

MatchPy

MatchPy is a library for pattern matching on symbolic expressions in Python.

Work in progress

[image: Latest version released on PyPi] [https://pypi.org/project/matchpy/] [image: Latest version released via conda-forge] [https://anaconda.org/conda-forge/matchpy] [image: Test coverage] [https://coveralls.io/github/HPAC/matchpy?branch=master] [image: Build status of the master branch] [https://travis-ci.org/HPAC/matchpy] [image: Documentation Status] [https://matchpy.readthedocs.io/en/latest/?badge=latest] [image: The Journal of Open Source Software] [http://joss.theoj.org/papers/e456bc05880b533652980aee6550a3cb] [image: Digital Object Identifier] [https://doi.org/10.5281/zenodo.1294930]

Installation

MatchPy is available via PyPI [https://pypi.python.org/pypi/matchpy], and for Conda via conda-forge [https://anaconda.org/conda-forge/matchpy]. It can be installed with pip install matchpy or conda install -c conda-forge matchpy.

Overview

This package implements pattern matching [https://en.wikipedia.org/wiki/Pattern_matching] in Python. Pattern matching is a powerful tool for symbolic computations, operating on symbolic expressions. Given a pattern and an expression (which is usually called subject), the goal of pattern matching is to find a substitution for all the variables in the pattern such that the pattern becomes the subject. As an example, consider the pattern \(f(x)\), where \(f\) is a function and \(x\) is a variable, and the subject \(f(a)\), where \(a\) is a constant symbol. Then the substitution that replaces \(x\) with \(a\) is a match. MatchPy supports associative and/or commutative function symbols, as well as sequence variables, similar to pattern matching in Mathematica [https://reference.wolfram.com/language/guide/Patterns.html].

A detailed example of how to use MatchPy can be found here [https://matchpy.readthedocs.io/en/latest/example.html].

MatchPy supports both one-to-one and many-to-one pattern matching. The latter makes use of similarities between patterns to efficiently find matches for multiple patterns at the same time.

A list of publications about MatchPy can be found below.

Expressions

Expressions are tree-like data structures, consisting of operations (functions, internal nodes) and symbols (constants, leaves):

>>> from matchpy import Operation, Symbol, Arity
>>> f = Operation.new('f', Arity.binary)
>>> a = Symbol('a')
>>> print(f(a, a))
f(a, a)

Patterns are expressions which may contain wildcards (variables):

>>> from matchpy import Wildcard
>>> x = Wildcard.dot('x')
>>> print(Pattern(f(a, x)))
f(a, x_)

In the previous example, x is the name of the variable. However, it is also possible to use wildcards without names:

>>> w = Wildcard.dot()
>>> print(Pattern(f(w, w)))
f(_, _)

It is also possible to assign variable names to entire subexpressions:

>>> print(Pattern(f(w, a, variable_name='y')))
y: f(_, a)

Pattern Matching

Given a pattern and an expression (which is usually called subject), the idea of pattern matching is to find a substitution that maps wildcards to expressions such that the pattern becomes the subject. In MatchPy, a substitution is a dict that maps variable names to expressions.

>>> from matchpy import match
>>> y = Wildcard.dot('y')
>>> b = Symbol('b')
>>> subject = f(a, b)
>>> pattern = Pattern(f(x, y))
>>> substitution = next(match(subject, pattern))
>>> print(substitution)
{x ↦ a, y ↦ b}

Applying the substitution to the pattern results in the original expression.

>>> from matchpy import substitute
>>> print(substitute(pattern, substitution))
f(a, b)

Sequence Wildcards

Sequence wildcards are wildcards that can match a sequence of expressions instead of just a single expression:

>>> z = Wildcard.plus('z')
>>> pattern = Pattern(f(z))
>>> subject = f(a, b)
>>> substitution = next(match(subject, pattern))
>>> print(substitution)
{z ↦ (a, b)}

Associativity and Commutativity

MatchPy natively supports associative and/or commutative operations. Nested associative operators are automatically flattened, the operands in commutative operations are sorted:

>>> g = Operation.new('g', Arity.polyadic, associative=True, commutative=True)
>>> print(g(a, g(b, a)))
g(a, a, b)

Associativity and commutativity is also considered for pattern matching:

>>> pattern = Pattern(g(b, x))
>>> subject = g(a, a, b)
>>> print(next(match(subject, pattern)))
{x ↦ g(a, a)}
>>> h = Operation.new('h', Arity.polyadic)
>>> pattern = Pattern(h(b, x))
>>> subject = h(a, a, b)
>>> list(match(subject, pattern))
[]

Many-to-One Matching

When a fixed set of patterns is matched repeatedly against different subjects, matching can be sped up significantly by using many-to-one matching. The idea of many-to-one matching is to construct a so called discrimination net, a data structure similar to a decision tree or a finite automaton that exploits similarities between patterns. In MatchPy, there are two such data structures, implemented as classes: DiscriminationNet [https://matchpy.readthedocs.io/en/latest/api/matchpy.matching.syntactic.html] and ManyToOneMatcher [https://matchpy.readthedocs.io/en/latest/api/matchpy.matching.many_to_one.html]. The DiscriminationNet class only supports syntactic pattern matching, that is, operations are neither associative nor commutative. Sequence variables are not supported either. The ManyToOneMatcher class supports associative and/or commutative matching with sequence variables. For syntactic pattern matching, the DiscriminationNet should be used, as it is usually faster.

>>> pattern1 = Pattern(f(a, x))
>>> pattern2 = Pattern(f(y, b))
>>> matcher = ManyToOneMatcher(pattern1, pattern2)
>>> subject = f(a, b)
>>> matches = matcher.match(subject)
>>> for matched_pattern, substitution in sorted(map(lambda m: (str(m[0]), str(m[1])), matches)):
... print('{} matched with {}'.format(matched_pattern, substitution))
f(a, x_) matched with {x ↦ b}
f(y_, b) matched with {y ↦ a}

Roadmap

Besides the existing features, we plan on adding the following to MatchPy:

	Support for Mathematica’s Alternatives: For example f(a | b) would match either f(a) or f(b).

	Support for Mathematica’s Repeated: For example f(a..) would match f(a), f(a, a), f(a, a, a), etc.

	Support pattern sequences (PatternSequence in Mathematica). These are mainly useful in combination with
Alternatives or Repeated, e.g. f(a | (b, c)) would match either f(a) or f(b, c).
f((a a)..) would match any f with an even number of a arguments.

	All these additional pattern features need to be supported in the ManyToOneMatcher as well.

	Better integration with existing types such as dict.

	Code generation for both one-to-one and many-to-one matching. There is already an experimental implementation, but it still has some dependencies on MatchPy which can probably be removed.

	Improving the documentation with more examples.

	Better test coverage with more randomized tests.

	Implementation of the matching algorithms in a lower-level language, for example C, both for performance and to make MatchPy’s functionality available in other languages.

Contributing

If you have some issue or want to contribute, please feel free to open an issue or create a pull request. Help is always appreciated!

The Makefile has several tasks to help development:

	To install all needed packages, you can use make init .

	To run the tests you can use make test. The tests use pytest [https://docs.pytest.org/].

	To generate the documentation you can use make docs .

	To run the style checker (pylint [https://www.pylint.org/]) you can use make check .

If you have any questions or need help with setting things up, please open an issue and we will try the best to assist you.

Publications

MatchPy: Pattern Matching in Python [http://joss.theoj.org/papers/10.21105/joss.00670]

Manuel Krebber and Henrik Barthels

Journal of Open Source Software, Volume 3(26), pp. 2, June 2018.

Efficient Pattern Matching in Python [https://dl.acm.org/citation.cfm?id=3149871]

Manuel Krebber, Henrik Barthels and Paolo Bientinesi

Proceedings of the 7th Workshop on Python for High-Performance and Scientific Computing, November 2017.

MatchPy: A Pattern Matching Library [http://conference.scipy.org/proceedings/scipy2017/manuel_krebber.html]

Manuel Krebber, Henrik Barthels and Paolo Bientinesi

Proceedings of the 15th Python in Science Conference, July 2017.

Non-linear Associative-Commutative Many-to-One Pattern Matching with Sequence Variables [https://arxiv.org/abs/1705.00907]

Manuel Krebber

Master Thesis, RWTH Aachen University, May 2017

If you want to cite MatchPy, please reference the JOSS paper:

@article{krebber2018,
 author = {Manuel Krebber and Henrik Barthels},
 title = {{M}atch{P}y: {P}attern {M}atching in {P}ython},
 journal = {Journal of Open Source Software},
 year = 2018,
 pages = 2,
 month = jun,
 volume = {3},
 number = {26},
 doi = "10.21105/joss.00670",
 web = "http://joss.theoj.org/papers/10.21105/joss.00670",
}

Table of Contents

	Linear Algebra Example

	matchpy package
	matchpy.expressions package

	matchpy.matching package

	matchpy.functions module

	matchpy.utils module

	Glossary

Indices and Tables

	Index

	Module Index

	Search Page

Linear Algebra Example

As an example, we will write the classes necessary to construct linear algebra equations.
These equations consist of scalars, vectors, and matrices, as well as multiplication, addition,
transposition, and inversion.

Lets start by importing everything we need:

>>> from matchpy import *

Symbols

First off, we create simple classes for our scalars and vectors:

>>> class Scalar(Symbol):
... pass
>>> class Vector(Symbol):
... pass

Now we can create vectors and scalars like this:

>>> a = Scalar('a')
>>> v = Vector('v')

For matrices, we want to be able to specify additional properties that a matrix has, for
example it might be a diagonal or triangular matrix. We will just use a set of strings for the properties:

>>> class Matrix(Symbol):
... def __init__(self, name, properties=[]):
... super().__init__(name)
... self.properties = frozenset(properties)

Now we can create matrices like this:

>>> M1 = Matrix('M1', ['diagonal', 'square'])
>>> M2 = Matrix('M2', ['symmetric', 'square'])
>>> M3 = Matrix('M3', ['triangular'])

Operations

We can quickly create a new operation using the Operation.new factory method:

>>> Times = Operation.new('*', Arity.variadic, 'Times', associative=True, one_identity=True, infix=True)

We need to specify a name ('*') and arity for the operation. In case that the name is not a valid python identifier,
we also need to specify a class name ('Times'). The matrix multiplication is associative, but not commutative.
In addition, we set one_identity to True, which means that a multiplication with a single operand can be replaced
by that operand:

>>> Times(a)
Scalar('a')

The infix property is used when printing terms so that they look prettier:

>>> print(Times(a, v))
(a * v)

An alternative way of adding a new operation, is creating a subclass of Operation manually.
This is especially useful, if you want to add custom methods or properties to your operations.
For example, we can customize the string formatting of the transposition:

>>> class Transpose(Operation):
... name = '^T'
... arity = Arity.unary
... def __str__(self):
... return '({})^T'.format(self.operands[0])

Lets define the remaining operations:

>>> Plus = Operation.new('+', Arity.variadic, 'Plus', one_identity=True, infix=True, commutative=True, associative=True)
>>> Inverse = Operation.new('I', Arity.unary, 'Inverse')

Finally, we can compose more complex terms:

>>> print(Plus(Times(v, Transpose(v)), Times(a, Inverse(M1))))
((a * I(M1)) + (v * (v)^T))

Note that the summands are automatically sorted, because Plus is commutative.

Wildcards and Variables

In patterns, we can use wildcards as a placehold that match anything:

>>> _ = Wildcard.dot()
>>> is_match(a, Pattern(_))
True

However, for our linear algebra patterns, we want to distinguish between different kinds of symbols.
Hence, we can make use of symbol wildcards, e.g. to create a wildcard that only matches vectors:

>>> _v = Wildcard.symbol(Vector)
>>> is_match(a, Pattern(_v))
False
>>> is_match(v, Pattern(_v))
True

We can also assign a name to wildcards and in that case, we call them variables. These names are used to
populate the match substitution in case there is a match:

>>> x_ = Wildcard.dot('x')
>>> next(match(Times(a, v), Pattern(Times(x_, _v))))
{'x': Scalar('a')}

Constraints

Patterns can be limited in what is matched by adding constraints. A constraint is essentially a callback,
that gets the match substitution and can return either True or False. You can either use the CustomConstraint
class with any (lambda) function, or create your own subclass of Constraint.

For example, if we want to only match diagonal matrices with a certain variable, we can create a constraint for that:

>>> C_ = Wildcard.symbol('M3', Matrix)
>>> C_is_diagonal_matrix = CustomConstraint(lambda M3: 'diagonal' in M3.properties)
>>> pattern = Pattern(C_, C_is_diagonal_matrix)

Then the variable M3 will only match diagonal matrices:

>>> is_match(M1, pattern)
True
>>> is_match(M2, pattern)
False

Example: Simplifying multiplication with inverse matrix

Now, we can build patterns to find whatever subexpressions we are interested in. For example, we could remove all
occurences of a matrix being multiplied with its inverse. For that we need sequence wildcards. Instead of
matching a single term, they can match a sequence of terms. We can create sequence variables like this:

>>> ctx1 = Wildcard.plus('ctx1')
>>> ctx2 = Wildcard.star('ctx2')

ctx1 is a plus variables and matches a sequence one or more terms. ctx2 is a star variables and can match any
sequence of terms, including the empty one. With these sequence variables, we can create the rules:

>>> x = Wildcard.dot('x')
>>> simplify_matrix_inverse_rules = [
... ReplacementRule(
... Pattern(Times(ctx1, x, Inverse(x), ctx2)),
... lambda ctx1, ctx2, x: Times(*ctx1, *ctx2)
...),
... ReplacementRule(
... Pattern(Times(ctx2, x, Inverse(x), ctx1)),
... lambda ctx1, ctx2, x: Times(*ctx2, *ctx1)
...)
...]

We need two variations of the rule to make sure that we do not accidentially create an empty product. In the first
rule, at least one operand must preceed the inverse pair. In the second one, at least one operand must come after it.

For the actual replacement, we can use the replace_all function:

>>> expr = Times(M1, Inverse(M1), M2)
>>> replace_all(expr, simplify_matrix_inverse_rules)
Matrix('M2')

For the case that there are no other factors in the product, we can add another rule that replaces
it with the identity matrix:

>>> Identity = Matrix('I')
>>> simplify_matrix_inverse_rules.append(
... ReplacementRule(
... Pattern(Times(x, Inverse(x))),
... lambda x: Identity
...)
...)

Lets see this new rule in action:

>>> expr2 = Times(M1, Inverse(M1))
>>> replace_all(expr2, simplify_matrix_inverse_rules)
Matrix('I')

Because Times is associative, these rules even work for more complex expressions:

>>> expr3 = Times(M1, M1, M2, Inverse(Times(M1, M2)), M2)
>>> replace_all(expr3, simplify_matrix_inverse_rules)
Times(Matrix('M1'), Matrix('M2'))

Note that we can normalize a matrix product inside an inversion by moving it outside, i.e.
using the equality \((A B)^{-1} = B^{-1} A^{-1}\):

>>> y = Wildcard.dot('y')
>>> simplify_matrix_inverse_rules.append(
... ReplacementRule(
... Pattern(Inverse(Times(x, y))),
... lambda x, y: Times(Inverse(y), Inverse(x))
...)
...)

This allows us to simplify an expression like this:

>>> expr4 = Times(M1, M2, Inverse(Times(M3, M1, M2)))
>>> replace_all(expr4, simplify_matrix_inverse_rules)
Inverse(Matrix('M3'))

Or this:

>>> expr5 = Times(M1, M2, Inverse(Times(M3, M2)))
>>> replace_all(expr5, simplify_matrix_inverse_rules)
Times(Matrix('M1'), Inverse(Matrix('M3')))

Example: Finding matches for a BLAS kernel

Lets assume we want to find all subexpressions of some expression which we can compute efficiently with
the ?TRMM [https://software.intel.com/en-us/node/468494] BLAS [http://www.netlib.org/blas/] routine. These all have the form \(\alpha op(A) B\) or \(\alpha B op(A)\) where
\(op(A)\) is either \(A\) or \(A^T\) and \(A\) is a triangular matrix. Here, we will ignore
\(\alpha\) and just assume it as 1.

First, we define the variables and constraints we need:

>>> A_ = Wildcard.symbol('A', Matrix)
>>> B_ = Wildcard.symbol('B', Matrix)
>>> before_ = Wildcard.star('before')
>>> after_ = Wildcard.star('after')
>>> A_is_triangular = CustomConstraint(lambda A: 'triangular' in A.properties)

Then we can construct the patterns, again using context variables to capture the remaining operands:

>>> trmm_patterns = [
... Pattern(Times(before_, A_, B_, after_), A_is_triangular),
... Pattern(Times(before_, Transpose(A_), B_, after_), A_is_triangular),
... Pattern(Times(before_, B_, A_, after_), A_is_triangular),
... Pattern(Times(before_, B_, Transpose(A_), after_), A_is_triangular),
...]

Then, we can find all matching subexpressions using one_to_one.match:

>>> expr = Times(Transpose(M3), M1, M3, M2)
>>> for i, pattern in enumerate(trmm_patterns):
... for substitution in match(expr, pattern):
... print('Pattern {} matched with {} as A and {} as B'.format(i, substitution['A'], substitution['B']))
Pattern 0 matched with M3 as A and M2 as B
Pattern 1 matched with M3 as A and M1 as B
Pattern 2 matched with M3 as A and M1 as B

matchpy package

Subpackages

	matchpy.expressions package
	Submodules
	matchpy.expressions.constraints module

	matchpy.expressions.expressions module

	matchpy.expressions.functions module

	matchpy.expressions.substitution module

	matchpy.matching package
	Submodules
	matchpy.matching.bipartite module

	matchpy.matching.many_to_one module

	matchpy.matching.one_to_one module

	matchpy.matching.syntactic module

Submodules

	matchpy.functions module

	matchpy.utils module

matchpy.expressions package

Submodules

	matchpy.expressions.constraints module

	matchpy.expressions.expressions module

	matchpy.expressions.functions module

	matchpy.expressions.substitution module

matchpy.expressions.constraints module

Contains several pattern constraint classes.

A pattern constraint is used to further filter which subjects a pattern matches.

The most common use would be the CustomConstraint, which wraps a lambda or function to act as a constraint:

>>> a_symbol_constraint = CustomConstraint(lambda x: x.name.startswith('a'))
>>> pattern = Pattern(x_, a_symbol_constraint)
>>> is_match(Symbol('a1'), pattern)
True
>>> is_match(Symbol('b1'), pattern)
False

There is also the EqualVariablesConstraint which will try to unify the substitutions of the variables and only
match if it succeeds:

>>> equal_constraint = EqualVariablesConstraint('x', 'y')
>>> pattern = Pattern(f(x_, y_), equal_constraint)
>>> is_match(f(a, a), pattern)
True
>>> is_match(f(a, b), pattern)
False

You can also create a subclass of the Constraint class to create your own custom constraint type.

	
class Constraint

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

Base for pattern constraints.

A constraint is essentially a callback, that receives the match Substitution and returns a bool [https://docs.python.org/3.6/library/functions.html#bool]
indicating whether the match is valid.

You have to override all the abstract methods if you wish to create your own subclass.

	
__call__(match: matchpy.expressions.substitution.Substitution) → bool

	Return True, iff the constraint is fulfilled by the substitution.

Override this in your subclass to define the actual constraint behavior.

	Parameters

	match – The (current) match substitution. Note that the matching is done from left to right, so not all
variables may have a value yet. You need to override variables so that the constraint gets
called once all the variables it depends on have a value assigned to them.

	Returns

	True, iff the constraint is fulfilled by the substitution.

	
__eq__(other)

	Constraints need to be equatable.

	
__hash__()

	Constraints need to be hashable.

	
variables

	The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all
the dependency variables have been assigned a value). If the set is empty, the constraint will
only be evaluated once the whole match is complete.

	
with_renamed_vars(renaming: Dict[str, str]) → matchpy.expressions.constraints.Constraint

	Return a copy of the constraint with renamed variables.
This is called when the variables in the expression are renamed and hence the ones in the constraint have to be
renamed as well. A later invocation of __call__() will have the new variable names.
You will have to implement this if your constraint needs to use the variables of the match substitution.
Note that this can be called multiple times and you might have to account for that.
Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

	Returns

	A copy of the constraint with renamed variables.

	
class EqualVariablesConstraint(*variables)

	Bases: matchpy.expressions.constraints.Constraint

A constraint that ensure multiple variables are equal.

The constraint tries to unify the substitutions for the variables and is fulfilled iff that succeeds.

	
__init__(*variables) → None

	
	Parameters

	*variables – The names of the variables to check for equality.

	
variables

	The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all
the dependency variables have been assigned a value). If the set is empty, the constraint will
only be evaluated once the whole match is complete.

	
with_renamed_vars(renaming)

	Return a copy of the constraint with renamed variables.
This is called when the variables in the expression are renamed and hence the ones in the constraint have to be
renamed as well. A later invocation of __call__() will have the new variable names.
You will have to implement this if your constraint needs to use the variables of the match substitution.
Note that this can be called multiple times and you might have to account for that.
Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

	Returns

	A copy of the constraint with renamed variables.

	
class CustomConstraint(constraint: Callable[..., bool])

	Bases: matchpy.expressions.constraints.Constraint

Wrapper for lambdas of functions as constraints.

The parameter names have to be the same as the the variable names in the expression:

>>> constraint = CustomConstraint(lambda x, y: x.name < y.name)
>>> pattern = Pattern(f(x_, y_), constraint)
>>> is_match(f(a, b), pattern)
True
>>> is_match(f(b, a), pattern)
False

The ordering of the parameters is not important. You only need to have the parameters needed for the constraint,
not all variables occurring in the pattern.

Note, that the matching happens from left left to right, so not all variables may have been assigned a value when
constraint is called. For constraints over multiple variables you should attach the constraint to the last
variable occurring in the pattern or a surrounding operation.

	
__init__(constraint: Callable[..., bool]) → None

	
	Parameters

	constraint – The constraint callback.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If the callback has positional-only or variable parameters (*args and **kwargs).

	
variables

	The names of the variables the constraint depends upon.

Used by matchers to decide when a constraint can be evaluated (which is when all
the dependency variables have been assigned a value). If the set is empty, the constraint will
only be evaluated once the whole match is complete.

	
with_renamed_vars(renaming)

	Return a copy of the constraint with renamed variables.
This is called when the variables in the expression are renamed and hence the ones in the constraint have to be
renamed as well. A later invocation of __call__() will have the new variable names.
You will have to implement this if your constraint needs to use the variables of the match substitution.
Note that this can be called multiple times and you might have to account for that.
Also, this should not modify the original constraint but rather return a copy.
:param renaming: A dictionary mapping old names to new names.

	Returns

	A copy of the constraint with renamed variables.

matchpy.expressions.expressions module

This module contains the expression classes.

Expressions can be used to model any kind of tree-like data structure. They consist of operations and symbols. In addition, patterns can be constructed, which may additionally,
contain wildcards and variables.

You can define your own symbols and operations like this:

>>> f = Operation.new('f', Arity.variadic)
>>> a = Symbol('a')
>>> b = Symbol('b')

Then you can compose expressions out of these:

>>> print(f(a, b))
f(a, b)

For more information on how to create you own operations and symbols you can look at their
documentation.

Normal expressions are immutable and hence hashable [https://docs.python.org/3.6/glossary.html#term-hashable]:

>>> expr = f(b, x_)
>>> print(expr)
f(b, x_)
>>> hash(expr) == hash(expr)
True

Hence, some of the expression’s properties are cached and nor updated when you modify them:

>>> expr.is_constant
False
>>> expr.operands = [a]
>>> expr.is_constant
False
>>> print(expr)
f(a)
>>> f(a).is_constant
True

Therefore, you should modify an expression but rather create a new one:

>>> expr2 = type(expr)(*[a])
>>> expr2.is_constant
True
>>> print(expr2)
f(a)

	
class Expression(variable_name)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

Base class for all expressions.

Do not subclass this class directly but rather Symbol or Operation.
Creating a direct subclass of Expression might break several (matching) algorithms.

	
head

	The head of the expression. For an operation, it is the type of the operation (i.e. a subclass of
Operation). For wildcards, it is None. For symbols, it is the symbol itself.

	Type

	Optional[Union[type [https://docs.python.org/3.6/library/functions.html#type], Atom]]

	
__getitem__(position: Union[Tuple[int, ...], slice]) → matchpy.expressions.expressions.Expression

	Return the subexpression at the given position(s).

It is also possible to use a slice notation to extract a sequence of subexpressions:

>>> expr = f(a, b, a, c)
>>> expr[(1,):(2,)]
[Symbol('b'), Symbol('a')]

	Parameters

	position – The position as a tuple. See preorder_iter() for its format.
Alternatively, a range of positions can be passed using the slice notation.

	Returns

	The subexpression at the given position(s).

	Raises

	IndexError [https://docs.python.org/3.6/library/exceptions.html#IndexError] – If the position is invalid, i.e. it refers to a non-existing subexpression.

	
__init__(variable_name)

	Initialize self. See help(type(self)) for accurate signature.

	
collect_symbols(symbols: multiset.Multiset) → None

	Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that
can contain symbols. This method can be used when gathering the symbols of multiple expressions, because only
one multiset needs to be created and that is more efficient.

	Parameters

	symbols – Multiset of symbols. All symbols contained in the expression are recursively added to this multiset.

	
collect_variables(variables: multiset.Multiset) → None

	Recursively adds all variables occuring in the expression to the given multiset.

This is used internally by variables. Needs to be overwritten by inheriting container expression classes.
This method can be used when gathering the variables of multiple expressions, because only one multiset
needs to be created and that is more efficient.

	Parameters

	variables – Multiset of variables. All variables contained in the expression are recursively added to this multiset.

	
is_constant

	True, iff the expression does not contain any wildcards.

	
is_syntactic

	True, iff the expression does not contain any associative or commutative operations or sequence wildcards.

	
preorder_iter(predicate: Optional[Callable[Expression, bool]] = None) → Iterator[Tuple[matchpy.expressions.expressions.Expression, Tuple[int, ...]]]

	Iterates over all subexpressions that match the (optional) predicate.

	Parameters

	predicate – A predicate to filter what expressions are yielded. It gets the expression and if it returns True,
the expression is yielded.

	Yields

	Every subexpression along with a position tuple. Each item in the tuple is the position of an operation
operand:

	() is the position of the root element

	(0,) that of its first operand

	(0, 1) the position of the second operand of the root’s first operand.

	etc.

A variable’s expression always has the position 0 relative to the variable, i.e. if the root is a
variable, then its expression has the position (0,).

	
symbols

	A multiset of the symbol names occurring in the expression.

	
variables

	A multiset of the variables occurring in the expression.

	
with_renamed_vars(renaming) → matchpy.expressions.expressions.Expression

	Return a copy of the expression with renamed variables.

	
class Arity

	Bases: matchpy.expressions.expressions._ArityBase

Arity of an operator as (int [https://docs.python.org/3.6/library/functions.html#int], bool [https://docs.python.org/3.6/library/functions.html#bool]) tuple.

The first component is the minimum number of operands.
If the second component is True, the operator has fixed width arity. In that case, the first component
describes the fixed number of operands required.
If it is False, the operator has variable width arity.

	
binary = Arity(min_count=2, fixed_size=True)

	

	
nullary = Arity(min_count=0, fixed_size=True)

	

	
polyadic = Arity(min_count=2, fixed_size=False)

	

	
ternary = Arity(min_count=3, fixed_size=True)

	

	
unary = Arity(min_count=1, fixed_size=True)

	

	
variadic = Arity(min_count=0, fixed_size=False)

	

	
class Atom(variable_name)

	Bases: matchpy.expressions.expressions.Expression

Base for all atomic expressions.

	
class Symbol(name: str, variable_name=None)

	Bases: matchpy.expressions.expressions.Atom

An atomic constant expression term.

It is uniquely identified by its name.

	
name

	The symbol’s name.

	Type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
__init__(name: str, variable_name=None) → None

	
	Parameters

	name – The name of the symbol that uniquely identifies it.

	
collect_symbols(symbols)

	Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that
can contain symbols. This method can be used when gathering the symbols of multiple expressions, because only
one multiset needs to be created and that is more efficient.

	Parameters

	symbols – Multiset of symbols. All symbols contained in the expression are recursively added to this multiset.

	
with_renamed_vars(renaming) → matchpy.expressions.expressions.Symbol

	Return a copy of the expression with renamed variables.

	
class Wildcard(min_count: int, fixed_size: bool, variable_name=None, optional=None)

	Bases: matchpy.expressions.expressions.Atom

A wildcard that matches any expression.

The wildcard will match any number of expressions between min_count and fixed_size.
Optionally, the wildcard can also be constrained to only match expressions satisfying a predicate.

	
min_count

	The minimum number of expressions this wildcard will match.

	Type

	int [https://docs.python.org/3.6/library/functions.html#int]

	
fixed_size

	If True, the wildcard matches exactly min_count expressions.
If False, the wildcard is a sequence wildcard and can match min_count or more expressions.

	Type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
__init__(min_count: int, fixed_size: bool, variable_name=None, optional=None) → None

	
	Parameters

	
	min_count – The minimum number of expressions this wildcard will match. Must be a non-negative number.

	fixed_size – If True, the wildcard matches exactly min_count expressions.
If False, the wildcard is a sequence wildcard and can match min_count or more expressions.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if min_count is negative or when trying to create a fixed zero-length wildcard.

	
static dot(name=None) → matchpy.expressions.expressions.Wildcard

	Create a Wildcard that matches a single argument.

	Parameters

	name – An optional name for the wildcard.

	Returns

	A dot wildcard.

	
head = None

	

	
static optional(name, default) → matchpy.expressions.expressions.Wildcard

	Create a Wildcard that matches a single argument with a default value.

If the wildcard does not match, the substitution will contain the
default value instead.

	Parameters

	
	name – The name for the wildcard.

	default – The default value of the wildcard.

	Returns

	A n optional wildcard.

	
static plus(name=None) → matchpy.expressions.expressions.Wildcard

	Creates a Wildcard that matches at least one and up to any number of arguments

	Parameters

	name – Optional variable name for the wildcard.

	Returns

	A plus wildcard.

	
static star(name=None) → matchpy.expressions.expressions.Wildcard

	Creates a Wildcard that matches any number of arguments.

	Parameters

	name – Optional variable name for the wildcard.

	Returns

	A star wildcard.

	
static symbol(name: str = None, symbol_type: Type[matchpy.expressions.expressions.Symbol] = <class 'matchpy.expressions.expressions.Symbol'>) → matchpy.expressions.expressions.SymbolWildcard

	Create a SymbolWildcard that matches a single Symbol argument.

	Parameters

	
	name – Optional variable name for the wildcard.

	symbol_type – An optional subclass of Symbol to further limit which kind of symbols are
matched by the wildcard.

	Returns

	A SymbolWildcard that matches the symbol_type.

	
with_renamed_vars(renaming) → matchpy.expressions.expressions.Wildcard

	Return a copy of the expression with renamed variables.

	
class Operation(operands: List[matchpy.expressions.expressions.Expression], variable_name=None)

	Bases: matchpy.expressions.expressions.Expression

Base class for all operations.

Do not instantiate this class directly, but create a subclass for every operation in your domain.
You can use new() as a shortcut for doing so.

	
__getitem__(key: Union[Tuple[int, ...], slice]) → matchpy.expressions.expressions.Expression

	Return the subexpression at the given position(s).

It is also possible to use a slice notation to extract a sequence of subexpressions:

>>> expr = f(a, b, a, c)
>>> expr[(1,):(2,)]
[Symbol('b'), Symbol('a')]

	Parameters

	position – The position as a tuple. See preorder_iter() for its format.
Alternatively, a range of positions can be passed using the slice notation.

	Returns

	The subexpression at the given position(s).

	Raises

	IndexError [https://docs.python.org/3.6/library/exceptions.html#IndexError] – If the position is invalid, i.e. it refers to a non-existing subexpression.

	
__init__(operands: List[matchpy.expressions.expressions.Expression], variable_name=None) → None

	Create an operation expression.

	Parameters

	*operands – The operands for the operation expression.

	Raises

	
	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the operand count does not match the operation’s arity.

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the operation contains conflicting variables, i.e. variables with the same name that match
different things. A common example would be mixing sequence and fixed variables with the same name in
one expression.

	
arity = Arity(min_count=0, fixed_size=False)

	The arity of the operator.

Trying to construct an operation expression with a number of operands that does not fit its
operation’s arity will result in an error.

	Type

	Arity

	
associative = False

	True if the operation is associative, i.e. f(a, f(b, c)) = f(f(a, b), c).

This attribute is used to flatten nested associative operations of the same type.
Therefore, the arity of an associative operation has to have an unconstrained maximum
number of operand.

	Type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
collect_symbols(symbols) → None

	Recursively adds all symbols occuring in the expression to the given multiset.

This is used internally by symbols. Needs to be overwritten by inheriting expression classes that
can contain symbols. This method can be used when gathering the symbols of multiple expressions, because only
one multiset needs to be created and that is more efficient.

	Parameters

	symbols – Multiset of symbols. All symbols contained in the expression are recursively added to this multiset.

	
collect_variables(variables) → None

	Recursively adds all variables occuring in the expression to the given multiset.

This is used internally by variables. Needs to be overwritten by inheriting container expression classes.
This method can be used when gathering the variables of multiple expressions, because only one multiset
needs to be created and that is more efficient.

	Parameters

	variables – Multiset of variables. All variables contained in the expression are recursively added to this multiset.

	
commutative = False

	True if the operation is commutative, i.e. f(a, b) = f(b, a).

Note that commutative operations will always be converted into canonical
form with sorted operands.

	Type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
head

	alias of Operation

	
infix = False

	True if the name of the operation should be used as an infix operator by str().

	Type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
name = None

	Name or symbol for the operator.

This needs to be overridden in the subclass.

	Type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
static new(name: str, arity: matchpy.expressions.expressions.Arity, class_name: str = None, *, associative: bool = False, commutative: bool = False, one_identity: bool = False, infix: bool = False) → Type[matchpy.expressions.expressions.Operation]

	Utility method to create a new operation type.

Example:

>>> Times = Operation.new('*', Arity.polyadic, 'Times', associative=True, commutative=True, one_identity=True)
>>> Times
Times['*', Arity(min_count=2, fixed_size=False), associative, commutative, one_identity]
>>> str(Times(Symbol('a'), Symbol('b')))
'*(a, b)'

	Parameters

	
	name – Name or symbol for the operator. Will be used as name for the new class if
class_name is not specified.

	arity – The arity of the operator as explained in the documentation of Operation.

	class_name – Name for the new operation class to be used instead of name. This argument
is required if name is not a valid python identifier.

	Keyword Arguments

	
	associative – See associative.

	commutative – See commutative.

	one_identity – See one_identity.

	infix – See infix.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the class name of the operation is not a valid class identifier.

	
one_identity = False

	True if the operation with a single argument is equivalent to the identity function.

This property is used to simplify expressions, e.g. for f with f.one_identity = True
the expression f(a) if simplified to a.

	Type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
with_renamed_vars(renaming) → matchpy.expressions.expressions.Operation

	Return a copy of the expression with renamed variables.

	
class SymbolWildcard(symbol_type: Type[matchpy.expressions.expressions.Symbol] = <class 'matchpy.expressions.expressions.Symbol'>, variable_name=None)

	Bases: matchpy.expressions.expressions.Wildcard

A special Wildcard that matches a Symbol.

	
symbol_type

	A subclass of Symbol to constrain what the wildcard matches.
If not specified, the wildcard will match any Symbol.

	
__init__(symbol_type: Type[matchpy.expressions.expressions.Symbol] = <class 'matchpy.expressions.expressions.Symbol'>, variable_name=None) → None

	
	Parameters

	symbol_type – A subclass of Symbol to constrain what the wildcard matches.
If not specified, the wildcard will match any Symbol.

	Raises

	TypeError [https://docs.python.org/3.6/library/exceptions.html#TypeError] – if symbol_type is not a subclass of Symbol.

	
with_renamed_vars(renaming) → matchpy.expressions.expressions.SymbolWildcard

	Return a copy of the expression with renamed variables.

	
class Pattern(expression, *constraints)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

A pattern is a term that can be matched against another subject term.

A pattern can contain variables and can optionally have constraints attached to it.
Those constraints a predicates which limit what the pattern can match.

	
__init__(expression, *constraints) → None

	
	Parameters

	
	expression – The term that forms the pattern.

	*constraints – Optional constraints for the pattern.

	
global_constraints

	The subset of the patterns contrainst which are global.

A global constraint does not define dependency variables and can only be evaluated, once the
match has been completed.

	
is_syntactic

	True, iff the pattern is syntactic.

	
local_constraints

	The subset of the patterns contrainst which are local.

A local constraint has a defined non-empty set of dependency variables.
These constraints can be evaluated once their dependency variables have a substitution.

	
make_dot_variable(name)

	Create a new variable with the given name that matches a single term.

	Parameters

	name – The name of the variable

	Returns

	The new dot variable.

	
make_plus_variable(name)

	Create a new variable with the given name that matches any number of terms.

Only matches sequences with at least one argument.

	Parameters

	name – The name of the variable

	Returns

	The new plus variable.

	
make_star_variable(name)

	Create a new variable with the given name that matches any number of terms.

Can also match an empty argument sequence.

	Parameters

	name – The name of the variable

	Returns

	The new star variable.

	
make_symbol_variable(name, symbol_type=<class 'matchpy.expressions.expressions.Symbol'>)

	Create a new variable with the given name that matches a single symbol.

Optionally, a symbol type can be specified to further limit what the variable can match.

	Parameters

	
	name – The name of the variable

	symbol_type – The symbol type must be a subclass of Symbol. Defaults to Symbol itself.

	Returns

	The new symbol variable.

	
class AssociativeOperation

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
class CommutativeOperation

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
class OneIdentityOperation

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

matchpy.expressions.functions module

	
is_constant(expression)

	Check if the given expression is constant, i.e. it does not contain Wildcards.

	
is_syntactic(expression)

	Check if the given expression is syntactic, i.e. it does not contain sequence wildcards or
associative/commutative operations.

	
get_head(expression)

	Returns the given expression’s head.

	
match_head(subject, pattern)

	Checks if the head of subject matches the pattern’s head.

	
preorder_iter(expression)

	Iterate over the expression in preorder.

	
preorder_iter_with_position(expression)

	Iterate over the expression in preorder.

Also yields the position of each subexpression.

	
is_anonymous(expression)

	Returns True iff the expression does not contain any variables.

	
contains_variables_from_set(expression, variables)

	Returns True iff the expression contains any of the variables from the given set.

	
register_operation_factory(operation, factory)

	

	
create_operation_expression(old_operation, new_operands, variable_name=True)

	

	
rename_variables(expression: matchpy.expressions.expressions.Expression, renaming: Dict[str, str]) → matchpy.expressions.expressions.Expression

	Rename the variables in the expression according to the given dictionary.

	Parameters

	
	expression – The expression in which the variables are renamed.

	renaming – The renaming dictionary. Maps old variable names to new ones.
Variable names not occuring in the dictionary are left unchanged.

	Returns

	The expression with renamed variables.

	
op_iter(operation)

	

	
op_len(operation)

	

	
register_operation_iterator(operation, iterator=<built-in function iter>, length=<built-in function len>)

	

	
get_variables(expression, variables=None)

	Returns the set of variable names in the given expression.

matchpy.expressions.substitution module

Contains the Substitution class which is a specialized dictionary.

A substitution maps a variable to a replacement value. The variable is represented by its string name.
The replacement can either be a plain expression, a sequence of expressions, or a Multiset [https://multiset.readthedocs.io/en/latest/index.html#Multiset] of expressions:

>>> subst = Substitution({'x': a, 'y': (a, b), 'z': Multiset([a, b])})
>>> print(subst)
{x ↦ a, y ↦ (a, b), z ↦ {a, b}}

In addition, the Substitution class has some helper methods to unify multiple substitutions
and nicer string formatting.

	
class Substitution

	Bases: dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

Special dict [https://docs.python.org/3.6/library/stdtypes.html#dict] for substitutions with nicer formatting.

The key is a variable’s name and the value the replacement for it.

	
extract_substitution(subject: matchpy.expressions.expressions.Expression, pattern: matchpy.expressions.expressions.Expression) → bool

	Extract the variable substitution for the given pattern and subject.

This assumes that subject and pattern already match when being considered as linear.
Also, they both must be syntactic, as sequence variables cannot be handled here.
All that this method does is checking whether all the substitutions for the variables can be unified.
So, in case it returns False, the substitution is invalid for the match.

..warning:

This method mutates the substitution and will even do so in case the extraction fails.

Create a copy before using this method if you need to preserve the original substitution.

Example

With an empty initial substitution and a linear pattern, the extraction will always succeed:

>>> subst = Substitution()
>>> subst.extract_substitution(f(a, b), f(x_, y_))
True
>>> print(subst)
{x ↦ a, y ↦ b}

Clashing values for existing variables will fail:

>>> subst.extract_substitution(b, x_)
False

For non-linear patterns, the extraction can also fail with an empty substitution:

>>> subst = Substitution()
>>> subst.extract_substitution(f(a, b), f(x_, x_))
False
>>> print(subst)
{x ↦ a}

Note that the initial substitution got mutated even though the extraction failed!

	Parameters

	
	subject – A syntactic subject that matches the pattern.

	pattern – A syntactic pattern that matches the subject.

	Returns

	True iff the substitution could be extracted successfully.

	
rename(renaming: Dict[str, str]) → matchpy.expressions.substitution.Substitution

	Return a copy of the substitution with renamed variables.

Example

Rename the variable x to y:

>>> subst = Substitution({'x': a})
>>> subst.rename({'x': 'y'})
{'y': Symbol('a')}

	Parameters

	renaming – A dictionary mapping old variable names to new ones.

	Returns

	A copy of the substitution where variable names have been replaced according to the given renaming
dictionary. Names that are not contained in the dictionary are left unchanged.

	
try_add_variable(variable_name: str, replacement: Union[Tuple[expressions.Expression, ...], multiset.Multiset, expressions.Expression]) → None

	Try to add the variable with its replacement to the substitution.

This considers an existing replacement and will only succeed if the new replacement
can be merged with the old replacement. Merging can occur if either the two replacements
are equivalent. Replacements can also be merged if the old replacement for the variable_name was
unordered (i.e. a Multiset [https://multiset.readthedocs.io/en/latest/index.html#Multiset]) and the new one is an equivalent ordered version of it:

>>> subst = Substitution({'x': Multiset(['a', 'b'])})
>>> subst.try_add_variable('x', ('a', 'b'))
>>> print(subst)
{x ↦ (a, b)}

	Parameters

	
	variable – The name of the variable to add.

	replacement – The replacement for the variable.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the variable cannot be merged because it conflicts with the existing
substitution for the variable_name.

	
union(*others) → matchpy.expressions.substitution.Substitution

	Try to merge the substitutions.

If a variable occurs in multiple substitutions, try to merge the replacements.
See union_with_variable() to see how replacements are merged.

Does not modify any of the original substitutions.

Example:

>>> subst1 = Substitution({'x': Multiset(['a', 'b']), 'z': a})
>>> subst2 = Substitution({'x': ('a', 'b'), 'y': ('c',)})
>>> print(subst1.union(subst2))
{x ↦ (a, b), y ↦ (c), z ↦ a}

	Parameters

	others – The other substitutions to merge with this one.

	Returns

	The new substitution with the other substitutions merged.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if a variable occurs in multiple substitutions but cannot be merged because the
substitutions conflict.

	
union_with_variable(variable: str, replacement: Union[Tuple[expressions.Expression, ...], multiset.Multiset, expressions.Expression]) → matchpy.expressions.substitution.Substitution

	Try to create a new substitution with the given variable added.

See try_add_variable() for a version of this method that modifies the substitution
in place.

	Parameters

	
	variable_name – The name of the variable to add.

	replacement – The substitution for the variable.

	Returns

	The new substitution with the variable_name added or merged.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the variable cannot be merged because it conflicts with the existing
substitution for the variable.

matchpy.matching package

Submodules

	matchpy.matching.bipartite module

	matchpy.matching.many_to_one module

	matchpy.matching.one_to_one module

	matchpy.matching.syntactic module

matchpy.matching.bipartite module

Contains classes and functions related to bipartite graphs.

The BipartiteGraph class is used to represent a bipartite graph as a dictionary. In particular,
BipartiteGraph.find_matching() can be used to find a maximum matching in such a graph.

The function enum_maximum_matchings_iter can be used to enumerate all maximum matchings of a BipartiteGraph.

	
class BipartiteGraph(*args, **kwargs)

	Bases: typing.MutableMapping [https://docs.python.org/3.6/library/typing.html#typing.MutableMapping]

A bipartite graph representation.

This class is a specialized dictionary, where each edge is represented by a 2-tuple that is used as a key in the
dictionary. The value can either be True [https://docs.python.org/3.6/library/constants.html#True] or any value that you want to associate with the edge.

For example, the edge from 1 to 2 with a label 42 would be set like this:

>>> graph = BipartiteGraph()
>>> graph[1, 2] = 42

	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
as_graph() → graphviz.dot.Graph

	Returns a graphviz.Graph representation of this bipartite graph.

	
clear() → None. Remove all items from D.

	

	
edges()

	

	
edges_with_labels()

	Returns a view on the edges with labels.

	
find_matching() → Dict[TLeft, TRight]

	Finds a matching in the bipartite graph.

This is done using the Hopcroft-Karp algorithm with an implementation from the
hopcroftkarp package.

	Returns

	A dictionary where each edge of the matching is represented by a key-value pair
with the key being from the left part of the graph and the value from te right part.

	
limited_to(left: Set[TLeft], right: Set[TRight]) → matchpy.matching.bipartite.BipartiteGraph[[TLeft, TRight], TEdgeValue]

	Returns the induced subgraph where only the nodes from the given sets are included.

	
without_edge(edge: Tuple[TLeft, TRight]) → matchpy.matching.bipartite.BipartiteGraph[[TLeft, TRight], TEdgeValue]

	Returns a copy of this bipartite graph with the given edge removed.

	
without_nodes(edge: Tuple[TLeft, TRight]) → matchpy.matching.bipartite.BipartiteGraph[[TLeft, TRight], TEdgeValue]

	Returns a copy of this bipartite graph with the given edge and its adjacent nodes removed.

	
enum_maximum_matchings_iter(graph: matchpy.matching.bipartite.BipartiteGraph[[TLeft, TRight], TEdgeValue]) → Iterator[Dict[TLeft, TRight]]

	

matchpy.matching.many_to_one module

Contains the ManyToOneMatcher which can be used for fast many-to-one matching.

You can initialize the matcher with a list of the patterns that you wish to match:

>>> pattern1 = Pattern(f(a, x_))
>>> pattern2 = Pattern(f(y_, b))
>>> matcher = ManyToOneMatcher(pattern1, pattern2)

You can also add patterns later:

>>> pattern3 = Pattern(f(a, b))
>>> matcher.add(pattern3)

A pattern can be added with a label which is yielded instead of the pattern during matching:

>>> pattern4 = Pattern(f(x_, y_))
>>> matcher.add(pattern4, "some label")

Then you can match a subject against all the patterns at once:

>>> subject = f(a, b)
>>> matches = matcher.match(subject)
>>> for matched_pattern, substitution in sorted(map(lambda m: (str(m[0]), str(m[1])), matches)):
... print('{} matched with {}'.format(matched_pattern, substitution))
f(a, b) matched with {}
f(a, x_) matched with {x ↦ b}
f(y_, b) matched with {y ↦ a}
some label matched with {x ↦ a, y ↦ b}

Also contains the ManyToOneReplacer which can replace a set ReplacementRule at one using a
ManyToOneMatcher for finding the matches.

	
class ManyToOneMatcher(*patterns, rename=True)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
__init__(*patterns, rename=True) → None

	
	Parameters

	*patterns – The patterns which the matcher should match.

	
classmethod _collect_variable_renaming(expression: matchpy.expressions.expressions.Expression, position: List[int] = None, variables: Dict[str, str] = None) → Dict[str, str]

	Return renaming for the variables in the expression.

The variable names are generated according to the position of the variable in the expression. The goal is to
rename variables in structurally identical patterns so that the automaton contains less redundant states.

	
_internal_add(pattern: matchpy.expressions.expressions.Pattern, label, renaming) → int

	Add a new pattern to the matcher.

Equivalent patterns are not added again. However, patterns that are structurally equivalent,
but have different constraints or different variable names are distinguished by the matcher.

	Parameters

	pattern – The pattern to add.

	Returns

	The internal id for the pattern. This is mainly used by the CommutativeMatcher.

	
add(pattern: matchpy.expressions.expressions.Pattern, label=None) → None

	Add a new pattern to the matcher.

The optional label defaults to the pattern itself and is yielded during matching. The same pattern can be
added with different labels which means that every match for the pattern will result in every associated label
being yielded with that match individually.

Equivalent patterns with the same label are not added again. However, patterns that are structurally equivalent,
but have different constraints or different variable names are distinguished by the matcher.

	Parameters

	
	pattern – The pattern to add.

	label – An optional label for the pattern. Defaults to the pattern itself.

	
as_graph() → graphviz.dot.Digraph

	

	
constraint_vars

	

	
constraints

	

	
finals

	

	
is_match(subject: matchpy.expressions.expressions.Expression) → bool

	Check if the subject matches any of the matcher’s patterns.

	Parameters

	subject – The subject to match.

	Returns

	True, if the subject is matched by any of the matcher’s patterns.
False, otherwise.

	
match(subject: matchpy.expressions.expressions.Expression) → Iterator[Tuple[matchpy.expressions.expressions.Expression, matchpy.expressions.substitution.Substitution]]

	Match the subject against all the matcher’s patterns.

	Parameters

	subject – The subject to match.

	Yields

	For every match, a tuple of the matching pattern and the match substitution.

	
pattern_vars

	

	
patterns

	

	
rename

	

	
root

	

	
states

	

	
class ManyToOneReplacer(*rules)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

Class that contains a set of replacement rules and can apply them efficiently to an expression.

	
__init__(*rules)

	A replacement rule consists of a pattern, that is matched against any subexpression
of the expression. If a match is found, the replacement callback of the rule is called with
the variables from the match substitution. Whatever the callback returns is used as a replacement for the
matched subexpression. This can either be a single expression or a sequence of expressions, which is then
integrated into the surrounding operation in place of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.

	Parameters

	*rules – The replacement rules.

	
add(rule: matchpy.functions.ReplacementRule) → None

	Add a new rule to the replacer.

	Parameters

	rule – The rule to add.

	
replace(expression: matchpy.expressions.expressions.Expression, max_count: int = inf) → Union[matchpy.expressions.expressions.Expression, Sequence[matchpy.expressions.expressions.Expression]]

	Replace all occurrences of the patterns according to the replacement rules.

	Parameters

	
	expression – The expression to which the replacement rules are applied.

	max_count – If given, at most max_count applications of the rules are performed. Otherwise, the rules
are applied until there is no more match. If the set of replacement rules is not confluent,
the replacement might not terminate without a max_count set.

	Returns

	The resulting expression after the application of the replacement rules. This can also be a sequence of
expressions, if the root expression is replaced with a sequence of expressions by a rule.

	
replace_post_order(expression: matchpy.expressions.expressions.Expression) → Union[matchpy.expressions.expressions.Expression, Sequence[matchpy.expressions.expressions.Expression]]

	Replace all occurrences of the patterns according to the replacement rules.

Replaces innermost expressions first.

	Parameters

	
	expression – The expression to which the replacement rules are applied.

	max_count – If given, at most max_count applications of the rules are performed. Otherwise, the rules
are applied until there is no more match. If the set of replacement rules is not confluent,
the replacement might not terminate without a max_count set.

	Returns

	The resulting expression after the application of the replacement rules. This can also be a sequence of
expressions, if the root expression is replaced with a sequence of expressions by a rule.

matchpy.matching.one_to_one module

	
match(subject: matchpy.expressions.expressions.Expression, pattern: matchpy.expressions.expressions.Pattern) → Iterator[matchpy.expressions.substitution.Substitution]

	Tries to match the given pattern to the given subject.

Yields each match in form of a substitution.

	Parameters

	
	subject – An subject to match.

	pattern – The pattern to match.

	Yields

	All possible match substitutions.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If the subject is not constant.

	
match_anywhere(subject: matchpy.expressions.expressions.Expression, pattern: matchpy.expressions.expressions.Pattern) → Iterator[Tuple[matchpy.expressions.substitution.Substitution, Tuple[int, ...]]]

	Tries to match the given pattern to the any subexpression of the given subject.

Yields each match in form of a substitution and a position tuple.
The position is a tuple of indices, e.g. the empty tuple refers to the subject itself,
(0,) refers to the first child (operand) of the subject, (0, 0) to the first child of
the first child etc.

	Parameters

	
	subject – An subject to match.

	pattern – The pattern to match.

	Yields

	All possible substitution and position pairs.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If the subject is not constant.

matchpy.matching.syntactic module

This module contains various many-to-one matchers for syntactic patterns:

	There DiscriminationNet class that is a many-to-one matcher for syntactic patterns.

	The SequenceMatcher can be used to match patterns with a common surrounding operation with some fixed
syntactic patterns.

	The FlatTerm representation for an expression flattens the expression’s tree structure and allows faster preoder
traversal.

Furthermore, the module contains some utility functions for working with flatterms.

	
class FlatTerm(expression: Union[matchpy.expressions.expressions.Expression, Sequence[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol], str]]])

	Bases: typing.Sequence [https://docs.python.org/3.6/library/typing.html#typing.Sequence]

A flattened representation of an Expression.

This is a subclass of list. This representation is similar to the prefix notation generated by
Expression.preorder_iter(), but contains some additional elements.

Operation expressions are represented by the type() of the operation before the operands as well as
OPERATION_END after the last operand of the operation:

>>> FlatTerm(f(a, b))
[f, a, b,)]

Variables are not included in the flatterm representation, only wildcards remain.

>>> FlatTerm(x_)
[_]

Consecutive wildcards are merged, as the DiscriminationNet cannot handle multiple consecutive sequence
wildcards:

>>> FlatTerm(f(_, _))
[f, _[2],)]
>>> FlatTerm(f(_, __, __))
[f, _[3+],)]

Furthermore, every SymbolWildcard is replaced by its symbol_type:

>>> class SpecialSymbol(Symbol):
... pass
>>> _s = Wildcard.symbol(SpecialSymbol)
>>> FlatTerm(_s)
[<class '__main__.SpecialSymbol'>]

Symbol wildcards are also not merged like other wildcards, because they can never be sequence wildcards:

>>> FlatTerm(f(_, _s))
[f, _, <class '__main__.SpecialSymbol'>,)]

	
__init__(expression: Union[matchpy.expressions.expressions.Expression, Sequence[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol], str]]]) → None

	Initialize self. See help(type(self)) for accurate signature.

	
static _combined_wildcards_iter(flatterm: Iterator[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol], str]]) → Iterator[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol], str]]

	Combine consecutive wildcards in a flatterm into a single one.

	
classmethod _flatterm_iter(expression: matchpy.expressions.expressions.Expression) → Iterator[Union[matchpy.expressions.expressions.Symbol, matchpy.expressions.expressions.Wildcard, Type[matchpy.expressions.expressions.Operation], Type[matchpy.expressions.expressions.Symbol], str]]

	Generator that yields the atoms of the expressions in prefix notation with operation end markers.

	
classmethod empty() → matchpy.matching.syntactic.FlatTerm

	An empty flatterm.

	
is_syntactic

	True, iff the flatterm is syntactic.

	
classmethod merged(*flatterms) → matchpy.matching.syntactic.FlatTerm

	Concatenate the given flatterms to a single flatterm.

	Parameters

	*flatterms – The flatterms which are concatenated.

	Returns

	The concatenated flatterms.

	
is_operation(term: Any) → bool

	Return True iff the given term is a subclass of Operation.

	
is_symbol_wildcard(term: Any) → bool

	Return True iff the given term is a subclass of Symbol.

	
class DiscriminationNet(*patterns)

	Bases: typing.Generic [https://docs.python.org/3.6/library/typing.html#typing.Generic]

An automaton to distinguish which patterns match a given expression.

This is a DFA with an implicit fail state whenever a transition is not actually defined.
For every pattern added, an automaton is created and then the product automaton with the existing one is used as
the new automaton.

The matching assumes that patterns are linear, i.e. it will treat all variables as non-existent and only consider
the wildcards.

	
__init__(*patterns) → None

	
	Parameters

	*patterns – Optional pattern to initially add to the discrimination net.

	
classmethod _generate_net(flatterm: matchpy.matching.syntactic.FlatTerm, final_label: T) → matchpy.matching.syntactic._State[T]

	Generates a DFA matching the given pattern.

	
add(pattern: Union[matchpy.expressions.expressions.Pattern, matchpy.matching.syntactic.FlatTerm], final_label: T = None) → int

	Add a pattern to the discrimination net.

	Parameters

	
	pattern – The pattern which is added to the DiscriminationNet. If an expression is given, it will be converted to
a FlatTerm for internal processing. You can also pass a FlatTerm directly.

	final_label – A label that is returned if the pattern matches when using match(). This will default to the
pattern itself.

	Returns

	The index of the newly added pattern. This is used internally to later to get the pattern and its final
label once a match is found.

	
as_graph() → graphviz.dot.Digraph

	Renders the discrimination net as graphviz digraph.

	
is_match(subject: Union[matchpy.expressions.expressions.Expression, matchpy.matching.syntactic.FlatTerm]) → bool

	Check if the given subject matches any pattern in the net.

	Parameters

	subject – The subject that is matched. Must be constant.

	Returns

	True, if any pattern matches the subject.

	
match(subject: Union[matchpy.expressions.expressions.Expression, matchpy.matching.syntactic.FlatTerm]) → Iterator[Tuple[T, matchpy.expressions.substitution.Substitution]]

	Match the given subject against all patterns in the net.

	Parameters

	subject – The subject that is matched. Must be constant.

	Yields

	A tuple (final label, substitution), where the first component is the final label associated with
the pattern as given when using add() and the second one is the match substitution.

	
class SequenceMatcher(*patterns)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

A matcher that matches many syntactic patterns in a surrounding sequence.

It can match patterns that have the form \(f(x^*, s_1, \dots, s_n, y^*)\) where

	\(f\) is a non-commutative operation,

	\(x^*, y^*\) are star sequence wildcards or variables (they can be the same of different), and

	all the \(s_i\) are syntactic patterns.

After adding these patterns with add(), they can be matched simultaneously against a subject with match().
Note that all patterns matched by one sequence matcher must have the same outer operation \(f\).

	
operation

	The outer operation that all patterns have in common. Is set automatically when adding the first pattern
and is check for all following patterns.

	
__init__(*patterns) → None

	
	Parameters

	*patterns – Initial patterns to add to the sequence matcher.

	
add(pattern: matchpy.expressions.expressions.Pattern) → int

	Add a pattern that will be recognized by the matcher.

	Parameters

	pattern – The pattern to add.

	Returns

	An internal index for the pattern.

	Raises

	
	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If the pattern does not have the correct form.

	TypeError [https://docs.python.org/3.6/library/exceptions.html#TypeError] – If the pattern is not a non-commutative operation.

	
as_graph() → graphviz.dot.Digraph

	Renders the underlying discrimination net as graphviz digraph.

	
classmethod can_match(pattern: matchpy.expressions.expressions.Pattern) → bool

	Check if a pattern can be matched with a sequence matcher.

	Parameters

	pattern – The pattern to check.

	Returns

	True, iff the pattern can be matched with a sequence matcher.

	
match(subject: matchpy.expressions.expressions.Expression) → Iterator[Tuple[matchpy.expressions.expressions.Pattern, matchpy.expressions.substitution.Substitution]]

	Match the given subject against all patterns in the sequence matcher.

	Parameters

	subject – The subject that is matched. Must be constant.

	Yields

	A tuple (pattern, substitution) for every matching pattern.

	
operation

	

matchpy.functions module

This module contains various functions for working with expressions.

	With substitute() you can replace occurrences of variables with an expression or sequence of expressions.

	With replace() you can replace a subexpression at a specific position with a different expression or
sequence of expressions.

	With replace_many() works the same as replace(), but you can replace multiple positions at once.

	With replace_all() you can apply a set of replacement rules repeatedly to an expression.

	With is_match() you can check whether a pattern matches a subject expression.

	
substitute(expression: Union[matchpy.expressions.expressions.Expression, matchpy.expressions.expressions.Pattern], substitution: matchpy.expressions.substitution.Substitution) → Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]

	Replaces variables in the given expression using the given substitution.

>>> print(substitute(f(x_), {'x': a}))
f(a)

If nothing was substituted, the original expression is returned:

>>> expression = f(x_)
>>> result = substitute(expression, {'y': a})
>>> print(result)
f(x_)
>>> expression is result
True

Note that this function returns a list of expressions iff the expression is a variable and its substitution
is a list of expressions. In other cases were a substitution is a list of expressions, the expressions will
be integrated as operands in the surrounding operation:

>>> print(substitute(f(x_, c), {'x': [a, b]}))
f(a, b, c)

If you substitute with a Multiset [https://multiset.readthedocs.io/en/latest/index.html#Multiset] of values, they will be sorted:

>>> replacement = Multiset([b, a, b])
>>> print(substitute(f(x_, c), {'x': replacement}))
f(a, b, b, c)

	Parameters

	
	expression – An expression in which variables are substituted.

	substitution – A substitution dictionary. The key is the name of the variable,
the value either an expression or a list of expression to use as a replacement for
the variable.

	Returns

	The expression resulting from applying the substitution.

	
replace(expression: matchpy.expressions.expressions.Expression, position: Sequence[int], replacement: Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]) → Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]

	Replaces the subexpression of expression at the given position with the given replacement.

The original expression itself is not modified, but a modified copy is returned. If the replacement
is a list of expressions, it will be expanded into the list of operands of the respective operation:

>>> print(replace(f(a), (0,), [b, c]))
f(b, c)

	Parameters

	
	expression – An Expression where a (sub)expression is to be replaced.

	position – A tuple of indices, e.g. the empty tuple refers to the expression itself,
(0,) refers to the first child (operand) of the expression, (0, 0) to the first
child of the first child etc.

	replacement – Either an Expression or a list of Expressions to be
inserted into the expression instead of the original expression at that position.

	Returns

	The resulting expression from the replacement.

	Raises

	IndexError [https://docs.python.org/3.6/library/exceptions.html#IndexError] – If the position is invalid or out of range.

	
replace_all(expression: matchpy.expressions.expressions.Expression, rules: Iterable[matchpy.functions.ReplacementRule], max_count: int = inf) → Union[matchpy.expressions.expressions.Expression, Sequence[matchpy.expressions.expressions.Expression]]

	Replace all occurrences of the patterns according to the replacement rules.

A replacement rule consists of a pattern, that is matched against any subexpression
of the expression. If a match is found, the replacement callback of the rule is called with
the variables from the match substitution. Whatever the callback returns is used as a replacement for the
matched subexpression. This can either be a single expression or a sequence of expressions, which is then
integrated into the surrounding operation in place of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.

	Parameters

	
	expression – The expression to which the replacement rules are applied.

	rules – A collection of replacement rules that are applied to the expression.

	max_count – If given, at most max_count applications of the rules are performed. Otherwise, the rules
are applied until there is no more match. If the set of replacement rules is not confluent,
the replacement might not terminate without a max_count set.

	Returns

	The resulting expression after the application of the replacement rules. This can also be a sequence of
expressions, if the root expression is replaced with a sequence of expressions by a rule.

	
replace_many(expression: matchpy.expressions.expressions.Expression, replacements: Sequence[Tuple[Sequence[int], Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]]]) → Union[matchpy.expressions.expressions.Expression, List[matchpy.expressions.expressions.Expression]]

	Replaces the subexpressions of expression at the given positions with the given replacements.

The original expression itself is not modified, but a modified copy is returned. If the replacement
is a sequence of expressions, it will be expanded into the list of operands of the respective operation.

This function works the same as replace, but allows multiple positions to be replaced at the same time.
However, compared to just replacing each position individually with replace, this does work when positions are
modified due to replacing a position with a sequence:

>>> expr = f(a, b)
>>> expected_result = replace_many(expr, [((0,), [c, c]), ((1,), a)])
>>> print(expected_result)
f(c, c, a)

However, using replace for one position at a time gives the wrong result:

>>> step1 = replace(expr, (0,), [c, c])
>>> print(step1)
f(c, c, b)
>>> step2 = replace(step1, (1,), a)
>>> print(step2)
f(c, a, b)

	Parameters

	
	expression – An Expression where a (sub)expression is to be replaced.

	replacements – A collection of tuples consisting of a position in the expression and a replacement for that position.
With just a single replacement pair, this is equivalent to using replace:

>>> replace(a, (), b) == replace_many(a, [((), b)])
True

	Returns

	The resulting expression from the replacements.

	Raises

	
	IndexError [https://docs.python.org/3.6/library/exceptions.html#IndexError] – If a position is invalid or out of range or if you try to replace a subterm of a term you are

	already replacing.

	
is_match(subject: matchpy.expressions.expressions.Expression, pattern: matchpy.expressions.expressions.Expression) → bool

	Check whether the given subject matches given pattern.

	Parameters

	
	subject – The subject.

	pattern – The pattern.

	Returns

	True iff the subject matches the pattern.

	
class ReplacementRule(pattern, replacement)

	Bases: tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
static __new__(_cls, pattern, replacement)

	Create new instance of ReplacementRule(pattern, replacement)

	
__repr__()

	Return a nicely formatted representation string

	
_asdict()

	Return a new OrderedDict which maps field names to their values.

	
classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in function len>)

	Make a new ReplacementRule object from a sequence or iterable

	
_replace(**kwds)

	Return a new ReplacementRule object replacing specified fields with new values

	
pattern

	Alias for field number 0

	
replacement

	Alias for field number 1

	
replace_all_post_order(expression: matchpy.expressions.expressions.Expression, rules: Iterable[matchpy.functions.ReplacementRule]) → Union[matchpy.expressions.expressions.Expression, Sequence[matchpy.expressions.expressions.Expression]]

	Replace all occurrences of the patterns according to the replacement rules.

A replacement rule consists of a pattern, that is matched against any subexpression
of the expression. If a match is found, the replacement callback of the rule is called with
the variables from the match substitution. Whatever the callback returns is used as a replacement for the
matched subexpression. This can either be a single expression or a sequence of expressions, which is then
integrated into the surrounding operation in place of the subexpression.

Note that the pattern can therefore not be a single sequence variable/wildcard, because only single expressions
will be matched.

	Parameters

	
	expression – The expression to which the replacement rules are applied.

	rules – A collection of replacement rules that are applied to the expression.

	max_count – If given, at most max_count applications of the rules are performed. Otherwise, the rules
are applied until there is no more match. If the set of replacement rules is not confluent,
the replacement might not terminate without a max_count set.

	Returns

	The resulting expression after the application of the replacement rules. This can also be a sequence of
expressions, if the root expression is replaced with a sequence of expressions by a rule.

matchpy.utils module

This module contains various utility functions.

	
fixed_integer_vector_iter(max_vector: Tuple[int, ...], vector_sum: int) → Iterator[Tuple[int, ...]]

	Return an iterator over the integer vectors which

	are componentwise less than or equal to max_vector, and

	are non-negative, and where

	the sum of their components is exactly vector_sum.

The iterator yields the vectors in lexicographical order.

Examples

List all vectors that are between (0, 0) and (2, 2) componentwise, where the sum of components is 2:

>>> vectors = list(fixed_integer_vector_iter([2, 2], 2))
>>> vectors
[(0, 2), (1, 1), (2, 0)]
>>> list(map(sum, vectors))
[2, 2, 2]

	Parameters

	
	max_vector – Maximum vector for the iteration. Every yielded result will be less than or equal to this componentwise.

	vector_sum – Every iterated vector will have a component sum equal to this value.

	Yields

	All non-negative vectors that have the given sum and are not larger than the given maximum.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If vector_sum is negative.

	
weak_composition_iter(n: int, num_parts: int) → Iterator[Tuple[int, ...]]

	Yield all weak compositions of integer n into num_parts parts.

Each composition is yielded as a tuple. The generated partitions are order-dependant and not unique when
ignoring the order of the components. The partitions are yielded in lexicographical order.

Example

>>> compositions = list(weak_composition_iter(5, 2))
>>> compositions
[(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)]

We can easily verify that all compositions are indeed valid:

>>> list(map(sum, compositions))
[5, 5, 5, 5, 5, 5]

The algorithm was adapted from an answer to this Stackoverflow question [http://stackoverflow.com/questions/40538923/40540014#40540014].

	Parameters

	
	n – The integer to partition.

	num_parts – The number of parts for the combination.

	Yields

	All non-negative tuples that have the given sum and size.

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If n or num_parts are negative.

	
commutative_sequence_variable_partition_iter(values: Multiset[T], variables: List[matchpy.utils.VariableWithCount]) → Iterator[Dict[str, Multiset[T]]]

	Yield all possible variable substitutions for given values and variables.

Note

The results are not yielded in any particular order because the algorithm uses dictionaries. Dictionaries until
Python 3.6 do not keep track of the insertion order.

Example

For a subject like fc(a, a, a, b, b, c) and a pattern like f(x__, y___, y___) one can define the
following input parameters for the partitioning:

>>> x = VariableWithCount(name='x', count=1, minimum=1, default=None)
>>> y = VariableWithCount(name='y', count=2, minimum=0, default=None)
>>> values = Multiset('aaabbc')

Then the solutions are found (and sorted to get a unique output):

>>> substitutions = commutative_sequence_variable_partition_iter(values, [x, y])
>>> as_strings = list(str(Substitution(substitution)) for substitution in substitutions)
>>> for substitution in sorted(as_strings):
... print(substitution)
{x ↦ {a, a, a, b, b, c}, y ↦ {}}
{x ↦ {a, a, a, c}, y ↦ {b}}
{x ↦ {a, b, b, c}, y ↦ {a}}
{x ↦ {a, c}, y ↦ {a, b}}

	Parameters

	
	values – The multiset of values which are partitioned and distributed among the variables.

	variables – A list of the variables to distribute the values among. Each variable has a name, a count of how many times
it occurs and a minimum number of values it needs.

	Yields

	Each possible substitutions that is a valid partitioning of the values among the variables.

	
get_short_lambda_source(lambda_func: function) → Optional[str]

	Return the source of a (short) lambda function.
If it’s impossible to obtain, return None.

The source is returned without the lambda and signature parts:

>>> get_short_lambda_source(lambda x, y: x < y)
'x < y'

This should work well for most lambda definitions, however for multi-line or highly nested lambdas,
the source extraction might not succeed.

	Parameters

	lambda_func – The lambda function.

	Returns

	The source of the lambda function without its signature.

	
solve_linear_diop(total: int, *coeffs) → Iterator[Tuple[int, ...]]

	Yield non-negative integer solutions of a linear Diophantine equation of the format
\(c_1 x_1 + \dots + c_n x_n = total\).

If there are at most two coefficients, base_solution_linear() is used to find the solutions.
Otherwise, the solutions are found recursively, by reducing the number of variables in each recursion:

	Compute \(d := gcd(c_2, \dots , c_n)\)

	Solve \(c_1 x + d y = total\)

	Recursively solve \(c_2 x_2 + \dots + c_n x_n = y\) for each solution for y

	Combine these solutions to form a solution for the whole equation

	Parameters

	
	total – The constant of the equation.

	*coeffs – The coefficients \(c_i\) of the equation.

	Yields

	The non-negative integer solutions of the equation as a tuple \((x_1, \dots, x_n)\).

	
generator_chain(initial_data: T, *factories) → Iterator[T]

	Chain multiple generators together by passing results from one to the next.

This helper function allows to create a chain of generator where each generator is constructed by a factory that
gets the data yielded by the previous generator. So each generator can generate new data dependant on the data
yielded by the previous one. For each data item yielded by a generator, a new generator is constructed by the
next factory.

Example

Lets say for every number from 0 to 4, we want to count up to that number. Then we can do
something like this using list comprehensions:

>>> [i for n in range(1, 5) for i in range(1, n + 1)]
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4]

You can use this function to achieve the same thing:

>>> list(generator_chain(5, lambda n: iter(range(1, n)), lambda i: iter(range(1, i + 1))))
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4]

The advantage is, that this is independent of the number of dependant generators you have.
Also, this function does not use recursion so it is safe to use even with large generator counts.

	Parameters

	
	initial_data – The initial data that is passed to the first generator factory.

	*factories – The generator factories. Each of them gets passed its predecessors data and has to return an iterable.
The data from this iterable is passed to the next factory.

	Yields

	Every data item yielded by the generators of the final factory.

	
class cached_property(getter, slot=None)

	Bases: property [https://docs.python.org/3.6/library/functions.html#property]

Property with caching.

An extension of the builtin property [https://docs.python.org/3.6/library/functions.html#property], that caches the value after the first access.
This is useful in case the computation of the property value is expensive.

Use it just like a regular property decorator. Cached properties cannot have a setter.

Example

First, create a class with a cached property:

>>> class MyClass:
... @cached_property
... def my_property(self):
... print('my_property called')
... return 42
>>> instance = MyClass()

Then, access the property and get the computed value:

>>> instance.my_property
my_property called
42

Now the result is cached and the original method will not be called again:

>>> instance.my_property
42

	
__init__(getter, slot=None)

	Use it as a decorator:

>>> class MyClass:
... @cached_property
... def my_property(self):
... return 42

The slot argument specifies a class slot to use for caching the property. You should use the
slot_cached_property decorator instead as that is more convenient.

	Parameters

	
	getter – The getter method for the property.

	slot – Optional slot to use for the cached value. Only relevant in classes that use slots.
Use slot_cached_property instead.

	Returns

	The wrapped property [https://docs.python.org/3.6/library/functions.html#property] with caching.

	
slot_cached_property(slot)

	Property with caching for classes with slots.

This is a wrapper around cached_property to be used with classes that have slots.
It provides an extension of the builtin property [https://docs.python.org/3.6/library/functions.html#property], that caches the value in a slot after the first access.
You need to specify which slot to use for the cached value.

Example

First, create a class with a cached property and a slot to hold the cached value:

>>> class MyClass:
... __slots__ = ('_my_cached_property',)
...
... @slot_cached_property('_my_cached_property')
... def my_property(self):
... print('my_property called')
... return 42
...
>>> instance = MyClass()

Then, access the property and get the computed value:

>>> instance.my_property
my_property called
42

Now the result is cached and the original method will not be called again:

>>> instance.my_property
42

	Parameters

	slot – The name of the classes slot to use for the cached value.

	Returns

	The wrapped cached_property.

	
extended_euclid(a: int, b: int) → Tuple[int, int, int]

	Extended Euclidean algorithm that computes the Bézout coefficients as well as \(gcd(a, b)\)

Returns x, y, d where x and y are a solution to \(ax + by = d\) and \(d = gcd(a, b)\).
x and y are a minimal pair of Bézout’s coefficients.

See Extended Euclidean algorithm [https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm] or
Bézout’s identity [https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity] for more information.

Example

Compute the Bézout coefficients and GCD of 42 and 12:

>>> a, b = 42, 12
>>> x, y, d = extended_euclid(a, b)
>>> x, y, d
(1, -3, 6)

Verify the results:

>>> import math
>>> d == math.gcd(a, b)
True
>>> a * x + b * y == d
True

	Parameters

	
	a – The first integer.

	b – The second integer.

	Returns

	A tuple with the Bézout coefficients and the greatest common divider of the arguments.

	
base_solution_linear(a: int, b: int, c: int) → Iterator[Tuple[int, int]]

	Yield solutions for a basic linear Diophantine equation of the form \(ax + by = c\).

First, the equation is normalized by dividing \(a, b, c\) by their gcd.
Then, the extended Euclidean algorithm (extended_euclid()) is used to find a base solution \((x_0, y_0)\).

All non-negative solutions are generated by using that the general solution is \((x_0 + b t, y_0 - a t)\).
Because the base solution is one of the minimal pairs of Bézout’s coefficients, for all non-negative solutions
either \(t \geq 0\) or \(t \leq 0\) must hold. Also, all the non-negative solutions are consecutive with
respect to \(t\).

Hence, by adding or subtracting \(a\) resp. \(b\) from the base solution, all non-negative solutions can
be efficiently generated.

	Parameters

	
	a – The first coefficient of the equation.

	b – The second coefficient of the equation.

	c – The constant of the equation.

	Yields

	Each non-negative integer solution of the equation as a tuple (x, y).

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If any of the coefficients is not a positive integer.

Glossary

	syntactic

	An Expression is syntactic iff it contains neither associative nor commutative operations and also
does not contain sequence wildcards (i.e. wildcards with
fixed_size set to False).

	constant

	An Expression is constant iff it does not contain any
Wildcard.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 matchpy	

 	
 	
 matchpy.expressions.constraints	

 	
 	
 matchpy.expressions.expressions	

 	
 	
 matchpy.expressions.functions	

 	
 	
 matchpy.expressions.substitution	

 	
 	
 matchpy.functions	

 	
 	
 matchpy.matching.bipartite	

 	
 	
 matchpy.matching.many_to_one	

 	
 	
 matchpy.matching.one_to_one	

 	
 	
 matchpy.matching.syntactic	

 	
 	
 matchpy.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (Constraint method)

 	__eq__() (Constraint method)

 	__getitem__() (Expression method)

 	(Operation method)

 	__getnewargs__() (ReplacementRule method)

 	__hash__() (Constraint method)

 	__init__() (BipartiteGraph method)

 	(CustomConstraint method)

 	(DiscriminationNet method)

 	(EqualVariablesConstraint method)

 	(Expression method)

 	(FlatTerm method)

 	(ManyToOneMatcher method)

 	(ManyToOneReplacer method)

 	(Operation method)

 	(Pattern method)

 	(SequenceMatcher method)

 	(Symbol method)

 	(SymbolWildcard method)

 	(Wildcard method)

 	(cached_property method)

 	
 	__new__() (ReplacementRule static method)

 	__repr__() (ReplacementRule method)

 	_asdict() (ReplacementRule method)

 	_collect_variable_renaming() (matchpy.matching.many_to_one.ManyToOneMatcher class method)

 	_combined_wildcards_iter() (FlatTerm static method)

 	_flatterm_iter() (matchpy.matching.syntactic.FlatTerm class method)

 	_generate_net() (matchpy.matching.syntactic.DiscriminationNet class method)

 	_internal_add() (ManyToOneMatcher method)

 	_make() (matchpy.functions.ReplacementRule class method)

 	_replace() (ReplacementRule method)

A

 	
 	add() (DiscriminationNet method)

 	(ManyToOneMatcher method)

 	(ManyToOneReplacer method)

 	(SequenceMatcher method)

 	Arity (class in matchpy.expressions.expressions)

 	arity (Operation attribute)

 	
 	as_graph() (BipartiteGraph method)

 	(DiscriminationNet method)

 	(ManyToOneMatcher method)

 	(SequenceMatcher method)

 	associative (Operation attribute)

 	AssociativeOperation (class in matchpy.expressions.expressions)

 	Atom (class in matchpy.expressions.expressions)

B

 	
 	base_solution_linear() (in module matchpy.utils)

 	
 	binary (Arity attribute)

 	BipartiteGraph (class in matchpy.matching.bipartite)

C

 	
 	cached_property (class in matchpy.utils)

 	can_match() (matchpy.matching.syntactic.SequenceMatcher class method)

 	clear() (BipartiteGraph method)

 	collect_symbols() (Expression method)

 	(Operation method)

 	(Symbol method)

 	collect_variables() (Expression method)

 	(Operation method)

 	commutative (Operation attribute)

 	
 	commutative_sequence_variable_partition_iter() (in module matchpy.utils)

 	CommutativeOperation (class in matchpy.expressions.expressions)

 	constant

 	Constraint (class in matchpy.expressions.constraints)

 	constraint_vars (ManyToOneMatcher attribute)

 	constraints (ManyToOneMatcher attribute)

 	contains_variables_from_set() (in module matchpy.expressions.functions)

 	create_operation_expression() (in module matchpy.expressions.functions)

 	CustomConstraint (class in matchpy.expressions.constraints)

D

 	
 	DiscriminationNet (class in matchpy.matching.syntactic)

 	
 	dot() (Wildcard static method)

E

 	
 	edges() (BipartiteGraph method)

 	edges_with_labels() (BipartiteGraph method)

 	empty() (matchpy.matching.syntactic.FlatTerm class method)

 	enum_maximum_matchings_iter() (in module matchpy.matching.bipartite)

 	
 	EqualVariablesConstraint (class in matchpy.expressions.constraints)

 	Expression (class in matchpy.expressions.expressions)

 	extended_euclid() (in module matchpy.utils)

 	extract_substitution() (Substitution method)

F

 	
 	finals (ManyToOneMatcher attribute)

 	find_matching() (BipartiteGraph method)

 	
 	fixed_integer_vector_iter() (in module matchpy.utils)

 	fixed_size (Wildcard attribute)

 	FlatTerm (class in matchpy.matching.syntactic)

G

 	
 	generator_chain() (in module matchpy.utils)

 	get_head() (in module matchpy.expressions.functions)

 	
 	get_short_lambda_source() (in module matchpy.utils)

 	get_variables() (in module matchpy.expressions.functions)

 	global_constraints (Pattern attribute)

H

 	
 	head (Expression attribute)

 	(Operation attribute)

 	(Wildcard attribute)

I

 	
 	infix (Operation attribute)

 	is_anonymous() (in module matchpy.expressions.functions)

 	is_constant (Expression attribute)

 	is_constant() (in module matchpy.expressions.functions)

 	is_match() (DiscriminationNet method)

 	(ManyToOneMatcher method)

 	(in module matchpy.functions)

 	
 	is_operation() (in module matchpy.matching.syntactic)

 	is_symbol_wildcard() (in module matchpy.matching.syntactic)

 	is_syntactic (Expression attribute)

 	(FlatTerm attribute)

 	(Pattern attribute)

 	is_syntactic() (in module matchpy.expressions.functions)

L

 	
 	limited_to() (BipartiteGraph method)

 	
 	local_constraints (Pattern attribute)

M

 	
 	make_dot_variable() (in module matchpy.expressions.expressions)

 	make_plus_variable() (in module matchpy.expressions.expressions)

 	make_star_variable() (in module matchpy.expressions.expressions)

 	make_symbol_variable() (in module matchpy.expressions.expressions)

 	ManyToOneMatcher (class in matchpy.matching.many_to_one)

 	ManyToOneReplacer (class in matchpy.matching.many_to_one)

 	match() (DiscriminationNet method)

 	(ManyToOneMatcher method)

 	(SequenceMatcher method)

 	(in module matchpy.matching.one_to_one)

 	match_anywhere() (in module matchpy.matching.one_to_one)

 	match_head() (in module matchpy.expressions.functions)

 	
 	matchpy.expressions.constraints (module)

 	matchpy.expressions.expressions (module)

 	matchpy.expressions.functions (module)

 	matchpy.expressions.substitution (module)

 	matchpy.functions (module)

 	matchpy.matching.bipartite (module)

 	matchpy.matching.many_to_one (module)

 	matchpy.matching.one_to_one (module)

 	matchpy.matching.syntactic (module)

 	matchpy.utils (module)

 	merged() (matchpy.matching.syntactic.FlatTerm class method)

 	min_count (Wildcard attribute)

N

 	
 	name (Operation attribute)

 	(Symbol attribute)

 	
 	new() (Operation static method)

 	nullary (Arity attribute)

O

 	
 	one_identity (Operation attribute)

 	OneIdentityOperation (class in matchpy.expressions.expressions)

 	op_iter() (in module matchpy.expressions.functions)

 	
 	op_len() (in module matchpy.expressions.functions)

 	Operation (class in matchpy.expressions.expressions)

 	operation (SequenceMatcher attribute), [1]

 	optional() (Wildcard static method)

P

 	
 	Pattern (class in matchpy.expressions.expressions)

 	pattern (ReplacementRule attribute)

 	pattern_vars (ManyToOneMatcher attribute)

 	patterns (ManyToOneMatcher attribute)

 	
 	plus() (Wildcard static method)

 	polyadic (Arity attribute)

 	preorder_iter() (Expression method)

 	(in module matchpy.expressions.functions)

 	preorder_iter_with_position() (in module matchpy.expressions.functions)

R

 	
 	register_operation_factory() (in module matchpy.expressions.functions)

 	register_operation_iterator() (in module matchpy.expressions.functions)

 	rename (ManyToOneMatcher attribute)

 	rename() (Substitution method)

 	rename_variables() (in module matchpy.expressions.functions)

 	replace() (in module matchpy.functions)

 	(ManyToOneReplacer method)

 	
 	replace_all() (in module matchpy.functions)

 	replace_all_post_order() (in module matchpy.functions)

 	replace_many() (in module matchpy.functions)

 	replace_post_order() (ManyToOneReplacer method)

 	replacement (ReplacementRule attribute)

 	ReplacementRule (class in matchpy.functions)

 	root (ManyToOneMatcher attribute)

S

 	
 	SequenceMatcher (class in matchpy.matching.syntactic)

 	slot_cached_property() (in module matchpy.utils)

 	solve_linear_diop() (in module matchpy.utils)

 	star() (Wildcard static method)

 	states (ManyToOneMatcher attribute)

 	substitute() (in module matchpy.functions)

 	
 	Substitution (class in matchpy.expressions.substitution)

 	Symbol (class in matchpy.expressions.expressions)

 	symbol() (Wildcard static method)

 	symbol_type (SymbolWildcard attribute)

 	symbols (Expression attribute)

 	SymbolWildcard (class in matchpy.expressions.expressions)

 	syntactic

T

 	
 	ternary (Arity attribute)

 	
 	try_add_variable() (Substitution method)

U

 	
 	unary (Arity attribute)

 	
 	union() (Substitution method)

 	union_with_variable() (Substitution method)

V

 	
 	variables (Constraint attribute)

 	(CustomConstraint attribute)

 	(EqualVariablesConstraint attribute)

 	(Expression attribute)

 	
 	variadic (Arity attribute)

W

 	
 	weak_composition_iter() (in module matchpy.utils)

 	Wildcard (class in matchpy.expressions.expressions)

 	with_renamed_vars() (Constraint method)

 	(CustomConstraint method)

 	(EqualVariablesConstraint method)

 	(Expression method)

 	(Operation method)

 	(Symbol method)

 	(SymbolWildcard method)

 	(Wildcard method)

 	
 	without_edge() (BipartiteGraph method)

 	without_nodes() (BipartiteGraph method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 MatchPy

 		
 Linear Algebra Example

 		
 matchpy package

 		
 matchpy.expressions package

 		
 matchpy.expressions.constraints module

 		
 matchpy.expressions.expressions module

 		
 matchpy.expressions.functions module

 		
 matchpy.expressions.substitution module

 		
 matchpy.matching package

 		
 matchpy.matching.bipartite module

 		
 matchpy.matching.many_to_one module

 		
 matchpy.matching.one_to_one module

 		
 matchpy.matching.syntactic module

 		
 matchpy.functions module

 		
 matchpy.utils module

 		
 Glossary

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

