

Measurements.jl

Measurements.jl [https://github.com/giordano/Measurements.jl] is a package
that allows you to define numbers with uncertainties [https://en.wikipedia.org/wiki/Measurement_uncertainty], perform calculations
involving them, and easily get the uncertainty of the result according to
linear error propagation theory [https://en.wikipedia.org/wiki/Propagation_of_uncertainty]. This library is
written in Julia [http://julialang.org/], a modern high-level,
high-performance dynamic programming language designed for technical computing.

When used in the Julia interactive session [http://docs.julialang.org/en/stable/manual/getting-started/], it can serve
also as an easy-to-use calculator.

The main features of the package are:

	Support for most mathematical operations available in Julia standard library
and special functions from SpecialFunctions.jl [https://github.com/JuliaMath/SpecialFunctions.jl] package, involving real
and complex numbers. All existing functions that accept AbstractFloat
(and Complex{AbstractFloat} as well) arguments and internally use already
supported functions can in turn perform calculations involving numbers with
uncertainties without being redefined. This greatly enhances the power of
Measurements.jl without effort for the users

	Functional correlation between variables is correctly handled, so \(x - x
\approx 0 \pm 0\), \(x/x \approx 1 \pm 0\), \(\tan(x) \approx
\sin(x)/\cos(x)\), \(\mathrm{cis}(x) \approx \exp(ix)\), etc...

	Support for arbitrary precision [http://docs.julialang.org/en/stable/manual/integers-and-floating-point-numbers/#arbitrary-precision-arithmetic]
(also called multiple precision) numbers with uncertainties. This is useful
for measurements with very low relative error

	Define arrays of measurements and perform calculations with them. Some linear
algebra functions work out-of-the-box

	Propagate uncertainty for any function of real arguments (including functions
based on C/Fortran calls [http://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/]),
using @uncertain macro [http://docs.julialang.org/en/stable/manual/metaprogramming/]

	Function to get the derivative and the gradient of an expression with respect
to one or more independent measurements

	Functions to calculate standard score [https://en.wikipedia.org/wiki/Standard_score] and weighted mean [https://en.wikipedia.org/wiki/Weighted_arithmetic_mean]

	Parse strings to create measurement objects

	Easy way to attach the uncertainty to a number using the ± sign as infix
operator. This syntactic sugar makes the code more readable and visually
appealing

	Combined with external packages allows for error propagation of measurements
with their physical units [https://en.wikipedia.org/wiki/Units_of_measurement]

	Extensible in combination with external packages: you can propagate errors of
measurements with their physical units, perform numerical integration with
QuadGK.jl [https://github.com/JuliaMath/QuadGK.jl], numerical and
automatic differentiation, and much more.

The method used to handle functional correlation is described in this paper:

	[GIO16]	M. Giordano, 2016, “Uncertainty propagation with functionally
correlated quantities”, arXiv:1610.08716 [http://arxiv.org/abs/1610.08716] (Bibcode: 2016arXiv161008716G [http://adsabs.harvard.edu/abs/2016arXiv161008716G])

If you use use this package for your research, please cite it.

Other features are expected to come in the future, see the “How Can I Help?”
section and the TODO list.

The Measurements.jl package is licensed under the MIT “Expat” License. The
original author is Mosè Giordano.

	Installation

	Usage
	Correlation Between Variables

	Propagate Uncertainty for Arbitrary Functions

	Derivative and Gradient

	Uncertainty Contribution

	Standard Score

	Weighted Average

	Access Nominal Value and Uncertainty

	Error Propagation of Numbers with Units

	Printing to TeX and LaTeX MIMEs

	Examples
	Measurements from Strings

	Correlation Between Variables

	@uncertain Macro

	Complex Measurements

	Arbitrary Precision Calculations

	Operations with Arrays and Linear Algebra

	Derivative, Gradient and Uncertainty Components

	stdscore Function

	weightedmean Function

	Measurements.value and Measurements.uncertainty Functions

	Interplay with Third-Party Packages

	Performance

	Development
	How Can I Help?

	TODO

	History

	Appendix: Technical Details
	The Measurement Type

	Correlation

	Uncertainty Propagation

	Defining Methods for Mathematical Operations

Installation

Measurements.jl is available for Julia 0.6 and later versions, and can be
installed with Julia built-in package manager [http://docs.julialang.org/en/stable/manual/packages/]. In a Julia session
run the commands

julia> Pkg.update()
julia> Pkg.add("Measurements")

Older versions are also available for Julia 0.4 and Julia 0.5.

Usage

After installing the package, you can start using it with

using Measurements

The module defines a new Measurement data type. Measurement objects can
be created with the two following constructors:

	
measurement(value, uncertainty)

	

	
value ± uncertainty

	

where

	value is the nominal value of the measurement

	uncertainty is its uncertainty, assumed to be a standard deviation [https://en.wikipedia.org/wiki/Standard_deviation].

They are both subtype of AbstractFloat. Some keyboard layouts provide an
easy way to type the ± sign, if your does not, remember you can insert it in
Julia REPL with \pm followed by TAB key. You can provide value and
uncertainty of any subtype of Real that can be converted to
AbstractFloat. Thus, measurement(42, 33//12) and pi ± 0.1 are
valid.

measurement(value) creates a Measurement object with zero uncertainty,
like mathematical constants. See below for further examples.

Note

Every time you use one of the constructors above you define a new
independent measurement. Instead, when you perform mathematical operations
involving Measurement objects you create a quantity that is not
independent, but rather depends on really independent measurements.

Most mathematical operations are instructed, by operator overloading [https://en.wikipedia.org/wiki/Operator_overloading], to accept
Measurement type, and uncertainty is calculated exactly using analityc
expressions of functions’ derivatives.

It is also possible to create a Complex measurement with

complex(measurement(real_part_value, real_part_uncertainty), measurement(imaginary_part_value, imaginary_part_uncertainty))

In addition to making the code prettier, the fact that the ± sign can be
used as infix operator to define new independent Measurement s makes the
printed representation of these objects valid Julia syntax, so you can quickly
copy the output of an operation in the Julia REPL to perform other calculations.
Note however that the copied number will not be the same object as the
original one, because it will be a new independent measurement, without memory
of the correlations of the original object.

This module extends many methods defined in Julia’s mathematical standard
library, and some methods from widespread third-party packages as well. This is
the case for most special functions in SpecialFunctions.jl [https://github.com/JuliaMath/SpecialFunctions.jl] package, and the
quadgk integration routine from QuadGK.jl [https://github.com/JuliaMath/QuadGK.jl] package.

Those interested in the technical details of the package, in order integrate the
package in their workflow, can have a look at the technical appendix.

	
measurement(string)

	

measurement function has also a method that enables you to create a
Measurement object from a string. See the “Examples” section for details.

Caution

The ± infix operator is a convenient symbol to define quantities with
uncertainty, but can lead to unexpected results if used in elaborate
expressions involving many ±s. Use parantheses where appropriate to
avoid confusion. See for example the following cases:

julia> 7.5±1.2 + 3.9±0.9 # This is wrong!
11.4 ± 1.2 ± 0.9 ± 0.0

julia> (7.5±1.2) + (3.9±0.9) # This is correct
11.4 ± 1.5

Correlation Between Variables

The fact that two or more measurements are correlated means that there is some
sort of relationship beetween them. In the context of measurements and error
propagation theory, the term “correlation [https://en.wikipedia.org/wiki/Correlation_and_dependence]” is very broad and
can indicate different things. Among others, there may be some dependence
between uncertainties of different measurements with different values, or a
dependence between the values of two measurements while their uncertainties are
different.

Here, for correlation we mean the most simple case of functional relationship:
if \(x = \bar{x} \pm \sigma_x\) is an independent measurement, a quantity
\(y = f(x) = \bar{y} \pm \sigma_y\) that is function of \(x\) is not
like an independent measurement but is a quantity that depends on \(x\), so
we say that \(y\) is correlated with \(x\). The package
Measurements.jl is able to handle this type of correlation when propagating
the uncertainty for operations and functions taking two or more arguments. As a
result, \(x - x = 0 \pm 0\) and \(x/x = 1 \pm 0\). If this correlation
was not accounted for, you would always get non-zero uncertainties even for
these operations that have exact results. Two truly different measurements that
only by chance share the same nominal value and uncertainty are not treated as
correlated.

Propagate Uncertainty for Arbitrary Functions

	
@uncertain f(x, ...)

	

Existing functions implemented exclusively in Julia that accept
AbstractFloat arguments will work out-of-the-box with Measurement
objects as long as they internally use functions already supported by this
package. However, there are functions that take arguments that are specific
subtypes of AbstractFloat, or are implemented in such a way that does not
play nicely with Measurement variables.

The package provides the @uncertain macro that overcomes this limitation and
further extends the power of Measurements.jl.

This macro allows you to propagate uncertainty in arbitrary functions, including
those based on C/Fortran calls [http://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/],
that accept any number of real arguments. The macro exploits derivative and
gradient functions from Calculus [https://github.com/johnmyleswhite/Calculus.jl] package in order to perform
numerical differentiation.

Derivative and Gradient

	
Measurements.derivative(y::Measurement, x::Measurement)

	

In order to propagate the uncertainties, Measurements.jl keeps track of the
partial derivative of an expression with respect to all independent measurements
from which the expression comes. For this reason, the package provides a
convenient function, Measurements.derivative, to get the partial derivative
and the gradient of an expression with respect to independent measurements.

Uncertainty Contribution

	
Measurements.uncertainty_components(x::Measurement)

	

You may want to inspect which measurement contributes most to the total
uncertainty of a derived quantity, in order to minimize it, if possible. The
function Measurements.uncertainty_components gives you a dictonary whose
values are the components of the uncertainty of x.

Standard Score

	
stdscore(measure::Measurement, expected_value) → standard_score

	

	
stdscore(measure_1::Measurement, measure_2::Measurement) → standard_score

	

The stdscore function is available to calculate the standard score [https://en.wikipedia.org/wiki/Standard_score] between a measurement and its
expected value (not a Measurement). When both arguments are Measurement
objects, the standard score between their difference and zero is computed, in
order to test their compatibility.

Weighted Average

	
weightedmean(iterable) → weighted_mean

	

weightedmean function gives the weighted mean [https://en.wikipedia.org/wiki/Weighted_arithmetic_mean] of a set of
measurements using inverses of variances as weights [https://en.wikipedia.org/wiki/Inverse-variance_weighting]. Use mean for
the simple arithmetic mean.

Access Nominal Value and Uncertainty

	
Measurements.value(x)

	

	
Measurements.uncertainty(x)

	

As explained in the technical appendix, the nominal value and the uncertainty of
Measurement objects are stored in val and err fields respectively,
but you do not need to use those field directly to access this information.
Functions Measurements.value and Measurements.uncertainty allow you to
get the nominal value and the uncertainty of x, be it a single measurement
or an array of measurements. They are particularly useful in the case of
complex measurements or arrays of measurements.

Error Propagation of Numbers with Units

Measurements.jl does not know about units of measurements [https://en.wikipedia.org/wiki/Units_of_measurement], but can be easily
employed in combination with other Julia packages providing this feature.
Thanks to the type system [http://docs.julialang.org/en/stable/manual/types/] of Julia programming
language this integration is seamless and comes for free, no specific work has
been done by the developer of the present package nor by the developers of the
above mentioned packages in order to support their interplay. They all work
equally good with Measurements.jl, you can choose the library you prefer and
use it. Note that only algebraic functions [https://en.wikipedia.org/wiki/Algebraic_operation] are allowed to operate
with numbers with units of measurement, because transcendental functions [https://en.wikipedia.org/wiki/Transcendental_function] operate on
dimensionless quantities [https://en.wikipedia.org/wiki/Dimensionless_quantity]. In the Examples
section you will find how this feature works with a couple of packages.

Printing to TeX and LaTeX MIMEs

You can print Measurement objects to TeX and LaTeX MIMES ("text/x-tex"
and "text/x-latex"), the ± sign will be rendered with \pm command:

julia> display("text/x-tex", 5±1)
5.0 \pm 1.0

julia> display("text/x-latex", pi ± 1e-3)
3.141592653589793 \pm 0.001

Examples

These are some basic examples of use of the package:

julia> using Measurements

julia> a = measurement(4.5, 0.1)
4.5 ± 0.1

julia> b = 3.8 ± 0.4
3.8 ± 0.4

julia> 2a + b
12.8 ± 0.4472135954999579

julia> a - 1.2b
-0.05999999999999961 ± 0.49030602688525043

julia> l = measurement(0.936, 1e-3);

julia> T = 1.942 ± 4e-3;

julia> g = 4pi^2*l/T^2
9.797993213510699 ± 0.041697817535336676

julia> c = measurement(4)
4.0 ± 0.0

julia> a*c
18.0 ± 0.4

julia> sind(94 ± 1.2)
0.9975640502598242 ± 0.0014609761696991563

julia> x = 5.48 ± 0.67;

julia> y = 9.36 ± 1.02;

julia> log(2x^2 - 3.4y)
3.3406260917568824 ± 0.5344198747546611

julia> atan2(y, x)
1.0411291003154137 ± 0.07141014208254456

Measurements from Strings

You can construct Measurement{Float64} objects from strings. Within
parentheses there is the uncertainty referred to the corresponding last digits.

julia> measurement("-12.34(56)")
-12.34 ± 0.56

julia> measurement("+1234(56)e-2")
12.34 ± 0.56

julia> measurement("123.4e-1 +- 0.056e1")
12.34 ± 0.56

julia> measurement("(-1.234 ± 0.056)e1")
-12.34 ± 0.56

julia> measurement("1234e-2 +/- 0.56e0")
12.34 ± 0.56

julia> measurement("-1234e-2")
-12.34 ± 0.0

It is also possible to use parse(Measurement{T}, string) to parse the
string as a Measurement{T}, with T<:AbstractFloat. This has been
tested with standard numeric floating types (Float16, Float32,
Float64, and BigFloat).

julia> parse(Measurement{Float16}, "19.5 ± 2.8")
19.5 ± 2.8

julia> parse(Measurement{Float32}, "-7.6 ± 0.4")
-7.6 ± 0.4

julia> parse(Measurement{Float64}, "4 ± 1.3")
4.0 ± 1.3

julia> parse(Measurement{BigFloat}, "+5.1 ± 3.3")
5.099986 ± 3.2993

Correlation Between Variables

Here you can see examples of how functionally correlated variables are treated
within the package:

julia> x = 8.4 ± 0.7
8.4 ± 0.7

julia> x - x
0.0 ± 0.0
julia> x/x
1.0 ± 0.0

julia> x*x*x - x^3
0.0 ± 0.0

julia> sin(x)/cos(x) - tan(x)
-2.220446049250313e-16 ± 0.0
They are equal within numerical accuracy

julia> y = -5.9 ± 0.2

julia> beta(x, y) - gamma(x)*gamma(y)/gamma(x + y)
0.0 ± 3.979039320256561e-14

You will get similar results for a variable that is a function of an already
existing Measurement object:

julia> u = 2x

julia> (x + x) - u
0.0 ± 0.0

julia> u/2x
1.0 ± 0.0

julia> u^3 - 8x^3
0.0 ± 0.0

julia> cos(x)^2 - (1 + cos(u))/2
0.0 ± 0.0

A variable that has the same nominal value and uncertainty as u above but is
not functionally correlated with x will give different outcomes:

Define a new measurement but with same nominal value
and uncertainty as u, so v is not correlated with x
julia> v = 16.8 ± 1.4

julia> (x + x) - v
0.0 ± 1.979898987322333

julia> v / 2x
1.0 ± 0.11785113019775792
julia> v^3 - 8x^3
0.0 ± 1676.4200705455657

julia> cos(x)^2 - (1 + cos(v))/2
0.0 ± 0.8786465354843539

@uncertain Macro

Macro @uncertain can be used to propagate uncertainty in arbitrary real or
complex functions of real arguments, including functions not natively supported
by this package.

julia> @uncertain (x -> complex(zeta(x), exp(eta(x)^2)))(2 ± 0.13)
(1.6449340668482273 ± 0.12188127308075564) + (1.9668868646839253 ± 0.042613944993428333)im

julia> @uncertain log(9.4 ± 1.3, 58.8 ± 3.7)
1.8182372640255153 ± 0.11568300475873611

julia> log(9.4 ± 1.3, 58.8 ± 3.7)
1.8182372640255153 ± 0.11568300475593848

You usually do not need to define a wrapping function before using it. In the
case where you have to define a function, like in the first line of previous
examples, anonymous functions [http://docs.julialang.org/en/stable/manual/functions/#anonymous-functions]
allow you to do it in a very concise way.

The macro works with functions calling C/Fortran functions as well. For
example, Cuba.jl [https://github.com/giordano/Cuba.jl] package performs
numerical integration by wrapping the C Cuba [http://www.feynarts.de/cuba/]
library. You can define a function to numerically compute with Cuba.jl the
integral defining the error function [https://en.wikipedia.org/wiki/Error_function] and pass it to @uncertain
macro. Compare the result with that of the erf function, natively supported
in Measurements.jl package

julia> using Cuba

julia> cubaerf(x::Real) =
 2x/sqrt(pi)*cuhre((t, f) -> f[1] = exp(-abs2(t[1]*x)))[1][1]
cubaerf (generic function with 1 method)

julia> @uncertain cubaerf(0.5 ± 0.01)
0.5204998778130466 ± 0.008787825789336267

julia> erf(0.5 ± 0.01)
0.5204998778130465 ± 0.008787825789354449

Also here you can use an anonymous function instead of defining the cubaerf
function, do it as an exercise. Remember that if you want to numerically
integrate a function that returns a Measurement object you can use
QuadGK.jl package, which is written purely in Julia and in addition allows
you to set Measurement objects as endpoints, see below.

Tip

Note that the argument of @uncertain macro must be a function call whose
arguments are Measurement objects. Thus,

julia> @uncertain zeta(13.4 ± 0.8) + eta(8.51 ± 0.67)

will not work because here the outermost function is +, whose arguments
are zeta(13.4 ± 0.8) and eta(8.51 ± 0.67), that however cannot be
calculated. You can use the @uncertain macro on each function
separately:

julia> @uncertain(zeta(13.4 ± 0.8)) + @uncertain(eta(8.51 ± 0.67))
1.9974303172187315 ± 0.0012169293212062773

The type of all the arguments provided must be Measurement. If one of
the arguments is actually an exact number (so without uncertainty), promote
it to Measurement type:

julia> atan2(10, 13.5 ± 0.8)
0.6375487981386927 ± 0.028343666961913202

julia> @uncertain atan2(10 ± 0, 13.5 ± 0.8)
0.6375487981386927 ± 0.028343666962347438

In addition, the function must be differentiable in all its arguments. For
example, the polygamma function of order \(m\), polygamma(m, x), is
the \(m+1\)-th derivative of the logarithm of gamma function, and is not
differentiable in the first argument. Not even the trick of passing an exact
measurement would work, because the first argument must be an integer. You
can easily work around this limitation by wrapping the function in a
single-argument function:

julia> @uncertain (x -> polygamma(0, x))(4.8 ± 0.2)
1.4608477407291167 ± 0.046305812845734776

julia> digamma(4.8 ± 0.2) # Exact result
1.4608477407291167 ± 0.04630581284451362

Complex Measurements

Here are a few examples about uncertainty propagation of complex-valued
measurements.

julia> u = complex(32.7 ± 1.1, -3.1 ± 0.2)

julia> v = complex(7.6 ± 0.9, 53.2 ± 3.4)

julia> 2u + v
(73.0 ± 2.3769728648009427) + (47.0 ± 3.4234485537247377)im

julia> sqrt(u * v)
(33.004702573592 ± 1.0831254428098636) + (25.997507418428984 ± 1.1082833691607152)im

You can also verify the Euler’s formula [https://en.wikipedia.org/wiki/Euler%27s_formula]

julia> cis(u)
(6.27781144696534 ± 23.454542573739754) + (21.291738410228678 ± 8.112997844397572)im

julia> cos(u) + sin(u)*im
(6.277811446965339 ± 23.454542573739754) + (21.291738410228678 ± 8.112997844397572)im

Arbitrary Precision Calculations

If you performed an exceptionally good experiment that gave you extremely
precise results (that is, with very low relative error), you may want to use
arbitrary precision [http://docs.julialang.org/en/stable/manual/integers-and-floating-point-numbers/#arbitrary-precision-arithmetic]
(or multiple precision) calculations, in order not to loose significance of the
experimental results. Luckily, Julia natively supports this type of arithmetic
and so Measurements.jl does. You only have to create Measurement
objects with nominal value and uncertainty of type BigFloat.

Tip

As explained in the Julia documentation [http://docs.julialang.org/en/stable/stdlib/numbers/#Base.BigFloat], it is
better to use the big string literal to initialize an arbitrary precision
floating point constant, instead of the BigFloat and big functions.
See examples below.

For example, you want to measure a quantity that is the product of two
observables \(a\) and \(b\), and the expected value of the product is
\(12.00000007\). You measure \(a = 3.00000001 \pm (1\times 10^{-17})\)
and \(b = 4.0000000100000001 \pm (1\times 10^{-17})\) and want to compute
the standard score of the product with stdscore(). Using the ability of
Measurements.jl to perform arbitrary precision calculations you discover
that

julia> a = big"3.00000001" ± big"1e-17"

julia> b = big"4.0000000100000001" ± big"1e-17"

julia> stdscore(a * b, big"12.00000007")
7.999999997599999878080000420160000093695993825308195353920411656927305928530607

the measurement significantly differs from the expected value and you make a
great discovery. Instead, if you used double precision accuracy, you would have
wrongly found that your measurement is consistent with the expected value:

julia> stdscore((3.00000001 ± 1e-17)*(4.0000000100000001 ± 1e-17), 12.00000007)
0.0

and you would have missed an important prize due to the use of an incorrect
arithmetic.

Of course, you can perform any mathematical operation supported in
Measurements.jl using arbitrary precision arithmetic:

julia> hypot(a, b)
5.000000014000000080399999974880000423919999216953595312794907845334503498479533 ± 1.0009e-17

julia> log(2a) ^ b
1.030668110995484998145373137400169442058573718746529435800255440973153647087416e+01 ± 9.744450581349822034766870718391736028419817951565653507621645979913795265663606e-17

Operations with Arrays and Linear Algebra

You can create arrays of Measurement objects and perform mathematical
operations on them in the most natural way possible:

julia> A = [1.03 ± 0.14, 2.88 ± 0.35, 5.46 ± 0.97]
3-element Array{Measurements.Measurement{Float64},1}:
 1.03±0.14
 2.88±0.35
 5.46±0.97

julia> B = [0.92 ± 0.11, 3.14 ± 0.42, 4.67 ± 0.58]
3-element Array{Measurements.Measurement{Float64},1}:
 0.92±0.11
 3.14±0.42
 4.67±0.58

julia> exp.(sqrt.(B)) .- log.(A)
3-element Array{Measurements.Measurement{Float64},1}:
 2.57996±0.202151
 4.82484±0.707663
 6.98252±1.17829

julia> @. cos(A) ^ 2 + sin(A) ^ 2
3-element Array{Measurements.Measurement{Float64},1}:
 1.0±0.0
 1.0±0.0
 1.0±0.0

If you originally have separate arrays of values and uncertainties, you can
create an array of Measurement objects using measurement or ± with
the dot syntax [http://docs.julialang.org/en/stable/manual/functions/#man-dot-vectorizing]
for vectorizing functions:

julia> C = measurement.([174.9, 253.8, 626.3], [12.2, 19.4, 38.5])
3-element Array{Measurements.Measurement{Float64},1}:
 174.9±12.2
 253.8±19.4
 626.3±38.5

julia> sum(C)
1055.0 ± 44.80457565918909

julia> D = [549.4, 672.3, 528.5] .± [7.4, 9.6, 5.2]
3-element Array{Measurements.Measurement{Float64},1}:
 549.4±7.4
 672.3±9.6
 528.5±5.2

julia> mean(D)
583.4 ± 4.396463225012679

Tip

prod and sum (and mean, which relies on sum) functions work
out-of-the-box with any iterable of Measurement objects, like arrays or
tuples. However, these functions have faster methods (quadratic in the
number of elements) when operating on an array of Measurement s than on a
tuple (in this case the computational complexity is cubic in the number of
elements), so you should use an array if performance is crucial for you, in
particular for large collections of measurements.

Some linear algebra [http://docs.julialang.org/en/stable/stdlib/linalg/]
functions work out-of-the-box, without defining specific methods for them. For
example, you can solve linear systems, do matrix multiplication and dot product
between vectors, find inverse, determinant, and trace of a matrix, do LU and QR
factorization, etc.

julia> A = [(14 ± 0.1) (23 ± 0.2); (-12 ± 0.3) (24 ± 0.4)]
2×2 Array{Measurements.Measurement{Float64},2}:
 14.0±0.1 23.0±0.2
 -12.0±0.3 24.0±0.4

julia> b = [(7 ± 0.5), (-13 ± 0.6)]
2-element Array{Measurements.Measurement{Float64},1}:
 7.0±0.5
 -13.0±0.6

Solve the linear system Ax = b
julia> x = A \ b
2-element Array{Measurements.Measurement{Float64},1}:
 0.763072±0.0313571
 -0.160131±0.0177963

Verify this is the correct solution of the system
julia> A * x ≈ b
true

julia> dot(x, b)
7.423202614379084 ± 0.5981875954418516

julia> det(A)
611.9999999999999 ± 9.51262319236918

julia> trace(A)
38.0 ± 0.4123105625617661

julia> A * inv(A) ≈ eye(A)
true

julia> lufact(A)
Base.LinAlg.LU{Measurements.Measurement{Float64},Array{Measurements.Measurement{Float64},2}} with factors L and U:
Measurements.Measurement{Float64}[1.0±0.0 0.0±0.0; -0.857143±0.0222861 1.0±0.0]
Measurements.Measurement{Float64}[14.0±0.1 23.0±0.2; 0.0±0.0 43.7143±0.672403]

julia> qrfact(A)
Base.LinAlg.QR{Measurements.Measurement{Float64},Array{Measurements.Measurement{Float64},2}}(Measurements.Measurement{Float64}[-18.4391±0.209481 -1.84391±0.522154; -0.369924±0.00730266 33.1904±0.331267],Measurements.Measurement{Float64}[1.75926±0.00836088,0.0±0.0])

Derivative, Gradient and Uncertainty Components

In order to propagate the uncertainties, Measurements.jl keeps track of the
partial derivative of an expression with respect to all independent measurements
from which the expression comes. The package provides a convenient function,
Measurements.derivative(), that returns the partial derivative of an
expression with respect to independent measurements. Its vectorized version can
be used to compute the gradient of an expression with respect to multiple
independent measurements.

julia> x = 98.1 ± 12.7
98.1 ± 12.7

julia> y = 105.4 ± 25.6
105.4 ± 25.6

julia> z = 78.3 ± 14.1
78.3 ± 14.1

julia> Measurements.derivative(2x - 4y, x)
2.0

julia> Measurements.derivative(2x - 4y, y)
-4.0

julia> Measurements.derivative.(log1p(x) + y^2 - cos(x/y), [x, y, z])
3-element Array{Float64,1}:
 0.0177005
 210.793
 0.0 # The expression does not depend on z

Tip

The vectorized version of Measurements.derivative() is useful in order
to discover which variable contributes most to the total uncertainty of a
given expression, if you want to minimize it. This can be calculated as the
Hadamard (element-wise) product [https://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29] between
the gradient of the expression with respect to the set of variables and the
vector of uncertainties of the same variables in the same order. For
example:

julia> w = y^(3//4)*log(y) + 3x - cos(y/x)
447.0410543780643 ± 52.41813324207829

julia> abs.(Measurements.derivative.(w, [x, y]) .* Measurements.uncertainty.([x, y]))
2-element Array{Float64,1}:
 37.9777
 36.1297

In this case, the x variable contributes most to the uncertainty of
w. In addition, note that the Euclidean norm [https://en.wikipedia.org/wiki/Euclidean_norm] of the Hadamard product
above is exactly the total uncertainty of the expression:

julia> vecnorm(Measurements.derivative.(w, [x, y]) .* Measurements.uncertainty.([x, y]))
52.41813324207829

The Measurements.uncertainty_components() function simplifies
calculation of all uncertainty components of a derived quantity:

julia> Measurements.uncertainty_components(w)
Dict{Tuple{Float64,Float64,Float64},Float64} with 2 entries:
 (98.1, 12.7, 0.303638) => 37.9777
 (105.4, 25.6, 0.465695) => 36.1297

julia> vecnorm(collect(values(Measurements.uncertainty_components(w))))
52.41813324207829

stdscore Function

You can get the distance in number of standard deviations between a measurement
and its expected value (not a Measurement) using stdscore():

julia> stdscore(1.3 ± 0.12, 1)
2.5000000000000004

You can use the same function also to test the consistency of two measurements
by computing the standard score between their difference and zero. This is what
stdscore() does when both arguments are Measurement objects:

julia> stdscore((4.7 ± 0.58) - (5 ± 0.01), 0)
-0.5171645175253433

julia> stdscore(4.7 ± 0.58, 5 ± 0.01)
-0.5171645175253433

weightedmean Function

Calculate the weighted and arithmetic means of your set of measurements with
weightedmean() and mean respectively:

julia> weightedmean((3.1±0.32, 3.2±0.38, 3.5±0.61, 3.8±0.25))
3.4665384454054498 ± 0.16812474090663868

julia> mean((3.1±0.32, 3.2±0.38, 3.5±0.61, 3.8±0.25))
3.4000000000000004 ± 0.2063673908348894

Measurements.value and Measurements.uncertainty Functions

Use Measurements.value() and Measurements.uncertainty() to get the
values and uncertainties of measurements. They work with real and complex
measurements, scalars or arrays:

julia> Measurements.value(94.5 ± 1.6)
94.5

julia> Measurements.uncertainty(94.5 ± 1.6)
1.6

julia> Measurements.value.([complex(87.3 ± 2.9, 64.3 ± 3.0), complex(55.1 ± 2.8, -19.1 ± 4.6)])
2-element Array{Complex{Float64},1}:
 87.3+64.3im
 55.1-19.1im

julia> Measurements.uncertainty.([complex(87.3 ± 2.9, 64.3 ± 3.0), complex(55.1 ± 2.8, -19.1 ± 4.6)])
2-element Array{Complex{Float64},1}:
 2.9+3.0im
 2.8+4.6im

Interplay with Third-Party Packages

Measurements.jl works out-of-the-box with any function taking arguments no
more specific than AbstractFloat. This makes this library particularly
suitable for cooperating with well-designed third-party packages in order to
perform complicated calculations always accurately taking care of uncertainties
and their correlations, with no effort for the developers nor users.

The following sections present a sample of packages that are known to work with
Measurements.jl, but many others will interplay with this package as well as
them.

Numerical Integration with QuadGK.jl

The powerful integration routine quadgk from QuadGK.jl package is smart
enough to support out-of-the-box integrand functions that return arbitrary
types, including Measurement:

julia> QuadGK.quadgk(x -> exp(x / (4.73 ± 0.01)), 1, 7)
(14.933307243306032 ± 0.009999988180463411, 0.0 ± 0.010017961523508253)

Measurements.jl pushes the capabilities of quadgk further by supporting
also Measurement objects as endpoints:

julia> QuadGK.quadgk(cos, 1.19 ± 0.02, 8.37 ± 0.05)
(-0.05857827689796702 ± 0.02576650561689427, 2.547162480937004e-11)

Compare this with the expected result:

julia> sin(8.37 ± 0.05) - sin(1.19 ± 0.02)
-0.058578276897966686 ± 0.02576650561689427

Also with quadgk correlation is properly taken into account:

julia> a = 6.42 ± 0.03
6.42 ± 0.03

julia> QuadGK.quadgk(sin, -a, a)
(2.484178227707412e-17 ± 0.0, 0.0)

If instead the two endpoints have, by chance, the same nominal value and
uncertainty but are not correlated:

julia> QuadGK.quadgk(sin, -6.42 ± 0.03, 6.42 ± 0.03)
(2.484178227707412e-17 ± 0.005786464233000303, 0.0)

Numerical and Automatic Differentiation

With Calculus.jl [https://github.com/johnmyleswhite/Calculus.jl] package it
is possible to perform numerical differentiation using finite differencing. You
can pass in to the Calculus.derivative function both functions returning
Measurement objects and a Measurement as the point in which to calculate
the derivative.

julia> using Measurements, Calculus

julia> a = -45.7 ± 1.6
-45.7 ± 1.6

julia> b = 36.5 ± 6.0
36.5 ± 6.0

julia> Calculus.derivative(exp, a) ≈ exp(a)
true

julia> Calculus.derivative(cos, b) ≈ -sin(b)
true

julia> Calculus.derivative(t -> log(-t * b)^2, a) ≈ 2log(-a * b)/a
true

Other packages provide automatic differentiation [https://en.wikipedia.org/wiki/Automatic_differentiation] methods. Here is
an example with AutoGrad.jl [https://github.com/denizyuret/AutoGrad.jl],
just one of the packages available:

julia> using AutoGrad

julia> grad(exp)(a) ≈ exp(a)
true

julia> grad(cos)(b) ≈ -sin(b)
true

julia> grad(t -> log(-t * b)^2)(a) ≈ 2log(-a * b)/a
true

However remember that you can always use Measurements.derivative() to
compute the value (without uncertainty) of the derivative of a Measurement
object.

Use with SIUnits.jl and Unitful.jl

You can use Measurements.jl in combination with a third-party package in
order to perform calculations involving physical measurements, i.e. numbers
with uncertainty and physical unit. The details depend on the specific package
adopted. Such packages are, for instance, SIUnits.jl [https://github.com/Keno/SIUnits.jl] and Unitful.jl [https://github.com/ajkeller34/Unitful.jl]. You only have to use the
Measurement object as the value of the SIQuantity object (for
SIUnits.jl) or of the Quantity object (for Unitful.jl). Here are a
few examples.

julia> using Measurements, SIUnits, SIUnits.ShortUnits

julia> hypot((3 ± 1)*m, (4 ± 2)*m) # Pythagorean theorem
5.0 ± 1.7088007490635064 m

julia> (50 ± 1)Ω * (13 ± 2.4)*1e-2*A # Ohm's Law
6.5 ± 1.20702112657567 kg m²s⁻³A⁻¹

julia> 2pi*sqrt((5.4 ± 0.3)*m / ((9.81 ± 0.01)*m/s^2)) # Pendulum's period
4.661677707464357 ± 0.1295128435999655 s

julia> using Measurements, Unitful

julia> hypot((3 ± 1)*u"m", (4 ± 2)*u"m") # Pythagorean theorem
5.0 ± 1.7088007490635064 m

julia> (50 ± 1)*u"Ω" * (13 ± 2.4)*1e-2*u"A" # Ohm's Law
6.5 ± 1.20702112657567 A Ω

julia> 2pi*sqrt((5.4 ± 0.3)*u"m" / ((9.81 ± 0.01)*u"m/s^2")) # Pendulum's period
4.661677707464357 ± 0.12951284359996548 s

Performance

Measurements.jl strives to be as fast as possible. These are the benchmark
results obtained with the BenchmarkTools.jl [https://github.com/JuliaCI/BenchmarkTools.jl] suite on a system equipped
with an Intel(R) Core(TM) i7-4700MQ CPU running Julia 0.6.0-pre.beta.314 (commit
7cd0324e03).

julia> using Measurements, BenchmarkTools

Creation of a `Measurement` object
julia> @benchmark 4.7 ± 0.3
BenchmarkTools.Trial:
 memory estimate: 96 bytes
 allocs estimate: 2

 minimum time: 18.760 ns (0.00% GC)
 median time: 22.548 ns (0.00% GC)
 mean time: 29.324 ns (16.03% GC)
 maximum time: 1.353 μs (93.61% GC)

 samples: 10000
 evals/sample: 997

julia> a = 12.3 ± 4.5; b = 67.8 ± 9.0;

Sum of two `Measurement` objects
julia> @benchmark $a + $b
BenchmarkTools.Trial:
 memory estimate: 176 bytes
 allocs estimate: 4

 minimum time: 76.605 ns (0.00% GC)
 median time: 83.412 ns (0.00% GC)
 mean time: 102.682 ns (13.96% GC)
 maximum time: 2.339 μs (92.91% GC)

 samples: 10000
 evals/sample: 970

One-argument functions, where functional
correlation is not a concern, are even faster
julia> @benchmark sqrt($b)
BenchmarkTools.Trial:
 memory estimate: 96 bytes
 allocs estimate: 2

 minimum time: 31.226 ns (0.00% GC)
 median time: 33.805 ns (0.00% GC)
 mean time: 41.899 ns (13.09% GC)
 maximum time: 1.656 μs (91.62% GC)

 samples: 10000
 evals/sample: 994

julia> @benchmark sin($a)
BenchmarkTools.Trial:
 memory estimate: 96 bytes
 allocs estimate: 2

 minimum time: 56.797 ns (0.00% GC)
 median time: 58.526 ns (0.00% GC)
 mean time: 67.799 ns (8.59% GC)
 maximum time: 1.860 μs (93.77% GC)

 samples: 10000
 evals/sample: 984

julia> @benchmark gamma($a)
BenchmarkTools.Trial:
 memory estimate: 96 bytes
 allocs estimate: 2

 minimum time: 136.277 ns (0.00% GC)
 median time: 140.353 ns (0.00% GC)
 mean time: 151.901 ns (4.11% GC)
 maximum time: 2.164 μs (90.13% GC)

 samples: 10000
 evals/sample: 867

Vectorial functions take a linear time
julia> vector = [1 ± 0.1 for _ in 1:10000];

julia> @benchmark sqrt.($vector)
BenchmarkTools.Trial:
 memory estimate: 1015.70 KiB
 allocs estimate: 20002

 minimum time: 330.481 μs (0.00% GC)
 median time: 352.413 μs (0.00% GC)
 mean time: 457.011 μs (20.01% GC)
 maximum time: 2.970 ms (85.16% GC)

 samples: 10000
 evals/sample: 1

julia> @benchmark sin.($vector)
BenchmarkTools.Trial:
 memory estimate: 1015.70 KiB
 allocs estimate: 20002

 minimum time: 535.720 μs (0.00% GC)
 median time: 556.428 μs (0.00% GC)
 mean time: 669.928 μs (14.53% GC)
 maximum time: 3.263 ms (80.73% GC)

 samples: 7440
 evals/sample: 1

julia> @benchmark gamma.($vector)
BenchmarkTools.Trial:
 memory estimate: 1015.70 KiB
 allocs estimate: 20002

 minimum time: 1.097 ms (0.00% GC)
 median time: 1.145 ms (0.00% GC)
 mean time: 1.270 ms (8.19% GC)
 maximum time: 4.137 ms (67.33% GC)

 samples: 3928
 evals/sample: 1

julia> @benchmark cos.($vector) .^ 2 .+ sin.($vector) .^ 2
BenchmarkTools.Trial:
 memory estimate: 4.50 MiB
 allocs estimate: 100002

 minimum time: 2.484 ms (0.00% GC)
 median time: 2.641 ms (0.00% GC)
 mean time: 3.272 ms (19.46% GC)
 maximum time: 7.793 ms (55.38% GC)

 samples: 1526
 evals/sample: 1

Development

The package is developed at https://github.com/giordano/Measurements.jl. There
you can submit bug reports, make suggestions, and propose pull requests.

How Can I Help?

Have a look at the TODO list below and the bug list at
https://github.com/giordano/Measurements.jl/issues, pick-up a task, write great
code to accomplish it and send a pull request. In addition, you can instruct
more mathematical functions to accept Measurement type arguments. Please,
read the technical appendix in order to understand the design of this package.
Bug reports and wishlists are welcome as well.

TODO

	Add pretty printing: optionally print only the relevant significant digits
(issue #5 [https://github.com/giordano/Measurements.jl/issues/5])

	Other suggestions welcome :-)

History

The ChangeLog of the package is available in NEWS.md [https://github.com/giordano/Measurements.jl/blob/master/NEWS.md] file in top
directory. There have been some breaking changes from time to time, beware of
them when upgrading the package.

Appendix: Technical Details

This technical appendix explains the design of Measurements.jl package, how
it propagates the uncertainties when performing calculations, and how you can
contribute by providing new methods for mathematical operations.

The Measurement Type

Measurement is a composite [http://docs.julialang.org/en/stable/manual/types/#composite-types]
parametric [http://docs.julialang.org/en/stable/manual/types/#man-parametric-types]
type, whose parameter is the AbstractFloat subtype of the nominal value and
the uncertainty of the measurement. Measurement type itself is subtype of
AbstractFloat, thus Measurement objects can be used in any function
taking AbstractFloat arguments without redefining it, and calculation of
uncertainty will be exact.

In detail, this is the definition of the type:

immutable Measurement{T<:AbstractFloat} <: AbstractFloat
 val::T
 err::T
 tag::Float64
 der::Derivatives{T}
end

The fields represent:

	val: the nominal value of the measurement

	err: the uncertainty, assumed to be standard deviation

	tag: a unique identifier, it is used to identify a specific measurement in
the list of derivatives. This is automatically created with rand. The
result of mathematical operation will have this field set to NaN because
it is not relevant for non independent measurements.

	der: the list of derivates with respect to the independent variables from
which the expression comes. Derivatives is a lightweight dictionary type.
The keys are the tuples (val, err, tag) of all independent variables from
which the object has been derived, while the corresponding value is the
partial derivative of the object with respect to that independent variable.

As already explained in the “Usage” section, every time you use one of the
constructors

measurement(value, uncertainty)
value ± uncertainty

you define a new independent measurement. This happens because these
contructors generate a new random and (hopefully) unique tag field, that is
used to distinguish between really equal objects and measurements that only by
chance share the same nominal value and uncertainty. For these reasons,

julia> x = 24.3 ± 2.7
24.3 ± 2.7

julia> y = 24.3 ± 2.7
24.3 ± 2.7

will produce two independent measurements and they will be treated as such when
performing mathematical operations. In particular, you can also notice that
they are not egal [http://docs.julialang.org/en/stable/stdlib/base/#Base.is]

julia> x === y
false

If you instead intend to make y really the same thing as x you have to
use assignment:

julia> x = y = 24.3 ± 2.7
24.3 ± 2.7

julia> x === y
true

Thanks to how the Julia language is designed, support for complex measurements,
arbitrary precision calculations and array operations came with practically no
effort during the development of the package. As explained [https://github.com/giordano/Measurements.jl/issues/1#issuecomment-220727553]
by Steven G. Johnson, since in Julia a lot of nonlinear functions are internally
implemented in terms of elementary operations on the real and imaginary parts it
was natural to make the type subtype of Real in order to easily work with
complex measurements. In particular, it was then chosen to select the
AbstractFloat type because some functions of complex arguments (like
sqrt and log) take Complex{AbstractFloat} arguments instead of
generic Complex{Real}, and any operation on a Measurement{R} object,
with R subtype of Real different from AbstractFloat, would turn it
into Measurement{F}, with F subtype of AbstractFloat, anyway.

Correlation

One must carefully take care of correlation [https://en.wikipedia.org/wiki/Correlation_and_dependence] between two
measurements when propagating the uncertainty for an operation. Actually, the
term “correlation” may refer to different kind of dependences between two or
more quantities, what we mean by this term in Measurements.jl is explained
in the “Usage” section of this manual.

Dealing with functional correlation between Measurement objects, when using
functions with arity [https://en.wikipedia.org/wiki/Arity] larger than one,
is an important feature of this package. This is accomplished by keeping inside
each Measurement object the list of its derivatives with respect to the
independent variables from which the quantity comes. This role is played by the
der field. This dictionary is useful in order to trace the contribution of
each measurement and propagate the uncertainty in the case of functions with
more than one argument.

The use of the list of derivatives has been inspired by Python package
uncertainties [https://pythonhosted.org/uncertainties/], but the rest of the
implementation of Measurements.jl is completely independent from that of
uncertainties package, even though it may happen to be similar.

Uncertainty Propagation

For a function \(G(a, b, c, \dots)\) of real arguments with uncertainties
\(a = \bar{a} \pm \sigma_{a}\), \(b = \bar{b} \pm \sigma_{b}\), and
\(c = \bar{c} \pm \sigma_{c}\), ..., the linear error propagation theory [https://en.wikipedia.org/wiki/Propagation_of_uncertainty] prescribes that
uncertainty is propagated as follows:

\[\begin{split}\sigma_G^2 = \left(\left.\frac{\partial G}{\partial a}\right\vert_{a
= \bar{a}} \sigma_a \right)^2 + \left(\left.\frac{\partial
G}{\partial b}\right\vert_{b = \bar{b}} \sigma_b \right)^2 + \left(
\left.\frac{\partial G}{\partial c}\right\vert_{c = \bar{c}} \sigma_c
\right)^2 + \cdots \\
+ 2 \left(\frac{\partial G}{\partial a}\right)_{a = \bar{a}}
\left(\frac{\partial G}{\partial b}\right)_{b = \bar{b}}
\sigma_{ab} + 2 \left(\frac{\partial G}{\partial a}\right)_{a =
\bar{a}} \left(\frac{\partial G}{\partial c}\right)_{c = \bar{c}}
\sigma_{ac} \\
+ 2 \left(\frac{\partial G}{\partial b}\right)_{b = \bar{b}}
\left(\frac{\partial G}{\partial c}\right)_{c = \bar{c}} \sigma_{bc} +
\dots\end{split}\]

where the \(\sigma_{ab}\) factors are the covariances [https://en.wikipedia.org/wiki/Covariance] defined as

\[\sigma_{ab} = \text{E}[(a - \text{E}[a])(b - \text{E}[b])]\]

\(E[a]\) is the expected value [https://en.wikipedia.org/wiki/Expected_value], or mean, of \(a\). If
uncertainties of the quantities \(a\), \(b\), \(c\), ..., are
independent and normally distributed, the covariances are null and the above
formula for uncertainty propagation simplifies to

\[\sigma_G^2 = \left(\left.\frac{\partial G}{\partial a}\right\vert_{a
= \bar{a}} \sigma_a \right)^2 + \left(\left.\frac{\partial
G}{\partial b}\right\vert_{b = \bar{b}} \sigma_b \right)^2 + \left(
\left.\frac{\partial G}{\partial c}\right\vert_{c = \bar{c}} \sigma_c
\right)^2 + \cdots\]

In general, calculating the covariances is not an easy task. The trick adopted
in Measurements.jl in order to deal with simple functional correlation is to
propagate the uncertainty always using really independent variables. Thus,
dealing with functional correlation boils down to finding the set of all the
independent measurements on which an expression depends. If this set is made up
of \(\{x, y, z, \dots\}\), it is possible to calculate the uncertainty of
\(G(a, b, c, \dots)\) with

\[\sigma_G^2 = \left(\left.\frac{\partial G}{\partial x}\right\vert_{x
= \bar{x}} \sigma_x \right)^2 + \left(\left.\frac{\partial
G}{\partial y}\right\vert_{y = \bar{y}} \sigma_y \right)^2 + \left(
\left.\frac{\partial G}{\partial z}\right\vert_{z = \bar{z}} \sigma_z
\right)^2 + \cdots\]

where all covariances due to functional correlation are null. This explains the
purpose of keeping the list of derivatives with respect to independent variables
in Measurement objects: by looking at the der fields of \(a\),
\(b\), \(c\), ..., it is possible to determine the set of independent
variables. If other types of correlation (not functional) between \(x\),
\(y\), \(z\), ..., are present, they should be treated by calculating
the covariances as shown above.

For a function of only one argument, \(G = G(a)\), there is no problem of
correlation and the uncertainty propagation formula in the linear approximation
simply reads

\[\sigma_G = \left\vert \frac{\partial G}{\partial a} \right\vert_{a =
\bar{a}} \sigma_a\]

even if \(a\) is not an independent variable and comes from operations on
really independent measurements.

For example, suppose you want to calculate the function \(G = G(a, b)\) of
two arguments, and \(a\) and \(b\) are functionally correlated, because
they come from some mathematical operations on really independent variables
\(x\), \(y\), \(z\), say \(a = a(x, y)\), \(b = b(x, z)\).
By using the chain rule [https://en.wikipedia.org/wiki/Chain_rule], the
uncertainty on \(G(a, b)\) is calculated as follows:

\[\sigma_G^2 = \left(\left(\frac{\partial G}{\partial a}\frac{\partial
a}{\partial x} + \frac{\partial G}{\partial b}\frac{\partial
b}{\partial x}\right)_{x = \bar{x}} \sigma_x \right)^2 + \left(
\left(\frac{\partial G}{\partial a}\frac{\partial a}{\partial
y}\right)_{y = \bar{y}} \sigma_y \right)^2 + \left(
\left(\frac{\partial G}{\partial b}\frac{\partial b}{\partial
z}\right)_{z = \bar{z}} \sigma_z \right)^2\]

What Measurements.jl really does is to calulate the derivatives like
\(\partial a/\partial x\) and \(\partial G/\partial x = (\partial
G/\partial a)(\partial a/\partial x) + (\partial G/\partial b)(\partial
b/\partial x)\), and store them in the der field of \(a\) and \(G\)
respectively in order to be able to perform further operations involving these
quantities.

This method is also described in [GIO16].

Defining Methods for Mathematical Operations

Measurements.jl defines new methods for mathematical operations in order to
make them accept Measurement arguments. The single most important thing to
know about how to define new methods in the package is the
Measurements.result. This function, not exported because it is intended to
be used only within the package, takes care of propagating the uncertainty as
described in the section above. It has two methods: one for functions with
arity equal to one, and the other for any other case. This is its syntax:

result(val::Real, der::Real, a::Measurement)

for functions of one argument, and

result(val, der, a)

for functions of two or more arguments, in which der and a are the
collections (tuples, arrays, etc...) of the same length. The arguments are:

	val: the nominal result of the operation \(G(a, \dots)\);

	der: the partial derivative \(\partial G/\partial a\) of a function
\(G = G(a)\) with respect to the argument \(a\) for one-argument
functions or the tuple of partial derivatives with respect to each argument in
other cases;

	a: the argument(s) of \(G\), in the same order as the corresponding
derivatives in der argument.

In the case of functions with arity larger than one, der and a tuples
must have the same length.

For example, for a one-argument function like \(\cos\) we have

cos(a::Measurement) = result(cos(a.val), -sin(a.val), a)

Instead, the method for subtraction operation is defined as follows:

-(a::Measurement, b::Measurement) =
 result(a.val - b.val, (1, -1), (a, b))

Thus, in order to support Measurement argument(s) for a new mathematical
operation you have to calculate the result of the operation, the partial
derivatives of the functon with respect to all arguments and then pass this
information to Measurements.result function.

Index

 M
 | S
 | W

M

 	
 	measurement() (built-in function), [1]

 	Measurements.derivative() (built-in function)

 	
 	Measurements.uncertainty() (built-in function)

 	Measurements.uncertainty_components() (built-in function)

 	Measurements.value() (built-in function)

S

 	
 	stdscore() (built-in function), [1]

W

 	
 	weightedmean() (built-in function)

 _static/up.png

nav.xhtml

 Table of Contents

 		Measurements.jl

 		Installation

 		Usage

 		Correlation Between Variables

 		Propagate Uncertainty for Arbitrary Functions

 		Derivative and Gradient

 		Uncertainty Contribution

 		Standard Score

 		Weighted Average

 		Access Nominal Value and Uncertainty

 		Error Propagation of Numbers with Units

 		Printing to TeX and LaTeX MIMEs

 		Examples

 		Measurements from Strings

 		Correlation Between Variables

 		@uncertain Macro

 		Complex Measurements

 		Arbitrary Precision Calculations

 		Operations with Arrays and Linear Algebra

 		Derivative, Gradient and Uncertainty Components

 		stdscore Function

 		weightedmean Function

 		Measurements.value and Measurements.uncertainty Functions

 		Interplay with Third-Party Packages

 		Numerical Integration with QuadGK.jl

 		Numerical and Automatic Differentiation

 		Use with SIUnits.jl and Unitful.jl

 		Performance

 		Development

 		How Can I Help?

 		TODO

 		History

 		Appendix: Technical Details

 		The Measurement Type

 		Correlation

 		Uncertainty Propagation

 		Defining Methods for Mathematical Operations

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

