

[image: _images/Cover2.jpg]

MeloDash Documentation

Running games and Music games have been two conventional categories on the market. They each possess unique attractive features based on the game mechanics reward model to win brand loyalty, but on the other hand, has their own limitations. By combining the positive features of these two categories and utilising the idea of ‘internet of things’ implemented by novel interactions, control and actuation of data acquired by phone sensors a new game category has been introduced via the project <MeloDash>

Melodash is a running game with a background story of a post-Ragnarök scene based on real-time music analysis. Player’s objective is to dodge obstacles that are automatically generated by the beat detection which has been implemented by analysing two elements of the music: frequency band and energy of the signal. Various categories of obstacles and extra features visualisations will be generated accordingly in the game immediately after a beat is detected. By utilising these features, obstacles are more diverse and the speed of the game can be automatically calibrated.

Game Features

	Please see the Sample Play [https://youtu.be/vJNqLWzHECI] to see the basic game features.

	Please see the Unity Demo [https://youtu.be/WYGtsZllI_M] for development demo.

Interface

[image: _images/layout.jpg]

Basic control

Please see the WIP Phone Demo [https://www.youtube.com/watch?v=iwQSnrpky4A&feature=youtu.be].

There basically two input control monitoring the current state of the character at a certain instance:

	A Touch on the screen to trigger the jump.

	When phone is inclined more than 30 degrees, the character enters gliding mode, otherwise it returns to the default running state.

Note

The phone demo version is behind the unity development and only core features have been implemented in the deployed deliverable. The number on the screen is the print of a ratio to determine from 0 to 1 the angle of the incline of the phone in order to determine whether the character enters gliding posture or not. It’s just for the demo of the implementation of actuation of sensors and will not be shown in the real deployed game.

Shield

The Shield feature was added along with the music bubbles. If the player sucessfully collect 5 bubbles, the girl will obtain a shield and become invincible for 5 seconds, which means hitting in any obstacles will not cause penalty. Bubbles collected during the Shield mode will not be counted untill the shield disappear.

A bubble is generated whenever a Snare is fired, that is when a beat is found in the medium frequency band.

[image: _images/shield_feature1.jpg]

Contents

Audio Analysis

	MaxMSP Prototype

	Beat Detection C# Inplementation
	Sound Energy isBeatEnergy():

	Frequency Mode: isBeatFrequency()

	Reference

Game Implementation

	Main Character
	Sprites Manipulation

	Animations Transitions

	Player Health

	Objects Spawn & Properties
	Communication with Beat Detection Server

	Obstacles

	Bubbles Shield System

	Constant Leftward Movement

	Destroy Objects

	Prevent Packed Obstacles

	Background Environment
	Static Objects

	Music Visualisation

Further Development

[image: _images/further_development.jpg]

	Index

	Module Index

	Search Page

[image: ../_images/Cover.jpg]

MaxMSP Prototype

As being the unique selling point, implementation of music analysis has taken a main role in the game development process. In order to identify and extract useful features, series of segmentation algorithms have been performed onto the music track:

Note

Music track for the following prototyping section: ‘AntiWeapontest.mp3’

The most obvious feature to extract from a music track that came up to our mind is its amplitude. The amplitude level signal can be straightforwardly captured. A quick Audacity prototype has been created.

[image: ../_images/Audacity_proto.png]
Frequency Domain Spectrum in Audacity

It can be easily indicated from the spectrum plotted. From the frequency domain spectrum, typical peak of amplitude which represents the accented drum beat has been detected. The right lower one normally refers to the Cymbal hats lies within high-frequency ranges.

Then a much more precise prototype has been created in MaxMSP:

[image: ../_images/MaxMSP_proto.png]
MaxMSP Prototype

From the patch, the low-frequency high amplitude and high-frequency features have been separated from the mid-range main melody and utilised for later processing. A demonstration has been shown via this link: https://www.youtube.com/watch?v=jHEnAQop-jE

Note

However, Though MaxMSP is a very good music analysis prototyping tool, issues with data transmission using UPD publishers and subscribers have been constantly interrupting the implementation. Therefore, external libraries for real environment implementations have been used which will be shown in next Implementations session.

[image: ../_images/Cover.jpg]

Beat Detection C# Inplementation

The BeatDetection class has 2 modes for detecting beats by:

	computing the energy of all frequency range,

	sensing beat in particular frequency ranges.

We used two methods at the same time not only because it can be more accurate interms of capturing the beat, but also various game features will correspond to different types of beat.

Sound Energy isBeatEnergy():

If the ear intercepts a monotonous sound with big energy peaks superior to the sound’s energy history, it will detect a beat. However, if a continuous loud sound is played we cannot perceive any beat.

The instant energy will be contained in 1024 samples, which is about 5 hundredth of a second. Because some songs have both intense and calm parts, the average energy should be computed nearby the instant energy. Therefore, we detect a beat only when the energy is superior to a local energy average.

Firstly, in the stereo mode, we use 1024 new samples taken in left and right channels (frames0, frames1) to compute the instant energy level:

\[e = e_{stereo} = e_{right} + e_{left} = \sum_{k=i_0}^{i_0+1024} a[k]^2 + b[k]^2\]

GetComponent<AudioSource>().GetOutputData(frames0, 0);
GetComponent<AudioSource>().GetOutputData(frames1, 1);

...

bool isBeatEnergy() {
 float level = 0f;
 for (int i = 0; i < sampleRange; i++) {
 // frame0, frame1 corresponding to left, right channel
 // level refers to the instant energy
 level += ((float)Math.Pow(frames0[i], 2)) + ((float)Math.Pow(frames1[i], 2));
 }

 ...

Then we compute the local average energy E on the 44100 samples(1 seconds). Assuming that the hearing system only remembers 1 second of song to detect beat, and there are 44032 samples in 1 second:

\[<E> = \frac{1024}{44100} \times \sum_{i=0}^{44032} (B[0][i])^2 + (B[1][i])^2\]

\[<E> = \frac{1}{43} \times \sum_{i=0}^{43} (E[i])^2\]

float E = 0f;
for (int i = 0; i < numHistory; i++) {
 E += energyHistory[i];
}

if (numHistory > 0) {
 E /= (float)numHistory;
}

energyHistory[circularHistory] = instant assigns the instant energies history to \(<E>\) so we don’t need to compute average energy on the 44100 samples buffer. \(<E>\) must corresponds to about 1 second of the music, which is the energy history of 44032 samples if the sample rate is 44100 samples per second. For instance, we will have 43 energy values in energyHistory, each computed on 1024 samples which makes 44032 samples energy history, and that is equivalent to 1 second in real life. energyHistory[0] will contain the oldest energy value computed from oldest 1024 samples.

C CONSTANT

To make the beat detection more reliable and adaptable to various type of music, C constant was introduced by Frederic Pakin [1] to automatically determine the sensibility of the algorithm to the beat. It is used by comparing instant energy to \(C \times E\), if instant energy is superior to \(C \times E\), then the beat is detected! However, the value of \(C\) varies is dependent to the music itself. For example, rap music beats are usually quite intense and its \(C\) constant is around 1.4, while rock and rock contains a lot of noise and the beats are more ambiguous and C is quite low(1 or 1.1) . To deal with this, we calculate the variance of the energies from the energyHistory:

\[V = \frac{1}{43} \times \sum_{i=0}^{43} (E[i] - <E>)^2\]

float V = 0f;
for (int i = 0; i < numHistory; i++) {
 V += (energyHistory[i] - E) * (energyHistory[i] - E);
}

if (numHistory > 0) {
 V /= (float)numHistory;
}

The variance will tell us how clear the beats of the song are and provide us a way to compute the optimal C constant by:

\[C = (-0.0025714f \times V) + 1.5142857\]

Comparison

Note

If the instant energy is greater than \(C \times E\), a beat is then found and the BeatDetection.cs will fire an energy event to the SpawnManager.cs to generate corresponding obstacle:

bool detected;
if (Time.time - tIni < MIN_BEAT_SEPARATION) {
 detected = false;
} else if (diff2 > 0.0 && instant > 2.0) {
 detected = true;
 tIni = Time.time;
} else {
 detected = false;
}

Frequency Mode: isBeatFrequency()

Since more beat-related features will be added to the game, isBeatFrequency() was written to detects big energy variations in particular frequency sub-bands.

The same method is used in the frequency mode, but instead of computing the buffer, an FFT is used to get a spectrum and is then divided into average bands. These bands are tracked to detect beats in three frequency bands, low, medium and high. BeatDetection.cs will fire an event, either Kick for low, Snare for medium and Hit Hat for high, whenever any of this beats is detected.

Instead of equally split the full spectrum or using the linearly spaced averages, we used the logarithmically spaced averages of octaves to separate the spectrum. One frequency is an octave above another when the frequency is twice of the
lower, which is much more useful in our case because the octaves map more directly to how humans perceive sound. [3]

We need to find the total number of octaves which is calculated by dividing the Nyquist frequency by 2, and the result of of it by 2 [2], and so on:

// number of samples per block nyquist limit
float nyq = (float)sampleRate / 2f;
octaves = 1;
while ((nyq /= 2) > minFrequency) {
 octaves++;
}

Then every octaves are splitted equally into 3 bands. The lower&upper frequency of each octave as well as each bandwidth will be used to track the amplitude of every bands throughout the spectrum:

[image: ../_images/individual_freq_student.jpg]

Note

After the beat is detected, function isRange() will check which frequency range it is in and choose the correspondent event to sent to SpawnManager.cs.

Reference

	[1] Beat Detection Algorithm, Frederic Pakin. Available from: http://archive.gamedev.net/archive/reference/programming/features/beatdtection/

	[2] Nyquist Frequency. Available from: http://en.wikipedia.org/wiki/Nyquist_frequency

	[3] Octaves in Human Hearing, Jacklyn. Available from: https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Octaves-in-Human-Hearing/ta-p/440025

[image: ../_images/Cover1.jpg]

Main Character

Sprites Manipulation

The original character concept and exploded view has been shown below, all the character postures have been created by manipulating the various parts of the body and limbs.

	Girl Idol

	Exploded View

	[image: girl_idol]

	[image: exploded_view]

In order to achieve a more natural and fluent effect, the sprites have been traced over the animations done by Richard Williams. The quality of the animation not only afftect asthetic but also player’s experience. if the animation itself wobbles a lot it will influence the way player perceive visual feedback from the character.

[image: ../_images/running_sprites.png]
Sprites during Running states

[image: ../_images/running_sprite_reference.jpg]
Running Sprites Reference

Animations Transitions

The animations have been created using Unity Animation tab. All animations are appended to the Player object:

[image: ../_images/animation_tab.jpg]
Unity Animation Tab

The character has 5 basic postures according to different circumstances:

	Running: the posture of running on the ground, if the character doesn’t perform any other tasks, running will be the default posture.

	Jump: where the girl jumps to space, the character may continuously keep jumping in the space.

	Fall: the falling posture occurring right after jumping.

	Glide: which is middle transition progress from the previous posture to the keeping gliding gesture.

	Gliding: where the girl keeps the continuous gliding gesture.

	Running

	Jump

	Fall

	Glide

	Gliding

	[image: running]

	[image: jump]

	[image: fall]

	[image: glide]

	[image: gliding]

The transition Logic between sprite animations in the Animator has been shown below:

[image: ../_images/animation_logic.jpg]
Animation Transition Logic

The conditions that triggers the transitions are:

	
	The Jump-Fall System:

	
	Running to Jumping: VerticalVelocity \(>\) 0.01

	Jumping to Falling: VerticalVelocity \(<\) -0.01

	Falling to Running: VerticalAbsoluteVelocity \(<\) 0.01

	
	The Glide-Stand System:

	
	Running to Glide: IsGliding == true

	Glide to Gliding: no condition, enters directly and keep in the continuous loop of Gliding

	Gliding to Running: IsGliding == false

The manipulation of the above properties in the script is shown below:

// ------- Update Properties -------

private void UpdateYVelocity() {
 yVelocity = rigidbody2D.velocity.y;
 yVelocityAbs = Mathf.Abs(rigidbody2D.velocity.y);
}

...

private void UpdateAnimationParameters() {
 animator.SetFloat("VerticalVelocity", yVelocity);
 animator.SetFloat("VerticalAbsoluteVelocity", yVelocityAbs);

 if (gameObject.tag == "Gliding") {
 animator.SetBool("IsGliding", true);
 } else {
 animator.SetBool("IsGliding", false);
 }
}

Player Health

Sprite Manipulation

The Player Health has been shown using 3 layers of sprites:

	main sprite including Whale idle on the top

	an invisible mask on top of the bottom bar

	the bottom bar which represents the actual Health

[image: ../_images/health_bar_interface.jpg]
The manipulation of the appearance of the health bar pursued with a way that rather than vary the size of the green bar, the size of the mask on the green bar has been varied according to the current health.

To inplement this, the cached reference of the bar and the bar mask has been defined in prior:

// PlayerHealth.cs (... represents other code blocks irrelevant to the current session)

private Transform barMask;
private Transform bar;

...

void Awake() {
 barMask = transform.Find("Green Bar Mask");
 bar = transform.Find("Green Bar");

 ...
}

The manipulation of of the size has been implemented using the following function:

// PlayerHealth.cs (... represents other code blocks irrelevant to the current session)

private void SetSize(float sizeNormalised) {
 barMask.localScale = new Vector3(sizeNormalised, 1f);
}

Health Point Manipulations

The Player’s health starts with maximum health, and each time hit with an obstacle, the health point will be deducted. The logic has been implemented by:

	defining the consequence of health penalty if collide with an obstacle

	call it in the obstacle collision helper class

// PlayerHealth.cs

[SerializeField] private float collisionHealthPenalty = 0.1f;

...

public void CollisionWithObstacle() {
 // only deduct health when the player is not invincible
 if (!invincible) {
 health -= collisionHealthPenalty;
 }
}

// ObstacleCollisionHelper.cs

private PlayerHealth playerHealth;
private Player player;

void Start() {
 playerHealth = FindObjectOfType<PlayerHealth>();
 player = FindObjectOfType<Player>();
}

...

private void OnTriggerEnter2D(Collider2D collision) {
 if (collision.gameObject.name == "Player") {
 playerHealth.CollisionWithObstacle();
 }

 //Debug.Log(collision.gameObject.name);
}

[image: ../_images/Cover1.jpg]

Objects Spawn & Properties

Communication with Beat Detection Server

The object spawn takes place in the SpawnManager class with the logical conditions that have been satisfied in BeatDetection class. The two classes communicate utilising the event handler:

// SpawnManager.cs ("..." represents other code blocks irrelevant to the current session)

...

void Start() {
 // Register the beat callback function
 GetComponent<BeatDetection>().CallBackFunction = MyCallbackEventHandler;
}

...

public void MyCallbackEventHandler(BeatDetection.EventInfo eventInfo) {
 switch (eventInfo.messageInfo) {
 case BeatDetection.EventType.Energy: // low freq, high amp
 spawnUpOb();
 break;
 case BeatDetection.EventType.HitHat: // high freq
 spawnDownOb();
 break;
 case BeatDetection.EventType.Kick:
 spawnBubble();
 break;
 case BeatDetection.EventType.Snare:
 spawnLightning();
 break;
 }
}

// BeatDetection.cs ("..." represents other code blocks irrelevant to the current session)

public enum EventType {
 Energy,
 Kick,
 Snare,
 HitHat
}

public class EventInfo {
 public EventType messageInfo;
 public BeatDetection sender;
}

public delegate void CallbackEventHandler(EventInfo eventInfo);

public CallbackEventHandler CallBackFunction;

...

void SendEvent(EventType theEvent) {
 if (CallBackFunction != null) {
 EventInfo myEvent = new EventInfo();
 myEvent.sender = this;
 myEvent.messageInfo = theEvent;
 CallBackFunction(myEvent);
 }
}

Obstacles

There are 3 Obastacle types with two upper and one down:

	Down Obstacle

	Up Obstacle 1

	Up Obstacle 2

	[image: down_ob]

	[image: up_ob1]

	[image: up_ob2]

Each spawned by the following functions:

// SpawnManager.cs ("..." represents other code blocks irrelevant to the current session)

// spawning up obstacles
void spawnUpOb() {
 // instantiate the next spawn
 GameObject newSpawnUpOb;

 // random 1/2 possibility spawning each of the 2 plausible objects
 Random random = new Random();
 int randomThreshold = random.Next(1, 3); // generate a integer number between 1, 2

 // run this spawn function every certain frames (defined in inspector)
 if (Time.frameCount % frameIntervalUpOb == 0) {
 if (randomThreshold == 1) {
 newSpawnUpOb = Instantiate(upObstacle1, spawnPosUpOb, Quaternion.identity);
 addChildToCurrentObject(newSpawnUpOb);
 } else if (randomThreshold == 2) {
 newSpawnUpOb = Instantiate(upObstacle2, spawnPosUpOb, Quaternion.identity);
 addChildToCurrentObject(newSpawnUpOb);
 }
 }
}

// spawning down obstacles
void spawnDownOb() {
 // instantiate the next spawn
 GameObject newSpawnDownOb;

 // run this spawn function every certain frames (defined in inspector)
 if (Time.frameCount % frameIntervalDownOb == 0) {
 newSpawnDownOb = Instantiate(downObstacle, spawnPosDownOb, Quaternion.identity);
 addChildToCurrentObject(newSpawnDownOb);
 }
}

Note

Two up obstacles each has 1/2 chance of being spawned by using the random function

Bubbles Shield System

Bubble Spawn

Shields will be generated if 5 bubbles have collected as mentioned previously:

[image: ../_images/shield_feature.jpg]

The 4 sprites of the shield has been shown below:

	[image: shield1] [image: shield2] [image: shield3] [image: shield4]

// Player.cs (... represents other code blocks irrelevant to the current session)

...

void SpawnShield() {
 if (shieldAddable) {
 // instantiate the next spawn
 GameObject newSpawnShield;

 // always update shield position relative to the Player
 shieldPos = new Vector3(
 transform.position.x - 1.12f,
 transform.position.y - 0.07f,
 transform.position.z);

 // run this spawn function every certain frames (defined in inspector)
 newSpawnShield = Instantiate(shield, shieldPos, Quaternion.identity);

 // make the current item a child of the SpawnManager
 newSpawnShield.transform.parent = transform;

 // prevent shield overlapping
 shieldAddable = false;
 }
}

void DestroyShield() {
 if (transform.childCount > 0) {
 var shieldInstance = transform.GetChild(0).gameObject;
 if (shieldInstance != null) {
 Destroy(shieldInstance);
 }
 }
}

The sprite of the bubbles is:

[image: ../_images/Bubble.png]

The bubbles have been spawned by the following functions:

// spawning bubbles
void spawnBubble() {
 // instantiate the next spawn
 GameObject newSpawnBubble;

 // random 1/2 possibility spawning at one of the two plausible heights
 Random random = new Random();
 int randomThreshold = random.Next(1, 3); // generate a integer number between 1, 2

 // run this spawn function every certain frames (defined in inspector)
 if (Time.frameCount % frameIntervalDownOb == 0) {
 if (randomThreshold == 1) {
 newSpawnBubble = Instantiate(bubble, spawnPosBubble, Quaternion.identity);
 addChildToCurrentObject(newSpawnBubble);
 } else if (randomThreshold == 2) {
 newSpawnBubble = Instantiate(
 bubble,
 new Vector3(
 spawnPosBubble.x,
 spawnPosBubble.y - 4,
 spawnPosBubble.z),
 Quaternion.identity);
 addChildToCurrentObject(newSpawnBubble);
 }
 }
}

Note

bubbles are generated in 2 various altitudes each has 1/2 chance

Bubble Collection

The bubble collection logic has been implemented in 2 separate classes by:

	defining the counting when colliding with an obstacle of collection and behaviour after collecting 5

	call it in the bubble collision helper class

// PlayerHealth.cs

// collect 5 bubbles to become temporarily invincible
public void CollisionWithBubble() {
 if (bubbleCount < 4) {
 bubbleCount++;
 } else {
 EnterInvincibleMode();
 bubbleCount = 0;
 }
}

void EnterInvincibleMode() {
 invincible = true;
 Invoke("ExitInvincibleMode", invincibleDuration);
}

void ExitInvincibleMode() {
 invincible = false;
}

// BubbleCollisionHelper.cs

private PlayerHealth playerHealth;
private Player player;

void Start() {
 playerHealth = FindObjectOfType<PlayerHealth>();
 player = FindObjectOfType<Player>();
}

...

private void OnTriggerEnter2D(Collider2D collision) {
 if (collision.gameObject.name == "Player") {
 playerHealth.CollisionWithBubble();

 // Bubble disappear after being collected by the player
 Destroy(gameObject);
 }
}

Constant Leftward Movement

The constant leftward movement of the objects pursue with the following logic:

	when a new object has been spawned, append it to the current spawn manager parent object

	in each iteration of Update() function being called, loop through all the current children of the parent spawn manager object in a for-loop

	apply a left-ward vector to every single child in the loop

Note

since the child objects of spawn manager could be distroyed due being eaten by the Whale or self-destructed outside the boundary of the screen, the number of items within the spawn manager is varying thus need a agile and flexible approach on a dynamic array instance of collection of all children objects.

// SpawnSeaGullManager.cs (... represents other code blocks irrelevant to the current session)

...

void Update() {
 float displacement = Time.deltaTime * speed;

 // store all children under Spawn Manager in an array
 Transform[] children = transform.Cast<Transform>().ToArray();

 // ------- obstacles moving towards left -------
 // mind that the moving functionality has to be implemented before destroying redundant objects
 // or otherwise the array length will be changed before moving all the objects
 for (int i = 0; i < children.Length; i++) {
 // beware to add Space.World or otherwise default will be Space.Self
 // where rotation angle of the object will be stored as well
 children[i].transform.Translate(Vector2.right * displacement, Space.World);
 }

 ...
}

The append of child happend during the creation of each object:

// SpawnSeaGullManager.cs (... represents other code blocks irrelevant to the current session)

// spawning down obstacles
void spawnDownOb() {
 // instantiate the next spawn
 GameObject newSpawnDownOb;

 // run this spawn function every certain frames (defined in inspector)
 if (Time.frameCount % frameIntervalDownOb == 0) {
 newSpawnDownOb = Instantiate(downObstacle, spawnPosDownOb, Quaternion.identity);
 addChildToCurrentObject(newSpawnDownOb);
 }
}

void addChildToCurrentObject(GameObject item) {
 // make the current item a child of the SpawnManager
 item.transform.parent = transform;
}

Destroy Objects

If the object spawned hasn’t been eaten, it will continue to move left-wards and stack in the spawn manager parent object, which will consume plenty of computer memory and thus harmful for the program.

Therefore, all object will be destroyed if they are outside the left boundary of the screen to save the computational power.

// DestroyObject.cs (... represents other code blocks irrelevant to the current session)

[SerializeField] private float destroyXPos = -18f;

...

void Update() {
 DestroyHierarchy();
}

public void DestroyHierarchy() {
 //Debug.Log(gameObject.transform.position.x);
 if (gameObject.transform.position.x < destroyXPos) {
 Destroy(gameObject);
 }
}

Prevent Packed Obstacles

Attention

To make the game playable, the minimal inetrval between obstacles are equal to half of character’s jump distance (12/2). Any obstacles generated within that distance will be deleted from the list.

void Update() {

 ...

 // ------- prevent obstacles from spawning too close to each other -----
 if (children.Length >= 2) {
 var lastChild = children[children.Length - 1].gameObject;
 var lastSecondChild = children[children.Length - 2].gameObject;

 string lastChildName = lastChild.name;
 string lastSecondChildName = lastSecondChild.name;

 float lastChildXPos = children[children.Length - 1].transform.position.x;
 float lastSecondChildXPos = children[children.Length - 2].transform.position.x;

 //Debug.Log(lastSecondChildName);
 //Debug.Log(lastChildName);

 /*
 * if the last obstacle spawned is to close to the last second obstacle spawned,
 * destroy the last one to prevent obstacles from spawning too close to each other
 * which left impossible situation for the player to mitigate
 */
 if (lastChildName == lastSecondChildName && lastChildName == "DownObstacle") {
 if (lastChildXPos - lastSecondChildXPos < jumpReactionDistance) {
 Destroy(lastChild);
 }
 } else {
 if (lastChildXPos - lastSecondChildXPos < jumpReactionDistance / 2) {
 Destroy(lastChild);
 }
 }
 }
}

Background Environment

Static Objects

The background static objects that don’t interact with the music features consist of a static purple skybox and a fast moving ground earth:

	Sky Box Purple Background

	Earth

	[image: bgd_pink]

	[image: earth]

Two layers of contours of ruins decorated the far scene of the interface:

	Ruins Closer

	[image: ruins_closer]

	Ruins Further

	[image: ruins_further]

In order to convey the effect that girl is running towards right whilst its relative x-position to the screen boundary maintains, functions need to be defined to let the various objects such as earth and ruins scroll to the left at different speeds which also engaged a parallel effect between further and closer objects.

[SerializeField] private float scrollSpeed = -4f;
[SerializeField] private int resetX = -32;

void Start() {
 // override the start position to its initial sprite position
 startPos = transform.position;
}

void Update() {
 xPos = transform.position.x;
 yPos = transform.position.y;

 float displacement = Time.deltaTime * scrollSpeed;
 transform.Translate(Vector2.right * displacement);

 // when the center of Wave scrolls to one screen width to the left of the original center,
 // reset the X of the Wave entity to it's original starting position
 if (xPos < resetX) {
 transform.position = new Vector3(startPos.x, yPos, startPos.z);
 }

 ...
}

Music Visualisation

Spectrum

A set of spectrum has been instantiated as background decoration indicating the beat detections:

[image: ../_images/spectrum.png]
Beat Generated Wave Spectrum

This visualisation has been implemented utilising the InstantiateBgdSpectrum class:

public class InstantiateBgdSpectrum : MonoBehaviour {
 [SerializeField] Vector3 firstBlockPos = new Vector3(0f, 0f, 0f);
 public float maxScale;

 public GameObject block;
 GameObject[] blockArray = new GameObject[8];

 void Start() {
 for (int i = 0; i < blockArray.Length; i++) {
 GameObject instanceBlock = (GameObject)Instantiate(block);
 instanceBlock.transform.position = this.transform.position;
 instanceBlock.transform.parent = this.transform;
 instanceBlock.name = "InstanceBlock" + i;

 instanceBlock.transform.position = new Vector3(
 firstBlockPos.x + (0.5f * i),
 firstBlockPos.y,
 firstBlockPos.z);
 blockArray[i] = instanceBlock;
 }
 }

 void Update() {
 for (int i = 0; i < blockArray.Length; i++) {
 if (block != null) {
 //Debug.Log(blockArray[i].transform.localScale);
 blockArray[i].transform.localScale = new Vector2(
 0.9f,
 AudioHelper.bandBuffer[i] * maxScale + 2);
 }
 }
 }
}

Bubble

A bubble decoration in the background visualises the beat detection by expansion and contraction.

	Bubble Decoration Contracted

	Bubble Decoration Expanded

	[image: bubble_decoration_1]

	[image: bubble_decoration_2]

This visualisation has been implemented utilising the ScaleOnAmplitude class:

public class ScaleOnAmplitude : MonoBehaviour {
 public float startScale, maxScale;
 public bool useBuffer;

 void Start() {
 //material = GetComponent<MeshRenderer>().materials[0];
 }

 void Update() {
 if (useBuffer) {
 transform.localScale = new Vector3(
 (AudioHelper.amplitude * maxScale) + startScale,
 (AudioHelper.amplitude * maxScale) + startScale,
 (AudioHelper.amplitude * maxScale) + startScale);
 } else {
 transform.localScale = new Vector3(
 (AudioHelper.amplitude * maxScale) + startScale,
 (AudioHelper.amplitude * maxScale) + startScale,
 (AudioHelper.amplitude * maxScale) + startScale);
 }
 }
}

Index

 _images/Shield4.png

_images/UpObstacle1.png

_images/Shield2.png

_images/Shield3.png

_images/animation_tab.jpg
File Edit Assets GameObject Component Window Help

[[@[S = fal & | [center] € Giobal] [> 1 [m] [@cCollab -] [&] [Account_~ | [Layers - | [Layout -

Hierarchy | A= Scene @ AssetStore | %8 Animator | A= €Game |

| © nspector | Services a-
Cém' AT [l vrameters ® Base Layer Auto Live Link | |LLDisplay L& @ [Flayer] Qstatic~ |
v) Game (GTlame. [T —) 7,
Main Camera = +‘ Tag [Running __¢] Layer [Default 3]
Backgroundpink Lstunning) o Prefab [Open | Selsct | (Ovamiss
» 1 Ruins Further Entity >| = tsumping 5] YA Transform
» g Ruins Closer Entity 2| = 1sraling o Position X -10.91Y-4.06 |2 -8
» g Earth Entity > = Rotation X0 Y0 2o |
o 1sGlding o Any State e —— T
Block > — | ot xit vl [z]
Audio Spann Manager eriealeoty 09 v Ssprite Renderer @ &
» _ Bgd Spectrum Entity VerticalAbsoluteVelocity [0.0 Sprite [EIRunning005. »
Health Bar With Idle —_—————— Color
> Health Bar Entity Fiip
> Debug Entity Waterial © Sprites-Default
Shield 3 Draw Mode Simple.
Ball >
Lightning > Sorting Laver [Defaue
Purplefiare > orderintayer 0 |
pinkflare Mask Interaction [tene 3]
Sprite Sort Point [Center 1)
Faling [viiWAnimator @ %
Giiding Cantroller BPlayer
Avatar [None (Avatar) | ©
Apply Root Motion (]
Update Mode (1temal :
Culling Mode [Aluays Animate_¢]
Jumping Clip Counts 5
CuPves Posi0 Quats 0 Eulr: 0 Scale: 0
(D fiden S o iy *
Q@ CirvesCouns s Constan; 0 (0.0%
@ Project | Dense; 0 (0.0%) Stream: 5 (100.0%)
Create | (@

Yjpameries T e scons SO e e
Q:u m":”“"“ gGﬂm Seript Player)
() Al prefabs St Jump Force 4000

Box Col 2D Size Idle

v Assets x[oa JEES
W o Box Col 2D Offset Idle
& Materials x[0.3 vl-04

v & Musics Box Col 2D Size Gliding
& singleaud x[z8 Y[is
4 Animations/Playerconoller
v G prefab —_ Box Col 2D Offset Gliding
& Environmg [Cansole| © Animation | x[is Y075
& Obstaces: preview | @ [1ed | 14| > | »1 [2:02 2.8 Shield [Ushield | o
@ Running Samples_[12[0% | U Shield Pos
gswu ‘o v oo
v & sprites v EPlayer : Sprite - R e e |
& Backgrou v B ¥ Box Collider 20 [FEES
& Backgrour —— Edit Collider
S
= phmeet Used By Composite
v player Auto Tiing)
G Falling offset
Glide x[03 T
& Gliding Size
& Jumping x0.8 Y31
& Running e Dopeshase | coves | s g8 B> £

() 0.4116558

_images/background_pink.jpg

_images/UpObstacle2.png

_images/animation_logic.jpg
Scene f Asset Store

Layers || param:

Tame
IsRunning
1sJumping

aling
1sGliding

= VerticalVelocity

= VerticalAbsoluteVelacity

00

Faling

Jumping

Gliding

a

Aut Live Link

_images/bubble_decoration_1.jpg

_images/bubble_decoration_2.jpg

_images/earth.png

nav.xhtml

 Table of Contents

 		
 MeloDash Documentation

 		
 MaxMSP Prototype

 		
 Beat Detection C# Inplementation

 		
 Sound Energy isBeatEnergy():

 		
 C CONSTANT

 		
 Comparison

 		
 Frequency Mode: isBeatFrequency()

 		
 Reference

 		
 Main Character

 		
 Sprites Manipulation

 		
 Animations Transitions

 		
 Player Health

 		
 Sprite Manipulation

 		
 Health Point Manipulations

 		
 Objects Spawn & Properties

 		
 Communication with Beat Detection Server

 		
 Obstacles

 		
 Bubbles Shield System

 		
 Bubble Spawn

 		
 Bubble Collection

 		
 Constant Leftward Movement

 		
 Destroy Objects

 		
 Prevent Packed Obstacles

 		
 Background Environment

 		
 Static Objects

 		
 Music Visualisation

 		
 Spectrum

 		
 Bubble

_images/further_development.jpg
Cooperation with music software

Import offline music from other music
app could be useful in a lot of situation

Complete tempo detection in Unity (for example underground in London).
More research should be done to find a Some company. M iy ae g
tempo detecting algorithm that work for fnf:rea;fsre o tlme usl(zdbof eeEiiey
wide ranges of music. Since the game is [On noy sto iticoy d t: 2 greitt b
completed and playable, the temple onp un.|ty o.e:p:n © market by
detection can be developed and tested SRREREUE W S

more directly.

Testing & Iterations

Porting Melodash into 10S & Android

Melodash was initially designed to be
played on smartphone, and it will be
achieved in near future. Being played
on portable device means filling in the
gap of people’s life easier and a wider
group of users.

User testing need to be undertaken
in a wide range of users, aiming to
enhance the quality beat & tempo
detection, and improve the user
experience.

_images/girl.png

_images/exploded_view.png

_images/fall.gif

_images/health_bar_interface.jpg
Hi
came
Main Camera
Backgroundpink

Lightning
Purpleflare
Pinkflare.

Asset Store

<)

8 Animator

==

€ Game

Player Health (Script)
Playert

Ith Pen0.1
Invincible Duration |5

_images/individual_freq_student.jpg
B ————————

For example this is one of the octaves. The
function will track each individual band

for its amplitude, and compare it with the
local average value.

440Hz ' I 880Hz

1
Individual Frequency Step

_images/glide.gif

_images/gliding.gif

_images/jump.gif

_images/layout.jpg

_images/ruins_closer.png

_images/running_sprite_reference.jpg
3 4 5
[B B st
camer o her ek rom ! . -

P Hieesr

_images/running_sprites.png

_images/ruins_further.png

_images/running.gif

_images/spectrum.png
void MakeFrequencyBands() {

Bgd Spectrum Entity
Instantiate Bgd Spectrum 8Blocks
Instantiate Bgd Spectrum 8Blocks (1)

Lt L LEIOl Generate from the same spectrum but with different scale

How frequency are splitted, from
20 to 20000 which human ears
could percieve.

Instantiate Bgd Spectrum 8Blocks (3) . -
s— B:d peswsemmen to create a dynamic look. The whole frequency spectrum is

LESUESLEEREEEELEERIOl represented by 8 columns, and they are duplicated 7 times

Instantiate Bgd Spectrum 8Blocks (6)
Instantiate Bgd Spectrum 8Blocks (7)

to filled out the scene.

_static/ajax-loader.gif

_images/shield_feature.jpg
SHIELD FEATURE

T+ 5=

_images/shield_feature1.jpg
SHIELD FEATURE

T+ 5=

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/beat_detection/Audacity_proto.png
i B “ bp EES E & 2222 =
n “w)) e N
PR O R e O Somaraniorm B | B oo ek ore o @
4 5 » “ 120 115 5 £

S remmre >] 10
o |

i 27 () 00N 00 m00.000 3% 09RO mO2.6783% [0 08 m00.0005%

_static/up-pressed.png

_static/beat_detection/p5Test_linAverage.png
o s s Slals IR T+ wn T, - T+ wn T, o o w 2
% E 0000 000000600 " 0600 00" 06000 " "0 08

_static/beat_detection/p5Test_logAverage.png
Application Security

ault levels ¥ @ Group similar

_static/beat_detection/MaxMSP_proto.png

_static/beat_detection/individual_freq_student.jpg
B ————————

For example this is one of the octaves. The
function will track each individual band

for its amplitude, and compare it with the
local average value.

440Hz ' I 880Hz

1
Individual Frequency Step

_static/graphic_design/Bubble.png

_static/graphic_design/animation_logic.jpg
Scene f Asset Store

Layers || param:

Tame
IsRunning
1sJumping

aling
1sGliding

= VerticalVelocity

= VerticalAbsoluteVelacity

00

Faling

Jumping

Gliding

a

Aut Live Link

_images/DownObstacle.png

_images/MaxMSP_proto.png

_images/Cover1.jpg

_images/Cover2.jpg

_images/Shield1.png

_static/graphic_design/health_bar_interface.jpg
Hi
came
Main Camera
Backgroundpink

Lightning
Purpleflare
Pinkflare.

Asset Store

<)

8 Animator

==

€ Game

Player Health (Script)
Playert

Ith Pen0.1
Invincible Duration |5

_static/graphic_design/running_sprite_reference.jpg
3 4 5
[B B st
camer o her ek rom ! . -

P Hieesr

_static/graphic_design/exploded_view.png

_static/graphic_design/girl.png

_images/Bubble.png

_static/graphic_design/5_postures/glide.gif

_images/Cover.jpg

_static/graphic_design/5_postures/gliding.gif

_static/graphic_design/running_sprites.png

_images/Audacity_proto.png
i B “ bp EES E & 2222 =
n “w)) e N
PR O R e O Somaraniorm B | B oo ek ore o @
4 5 » “ 120 115 5 £

S remmre >] 10
o |

i 27 () 00N 00 m00.000 3% 09RO mO2.6783% [0 08 m00.0005%

_static/graphic_design/5_postures/fall.gif

_static/graphic_design/5_postures/jump.gif

_static/graphic_design/animation_tab.jpg
File Edit Assets GameObject Component Window Help

[[@[S = fal & | [center] € Giobal] [> 1 [m] [@cCollab -] [&] [Account_~ | [Layers - | [Layout -

Hierarchy | A= Scene @ AssetStore | %8 Animator | A= €Game |

| © nspector | Services a-
Cém' AT [l vrameters ® Base Layer Auto Live Link | |LLDisplay L& @ [Flayer] Qstatic~ |
v) Game (GTlame. [T —) 7,
Main Camera = +‘ Tag [Running __¢] Layer [Default 3]
Backgroundpink Lstunning) o Prefab [Open | Selsct | (Ovamiss
» 1 Ruins Further Entity >| = tsumping 5] YA Transform
» g Ruins Closer Entity 2| = 1sraling o Position X -10.91Y-4.06 |2 -8
» g Earth Entity > = Rotation X0 Y0 2o |
o 1sGlding o Any State e —— T
Block > — | ot xit vl [z]
Audio Spann Manager eriealeoty 09 v Ssprite Renderer @ &
» _ Bgd Spectrum Entity VerticalAbsoluteVelocity [0.0 Sprite [EIRunning005. »
Health Bar With Idle —_—————— Color
> Health Bar Entity Fiip
> Debug Entity Waterial © Sprites-Default
Shield 3 Draw Mode Simple.
Ball >
Lightning > Sorting Laver [Defaue
Purplefiare > orderintayer 0 |
pinkflare Mask Interaction [tene 3]
Sprite Sort Point [Center 1)
Faling [viiWAnimator @ %
Giiding Cantroller BPlayer
Avatar [None (Avatar) | ©
Apply Root Motion (]
Update Mode (1temal :
Culling Mode [Aluays Animate_¢]
Jumping Clip Counts 5
CuPves Posi0 Quats 0 Eulr: 0 Scale: 0
(D fiden S o iy *
Q@ CirvesCouns s Constan; 0 (0.0%
@ Project | Dense; 0 (0.0%) Stream: 5 (100.0%)
Create | (@

Yjpameries T e scons SO e e
Q:u m":”“"“ gGﬂm Seript Player)
() Al prefabs St Jump Force 4000

Box Col 2D Size Idle

v Assets x[oa JEES
W o Box Col 2D Offset Idle
& Materials x[0.3 vl-04

v & Musics Box Col 2D Size Gliding
& singleaud x[z8 Y[is
4 Animations/Playerconoller
v G prefab —_ Box Col 2D Offset Gliding
& Environmg [Cansole| © Animation | x[is Y075
& Obstaces: preview | @ [1ed | 14| > | »1 [2:02 2.8 Shield [Ushield | o
@ Running Samples_[12[0% | U Shield Pos
gswu ‘o v oo
v & sprites v EPlayer : Sprite - R e e |
& Backgrou v B ¥ Box Collider 20 [FEES
& Backgrour —— Edit Collider
S
= phmeet Used By Composite
v player Auto Tiing)
G Falling offset
Glide x[03 T
& Gliding Size
& Jumping x0.8 Y31
& Running e Dopeshase | coves | s g8 B> £

() 0.4116558

_static/graphic_design/background/earth.png

_static/graphic_design/background/ruins_closer.png

_static/graphic_design/background/bubble_decoration_1.jpg

_static/graphic_design/background/bubble_decoration_2.jpg

_static/graphic_design/obstacles/DownObstacle.png

_static/graphic_design/obstacles/UpObstacle1.png

_static/graphic_design/background/ruins_further.png

_static/graphic_design/background/spectrum.png
void MakeFrequencyBands() {

Bgd Spectrum Entity
Instantiate Bgd Spectrum 8Blocks
Instantiate Bgd Spectrum 8Blocks (1)

Lt L LEIOl Generate from the same spectrum but with different scale

How frequency are splitted, from
20 to 20000 which human ears
could percieve.

Instantiate Bgd Spectrum 8Blocks (3) . -
s— B:d peswsemmen to create a dynamic look. The whole frequency spectrum is

LESUESLEEREEEELEERIOl represented by 8 columns, and they are duplicated 7 times

Instantiate Bgd Spectrum 8Blocks (6)
Instantiate Bgd Spectrum 8Blocks (7)

to filled out the scene.

_static/graphic_design/5_postures/running.gif

_static/graphic_design/background/background_pink.jpg

_static/index/Cover.jpg

_static/index/further_development.jpg
Cooperation with music software

Import offline music from other music
app could be useful in a lot of situation

Complete tempo detection in Unity (for example underground in London).
More research should be done to find a Some company. M iy ae g
tempo detecting algorithm that work for fnf:rea;fsre o tlme usl(zdbof eeEiiey
wide ranges of music. Since the game is [On noy sto iticoy d t: 2 greitt b
completed and playable, the temple onp un.|ty o.e:p:n © market by
detection can be developed and tested SRREREUE W S

more directly.

Testing & Iterations

Porting Melodash into 10S & Android

Melodash was initially designed to be
played on smartphone, and it will be
achieved in near future. Being played
on portable device means filling in the
gap of people’s life easier and a wider
group of users.

User testing need to be undertaken
in a wide range of users, aiming to
enhance the quality beat & tempo
detection, and improve the user
experience.

_static/graphic_design/shields/Shield3.png

_static/graphic_design/shields/Shield4.png

_static/index/layout.jpg

_static/index/shield_feature.jpg
SHIELD FEATURE

T+ 5=

_static/graphic_design/shields/Shield1.png

_static/graphic_design/shields/Shield2.png

_static/graphic_design/obstacles/UpObstacle2.png

