

Welcome to Mattermost BabelFish’s documentation!

	The Docs
	Requirements

	Building the HTML docs

	Introduction
	What is BabelFish?

	Why BabelFish?

	Installation

	Run
	Flask server

	WSGI

	Configuration
	Settings

	Local settings

	Environment variables

	Plugins
	Giphy

	Github

	Developing plugins
	Naming

	Base plugin classes

	A slash command plugin example

Indices and tables

	Index

	Module Index

	Search Page

The Docs

The purpose of the docs is the documentation of the Mattermost BabelFish framework. We’re building the docs based on Sphinx Doc [http://www.sphinx-doc.org/en/stable/], the Python documentation tool.

Requirements

Before you can work with the docs you’ve to make sure you’ve installed all required Python packages / libraries. To install all dependencies you can use the requirements file.

It’s recommended to use a Python virtualenv and place it in .venv or symlink it to .venv:

Install virtualenv.
pip install virtualenv virtualenvwrapper

Create new virtualenv and activate it.
virtualenv .venv
source .venv/bin/activate

Install Python dependencies.
pip install -r requirements.txt

If you don’t want to use a virtualenv you can simply run the following command to install the dependencies in your system site-packages:

pip install -r requirements.txt

Building the HTML docs

The built documentation is not included in the git repository.
However, you can easily build the documentation by running the following command:

make html

Note

In case you get an error that the sphinx-build command was not found, you’ve to make sure you’ve installed the requirements and loaded the virtualenv by executing source .venv/bin/activate.

Introduction

What is BabelFish?

BabelFish is a framework for Mattermost webhooks and slash commands. See it as a central hub for all your integrations. BabelFish is also…

	written in Python [https://python.org]

	using Flask [https://flask.pocoo.org/]

	modular

	plugin-based

	well documented

Why BabelFish?

Let me explain why we created BabelFish.

We switched from Slack to Mattermost a while ago. Slack supports a lot of integrations for popular services. Unfortunately, Mattermost isn’t that mature (yet) and will only support properitary webhooks and slash commands.

This means, if your service doesn’t talk Mattermost JSON-ish, the integration won’t work out of the box. Thus, you need something in between Mattermost and your application. And this is exactly why BabelFish was created.

BabelFish is a central hub which translates between the Mattermost JSON API and 3rd party services like Github and Giphy. Of course there are other alternatives out there, but most of them aim at exactly one function and you’ll end up with running multiple application servers, each configured differently.

Another reason why we’ve created BabelFish is the open-source community. We love open-source and we want to give something back. We really hope that you like the concept and we’d love to see people developing more plugins.

Installation

BabelFish runs on Python 3 and can be installed on Linux servers.
It might work on Windows too, but we’ve never tested it - Windows is evil!

To install BabelFish, you’ve to:

Clone the repository.
git clone git@github.com:confirm/Mattermost-BabelFish.git
cd Mattermost-BabelFish/babelfish/

Create Python virtualenv.
virtualenv -p python3 .venv
source .venv/bin/activate

Install requirements.
pip install -r requirements.txt

Run

Flask server

For testing or debugging you can run the Flask app directly:

FLASK_APP=babelfish.py flask run

Hint

Please note that you must be in the babelfish/ directory and that you might need to activate your virtualenv first.

WSGI

To run BabelFish in production, it’s recommended that you use a proper WSGI application server.
We’re using uWSGI [https://github.com/unbit/uwsgi] for our installation.

Here are to most important bits of our config:

[uwsgi]
socket = <path to socket>
plugins = python3
chdir = <path to babelfish directory>
virtualenv = <path to virtualenv directory>
module = babelfish:app
more config…

Configuration

Settings

All the configuration settings can be found in the babelfish/settings.py file.

Tip

Please read the comments in settings.py for more informations about the configuration parameters.

Caution

Do not change or overwrite settings.py. Instead of it, use one of the methods described below.

Local settings

If you want to customize your settings in a file, we recommend you create a new settings_local.py file next to the settings.py file. This will automatically be loaded and it is ignored by git. You can overwrite all the settings variable within this file.

Environment variables

As you might see in babelfish/settings.py, most of the parameters can also be configured via environment variables.

Plugins

Giphy

Usage

The giphy plugin can be used as slash command, for example by typing /giphy <text>.

The plugin will lookup a matching gif image via the Giphy API [https://giphy.com/] and display it to all users in the channel.

Configuration

The giphy plugin requires minimal configuration:

	Create a new slash command in Mattermost to the URL endpoint /giphy

	Configure the token for the giphy plugin in BabelFish (optional but recommended)

	Configure a Giphy API key and/or the image rating (optional)

Github

Usage

The github plugin implements a webhook to display Github notifications in a Mattermost channel.

The plugin makes use of Mattermost’s attachments and Markdown features (e.g. commits will be displayed in a Markdown table).

Configuration

Configuration of the github plugin is required:

	Create a new incoming webhook in Mattermost

	Configure the webook URL for the github plugin in BabelFish

	Create a new webhook in Github and point it to the URL endpoint /github

	Configure a github secret in BabelFish and in the GitHub webhook (optional but recommended)

Developing plugins

Naming

Plugins should be named properly and obviousely according to their function.
For example:

	Desired slash command: /giphy _(can still be customised in your Mattermost integration)_

	Plugin name: giphy

	URL endpoint: /giphy

	Python plugin module & class: plugins.giphy.GiphyPlugin

	Settings: GIPHY_*

As you can see, the name of the plugin matches the URL endpoint and the Python module. The class itself is properly written in UpperCamelCase with the suffix …Plugin.

Base plugin classes

Ensure your plugin class is inherting from one of the following classes:

	plugins.base.BaseSlashCommandPlugin for slash command plugins

	plugins.base.BaseWebhookPlugin for webhook plugins

These classes implement the required parsing of the requests & responses, as well as the checks of the mattermost tokens.

A slash command plugin example

Creating new plugins is easy and straight-forward as you can see in the following example.

Say hello

Let’s say for some reason you want to create a plugin which simply writes Hello <name> to the channel. In the case, create a new file stored under plugins/hello.py with the following content:

from base import BaseSlashCommandPlugin

class HelloPlugin(BaseSlashCommandPlugin):

 def request(self, username, text):
 return self.response('Hello ' + text)

Now add the plugin to the PLUGINS list in the settings.py file and you’re ready to go!

Custom response username

If you want to send the message as a different user, set the username argument:

return self.response('Hello ' + text, username="Awesome Plugin")

Add plugin settings

Now let’s say you want be able to configure the Hello string outside of your plugin.
Let’s add a new parameter to the settings.py file.

Your plugin settings variables need to be…

	all uppercase

	prefixed with your plugin name and an underscore (_)

	not named <PLUGIN>_TOKEN or <PLUGIN>_WEBHOOK

So let’s add the following variable to the settings.py file:

HELLO_WORD = "Hello"

Now let’s update our class accordingly and access that string:

return self.response('{} {}'.format(self.word, text)

As you can see, the variable defined in the settings is now available as instance property. Nice, isn’t it?

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Mattermost BabelFish’s documentation!

 		
 The Docs

 		
 Requirements

 		
 Building the HTML docs

 		
 Introduction

 		
 What is BabelFish?

 		
 Why BabelFish?

 		
 Installation

 		
 Run

 		
 Flask server

 		
 WSGI

 		
 Configuration

 		
 Settings

 		
 Local settings

 		
 Environment variables

 		
 Plugins

 		
 Giphy

 		
 Usage

 		
 Configuration

 		
 Github

 		
 Usage

 		
 Configuration

 		
 Developing plugins

 		
 Naming

 		
 Base plugin classes

 		
 A slash command plugin example

 		
 Say hello

 		
 Custom response username

 		
 Add plugin settings

_static/up-pressed.png

_static/up.png

