
Pattern Matcher Documentation
Release 0.4.7.dev0+gff8b28a.d20181130

Manuel Krebber

Nov 30, 2018

Contents

1 Installation 3

2 Overview 5
2.1 Expressions . 5
2.2 Pattern Matching . 6
2.3 Sequence Wildcards . 6
2.4 Associativity and Commutativity . 6
2.5 Many-to-One Matching . 7

3 Roadmap 9

4 Contributing 11

5 Publications 13

6 Table of Contents 15
6.1 Linear Algebra Example . 15
6.2 matchpy package . 19
6.3 Glossary . 50

7 Indices and Tables 51

Python Module Index 53

i

ii

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

MatchPy is a library for pattern matching on symbolic expressions in Python.

Work in progress

Contents 1

https://pypi.org/project/matchpy/
https://anaconda.org/conda-forge/matchpy
https://coveralls.io/github/HPAC/matchpy?branch=master
https://travis-ci.org/HPAC/matchpy
https://matchpy.readthedocs.io/en/latest/?badge=latest
http://joss.theoj.org/papers/e456bc05880b533652980aee6550a3cb
https://doi.org/10.5281/zenodo.1294930

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

2 Contents

CHAPTER 1

Installation

MatchPy is available via PyPI, and for Conda via conda-forge. It can be installed with pip install matchpy or
conda install -c conda-forge matchpy.

3

https://pypi.python.org/pypi/matchpy
https://anaconda.org/conda-forge/matchpy

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

4 Chapter 1. Installation

CHAPTER 2

Overview

This package implements pattern matching in Python. Pattern matching is a powerful tool for symbolic computations,
operating on symbolic expressions. Given a pattern and an expression (which is usually called subject), the goal of
pattern matching is to find a substitution for all the variables in the pattern such that the pattern becomes the subject.
As an example, consider the pattern 𝑓(𝑥), where 𝑓 is a function and 𝑥 is a variable, and the subject 𝑓(𝑎), where 𝑎
is a constant symbol. Then the substitution that replaces 𝑥 with 𝑎 is a match. MatchPy supports associative and/or
commutative function symbols, as well as sequence variables, similar to pattern matching in Mathematica.

A detailed example of how to use MatchPy can be found here.

MatchPy supports both one-to-one and many-to-one pattern matching. The latter makes use of similarities between
patterns to efficiently find matches for multiple patterns at the same time.

A list of publications about MatchPy can be found below.

2.1 Expressions

Expressions are tree-like data structures, consisting of operations (functions, internal nodes) and symbols (constants,
leaves):

>>> from matchpy import Operation, Symbol, Arity
>>> f = Operation.new('f', Arity.binary)
>>> a = Symbol('a')
>>> print(f(a, a))
f(a, a)

Patterns are expressions which may contain wildcards (variables):

>>> from matchpy import Wildcard
>>> x = Wildcard.dot('x')
>>> print(Pattern(f(a, x)))
f(a, x_)

In the previous example, x is the name of the variable. However, it is also possible to use wildcards without names:

5

https://en.wikipedia.org/wiki/Pattern_matching
https://reference.wolfram.com/language/guide/Patterns.html
https://matchpy.readthedocs.io/en/latest/example.html

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> w = Wildcard.dot()
>>> print(Pattern(f(w, w)))
f(_, _)

It is also possible to assign variable names to entire subexpressions:

>>> print(Pattern(f(w, a, variable_name='y')))
y: f(_, a)

2.2 Pattern Matching

Given a pattern and an expression (which is usually called subject), the idea of pattern matching is to find a substitution
that maps wildcards to expressions such that the pattern becomes the subject. In MatchPy, a substitution is a dict that
maps variable names to expressions.

>>> from matchpy import match
>>> y = Wildcard.dot('y')
>>> b = Symbol('b')
>>> subject = f(a, b)
>>> pattern = Pattern(f(x, y))
>>> substitution = next(match(subject, pattern))
>>> print(substitution)
{x a, y b}

Applying the substitution to the pattern results in the original expression.

>>> from matchpy import substitute
>>> print(substitute(pattern, substitution))
f(a, b)

2.3 Sequence Wildcards

Sequence wildcards are wildcards that can match a sequence of expressions instead of just a single expression:

>>> z = Wildcard.plus('z')
>>> pattern = Pattern(f(z))
>>> subject = f(a, b)
>>> substitution = next(match(subject, pattern))
>>> print(substitution)
{z (a, b)}

2.4 Associativity and Commutativity

MatchPy natively supports associative and/or commutative operations. Nested associative operators are automatically
flattened, the operands in commutative operations are sorted:

>>> g = Operation.new('g', Arity.polyadic, associative=True, commutative=True)
>>> print(g(a, g(b, a)))
g(a, a, b)

6 Chapter 2. Overview

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

Associativity and commutativity is also considered for pattern matching:

>>> pattern = Pattern(g(b, x))
>>> subject = g(a, a, b)
>>> print(next(match(subject, pattern)))
{x g(a, a)}
>>> h = Operation.new('h', Arity.polyadic)
>>> pattern = Pattern(h(b, x))
>>> subject = h(a, a, b)
>>> list(match(subject, pattern))
[]

2.5 Many-to-One Matching

When a fixed set of patterns is matched repeatedly against different subjects, matching can be sped up significantly by
using many-to-one matching. The idea of many-to-one matching is to construct a so called discrimination net, a data
structure similar to a decision tree or a finite automaton that exploits similarities between patterns. In MatchPy, there
are two such data structures, implemented as classes: DiscriminationNet and ManyToOneMatcher. The Discrimina-
tionNet class only supports syntactic pattern matching, that is, operations are neither associative nor commutative.
Sequence variables are not supported either. The ManyToOneMatcher class supports associative and/or commutative
matching with sequence variables. For syntactic pattern matching, the DiscriminationNet should be used, as it is
usually faster.

>>> pattern1 = Pattern(f(a, x))
>>> pattern2 = Pattern(f(y, b))
>>> matcher = ManyToOneMatcher(pattern1, pattern2)
>>> subject = f(a, b)
>>> matches = matcher.match(subject)
>>> for matched_pattern, substitution in sorted(map(lambda m: (str(m[0]), str(m[1])),
→˓matches)):
... print('{} matched with {}'.format(matched_pattern, substitution))
f(a, x_) matched with {x b}
f(y_, b) matched with {y a}

2.5. Many-to-One Matching 7

https://matchpy.readthedocs.io/en/latest/api/matchpy.matching.syntactic.html
https://matchpy.readthedocs.io/en/latest/api/matchpy.matching.many_to_one.html

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

8 Chapter 2. Overview

CHAPTER 3

Roadmap

Besides the existing features, we plan on adding the following to MatchPy:

• Support for Mathematica’s Alternatives: For example f(a | b) would match either f(a) or f(b).

• Support for Mathematica’s Repeated: For example f(a..) would match f(a), f(a, a), f(a, a, a),
etc.

• Support pattern sequences (PatternSequence in Mathematica). These are mainly useful in combination
with Alternatives or Repeated, e.g. f(a | (b, c)) would match either f(a) or f(b, c). f((a
a)..) would match any f with an even number of a arguments.

• All these additional pattern features need to be supported in the ManyToOneMatcher as well.

• Better integration with existing types such as dict.

• Code generation for both one-to-one and many-to-one matching. There is already an experimental implementa-
tion, but it still has some dependencies on MatchPy which can probably be removed.

• Improving the documentation with more examples.

• Better test coverage with more randomized tests.

• Implementation of the matching algorithms in a lower-level language, for example C, both for performance and
to make MatchPy’s functionality available in other languages.

9

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

10 Chapter 3. Roadmap

CHAPTER 4

Contributing

If you have some issue or want to contribute, please feel free to open an issue or create a pull request. Help is always
appreciated!

The Makefile has several tasks to help development:

• To install all needed packages, you can use make init .

• To run the tests you can use make test. The tests use pytest.

• To generate the documentation you can use make docs .

• To run the style checker (pylint) you can use make check .

If you have any questions or need help with setting things up, please open an issue and we will try the best to assist
you.

11

https://docs.pytest.org/
https://www.pylint.org/

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

12 Chapter 4. Contributing

CHAPTER 5

Publications

MatchPy: Pattern Matching in Python Manuel Krebber and Henrik Barthels Journal of Open Source Software, Volume
3(26), pp. 2, June 2018.

Efficient Pattern Matching in Python Manuel Krebber, Henrik Barthels and Paolo Bientinesi Proceedings of the 7th
Workshop on Python for High-Performance and Scientific Computing, November 2017.

MatchPy: A Pattern Matching Library Manuel Krebber, Henrik Barthels and Paolo Bientinesi Proceedings of the 15th
Python in Science Conference, July 2017.

Non-linear Associative-Commutative Many-to-One Pattern Matching with Sequence Variables Manuel Krebber Mas-
ter Thesis, RWTH Aachen University, May 2017

If you want to cite MatchPy, please reference the JOSS paper:

@article{krebber2018,
author = {Manuel Krebber and Henrik Barthels},
title = {{M}atch{P}y: {P}attern {M}atching in {P}ython},
journal = {Journal of Open Source Software},
year = 2018,
pages = 2,
month = jun,
volume = {3},
number = {26},
doi = "10.21105/joss.00670",
web = "http://joss.theoj.org/papers/10.21105/joss.00670",

}

13

http://joss.theoj.org/papers/10.21105/joss.00670
https://dl.acm.org/citation.cfm?id=3149871
http://conference.scipy.org/proceedings/scipy2017/manuel_krebber.html
https://arxiv.org/abs/1705.00907

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

14 Chapter 5. Publications

CHAPTER 6

Table of Contents

6.1 Linear Algebra Example

As an example, we will write the classes necessary to construct linear algebra equations. These equations consist of
scalars, vectors, and matrices, as well as multiplication, addition, transposition, and inversion.

Lets start by importing everything we need:

>>> from matchpy import *

6.1.1 Symbols

First off, we create simple classes for our scalars and vectors:

>>> class Scalar(Symbol):
... pass
>>> class Vector(Symbol):
... pass

Now we can create vectors and scalars like this:

>>> a = Scalar('a')
>>> v = Vector('v')

For matrices, we want to be able to specify additional properties that a matrix has, for example it might be a diagonal
or triangular matrix. We will just use a set of strings for the properties:

>>> class Matrix(Symbol):
... def __init__(self, name, properties=[]):
... super().__init__(name)
... self.properties = frozenset(properties)

Now we can create matrices like this:

15

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> M1 = Matrix('M1', ['diagonal', 'square'])
>>> M2 = Matrix('M2', ['symmetric', 'square'])
>>> M3 = Matrix('M3', ['triangular'])

6.1.2 Operations

We can quickly create a new operation using the Operation.new factory method:

>>> Times = Operation.new('*', Arity.variadic, 'Times', associative=True, one_
→˓identity=True, infix=True)

We need to specify a name ('*') and arity for the operation. In case that the name is not a valid python identifier,
we also need to specify a class name ('Times'). The matrix multiplication is associative, but not commutative. In
addition, we set one_identity to True, which means that a multiplication with a single operand can be replaced by
that operand:

>>> Times(a)
Scalar('a')

The infix property is used when printing terms so that they look prettier:

>>> print(Times(a, v))
(a * v)

An alternative way of adding a new operation, is creating a subclass of Operation manually. This is especially
useful, if you want to add custom methods or properties to your operations. For example, we can customize the string
formatting of the transposition:

>>> class Transpose(Operation):
... name = '^T'
... arity = Arity.unary
... def __str__(self):
... return '({})^T'.format(self.operands[0])

Lets define the remaining operations:

>>> Plus = Operation.new('+', Arity.variadic, 'Plus', one_identity=True, infix=True,
→˓commutative=True, associative=True)
>>> Inverse = Operation.new('I', Arity.unary, 'Inverse')

Finally, we can compose more complex terms:

>>> print(Plus(Times(v, Transpose(v)), Times(a, Inverse(M1))))
((a * I(M1)) + (v * (v)^T))

Note that the summands are automatically sorted, because Plus is commutative.

6.1.3 Wildcards and Variables

In patterns, we can use wildcards as a placehold that match anything:

>>> _ = Wildcard.dot()
>>> is_match(a, Pattern(_))
True

16 Chapter 6. Table of Contents

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

However, for our linear algebra patterns, we want to distinguish between different kinds of symbols. Hence, we can
make use of symbol wildcards, e.g. to create a wildcard that only matches vectors:

>>> _v = Wildcard.symbol(Vector)
>>> is_match(a, Pattern(_v))
False
>>> is_match(v, Pattern(_v))
True

We can also assign a name to wildcards and in that case, we call them variables. These names are used to populate the
match substitution in case there is a match:

>>> x_ = Wildcard.dot('x')
>>> next(match(Times(a, v), Pattern(Times(x_, _v))))
{'x': Scalar('a')}

6.1.4 Constraints

Patterns can be limited in what is matched by adding constraints. A constraint is essentially a callback, that gets the
match substitution and can return either True or False. You can either use the CustomConstraint class with
any (lambda) function, or create your own subclass of Constraint.

For example, if we want to only match diagonal matrices with a certain variable, we can create a constraint for that:

>>> C_ = Wildcard.symbol('M3', Matrix)
>>> C_is_diagonal_matrix = CustomConstraint(lambda M3: 'diagonal' in M3.properties)
>>> pattern = Pattern(C_, C_is_diagonal_matrix)

Then the variable M3 will only match diagonal matrices:

>>> is_match(M1, pattern)
True
>>> is_match(M2, pattern)
False

6.1.5 Example: Simplifying multiplication with inverse matrix

Now, we can build patterns to find whatever subexpressions we are interested in. For example, we could remove all
occurences of a matrix being multiplied with its inverse. For that we need sequence wildcards. Instead of matching a
single term, they can match a sequence of terms. We can create sequence variables like this:

>>> ctx1 = Wildcard.plus('ctx1')
>>> ctx2 = Wildcard.star('ctx2')

ctx1 is a plus variables and matches a sequence one or more terms. ctx2 is a star variables and can match any
sequence of terms, including the empty one. With these sequence variables, we can create the rules:

>>> x = Wildcard.dot('x')
>>> simplify_matrix_inverse_rules = [
... ReplacementRule(
... Pattern(Times(ctx1, x, Inverse(x), ctx2)),
... lambda ctx1, ctx2, x: Times(*ctx1, *ctx2)
...),
... ReplacementRule(

(continues on next page)

6.1. Linear Algebra Example 17

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

(continued from previous page)

... Pattern(Times(ctx2, x, Inverse(x), ctx1)),

... lambda ctx1, ctx2, x: Times(*ctx2, *ctx1)

...)

...]

We need two variations of the rule to make sure that we do not accidentially create an empty product. In the first rule,
at least one operand must preceed the inverse pair. In the second one, at least one operand must come after it.

For the actual replacement, we can use the replace_all function:

>>> expr = Times(M1, Inverse(M1), M2)
>>> replace_all(expr, simplify_matrix_inverse_rules)
Matrix('M2')

For the case that there are no other factors in the product, we can add another rule that replaces it with the identity
matrix:

>>> Identity = Matrix('I')
>>> simplify_matrix_inverse_rules.append(
... ReplacementRule(
... Pattern(Times(x, Inverse(x))),
... lambda x: Identity
...)
...)

Lets see this new rule in action:

>>> expr2 = Times(M1, Inverse(M1))
>>> replace_all(expr2, simplify_matrix_inverse_rules)
Matrix('I')

Because Times is associative, these rules even work for more complex expressions:

>>> expr3 = Times(M1, M1, M2, Inverse(Times(M1, M2)), M2)
>>> replace_all(expr3, simplify_matrix_inverse_rules)
Times(Matrix('M1'), Matrix('M2'))

Note that we can normalize a matrix product inside an inversion by moving it outside, i.e. using the equality (𝐴𝐵)−1 =
𝐵−1𝐴−1:

>>> y = Wildcard.dot('y')
>>> simplify_matrix_inverse_rules.append(
... ReplacementRule(
... Pattern(Inverse(Times(x, y))),
... lambda x, y: Times(Inverse(y), Inverse(x))
...)
...)

This allows us to simplify an expression like this:

>>> expr4 = Times(M1, M2, Inverse(Times(M3, M1, M2)))
>>> replace_all(expr4, simplify_matrix_inverse_rules)
Inverse(Matrix('M3'))

Or this:

18 Chapter 6. Table of Contents

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> expr5 = Times(M1, M2, Inverse(Times(M3, M2)))
>>> replace_all(expr5, simplify_matrix_inverse_rules)
Times(Matrix('M1'), Inverse(Matrix('M3')))

6.1.6 Example: Finding matches for a BLAS kernel

Lets assume we want to find all subexpressions of some expression which we can compute efficiently with the ?TRMM
BLAS routine. These all have the form 𝛼𝑜𝑝(𝐴)𝐵 or 𝛼𝐵𝑜𝑝(𝐴) where 𝑜𝑝(𝐴) is either 𝐴 or 𝐴𝑇 and 𝐴 is a triangular
matrix. Here, we will ignore 𝛼 and just assume it as 1.

First, we define the variables and constraints we need:

>>> A_ = Wildcard.symbol('A', Matrix)
>>> B_ = Wildcard.symbol('B', Matrix)
>>> before_ = Wildcard.star('before')
>>> after_ = Wildcard.star('after')
>>> A_is_triangular = CustomConstraint(lambda A: 'triangular' in A.properties)

Then we can construct the patterns, again using context variables to capture the remaining operands:

>>> trmm_patterns = [
... Pattern(Times(before_, A_, B_, after_), A_is_triangular),
... Pattern(Times(before_, Transpose(A_), B_, after_), A_is_triangular),
... Pattern(Times(before_, B_, A_, after_), A_is_triangular),
... Pattern(Times(before_, B_, Transpose(A_), after_), A_is_triangular),
...]

Then, we can find all matching subexpressions using one_to_one.match:

>>> expr = Times(Transpose(M3), M1, M3, M2)
>>> for i, pattern in enumerate(trmm_patterns):
... for substitution in match(expr, pattern):
... print('Pattern {} matched with {} as A and {} as B'.format(i,
→˓substitution['A'], substitution['B']))
Pattern 0 matched with M3 as A and M2 as B
Pattern 1 matched with M3 as A and M1 as B
Pattern 2 matched with M3 as A and M1 as B

6.2 matchpy package

6.2.1 Subpackages

matchpy.expressions package

Submodules

matchpy.expressions.constraints module

Contains several pattern constraint classes.

A pattern constraint is used to further filter which subjects a pattern matches.

The most common use would be the CustomConstraint, which wraps a lambda or function to act as a constraint:

6.2. matchpy package 19

https://software.intel.com/en-us/node/468494
http://www.netlib.org/blas/

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> a_symbol_constraint = CustomConstraint(lambda x: x.name.startswith('a'))
>>> pattern = Pattern(x_, a_symbol_constraint)
>>> is_match(Symbol('a1'), pattern)
True
>>> is_match(Symbol('b1'), pattern)
False

There is also the EqualVariablesConstraint which will try to unify the substitutions of the variables and only
match if it succeeds:

>>> equal_constraint = EqualVariablesConstraint('x', 'y')
>>> pattern = Pattern(f(x_, y_), equal_constraint)
>>> is_match(f(a, a), pattern)
True
>>> is_match(f(a, b), pattern)
False

You can also create a subclass of the Constraint class to create your own custom constraint type.

class Constraint
Bases: object

Base for pattern constraints.

A constraint is essentially a callback, that receives the match Substitution and returns a bool indicating
whether the match is valid.

You have to override all the abstract methods if you wish to create your own subclass.

__call__(match: matchpy.expressions.substitution.Substitution)→ bool
Return True, iff the constraint is fulfilled by the substitution.

Override this in your subclass to define the actual constraint behavior.

Parameters match – The (current) match substitution. Note that the matching is done from left
to right, so not all variables may have a value yet. You need to override variables so that
the constraint gets called once all the variables it depends on have a value assigned to them.

Returns True, iff the constraint is fulfilled by the substitution.

__eq__(other)
Constraints need to be equatable.

__hash__()
Constraints need to be hashable.

variables
The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all the dependency variables
have been assigned a value). If the set is empty, the constraint will only be evaluated once the whole match
is complete.

with_renamed_vars(renaming: Dict[str, str])→ matchpy.expressions.constraints.Constraint
Return a copy of the constraint with renamed variables. This is called when the variables in the expression
are renamed and hence the ones in the constraint have to be renamed as well. A later invocation of
__call__() will have the new variable names. You will have to implement this if your constraint needs
to use the variables of the match substitution. Note that this can be called multiple times and you might
have to account for that. Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

Returns A copy of the constraint with renamed variables.

20 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#bool

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

class EqualVariablesConstraint(*variables)
Bases: matchpy.expressions.constraints.Constraint

A constraint that ensure multiple variables are equal.

The constraint tries to unify the substitutions for the variables and is fulfilled iff that succeeds.

__init__(*variables)→ None

Parameters *variables – The names of the variables to check for equality.

variables
The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all the dependency variables
have been assigned a value). If the set is empty, the constraint will only be evaluated once the whole match
is complete.

with_renamed_vars(renaming)
Return a copy of the constraint with renamed variables. This is called when the variables in the expression
are renamed and hence the ones in the constraint have to be renamed as well. A later invocation of
__call__() will have the new variable names. You will have to implement this if your constraint needs
to use the variables of the match substitution. Note that this can be called multiple times and you might
have to account for that. Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

Returns A copy of the constraint with renamed variables.

class CustomConstraint(constraint: Callable[..., bool])
Bases: matchpy.expressions.constraints.Constraint

Wrapper for lambdas of functions as constraints.

The parameter names have to be the same as the the variable names in the expression:

>>> constraint = CustomConstraint(lambda x, y: x.name < y.name)
>>> pattern = Pattern(f(x_, y_), constraint)
>>> is_match(f(a, b), pattern)
True
>>> is_match(f(b, a), pattern)
False

The ordering of the parameters is not important. You only need to have the parameters needed for the constraint,
not all variables occurring in the pattern.

Note, that the matching happens from left left to right, so not all variables may have been assigned a value when
constraint is called. For constraints over multiple variables you should attach the constraint to the last variable
occurring in the pattern or a surrounding operation.

__init__(constraint: Callable[..., bool])→ None

Parameters constraint – The constraint callback.

Raises ValueError – If the callback has positional-only or variable parameters (*args and
**kwargs).

variables
The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all the dependency variables
have been assigned a value). If the set is empty, the constraint will only be evaluated once the whole match
is complete.

6.2. matchpy package 21

https://docs.python.org/3.6/library/exceptions.html#ValueError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

with_renamed_vars(renaming)
Return a copy of the constraint with renamed variables. This is called when the variables in the expression
are renamed and hence the ones in the constraint have to be renamed as well. A later invocation of
__call__() will have the new variable names. You will have to implement this if your constraint needs
to use the variables of the match substitution. Note that this can be called multiple times and you might
have to account for that. Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

Returns A copy of the constraint with renamed variables.

matchpy.expressions.expressions module

This module contains the expression classes.

Expressions can be used to model any kind of tree-like data structure. They consist of operations and
symbols. In addition, patterns can be constructed, which may additionally, contain wildcards and variables.

You can define your own symbols and operations like this:

>>> f = Operation.new('f', Arity.variadic)
>>> a = Symbol('a')
>>> b = Symbol('b')

Then you can compose expressions out of these:

>>> print(f(a, b))
f(a, b)

For more information on how to create you own operations and symbols you can look at their documentation.

Normal expressions are immutable and hence hashable:

>>> expr = f(b, x_)
>>> print(expr)
f(b, x_)
>>> hash(expr) == hash(expr)
True

Hence, some of the expression’s properties are cached and nor updated when you modify them:

>>> expr.is_constant
False
>>> expr.operands = [a]
>>> expr.is_constant
False
>>> print(expr)
f(a)
>>> f(a).is_constant
True

Therefore, you should modify an expression but rather create a new one:

>>> expr2 = type(expr)(*[a])
>>> expr2.is_constant
True
>>> print(expr2)
f(a)

22 Chapter 6. Table of Contents

https://docs.python.org/3.6/glossary.html#term-hashable

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

class Expression(variable_name)
Bases: object

Base class for all expressions.

Do not subclass this class directly but rather Symbol or Operation. Creating a direct subclass of Expression
might break several (matching) algorithms.

head
The head of the expression. For an operation, it is the type of the operation (i.e. a subclass of
Operation). For wildcards, it is None. For symbols, it is the symbol itself.

Type Optional[Union[type, Atom]]

__getitem__(position: Union[Tuple[int, ...], slice])→ matchpy.expressions.expressions.Expression
Return the subexpression at the given position(s).

It is also possible to use a slice notation to extract a sequence of subexpressions:

>>> expr = f(a, b, a, c)
>>> expr[(1,):(2,)]
[Symbol('b'), Symbol('a')]

Parameters position – The position as a tuple. See preorder_iter() for its format.
Alternatively, a range of positions can be passed using the slice notation.

Returns The subexpression at the given position(s).

Raises IndexError – If the position is invalid, i.e. it refers to a non-existing subexpression.

__init__(variable_name)
Initialize self. See help(type(self)) for accurate signature.

collect_symbols(symbols: multiset.Multiset)→ None
Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that can
contain symbols. This method can be used when gathering the symbols of multiple expressions, because
only one multiset needs to be created and that is more efficient.

Parameters symbols – Multiset of symbols. All symbols contained in the expression are
recursively added to this multiset.

collect_variables(variables: multiset.Multiset)→ None
Recursively adds all variables occuring in the expression to the given multiset.

This is used internally by variables. Needs to be overwritten by inheriting container expression classes.
This method can be used when gathering the variables of multiple expressions, because only one
multiset needs to be created and that is more efficient.

Parameters variables – Multiset of variables. All variables contained in the expression are
recursively added to this multiset.

is_constant
True, iff the expression does not contain any wildcards.

is_syntactic
True, iff the expression does not contain any associative or commutative operations or sequence wildcards.

preorder_iter(predicate: Optional[Callable[Expression, bool]] = None) → Itera-
tor[Tuple[matchpy.expressions.expressions.Expression, Tuple[int, ...]]]

Iterates over all subexpressions that match the (optional) predicate.

6.2. matchpy package 23

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/exceptions.html#IndexError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

Parameters predicate – A predicate to filter what expressions are yielded. It gets the ex-
pression and if it returns True, the expression is yielded.

Yields Every subexpression along with a position tuple. Each item in the tuple is the position of
an operation operand:

• () is the position of the root element

• (0,) that of its first operand

• (0, 1) the position of the second operand of the root’s first operand.

• etc.

A variable’s expression always has the position 0 relative to the variable, i.e. if the root is a
variable, then its expression has the position (0,).

symbols
A multiset of the symbol names occurring in the expression.

variables
A multiset of the variables occurring in the expression.

with_renamed_vars(renaming)→ matchpy.expressions.expressions.Expression
Return a copy of the expression with renamed variables.

class Arity
Bases: matchpy.expressions.expressions._ArityBase

Arity of an operator as (int, bool) tuple.

The first component is the minimum number of operands. If the second component is True, the operator has
fixed width arity. In that case, the first component describes the fixed number of operands required. If it is
False, the operator has variable width arity.

binary = Arity(min_count=2, fixed_size=True)

nullary = Arity(min_count=0, fixed_size=True)

polyadic = Arity(min_count=2, fixed_size=False)

ternary = Arity(min_count=3, fixed_size=True)

unary = Arity(min_count=1, fixed_size=True)

variadic = Arity(min_count=0, fixed_size=False)

class Atom(variable_name)
Bases: matchpy.expressions.expressions.Expression

Base for all atomic expressions.

class Symbol(name: str, variable_name=None)
Bases: matchpy.expressions.expressions.Atom

An atomic constant expression term.

It is uniquely identified by its name.

name
The symbol’s name.

Type str

__init__(name: str, variable_name=None)→ None

Parameters name – The name of the symbol that uniquely identifies it.

24 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

collect_symbols(symbols)
Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that can
contain symbols. This method can be used when gathering the symbols of multiple expressions, because
only one multiset needs to be created and that is more efficient.

Parameters symbols – Multiset of symbols. All symbols contained in the expression are
recursively added to this multiset.

with_renamed_vars(renaming)→ matchpy.expressions.expressions.Symbol
Return a copy of the expression with renamed variables.

class Wildcard(min_count: int, fixed_size: bool, variable_name=None, optional=None)
Bases: matchpy.expressions.expressions.Atom

A wildcard that matches any expression.

The wildcard will match any number of expressions between min_count and fixed_size. Optionally, the wildcard
can also be constrained to only match expressions satisfying a predicate.

min_count
The minimum number of expressions this wildcard will match.

Type int

fixed_size
If True, the wildcard matches exactly min_count expressions. If False, the wildcard is a sequence
wildcard and can match min_count or more expressions.

Type bool

__init__(min_count: int, fixed_size: bool, variable_name=None, optional=None)→ None

Parameters

• min_count – The minimum number of expressions this wildcard will match. Must be a
non-negative number.

• fixed_size – If True, the wildcard matches exactly min_count expressions. If
False, the wildcard is a sequence wildcard and can match min_count or more expres-
sions.

Raises ValueError – if min_count is negative or when trying to create a fixed zero-length
wildcard.

static dot(name=None)→ matchpy.expressions.expressions.Wildcard
Create a Wildcard that matches a single argument.

Parameters name – An optional name for the wildcard.

Returns A dot wildcard.

head = None

static optional(name, default)→ matchpy.expressions.expressions.Wildcard
Create a Wildcard that matches a single argument with a default value.

If the wildcard does not match, the substitution will contain the default value instead.

Parameters

• name – The name for the wildcard.

• default – The default value of the wildcard.

6.2. matchpy package 25

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/exceptions.html#ValueError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

Returns A n optional wildcard.

static plus(name=None)→ matchpy.expressions.expressions.Wildcard
Creates a Wildcard that matches at least one and up to any number of arguments

Parameters name – Optional variable name for the wildcard.

Returns A plus wildcard.

static star(name=None)→ matchpy.expressions.expressions.Wildcard
Creates a Wildcard that matches any number of arguments.

Parameters name – Optional variable name for the wildcard.

Returns A star wildcard.

static symbol(name: str = None, symbol_type: Type[matchpy.expressions.expressions.Symbol]
= <class ’matchpy.expressions.expressions.Symbol’>) →
matchpy.expressions.expressions.SymbolWildcard

Create a SymbolWildcard that matches a single Symbol argument.

Parameters

• name – Optional variable name for the wildcard.

• symbol_type – An optional subclass of Symbol to further limit which kind of symbols
are matched by the wildcard.

Returns A SymbolWildcard that matches the symbol_type.

with_renamed_vars(renaming)→ matchpy.expressions.expressions.Wildcard
Return a copy of the expression with renamed variables.

class Operation(operands: List[matchpy.expressions.expressions.Expression], variable_name=None)
Bases: matchpy.expressions.expressions.Expression

Base class for all operations.

Do not instantiate this class directly, but create a subclass for every operation in your domain. You can use
new() as a shortcut for doing so.

__getitem__(key: Union[Tuple[int, ...], slice])→ matchpy.expressions.expressions.Expression
Return the subexpression at the given position(s).

It is also possible to use a slice notation to extract a sequence of subexpressions:

>>> expr = f(a, b, a, c)
>>> expr[(1,):(2,)]
[Symbol('b'), Symbol('a')]

Parameters position – The position as a tuple. See preorder_iter() for its format.
Alternatively, a range of positions can be passed using the slice notation.

Returns The subexpression at the given position(s).

Raises IndexError – If the position is invalid, i.e. it refers to a non-existing subexpression.

__init__(operands: List[matchpy.expressions.expressions.Expression], variable_name=None) →
None

Create an operation expression.

Parameters *operands – The operands for the operation expression.

Raises

26 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/exceptions.html#IndexError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• ValueError – if the operand count does not match the operation’s arity.

• ValueError – if the operation contains conflicting variables, i.e. variables with the
same name that match different things. A common example would be mixing sequence
and fixed variables with the same name in one expression.

arity = Arity(min_count=0, fixed_size=False)
The arity of the operator.

Trying to construct an operation expression with a number of operands that does not fit its operation’s arity
will result in an error.

Type Arity

associative = False
True if the operation is associative, i.e. f(a, f(b, c)) = f(f(a, b), c).

This attribute is used to flatten nested associative operations of the same type. Therefore, the arity of
an associative operation has to have an unconstrained maximum number of operand.

Type bool

collect_symbols(symbols)→ None
Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that can
contain symbols. This method can be used when gathering the symbols of multiple expressions, because
only one multiset needs to be created and that is more efficient.

Parameters symbols – Multiset of symbols. All symbols contained in the expression are
recursively added to this multiset.

collect_variables(variables)→ None
Recursively adds all variables occuring in the expression to the given multiset.

This is used internally by variables. Needs to be overwritten by inheriting container expression classes.
This method can be used when gathering the variables of multiple expressions, because only one
multiset needs to be created and that is more efficient.

Parameters variables – Multiset of variables. All variables contained in the expression are
recursively added to this multiset.

commutative = False
True if the operation is commutative, i.e. f(a, b) = f(b, a).

Note that commutative operations will always be converted into canonical form with sorted operands.

Type bool

head
alias of Operation

infix = False
True if the name of the operation should be used as an infix operator by str().

Type bool

name = None
Name or symbol for the operator.

This needs to be overridden in the subclass.

Type str

6.2. matchpy package 27

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

static new(name: str, arity: matchpy.expressions.expressions.Arity, class_name: str = None, *, as-
sociative: bool = False, commutative: bool = False, one_identity: bool = False, infix:
bool = False)→ Type[matchpy.expressions.expressions.Operation]

Utility method to create a new operation type.

Example:

>>> Times = Operation.new('*', Arity.polyadic, 'Times', associative=True,
→˓commutative=True, one_identity=True)
>>> Times
Times['*', Arity(min_count=2, fixed_size=False), associative, commutative,
→˓one_identity]
>>> str(Times(Symbol('a'), Symbol('b')))
'*(a, b)'

Parameters

• name – Name or symbol for the operator. Will be used as name for the new class if
class_name is not specified.

• arity – The arity of the operator as explained in the documentation of Operation.

• class_name – Name for the new operation class to be used instead of name. This
argument is required if name is not a valid python identifier.

Keyword Arguments

• associative – See associative.

• commutative – See commutative.

• one_identity – See one_identity .

• infix – See infix.

Raises ValueError – if the class name of the operation is not a valid class identifier.

one_identity = False
True if the operation with a single argument is equivalent to the identity function.

This property is used to simplify expressions, e.g. for f with f.one_identity = True the expres-
sion f(a) if simplified to a.

Type bool

with_renamed_vars(renaming)→ matchpy.expressions.expressions.Operation
Return a copy of the expression with renamed variables.

class SymbolWildcard(symbol_type: Type[matchpy.expressions.expressions.Symbol] = <class
’matchpy.expressions.expressions.Symbol’>, variable_name=None)

Bases: matchpy.expressions.expressions.Wildcard

A special Wildcard that matches a Symbol.

symbol_type
A subclass of Symbol to constrain what the wildcard matches. If not specified, the wildcard will match
any Symbol.

__init__(symbol_type: Type[matchpy.expressions.expressions.Symbol] = <class
’matchpy.expressions.expressions.Symbol’>, variable_name=None)→ None

Parameters symbol_type – A subclass of Symbol to constrain what the wildcard matches.
If not specified, the wildcard will match any Symbol.

28 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#bool

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

Raises TypeError – if symbol_type is not a subclass of Symbol.

with_renamed_vars(renaming)→ matchpy.expressions.expressions.SymbolWildcard
Return a copy of the expression with renamed variables.

class Pattern(expression, *constraints)
Bases: object

A pattern is a term that can be matched against another subject term.

A pattern can contain variables and can optionally have constraints attached to it. Those constraints a predicates
which limit what the pattern can match.

__init__(expression, *constraints)→ None

Parameters

• expression – The term that forms the pattern.

• *constraints – Optional constraints for the pattern.

global_constraints
The subset of the patterns contrainst which are global.

A global constraint does not define dependency variables and can only be evaluated, once the match has
been completed.

is_syntactic
True, iff the pattern is syntactic.

local_constraints
The subset of the patterns contrainst which are local.

A local constraint has a defined non-empty set of dependency variables. These constraints can be evaluated
once their dependency variables have a substitution.

make_dot_variable(name)
Create a new variable with the given name that matches a single term.

Parameters name – The name of the variable

Returns The new dot variable.

make_plus_variable(name)
Create a new variable with the given name that matches any number of terms.

Only matches sequences with at least one argument.

Parameters name – The name of the variable

Returns The new plus variable.

make_star_variable(name)
Create a new variable with the given name that matches any number of terms.

Can also match an empty argument sequence.

Parameters name – The name of the variable

Returns The new star variable.

make_symbol_variable(name, symbol_type=<class ’matchpy.expressions.expressions.Symbol’>)
Create a new variable with the given name that matches a single symbol.

Optionally, a symbol type can be specified to further limit what the variable can match.

Parameters

6.2. matchpy package 29

https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/functions.html#object

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• name – The name of the variable

• symbol_type – The symbol type must be a subclass of Symbol. Defaults to Symbol
itself.

Returns The new symbol variable.

class AssociativeOperation
Bases: object

class CommutativeOperation
Bases: object

class OneIdentityOperation
Bases: object

matchpy.expressions.functions module

is_constant(expression)
Check if the given expression is constant, i.e. it does not contain Wildcards.

is_syntactic(expression)
Check if the given expression is syntactic, i.e. it does not contain sequence wildcards or associative/commutative
operations.

get_head(expression)
Returns the given expression’s head.

match_head(subject, pattern)
Checks if the head of subject matches the pattern’s head.

preorder_iter(expression)
Iterate over the expression in preorder.

preorder_iter_with_position(expression)
Iterate over the expression in preorder.

Also yields the position of each subexpression.

is_anonymous(expression)
Returns True iff the expression does not contain any variables.

contains_variables_from_set(expression, variables)
Returns True iff the expression contains any of the variables from the given set.

register_operation_factory(operation, factory)

create_operation_expression(old_operation, new_operands, variable_name=True)

rename_variables(expression: matchpy.expressions.expressions.Expression, renaming: Dict[str, str])→
matchpy.expressions.expressions.Expression

Rename the variables in the expression according to the given dictionary.

Parameters

• expression – The expression in which the variables are renamed.

• renaming – The renaming dictionary. Maps old variable names to new ones. Variable
names not occuring in the dictionary are left unchanged.

Returns The expression with renamed variables.

op_iter(operation)

30 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

op_len(operation)

register_operation_iterator(operation, iterator=<built-in function iter>, length=<built-in func-
tion len>)

get_variables(expression, variables=None)
Returns the set of variable names in the given expression.

matchpy.expressions.substitution module

Contains the Substitution class which is a specialized dictionary.

A substitution maps a variable to a replacement value. The variable is represented by its string name. The replacement
can either be a plain expression, a sequence of expressions, or a Multiset of expressions:

>>> subst = Substitution({'x': a, 'y': (a, b), 'z': Multiset([a, b])})
>>> print(subst)
{x a, y (a, b), z {a, b}}

In addition, the Substitution class has some helper methods to unify multiple substitutions and nicer string
formatting.

class Substitution
Bases: dict

Special dict for substitutions with nicer formatting.

The key is a variable’s name and the value the replacement for it.

extract_substitution(subject: matchpy.expressions.expressions.Expression, pattern:
matchpy.expressions.expressions.Expression)→ bool

Extract the variable substitution for the given pattern and subject.

This assumes that subject and pattern already match when being considered as linear. Also, they both must
be syntactic, as sequence variables cannot be handled here. All that this method does is checking whether
all the substitutions for the variables can be unified. So, in case it returns False, the substitution is invalid
for the match.

..warning:

This method mutates the substitution and will even do so in case the
→˓extraction fails.

Create a copy before using this method if you need to preserve the original
→˓substitution.

Example

With an empty initial substitution and a linear pattern, the extraction will always succeed:

>>> subst = Substitution()
>>> subst.extract_substitution(f(a, b), f(x_, y_))
True
>>> print(subst)
{x a, y b}

Clashing values for existing variables will fail:

6.2. matchpy package 31

https://multiset.readthedocs.io/en/latest/index.html#Multiset
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> subst.extract_substitution(b, x_)
False

For non-linear patterns, the extraction can also fail with an empty substitution:

>>> subst = Substitution()
>>> subst.extract_substitution(f(a, b), f(x_, x_))
False
>>> print(subst)
{x a}

Note that the initial substitution got mutated even though the extraction failed!

Parameters

• subject – A syntactic subject that matches the pattern.

• pattern – A syntactic pattern that matches the subject.

Returns True iff the substitution could be extracted successfully.

rename(renaming: Dict[str, str])→ matchpy.expressions.substitution.Substitution
Return a copy of the substitution with renamed variables.

Example

Rename the variable x to y:

>>> subst = Substitution({'x': a})
>>> subst.rename({'x': 'y'})
{'y': Symbol('a')}

Parameters renaming – A dictionary mapping old variable names to new ones.

Returns A copy of the substitution where variable names have been replaced according to the
given renaming dictionary. Names that are not contained in the dictionary are left unchanged.

try_add_variable(variable_name: str, replacement: Union[Tuple[expressions.Expression, ...],
multiset.Multiset, expressions.Expression])→ None

Try to add the variable with its replacement to the substitution.

This considers an existing replacement and will only succeed if the new replacement can be merged with
the old replacement. Merging can occur if either the two replacements are equivalent. Replacements can
also be merged if the old replacement for the variable_name was unordered (i.e. a Multiset) and the
new one is an equivalent ordered version of it:

>>> subst = Substitution({'x': Multiset(['a', 'b'])})
>>> subst.try_add_variable('x', ('a', 'b'))
>>> print(subst)
{x (a, b)}

Parameters

• variable – The name of the variable to add.

• replacement – The replacement for the variable.

Raises ValueError – if the variable cannot be merged because it conflicts with the existing
substitution for the variable_name.

32 Chapter 6. Table of Contents

https://multiset.readthedocs.io/en/latest/index.html#Multiset
https://docs.python.org/3.6/library/exceptions.html#ValueError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

union(*others)→ matchpy.expressions.substitution.Substitution
Try to merge the substitutions.

If a variable occurs in multiple substitutions, try to merge the replacements. See
union_with_variable() to see how replacements are merged.

Does not modify any of the original substitutions.

Example:

>>> subst1 = Substitution({'x': Multiset(['a', 'b']), 'z': a})
>>> subst2 = Substitution({'x': ('a', 'b'), 'y': ('c',)})
>>> print(subst1.union(subst2))
{x (a, b), y (c), z a}

Parameters others – The other substitutions to merge with this one.

Returns The new substitution with the other substitutions merged.

Raises ValueError – if a variable occurs in multiple substitutions but cannot be merged be-
cause the substitutions conflict.

union_with_variable(variable: str, replacement: Union[Tuple[expressions.Expression,
...], multiset.Multiset, expressions.Expression]) →
matchpy.expressions.substitution.Substitution

Try to create a new substitution with the given variable added.

See try_add_variable() for a version of this method that modifies the substitution in place.

Parameters

• variable_name – The name of the variable to add.

• replacement – The substitution for the variable.

Returns The new substitution with the variable_name added or merged.

Raises ValueError – if the variable cannot be merged because it conflicts with the existing
substitution for the variable.

matchpy.matching package

Submodules

matchpy.matching.bipartite module

Contains classes and functions related to bipartite graphs.

The BipartiteGraph class is used to represent a bipartite graph as a dictionary. In particular,
BipartiteGraph.find_matching() can be used to find a maximum matching in such a graph.

The function enum_maximum_matchings_iter can be used to enumerate all maximum matchings of a
BipartiteGraph.

class BipartiteGraph(*args, **kwargs)
Bases: typing.MutableMapping

A bipartite graph representation.

This class is a specialized dictionary, where each edge is represented by a 2-tuple that is used as a key in the
dictionary. The value can either be True or any value that you want to associate with the edge.

6.2. matchpy package 33

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/typing.html#typing.MutableMapping
https://docs.python.org/3.6/library/constants.html#True

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

For example, the edge from 1 to 2 with a label 42 would be set like this:

>>> graph = BipartiteGraph()
>>> graph[1, 2] = 42

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

as_graph()→ graphviz.dot.Graph
Returns a graphviz.Graph representation of this bipartite graph.

clear()→ None. Remove all items from D.

edges()

edges_with_labels()
Returns a view on the edges with labels.

find_matching()→ Dict[TLeft, TRight]
Finds a matching in the bipartite graph.

This is done using the Hopcroft-Karp algorithm with an implementation from the hopcroftkarp pack-
age.

Returns A dictionary where each edge of the matching is represented by a key-value pair with
the key being from the left part of the graph and the value from te right part.

limited_to(left: Set[TLeft], right: Set[TRight])→ matchpy.matching.bipartite.BipartiteGraph[[TLeft,
TRight], TEdgeValue]

Returns the induced subgraph where only the nodes from the given sets are included.

without_edge(edge: Tuple[TLeft, TRight]) → matchpy.matching.bipartite.BipartiteGraph[[TLeft,
TRight], TEdgeValue]

Returns a copy of this bipartite graph with the given edge removed.

without_nodes(edge: Tuple[TLeft, TRight]) → matchpy.matching.bipartite.BipartiteGraph[[TLeft,
TRight], TEdgeValue]

Returns a copy of this bipartite graph with the given edge and its adjacent nodes removed.

enum_maximum_matchings_iter(graph: matchpy.matching.bipartite.BipartiteGraph[[TLeft, TRight],
TEdgeValue])→ Iterator[Dict[TLeft, TRight]]

matchpy.matching.many_to_one module

Contains the ManyToOneMatcher which can be used for fast many-to-one matching.

You can initialize the matcher with a list of the patterns that you wish to match:

>>> pattern1 = Pattern(f(a, x_))
>>> pattern2 = Pattern(f(y_, b))
>>> matcher = ManyToOneMatcher(pattern1, pattern2)

You can also add patterns later:

>>> pattern3 = Pattern(f(a, b))
>>> matcher.add(pattern3)

A pattern can be added with a label which is yielded instead of the pattern during matching:

>>> pattern4 = Pattern(f(x_, y_))
>>> matcher.add(pattern4, "some label")

34 Chapter 6. Table of Contents

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

Then you can match a subject against all the patterns at once:

>>> subject = f(a, b)
>>> matches = matcher.match(subject)
>>> for matched_pattern, substitution in sorted(map(lambda m: (str(m[0]), str(m[1])),
→˓matches)):
... print('{} matched with {}'.format(matched_pattern, substitution))
f(a, b) matched with {}
f(a, x_) matched with {x b}
f(y_, b) matched with {y a}
some label matched with {x a, y b}

Also contains the ManyToOneReplacer which can replace a set ReplacementRule at one using a
ManyToOneMatcher for finding the matches.

class ManyToOneMatcher(*patterns, rename=True)
Bases: object

__init__(*patterns, rename=True)→ None

Parameters *patterns – The patterns which the matcher should match.

classmethod _collect_variable_renaming(expression: matchpy.expressions.expressions.Expression,
position: List[int] = None, variables: Dict[str,
str] = None)→ Dict[str, str]

Return renaming for the variables in the expression.

The variable names are generated according to the position of the variable in the expression. The goal is
to rename variables in structurally identical patterns so that the automaton contains less redundant states.

_internal_add(pattern: matchpy.expressions.expressions.Pattern, label, renaming)→ int
Add a new pattern to the matcher.

Equivalent patterns are not added again. However, patterns that are structurally equivalent, but have dif-
ferent constraints or different variable names are distinguished by the matcher.

Parameters pattern – The pattern to add.

Returns The internal id for the pattern. This is mainly used by the CommutativeMatcher.

add(pattern: matchpy.expressions.expressions.Pattern, label=None)→ None
Add a new pattern to the matcher.

The optional label defaults to the pattern itself and is yielded during matching. The same pattern can be
added with different labels which means that every match for the pattern will result in every associated
label being yielded with that match individually.

Equivalent patterns with the same label are not added again. However, patterns that are structurally equiv-
alent, but have different constraints or different variable names are distinguished by the matcher.

Parameters

• pattern – The pattern to add.

• label – An optional label for the pattern. Defaults to the pattern itself.

as_graph()→ graphviz.dot.Digraph

constraint_vars

constraints

finals

6.2. matchpy package 35

https://docs.python.org/3.6/library/functions.html#object

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

is_match(subject: matchpy.expressions.expressions.Expression)→ bool
Check if the subject matches any of the matcher’s patterns.

Parameters subject – The subject to match.

Returns True, if the subject is matched by any of the matcher’s patterns. False, otherwise.

match(subject: matchpy.expressions.expressions.Expression) → Itera-
tor[Tuple[matchpy.expressions.expressions.Expression, matchpy.expressions.substitution.Substitution]]

Match the subject against all the matcher’s patterns.

Parameters subject – The subject to match.

Yields For every match, a tuple of the matching pattern and the match substitution.

pattern_vars

patterns

rename

root

states

class ManyToOneReplacer(*rules)
Bases: object

Class that contains a set of replacement rules and can apply them efficiently to an expression.

__init__(*rules)
A replacement rule consists of a pattern, that is matched against any subexpression of the expression. If a
match is found, the replacement callback of the rule is called with the variables from the match substitution.
Whatever the callback returns is used as a replacement for the matched subexpression. This can either be
a single expression or a sequence of expressions, which is then integrated into the surrounding operation
in place of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expres-
sions will be matched.

Parameters *rules – The replacement rules.

add(rule: matchpy.functions.ReplacementRule)→ None
Add a new rule to the replacer.

Parameters rule – The rule to add.

replace(expression: matchpy.expressions.expressions.Expression, max_count:
int = inf) → Union[matchpy.expressions.expressions.Expression, Se-
quence[matchpy.expressions.expressions.Expression]]

Replace all occurrences of the patterns according to the replacement rules.

Parameters

• expression – The expression to which the replacement rules are applied.

• max_count – If given, at most max_count applications of the rules are performed. Oth-
erwise, the rules are applied until there is no more match. If the set of replacement rules
is not confluent, the replacement might not terminate without a max_count set.

Returns The resulting expression after the application of the replacement rules. This can also be
a sequence of expressions, if the root expression is replaced with a sequence of expressions
by a rule.

36 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#object

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

replace_post_order(expression: matchpy.expressions.expressions.Expression)
→ Union[matchpy.expressions.expressions.Expression, Se-
quence[matchpy.expressions.expressions.Expression]]

Replace all occurrences of the patterns according to the replacement rules.

Replaces innermost expressions first.

Parameters

• expression – The expression to which the replacement rules are applied.

• max_count – If given, at most max_count applications of the rules are performed. Oth-
erwise, the rules are applied until there is no more match. If the set of replacement rules
is not confluent, the replacement might not terminate without a max_count set.

Returns The resulting expression after the application of the replacement rules. This can also be
a sequence of expressions, if the root expression is replaced with a sequence of expressions
by a rule.

matchpy.matching.one_to_one module

match(subject: matchpy.expressions.expressions.Expression, pattern: matchpy.expressions.expressions.Pattern)
→ Iterator[matchpy.expressions.substitution.Substitution]

Tries to match the given pattern to the given subject.

Yields each match in form of a substitution.

Parameters

• subject – An subject to match.

• pattern – The pattern to match.

Yields All possible match substitutions.

Raises ValueError – If the subject is not constant.

match_anywhere(subject: matchpy.expressions.expressions.Expression, pat-
tern: matchpy.expressions.expressions.Pattern) → Itera-
tor[Tuple[matchpy.expressions.substitution.Substitution, Tuple[int, ...]]]

Tries to match the given pattern to the any subexpression of the given subject.

Yields each match in form of a substitution and a position tuple. The position is a tuple of indices, e.g. the
empty tuple refers to the subject itself, (0,) refers to the first child (operand) of the subject, (0, 0) to the
first child of the first child etc.

Parameters

• subject – An subject to match.

• pattern – The pattern to match.

Yields All possible substitution and position pairs.

Raises ValueError – If the subject is not constant.

matchpy.matching.syntactic module

This module contains various many-to-one matchers for syntactic patterns:

• There DiscriminationNet class that is a many-to-one matcher for syntactic patterns.

6.2. matchpy package 37

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#ValueError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• The SequenceMatcher can be used to match patterns with a common surrounding operation with some fixed
syntactic patterns.

• The FlatTerm representation for an expression flattens the expression’s tree structure and allows faster preoder
traversal.

Furthermore, the module contains some utility functions for working with flatterms.

class FlatTerm(expression: Union[matchpy.expressions.expressions.Expression,
Sequence[Union[matchpy.expressions.expressions.Symbol,
matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation],
Type[matchpy.expressions.expressions.Symbol], str]]])

Bases: typing.Sequence

A flattened representation of an Expression.

This is a subclass of list. This representation is similar to the prefix notation generated by Expression.
preorder_iter(), but contains some additional elements.

Operation expressions are represented by the type() of the operation before the operands as well as
OPERATION_END after the last operand of the operation:

>>> FlatTerm(f(a, b))
[f, a, b,)]

Variables are not included in the flatterm representation, only wildcards remain.

>>> FlatTerm(x_)
[_]

Consecutive wildcards are merged, as the DiscriminationNet cannot handle multiple consecutive se-
quence wildcards:

>>> FlatTerm(f(_, _))
[f, _[2],)]
>>> FlatTerm(f(_, __, __))
[f, _[3+],)]

Furthermore, every SymbolWildcard is replaced by its symbol_type:

>>> class SpecialSymbol(Symbol):
... pass
>>> _s = Wildcard.symbol(SpecialSymbol)
>>> FlatTerm(_s)
[<class '__main__.SpecialSymbol'>]

Symbol wildcards are also not merged like other wildcards, because they can never be sequence wildcards:

>>> FlatTerm(f(_, _s))
[f, _, <class '__main__.SpecialSymbol'>,)]

__init__(expression: Union[matchpy.expressions.expressions.Expression, Se-
quence[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard,
Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol],
str]]])→ None

Initialize self. See help(type(self)) for accurate signature.

38 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/typing.html#typing.Sequence

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

static _combined_wildcards_iter(flatterm: Iterator[Union[matchpy.expressions.expressions.Symbol,
matchpy.expressions.expressions.Wildcard,
Type[matchpy.expressions.expressions.Operation],
Type[matchpy.expressions.expressions.Symbol], str]])→
Iterator[Union[matchpy.expressions.expressions.Symbol,
matchpy.expressions.expressions.Wildcard,
Type[matchpy.expressions.expressions.Operation],
Type[matchpy.expressions.expressions.Symbol], str]]

Combine consecutive wildcards in a flatterm into a single one.

classmethod _flatterm_iter(expression: matchpy.expressions.expressions.Expression)
→ Iterator[Union[matchpy.expressions.expressions.Symbol,
matchpy.expressions.expressions.Wildcard,
Type[matchpy.expressions.expressions.Operation],
Type[matchpy.expressions.expressions.Symbol], str]]

Generator that yields the atoms of the expressions in prefix notation with operation end markers.

classmethod empty()→ matchpy.matching.syntactic.FlatTerm
An empty flatterm.

is_syntactic
True, iff the flatterm is syntactic.

classmethod merged(*flatterms)→ matchpy.matching.syntactic.FlatTerm
Concatenate the given flatterms to a single flatterm.

Parameters *flatterms – The flatterms which are concatenated.

Returns The concatenated flatterms.

is_operation(term: Any)→ bool
Return True iff the given term is a subclass of Operation.

is_symbol_wildcard(term: Any)→ bool
Return True iff the given term is a subclass of Symbol.

class DiscriminationNet(*patterns)
Bases: typing.Generic

An automaton to distinguish which patterns match a given expression.

This is a DFA with an implicit fail state whenever a transition is not actually defined. For every pattern added,
an automaton is created and then the product automaton with the existing one is used as the new automaton.

The matching assumes that patterns are linear, i.e. it will treat all variables as non-existent and only consider the
wildcards.

__init__(*patterns)→ None

Parameters *patterns – Optional pattern to initially add to the discrimination net.

classmethod _generate_net(flatterm: matchpy.matching.syntactic.FlatTerm, final_label: T)→
matchpy.matching.syntactic._State[T]

Generates a DFA matching the given pattern.

add(pattern: Union[matchpy.expressions.expressions.Pattern, matchpy.matching.syntactic.FlatTerm], fi-
nal_label: T = None)→ int
Add a pattern to the discrimination net.

Parameters

• pattern – The pattern which is added to the DiscriminationNet. If an expression is
given, it will be converted to a FlatTerm for internal processing. You can also pass a
FlatTerm directly.

6.2. matchpy package 39

https://docs.python.org/3.6/library/typing.html#typing.Generic

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• final_label – A label that is returned if the pattern matches when using match().
This will default to the pattern itself.

Returns The index of the newly added pattern. This is used internally to later to get the pattern
and its final label once a match is found.

as_graph()→ graphviz.dot.Digraph
Renders the discrimination net as graphviz digraph.

is_match(subject: Union[matchpy.expressions.expressions.Expression,
matchpy.matching.syntactic.FlatTerm])→ bool

Check if the given subject matches any pattern in the net.

Parameters subject – The subject that is matched. Must be constant.

Returns True, if any pattern matches the subject.

match(subject: Union[matchpy.expressions.expressions.Expression, matchpy.matching.syntactic.FlatTerm])
→ Iterator[Tuple[T, matchpy.expressions.substitution.Substitution]]

Match the given subject against all patterns in the net.

Parameters subject – The subject that is matched. Must be constant.

Yields A tuple (final label, substitution), where the first component is the final
label associated with the pattern as given when using add() and the second one is the match
substitution.

class SequenceMatcher(*patterns)
Bases: object

A matcher that matches many syntactic patterns in a surrounding sequence.

It can match patterns that have the form 𝑓(𝑥*, 𝑠1, . . . , 𝑠𝑛, 𝑦
*) where

• 𝑓 is a non-commutative operation,

• 𝑥*, 𝑦* are star sequence wildcards or variables (they can be the same of different), and

• all the 𝑠𝑖 are syntactic patterns.

After adding these patterns with add(), they can be matched simultaneously against a subject with match().
Note that all patterns matched by one sequence matcher must have the same outer operation 𝑓 .

operation
The outer operation that all patterns have in common. Is set automatically when adding the first pattern
and is check for all following patterns.

__init__(*patterns)→ None

Parameters *patterns – Initial patterns to add to the sequence matcher.

add(pattern: matchpy.expressions.expressions.Pattern)→ int
Add a pattern that will be recognized by the matcher.

Parameters pattern – The pattern to add.

Returns An internal index for the pattern.

Raises

• ValueError – If the pattern does not have the correct form.

• TypeError – If the pattern is not a non-commutative operation.

as_graph()→ graphviz.dot.Digraph
Renders the underlying discrimination net as graphviz digraph.

40 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#TypeError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

classmethod can_match(pattern: matchpy.expressions.expressions.Pattern)→ bool
Check if a pattern can be matched with a sequence matcher.

Parameters pattern – The pattern to check.

Returns True, iff the pattern can be matched with a sequence matcher.

match(subject: matchpy.expressions.expressions.Expression) → Itera-
tor[Tuple[matchpy.expressions.expressions.Pattern, matchpy.expressions.substitution.Substitution]]

Match the given subject against all patterns in the sequence matcher.

Parameters subject – The subject that is matched. Must be constant.

Yields A tuple (pattern, substitution) for every matching pattern.

operation

6.2.2 Submodules

matchpy.functions module

This module contains various functions for working with expressions.

• With substitute() you can replace occurrences of variables with an expression or sequence of expressions.

• With replace() you can replace a subexpression at a specific position with a different expression or sequence
of expressions.

• With replace_many() works the same as replace(), but you can replace multiple positions at once.

• With replace_all() you can apply a set of replacement rules repeatedly to an expression.

• With is_match() you can check whether a pattern matches a subject expression.

substitute(expression: Union[matchpy.expressions.expressions.Expression,
matchpy.expressions.expressions.Pattern], substitution: matchpy.expressions.substitution.Substitution)
→ Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]

Replaces variables in the given expression using the given substitution.

>>> print(substitute(f(x_), {'x': a}))
f(a)

If nothing was substituted, the original expression is returned:

>>> expression = f(x_)
>>> result = substitute(expression, {'y': a})
>>> print(result)
f(x_)
>>> expression is result
True

Note that this function returns a list of expressions iff the expression is a variable and its substitution is a list
of expressions. In other cases were a substitution is a list of expressions, the expressions will be integrated as
operands in the surrounding operation:

>>> print(substitute(f(x_, c), {'x': [a, b]}))
f(a, b, c)

If you substitute with a Multiset of values, they will be sorted:

6.2. matchpy package 41

https://multiset.readthedocs.io/en/latest/index.html#Multiset

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> replacement = Multiset([b, a, b])
>>> print(substitute(f(x_, c), {'x': replacement}))
f(a, b, b, c)

Parameters

• expression – An expression in which variables are substituted.

• substitution – A substitution dictionary. The key is the name of the variable, the value
either an expression or a list of expression to use as a replacement for the variable.

Returns The expression resulting from applying the substitution.

replace(expression: matchpy.expressions.expressions.Expression, position: Se-
quence[int], replacement: Union[matchpy.expressions.expressions.Expression,
List[matchpy.expressions.expressions.Expression]])→ Union[matchpy.expressions.expressions.Expression,
List[matchpy.expressions.expressions.Expression]]

Replaces the subexpression of expression at the given position with the given replacement.

The original expression itself is not modified, but a modified copy is returned. If the replacement is a list of
expressions, it will be expanded into the list of operands of the respective operation:

>>> print(replace(f(a), (0,), [b, c]))
f(b, c)

Parameters

• expression – An Expression where a (sub)expression is to be replaced.

• position – A tuple of indices, e.g. the empty tuple refers to the expression itself,
(0,) refers to the first child (operand) of the expression, (0, 0) to the first child of
the first child etc.

• replacement – Either an Expression or a list of Expressions to be inserted into
the expression instead of the original expression at that position.

Returns The resulting expression from the replacement.

Raises IndexError – If the position is invalid or out of range.

replace_all(expression: matchpy.expressions.expressions.Expression, rules: It-
erable[matchpy.functions.ReplacementRule], max_count: int =
inf) → Union[matchpy.expressions.expressions.Expression, Se-
quence[matchpy.expressions.expressions.Expression]]

Replace all occurrences of the patterns according to the replacement rules.

A replacement rule consists of a pattern, that is matched against any subexpression of the expression. If a
match is found, the replacement callback of the rule is called with the variables from the match substitution.
Whatever the callback returns is used as a replacement for the matched subexpression. This can either be a
single expression or a sequence of expressions, which is then integrated into the surrounding operation in place
of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.

Parameters

• expression – The expression to which the replacement rules are applied.

• rules – A collection of replacement rules that are applied to the expression.

42 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/exceptions.html#IndexError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• max_count – If given, at most max_count applications of the rules are performed. Other-
wise, the rules are applied until there is no more match. If the set of replacement rules is not
confluent, the replacement might not terminate without a max_count set.

Returns The resulting expression after the application of the replacement rules. This can also be a
sequence of expressions, if the root expression is replaced with a sequence of expressions by a
rule.

replace_many(expression: matchpy.expressions.expressions.Expression, replacements: Se-
quence[Tuple[Sequence[int], Union[matchpy.expressions.expressions.Expression,
List[matchpy.expressions.expressions.Expression]]]]) →
Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]

Replaces the subexpressions of expression at the given positions with the given replacements.

The original expression itself is not modified, but a modified copy is returned. If the replacement is a sequence
of expressions, it will be expanded into the list of operands of the respective operation.

This function works the same as replace, but allows multiple positions to be replaced at the same time.
However, compared to just replacing each position individually with replace, this does work when positions
are modified due to replacing a position with a sequence:

>>> expr = f(a, b)
>>> expected_result = replace_many(expr, [((0,), [c, c]), ((1,), a)])
>>> print(expected_result)
f(c, c, a)

However, using replace for one position at a time gives the wrong result:

>>> step1 = replace(expr, (0,), [c, c])
>>> print(step1)
f(c, c, b)
>>> step2 = replace(step1, (1,), a)
>>> print(step2)
f(c, a, b)

Parameters

• expression – An Expression where a (sub)expression is to be replaced.

• replacements – A collection of tuples consisting of a position in the expression and a
replacement for that position. With just a single replacement pair, this is equivalent to using
replace:

>>> replace(a, (), b) == replace_many(a, [((), b)])
True

Returns The resulting expression from the replacements.

Raises

• IndexError – If a position is invalid or out of range or if you try to replace a subterm of
a term you are

• already replacing.

is_match(subject: matchpy.expressions.expressions.Expression, pattern:
matchpy.expressions.expressions.Expression)→ bool

Check whether the given subject matches given pattern.

Parameters

6.2. matchpy package 43

https://docs.python.org/3.6/library/exceptions.html#IndexError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• subject – The subject.

• pattern – The pattern.

Returns True iff the subject matches the pattern.

class ReplacementRule(pattern, replacement)
Bases: tuple

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

static __new__(_cls, pattern, replacement)
Create new instance of ReplacementRule(pattern, replacement)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in func-
tion len>)

Make a new ReplacementRule object from a sequence or iterable

_replace(**kwds)
Return a new ReplacementRule object replacing specified fields with new values

pattern
Alias for field number 0

replacement
Alias for field number 1

replace_all_post_order(expression: matchpy.expressions.expressions.Expression,
rules: Iterable[matchpy.functions.ReplacementRule]) →
Union[matchpy.expressions.expressions.Expression, Se-
quence[matchpy.expressions.expressions.Expression]]

Replace all occurrences of the patterns according to the replacement rules.

A replacement rule consists of a pattern, that is matched against any subexpression of the expression. If a
match is found, the replacement callback of the rule is called with the variables from the match substitution.
Whatever the callback returns is used as a replacement for the matched subexpression. This can either be a
single expression or a sequence of expressions, which is then integrated into the surrounding operation in place
of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.

Parameters

• expression – The expression to which the replacement rules are applied.

• rules – A collection of replacement rules that are applied to the expression.

• max_count – If given, at most max_count applications of the rules are performed. Other-
wise, the rules are applied until there is no more match. If the set of replacement rules is not
confluent, the replacement might not terminate without a max_count set.

Returns The resulting expression after the application of the replacement rules. This can also be a
sequence of expressions, if the root expression is replaced with a sequence of expressions by a
rule.

44 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/stdtypes.html#tuple

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

matchpy.utils module

This module contains various utility functions.

fixed_integer_vector_iter(max_vector: Tuple[int, ...], vector_sum: int)→ Iterator[Tuple[int, ...]]
Return an iterator over the integer vectors which

• are componentwise less than or equal to max_vector, and

• are non-negative, and where

• the sum of their components is exactly vector_sum.

The iterator yields the vectors in lexicographical order.

Examples

List all vectors that are between (0, 0) and (2, 2) componentwise, where the sum of components is 2:

>>> vectors = list(fixed_integer_vector_iter([2, 2], 2))
>>> vectors
[(0, 2), (1, 1), (2, 0)]
>>> list(map(sum, vectors))
[2, 2, 2]

Parameters

• max_vector – Maximum vector for the iteration. Every yielded result will be less than or
equal to this componentwise.

• vector_sum – Every iterated vector will have a component sum equal to this value.

Yields All non-negative vectors that have the given sum and are not larger than the given maximum.

Raises ValueError – If vector_sum is negative.

weak_composition_iter(n: int, num_parts: int)→ Iterator[Tuple[int, ...]]
Yield all weak compositions of integer n into num_parts parts.

Each composition is yielded as a tuple. The generated partitions are order-dependant and not unique when
ignoring the order of the components. The partitions are yielded in lexicographical order.

Example

>>> compositions = list(weak_composition_iter(5, 2))
>>> compositions
[(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)]

We can easily verify that all compositions are indeed valid:

>>> list(map(sum, compositions))
[5, 5, 5, 5, 5, 5]

The algorithm was adapted from an answer to this Stackoverflow question.

Parameters

• n – The integer to partition.

6.2. matchpy package 45

https://docs.python.org/3.6/library/exceptions.html#ValueError
http://stackoverflow.com/questions/40538923/40540014#40540014

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

• num_parts – The number of parts for the combination.

Yields All non-negative tuples that have the given sum and size.

Raises ValueError – If n or num_parts are negative.

commutative_sequence_variable_partition_iter(values: Multiset[T], variables:
List[matchpy.utils.VariableWithCount]) →
Iterator[Dict[str, Multiset[T]]]

Yield all possible variable substitutions for given values and variables.

Note: The results are not yielded in any particular order because the algorithm uses dictionaries. Dictionaries
until Python 3.6 do not keep track of the insertion order.

Example

For a subject like fc(a, a, a, b, b, c) and a pattern like f(x__, y___, y___) one can define the
following input parameters for the partitioning:

>>> x = VariableWithCount(name='x', count=1, minimum=1, default=None)
>>> y = VariableWithCount(name='y', count=2, minimum=0, default=None)
>>> values = Multiset('aaabbc')

Then the solutions are found (and sorted to get a unique output):

>>> substitutions = commutative_sequence_variable_partition_iter(values, [x, y])
>>> as_strings = list(str(Substitution(substitution)) for substitution in
→˓substitutions)
>>> for substitution in sorted(as_strings):
... print(substitution)
{x {a, a, a, b, b, c}, y {}}
{x {a, a, a, c}, y {b}}
{x {a, b, b, c}, y {a}}
{x {a, c}, y {a, b}}

Parameters

• values – The multiset of values which are partitioned and distributed among the variables.

• variables – A list of the variables to distribute the values among. Each variable has a
name, a count of how many times it occurs and a minimum number of values it needs.

Yields Each possible substitutions that is a valid partitioning of the values among the variables.

get_short_lambda_source(lambda_func: function)→ Optional[str]
Return the source of a (short) lambda function. If it’s impossible to obtain, return None.

The source is returned without the lambda and signature parts:

>>> get_short_lambda_source(lambda x, y: x < y)
'x < y'

This should work well for most lambda definitions, however for multi-line or highly nested lambdas, the source
extraction might not succeed.

Parameters lambda_func – The lambda function.

Returns The source of the lambda function without its signature.

46 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/exceptions.html#ValueError

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

solve_linear_diop(total: int, *coeffs)→ Iterator[Tuple[int, ...]]
Yield non-negative integer solutions of a linear Diophantine equation of the format 𝑐1𝑥1 + · · ·+ 𝑐𝑛𝑥𝑛 = 𝑡𝑜𝑡𝑎𝑙.

If there are at most two coefficients, base_solution_linear() is used to find the solutions. Otherwise,
the solutions are found recursively, by reducing the number of variables in each recursion:

1. Compute 𝑑 := 𝑔𝑐𝑑(𝑐2, . . . , 𝑐𝑛)

2. Solve 𝑐1𝑥+ 𝑑𝑦 = 𝑡𝑜𝑡𝑎𝑙

3. Recursively solve 𝑐2𝑥2 + · · ·+ 𝑐𝑛𝑥𝑛 = 𝑦 for each solution for y

4. Combine these solutions to form a solution for the whole equation

Parameters

• total – The constant of the equation.

• *coeffs – The coefficients 𝑐𝑖 of the equation.

Yields The non-negative integer solutions of the equation as a tuple (𝑥1, . . . , 𝑥𝑛).

generator_chain(initial_data: T, *factories)→ Iterator[T]
Chain multiple generators together by passing results from one to the next.

This helper function allows to create a chain of generator where each generator is constructed by a factory that
gets the data yielded by the previous generator. So each generator can generate new data dependant on the data
yielded by the previous one. For each data item yielded by a generator, a new generator is constructed by the
next factory.

Example

Lets say for every number from 0 to 4, we want to count up to that number. Then we can do something like this
using list comprehensions:

>>> [i for n in range(1, 5) for i in range(1, n + 1)]
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4]

You can use this function to achieve the same thing:

>>> list(generator_chain(5, lambda n: iter(range(1, n)), lambda i: iter(range(1,
→˓i + 1))))
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4]

The advantage is, that this is independent of the number of dependant generators you have. Also, this function
does not use recursion so it is safe to use even with large generator counts.

Parameters

• initial_data – The initial data that is passed to the first generator factory.

• *factories – The generator factories. Each of them gets passed its predecessors data
and has to return an iterable. The data from this iterable is passed to the next factory.

Yields Every data item yielded by the generators of the final factory.

class cached_property(getter, slot=None)
Bases: property

Property with caching.

6.2. matchpy package 47

https://docs.python.org/3.6/library/functions.html#property

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

An extension of the builtin property, that caches the value after the first access. This is useful in case the
computation of the property value is expensive.

Use it just like a regular property decorator. Cached properties cannot have a setter.

Example

First, create a class with a cached property:

>>> class MyClass:
... @cached_property
... def my_property(self):
... print('my_property called')
... return 42
>>> instance = MyClass()

Then, access the property and get the computed value:

>>> instance.my_property
my_property called
42

Now the result is cached and the original method will not be called again:

>>> instance.my_property
42

__init__(getter, slot=None)
Use it as a decorator:

>>> class MyClass:
... @cached_property
... def my_property(self):
... return 42

The slot argument specifies a class slot to use for caching the property. You should use the
slot_cached_property decorator instead as that is more convenient.

Parameters

• getter – The getter method for the property.

• slot – Optional slot to use for the cached value. Only relevant in classes that use slots.
Use slot_cached_property instead.

Returns The wrapped property with caching.

slot_cached_property(slot)
Property with caching for classes with slots.

This is a wrapper around cached_property to be used with classes that have slots. It provides an extension
of the builtin property, that caches the value in a slot after the first access. You need to specify which slot to
use for the cached value.

Example

First, create a class with a cached property and a slot to hold the cached value:

48 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/functions.html#property
https://docs.python.org/3.6/library/functions.html#property
https://docs.python.org/3.6/library/functions.html#property

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

>>> class MyClass:
... __slots__ = ('_my_cached_property',)
...
... @slot_cached_property('_my_cached_property')
... def my_property(self):
... print('my_property called')
... return 42
...
>>> instance = MyClass()

Then, access the property and get the computed value:

>>> instance.my_property
my_property called
42

Now the result is cached and the original method will not be called again:

>>> instance.my_property
42

Parameters slot – The name of the classes slot to use for the cached value.

Returns The wrapped cached_property .

extended_euclid(a: int, b: int)→ Tuple[int, int, int]
Extended Euclidean algorithm that computes the Bézout coefficients as well as 𝑔𝑐𝑑(𝑎, 𝑏)

Returns x, y, d where x and y are a solution to 𝑎𝑥 + 𝑏𝑦 = 𝑑 and 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). x and y are a minimal pair
of Bézout’s coefficients.

See Extended Euclidean algorithm or Bézout’s identity for more information.

Example

Compute the Bézout coefficients and GCD of 42 and 12:

>>> a, b = 42, 12
>>> x, y, d = extended_euclid(a, b)
>>> x, y, d
(1, -3, 6)

Verify the results:

>>> import math
>>> d == math.gcd(a, b)
True
>>> a * x + b * y == d
True

Parameters

• a – The first integer.

• b – The second integer.

Returns A tuple with the Bézout coefficients and the greatest common divider of the arguments.

6.2. matchpy package 49

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

base_solution_linear(a: int, b: int, c: int)→ Iterator[Tuple[int, int]]
Yield solutions for a basic linear Diophantine equation of the form 𝑎𝑥+ 𝑏𝑦 = 𝑐.

First, the equation is normalized by dividing 𝑎, 𝑏, 𝑐 by their gcd. Then, the extended Euclidean algorithm
(extended_euclid()) is used to find a base solution (𝑥0, 𝑦0).

All non-negative solutions are generated by using that the general solution is (𝑥0 + 𝑏𝑡, 𝑦0 − 𝑎𝑡). Because the
base solution is one of the minimal pairs of Bézout’s coefficients, for all non-negative solutions either 𝑡 ≥ 0 or
𝑡 ≤ 0 must hold. Also, all the non-negative solutions are consecutive with respect to 𝑡.

Hence, by adding or subtracting 𝑎 resp. 𝑏 from the base solution, all non-negative solutions can be efficiently
generated.

Parameters

• a – The first coefficient of the equation.

• b – The second coefficient of the equation.

• c – The constant of the equation.

Yields Each non-negative integer solution of the equation as a tuple (x, y).

Raises ValueError – If any of the coefficients is not a positive integer.

6.3 Glossary

syntactic An Expression is syntactic iff it contains neither associative nor commutative operations and also does
not contain sequence wildcards (i.e. wildcards with fixed_size set to False).

constant An Expression is constant iff it does not contain any Wildcard.

50 Chapter 6. Table of Contents

https://docs.python.org/3.6/library/exceptions.html#ValueError

CHAPTER 7

Indices and Tables

• genindex

• modindex

• search

51

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

52 Chapter 7. Indices and Tables

Python Module Index

m
matchpy.expressions.constraints, 19
matchpy.expressions.expressions, 22
matchpy.expressions.functions, 30
matchpy.expressions.substitution, 31
matchpy.functions, 41
matchpy.matching.bipartite, 33
matchpy.matching.many_to_one, 34
matchpy.matching.one_to_one, 37
matchpy.matching.syntactic, 37
matchpy.utils, 45

53

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

54 Python Module Index

Index

Symbols
__call__() (Constraint method), 20
__eq__() (Constraint method), 20
__getitem__() (Expression method), 23
__getitem__() (Operation method), 26
__getnewargs__() (ReplacementRule method), 44
__hash__() (Constraint method), 20
__init__() (BipartiteGraph method), 34
__init__() (CustomConstraint method), 21
__init__() (DiscriminationNet method), 39
__init__() (EqualVariablesConstraint method), 21
__init__() (Expression method), 23
__init__() (FlatTerm method), 38
__init__() (ManyToOneMatcher method), 35
__init__() (ManyToOneReplacer method), 36
__init__() (Operation method), 26
__init__() (Pattern method), 29
__init__() (SequenceMatcher method), 40
__init__() (Symbol method), 24
__init__() (SymbolWildcard method), 28
__init__() (Wildcard method), 25
__init__() (cached_property method), 48
__new__() (ReplacementRule static method), 44
__repr__() (ReplacementRule method), 44
_asdict() (ReplacementRule method), 44
_collect_variable_renaming()

(matchpy.matching.many_to_one.ManyToOneMatcher
class method), 35

_combined_wildcards_iter() (FlatTerm static method), 38
_flatterm_iter() (matchpy.matching.syntactic.FlatTerm

class method), 39
_generate_net() (matchpy.matching.syntactic.DiscriminationNet

class method), 39
_internal_add() (ManyToOneMatcher method), 35
_make() (matchpy.functions.ReplacementRule class

method), 44
_replace() (ReplacementRule method), 44

A
add() (DiscriminationNet method), 39
add() (ManyToOneMatcher method), 35
add() (ManyToOneReplacer method), 36
add() (SequenceMatcher method), 40
Arity (class in matchpy.expressions.expressions), 24
arity (Operation attribute), 27
as_graph() (BipartiteGraph method), 34
as_graph() (DiscriminationNet method), 40
as_graph() (ManyToOneMatcher method), 35
as_graph() (SequenceMatcher method), 40
associative (Operation attribute), 27
AssociativeOperation (class in

matchpy.expressions.expressions), 30
Atom (class in matchpy.expressions.expressions), 24

B
base_solution_linear() (in module matchpy.utils), 49
binary (Arity attribute), 24
BipartiteGraph (class in matchpy.matching.bipartite), 33

C
cached_property (class in matchpy.utils), 47
can_match() (matchpy.matching.syntactic.SequenceMatcher

class method), 40
clear() (BipartiteGraph method), 34
collect_symbols() (Expression method), 23
collect_symbols() (Operation method), 27
collect_symbols() (Symbol method), 24
collect_variables() (Expression method), 23
collect_variables() (Operation method), 27
commutative (Operation attribute), 27
commutative_sequence_variable_partition_iter() (in

module matchpy.utils), 46
CommutativeOperation (class in

matchpy.expressions.expressions), 30
constant, 50
Constraint (class in matchpy.expressions.constraints), 20
constraint_vars (ManyToOneMatcher attribute), 35

55

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

constraints (ManyToOneMatcher attribute), 35
contains_variables_from_set() (in module

matchpy.expressions.functions), 30
create_operation_expression() (in module

matchpy.expressions.functions), 30
CustomConstraint (class in

matchpy.expressions.constraints), 21

D
DiscriminationNet (class in matchpy.matching.syntactic),

39
dot() (Wildcard static method), 25

E
edges() (BipartiteGraph method), 34
edges_with_labels() (BipartiteGraph method), 34
empty() (matchpy.matching.syntactic.FlatTerm class

method), 39
enum_maximum_matchings_iter() (in module

matchpy.matching.bipartite), 34
EqualVariablesConstraint (class in

matchpy.expressions.constraints), 21
Expression (class in matchpy.expressions.expressions),

22
extended_euclid() (in module matchpy.utils), 49
extract_substitution() (Substitution method), 31

F
finals (ManyToOneMatcher attribute), 35
find_matching() (BipartiteGraph method), 34
fixed_integer_vector_iter() (in module matchpy.utils), 45
fixed_size (Wildcard attribute), 25
FlatTerm (class in matchpy.matching.syntactic), 38

G
generator_chain() (in module matchpy.utils), 47
get_head() (in module matchpy.expressions.functions), 30
get_short_lambda_source() (in module matchpy.utils), 46
get_variables() (in module

matchpy.expressions.functions), 31
global_constraints (Pattern attribute), 29

H
head (Expression attribute), 23
head (Operation attribute), 27
head (Wildcard attribute), 25

I
infix (Operation attribute), 27
is_anonymous() (in module

matchpy.expressions.functions), 30
is_constant (Expression attribute), 23

is_constant() (in module matchpy.expressions.functions),
30

is_match() (DiscriminationNet method), 40
is_match() (in module matchpy.functions), 43
is_match() (ManyToOneMatcher method), 35
is_operation() (in module matchpy.matching.syntactic),

39
is_symbol_wildcard() (in module

matchpy.matching.syntactic), 39
is_syntactic (Expression attribute), 23
is_syntactic (FlatTerm attribute), 39
is_syntactic (Pattern attribute), 29
is_syntactic() (in module matchpy.expressions.functions),

30

L
limited_to() (BipartiteGraph method), 34
local_constraints (Pattern attribute), 29

M
make_dot_variable() (in module

matchpy.expressions.expressions), 29
make_plus_variable() (in module

matchpy.expressions.expressions), 29
make_star_variable() (in module

matchpy.expressions.expressions), 29
make_symbol_variable() (in module

matchpy.expressions.expressions), 29
ManyToOneMatcher (class in

matchpy.matching.many_to_one), 35
ManyToOneReplacer (class in

matchpy.matching.many_to_one), 36
match() (DiscriminationNet method), 40
match() (in module matchpy.matching.one_to_one), 37
match() (ManyToOneMatcher method), 36
match() (SequenceMatcher method), 41
match_anywhere() (in module

matchpy.matching.one_to_one), 37
match_head() (in module

matchpy.expressions.functions), 30
matchpy.expressions.constraints (module), 19
matchpy.expressions.expressions (module), 22
matchpy.expressions.functions (module), 30
matchpy.expressions.substitution (module), 31
matchpy.functions (module), 41
matchpy.matching.bipartite (module), 33
matchpy.matching.many_to_one (module), 34
matchpy.matching.one_to_one (module), 37
matchpy.matching.syntactic (module), 37
matchpy.utils (module), 45
merged() (matchpy.matching.syntactic.FlatTerm class

method), 39
min_count (Wildcard attribute), 25

56 Index

Pattern Matcher Documentation, Release 0.4.7.dev0+gff8b28a.d20181130

N
name (Operation attribute), 27
name (Symbol attribute), 24
new() (Operation static method), 27
nullary (Arity attribute), 24

O
one_identity (Operation attribute), 28
OneIdentityOperation (class in

matchpy.expressions.expressions), 30
op_iter() (in module matchpy.expressions.functions), 30
op_len() (in module matchpy.expressions.functions), 30
Operation (class in matchpy.expressions.expressions), 26
operation (SequenceMatcher attribute), 40, 41
optional() (Wildcard static method), 25

P
Pattern (class in matchpy.expressions.expressions), 29
pattern (ReplacementRule attribute), 44
pattern_vars (ManyToOneMatcher attribute), 36
patterns (ManyToOneMatcher attribute), 36
plus() (Wildcard static method), 26
polyadic (Arity attribute), 24
preorder_iter() (Expression method), 23
preorder_iter() (in module

matchpy.expressions.functions), 30
preorder_iter_with_position() (in module

matchpy.expressions.functions), 30

R
register_operation_factory() (in module

matchpy.expressions.functions), 30
register_operation_iterator() (in module

matchpy.expressions.functions), 31
rename (ManyToOneMatcher attribute), 36
rename() (Substitution method), 32
rename_variables() (in module

matchpy.expressions.functions), 30
replace() (in module matchpy.functions), 42
replace() (ManyToOneReplacer method), 36
replace_all() (in module matchpy.functions), 42
replace_all_post_order() (in module matchpy.functions),

44
replace_many() (in module matchpy.functions), 43
replace_post_order() (ManyToOneReplacer method), 36
replacement (ReplacementRule attribute), 44
ReplacementRule (class in matchpy.functions), 44
root (ManyToOneMatcher attribute), 36

S
SequenceMatcher (class in matchpy.matching.syntactic),

40
slot_cached_property() (in module matchpy.utils), 48

solve_linear_diop() (in module matchpy.utils), 47
star() (Wildcard static method), 26
states (ManyToOneMatcher attribute), 36
substitute() (in module matchpy.functions), 41
Substitution (class in matchpy.expressions.substitution),

31
Symbol (class in matchpy.expressions.expressions), 24
symbol() (Wildcard static method), 26
symbol_type (SymbolWildcard attribute), 28
symbols (Expression attribute), 24
SymbolWildcard (class in

matchpy.expressions.expressions), 28
syntactic, 50

T
ternary (Arity attribute), 24
try_add_variable() (Substitution method), 32

U
unary (Arity attribute), 24
union() (Substitution method), 33
union_with_variable() (Substitution method), 33

V
variables (Constraint attribute), 20
variables (CustomConstraint attribute), 21
variables (EqualVariablesConstraint attribute), 21
variables (Expression attribute), 24
variadic (Arity attribute), 24

W
weak_composition_iter() (in module matchpy.utils), 45
Wildcard (class in matchpy.expressions.expressions), 25
with_renamed_vars() (Constraint method), 20
with_renamed_vars() (CustomConstraint method), 21
with_renamed_vars() (EqualVariablesConstraint

method), 21
with_renamed_vars() (Expression method), 24
with_renamed_vars() (Operation method), 28
with_renamed_vars() (Symbol method), 25
with_renamed_vars() (SymbolWildcard method), 29
with_renamed_vars() (Wildcard method), 26
without_edge() (BipartiteGraph method), 34
without_nodes() (BipartiteGraph method), 34

Index 57

	Installation
	Overview
	Expressions
	Pattern Matching
	Sequence Wildcards
	Associativity and Commutativity
	Many-to-One Matching

	Roadmap
	Contributing
	Publications
	Table of Contents
	Linear Algebra Example
	matchpy package
	Glossary

	Indices and Tables
	Python Module Index

