are user-written Python functions that
perform the action that the user would like to be optimised and/or
investigated. Melody is not aware of what this action is, it simply
calls the objective function with a set of inputs and collects the
result(s).

If, for example, you wanted to find the time taken to perform a google
search for different keywords you would use the Melody inputs to
specify the keywords themselves and create a Melody objective function
to take a particular keyword as input, perform and time the google
search for that keyword and then return the time taken for that
particular search.

API

A Melody objective function must contain a single input
argument. Melody will call the objective function with particular
input values from the inputs specified by the user and will expect
results to be provided when the objective function completes.

The input argument is a Python list containing one or more
dictionaries, each containing a key/value pair. The number of
dictionary entries will correspond to the number of input objects
specified by the user. Each dictionary will contain the name of the
input as the key and one of its specified input options as the value.

Results are returned as two arguments. The first argument is a boolean
value indicating whether the objective function was successful or
not. For example, the a code might not compile, or the results might
be incorrect. In this case False should be returned.

The second argument returns the results that the user would like to be
optimised and/or evaluated for the objective function. For example,
this might be the time a code took to run. The format of the second
argument should be a dictionary of key/value pairs, but the format is
not currently enforced.

def function(input):
 return success, result

Example

A simple example should help explain the API described in the previous
section.

>>> from melody.inputs import Switch
>>> inputs = [Switch(name="option1", off="dark", on="light")]
>>> def function(input):
 print "function {0}".format(str(input))
 return True, {"value": 10}
>>> from melody.search import BruteForce
>>> from melody.main import Melody
>>> melody = Melody(inputs=inputs, function=function,
 method=BruteForce)
>>> melody.search()
function [{'option1': 'dark'}]
[{'option1': 'dark'}] True {'value': 10}
function [{'option1': 'light'}]
[{'option1': 'light'}] True {'value': 10}

In the above example we have a single input object which can take two
values (either "dark" or "light". We use the BruteForce method
(see Section BruteForce) so the objective function will
be called twice, once for each value. As the objective function prints
out the input values it can be seen that it is called twice and that
the input is a list containing a single dictionary (as there is only
one input object) and that dictionary contains a single key, the name
given to the input object ("option1") and a value which is one of
the options provided in the input object (either "dark" or
"light"). The objective function then returns True as it is
always successful and a dictionary containing a key/value pair with a
fixed value (10) that (in a useful objective function) would be
used to indicate how the objective function performed. By default
melody prints out the particular inputs passed to the objective
function and the results provided by the objective function. These
values can also be seen in the output from the example.

More examples of Melody objective functions can be found in the
Melody examples directory.

Support

As explained earlier it is up to the user to write a Melody
objective function. A typical objective function might

	Take the input values for the function call and write those into
appropriate input files e.g. a make include file

	Compile a code using appropriate input files (e.g. a Makefile)

	Check that the code compiled OK. If not return False.

	Run a code based on appropriate input files (e.g. Gromacs config files)

	Check that the code ran OK and gives valid answers. If not return False

	Extract performance information from the run.

	Return from the function call specifying success (True) for the job
and providing the performance information itself (e.g. time taken).

For example:

def function(input):
 ''' user written objective function '''
 # use input to set compiler flag in Makefile
 # build the code with the Makefile
 # check it built OK. If not return False
 # run the code
 # check it ran OK. If not return False
 # extract the timing results
 return success, time

As many Melody objective functions are likely to follow a similar path
to the one described above it is expected that a set of utility
routines can be built up to support the process.

At this point one utility is provided. This utility is useful when
setting up configuration files from the input data supplied to the
objective function.

The utility takes the inputs to the objective function (or another
equivalent data-structure created by the user) and matches any keys in
the data-structure with keys within a template (using jinja2)
replacing any matching key with its corresponding value.

For example

> cat template.txt
Hello {{name}}.
> python
>>> from melody.inputs import create_input
>>> input = [{"name": "fred"}]
>>> result = create_input(input, "template.txt",
 template_location=".")
>>> print result
Hello fred.

Examples of the create_input function being used in Melody
objective functions can be found in the Melody examples directory.

Method

Melody methods determine how the search/optimisation space is going to
be traversed. In the first instance melody is being used to search the
optimisation space rather than optimise over it.

Methods

Melody currently only supports a single method called BruteForce.

BruteForce

The BruteForce method iterates over all possible combinations
specified in the inputs irrespective of the return values. Thus it is
a parameter search method rather than an optimisation method. It has
proven useful to investigate relatively small optimisation-space
landscapes if they are not known. For example, the performance of a
code for a set of input parameters.

For example, if we specify three input objects, the associated
function will be called for all combinations of their values.

>>> from melody.inputs import Fixed, Switch, IntRange
>>> inputs = [Fixed(name="opt1", value="grey"),
 Switch(name="opt2", off="dark", on="light"),
 IntRange("opt3", low=1, high=3, step=1)]
>>> def function(input):
 print "function {0}".format(str(input))
 return True, {"value": 10}
>>> from melody.search import BruteForce
>>> from melody.main import Melody
>>> melody = Melody(inputs=inputs, function=function,
 method=BruteForce)
>>> melody.search()
function [{'opt1': 'grey'}, {'opt2': 'dark'}, {'opt3': 1}]
[{'opt1': 'grey'}, {'opt2': 'dark'}, {'opt3': 1}] True {'value': 10}
function [{'opt1': 'grey'}, {'opt2': 'dark'}, {'opt3': 2}]
[{'opt1': 'grey'}, {'opt2': 'dark'}, {'opt3': 2}] True {'value': 10}
function [{'opt1': 'grey'}, {'opt2': 'light'}, {'opt3': 1}]
[{'opt1': 'grey'}, {'opt2': 'light'}, {'opt3': 1}] True {'value': 10}
function [{'opt1': 'grey'}, {'opt2': 'light'}, {'opt3': 2}]
[{'opt1': 'grey'}, {'opt2': 'light'}, {'opt3': 2}] True {'value': 10}

In the above example, the first input object has 1 option, the second
2 options and the third 2 options. Therefore for a brute force
combination one would expect to have 1*2*2 combinations in total
equaling 4. As you can see, 4 options are output.

Extending

The user can create new Melody methods if they so wish. All methods
should inherit from the SearchMethod base class.

Note

Please ignore the state argument and method in the SearchMethod
class. These are not used at the moment and are placeholders for
future developments.

The user can subclass the SearchMethod base class. The run
method must be implemented as this is called by the Melody class
(see the Melody section). The run method should take all of
the supplied inputs and call the function appropriately.

In the example below an illustrative PrintInputs class is created
which simply prints out the input objects supplied (it does not call
the function)

>>> from melody.inputs import Fixed, Switch, IntRange
>>> inputs = [Fixed(name="option1", value="grey"),
 Switch(name="option2", off="dark", on="light"),
 IntRange("option3", low=1, high=3, step=1)]
>>> def function(input):
 return True, {"value": 10}
>>> from melody.search import SearchMethod
>>> class PrintInputs(SearchMethod):
 ''' example searchmethod subclass '''
 def __init__(self, inputs, function, state=None):
 SearchMethod.__init__(self, inputs, function, state)
 def run(self):
 ''' example run method '''
 for input in inputs:
 print input
>>> from melody.main import Melody
>>> melody = Melody(inputs=inputs, function=function,
 method=PrintInputs)
>>> melody.search()
<melody.inputs.Fixed object at 0x7f7c1136a490>
<melody.inputs.Switch object at 0x7f7c1136a650>
<melody.inputs.IntRange object at 0x7f7c1136a990>

Index

 nav.xhtml

 Table of Contents

 		Melody

 		Installation

 		Python version

 		Using pip

 		Downloading and installing

 		Latest release

 		Latest stable version

 		Installation

 		Testing

 		Running

 		Melody

 		Example

 		Inputs

 		Supported

 		Fixed

 		Switch

 		Choice

 		IntRange

 		IntRange

 		Subsets

 		Multiple input objects

 		Extending

 		Contributing

 		Objective Function

 		API

 		Example

 		Support

 		Method

 		Methods

 		BruteForce

 		Extending

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

