
MassiveSearchBundle Documentation
Release stable

March 03, 2015

Contents

1 Installation 3

2 Mapping 5

3 Indexing 7

4 Searching 9

5 Commands 11
5.1 massive:search:query . 11
5.2 massive:search:status . 11

6 Extending 13
6.1 Factory . 13
6.2 Metadata Drivers . 13
6.3 Hit Listeners . 14

i

ii

MassiveSearchBundle Documentation, Release stable

The MassiveSearchBundle provides:

• An abstraction for search engine libraries.

• A way to map classes which you want to index.

By default it is configured to use the Zend Lucene library, which must be installed (see the suggests and
require-dev sections in composer.json.

Contents 1

MassiveSearchBundle Documentation, Release stable

2 Contents

CHAPTER 1

Installation

You can install the MassiveSearchBundle by adding it to composer.json:

"require": {
...
"massive/search-bundle": "0.1"

}

And then include it in your AppKernel:

class AppKernel
{

public function registerBundles()
{

return array(
// ...
new \Massive\Bundle\SearchBundle\MassiveSearchBundle(),

);
}

}

You will also need to include a search library. The search libraries are listed in the suggests section of
composer.json, and exact package versions can also be found in the require-dev section (as all the libraries
are tested).

For example, to enable the ZendLucene search library:

"require": {
...
"zendframework/zend-stdlib": "2.3.1 as 2.0.0rc5",
"zendframework/zendsearch": "2.*",

}

3

MassiveSearchBundle Documentation, Release stable

4 Chapter 1. Installation

CHAPTER 2

Mapping

The MassiveSearchBundle requires that you define which objects should be indexed through mapping. Currently only
XML mapping supported:

This mapping will cause the fields title and body to be indexed into an index named product using the ID
obtained from the objects id field. (We use the Symfony PropertyAccess component, so it works on properties and
methods alike).

Note:

• This file MUST be located in YourBundle/Resources/config/massive-search

• It must be named after the name of your class (without the namespace) e.g. Product.xml

• Your Product class MUST be located in one of the following folders: - YourBundle/Document -
YourBundle/Entity - YourBundle/Model

Note: This is an early version of the bundle, it will support explict non-magic mapping in the future.

5

http://symfony.com/doc/current/components/property_access/index.html

MassiveSearchBundle Documentation, Release stable

6 Chapter 2. Mapping

CHAPTER 3

Indexing

Once you have created your mapping files you can index your objects, for example after saving it.

The bundle provides the massive_search.search_manager object which is the only service which you will
need to access.

$product = new Product();

// ... populate the product, persist it, whatever.

$searchManager = $this->get(’massive_search.search_manager’);
$searchManager->index($product);

The SearchManager will know from the mapping how to index the product, and it will be indexed using the configured
search library adapter.

Note: The bundle automatically removes existing documents with the same ID. The ID mapping is mandatory.

7

MassiveSearchBundle Documentation, Release stable

8 Chapter 3. Indexing

CHAPTER 4

Searching

As with the indexing, searching for results is also done with the SearchManager.

Currently only supported by query string is supported. The query string is passed directly to the search library:

$hits = $searchManager->createSearch(’My Product’)->index(’product’)->execute();

foreach ($hits as $hit) {
echo $hit->getScore();

// @var Massive\Bundle\SearchBundle\Search\Document
$document = $hit->getDocument();

// retrieve the indexed documents "body" field
$body = $document->getField(’body’);

// retrieve the indexed ID of the document
$body = $document->getId();

}

9

MassiveSearchBundle Documentation, Release stable

10 Chapter 4. Searching

CHAPTER 5

Commands

The MassiveBuildBundle provides some commands.

5.1 massive:search:query

Perform a query from the command line:

$ php app/console massive:search:query "Foobar" --index="barfoo"
+------------------+--------------------------------------+-----------+-------------+-----------+------------------------+
| Score | ID | Title | Description | Url | Class |
+------------------+--------------------------------------+-----------+-------------+-----------+------------------------+
| 0.53148467371593 | ac984681-ca92-4650-a9a6-17bc236f1830 | Structure | | structure | OverviewStructureCache |
+------------------+--------------------------------------+-----------+-------------+-----------+------------------------+

5.2 massive:search:status

Display status information for the current search implementation:

$ php app/console massive:search:status
+-------------+--+
| Field | Value |
+-------------+--+
| Adapter | Massive\Bundle\SearchBundle\Search\Adapter\ZendLuceneAdapter |
| idx:product | {"size":11825,"nb_files":36,"nb_documents":10} |
+-------------+--+

11

MassiveSearchBundle Documentation, Release stable

12 Chapter 5. Commands

CHAPTER 6

Extending

You can extend the bundle by customizing the Factory class and with custom metadata drivers.

6.1 Factory

The factory service can be customized, enabling you to instantiate your own classes for use in any listeners which you
register. For example, you want to add a “thumbnail” field to the Document object.

namespace My\Namespace;

use Massive\Bundle\SearchBundle\Search\Factory as BaseFactory;

class MyFactory extends BaseFactory
{

public function makeDocument()
{

return MyCustomDocument();
}

}

You must then register your factory as a service and register the ID of that service in your main application configura-
tion:

massive_search:
services:

factory: my.factory.service

6.2 Metadata Drivers

Simply extend the Metadata\Driver\DriverInterface and add the tag
massive_search.metadata.driver tag to your implementations service definition.

<service id="massive_search.metadata.driver.xml" class="%massive_search.metadata.driver.xml.class%">
<argument type="service" id="massive_search.metadata.file_locator" />
<tag type="massive_search.metadata.driver" />

</service>

13

MassiveSearchBundle Documentation, Release stable

6.3 Hit Listeners

The SearchManager will fire an event of type HitEvent in the Symfony EventDispatcher named
massive_search.hit.

The HitEvent contains the hit object and the reflection class of the object which was originally indexed.

For example:

<?php

namespace Sulu\Bundle\SearchBundle\EventListener;

use Massive\Bundle\SearchBundle\Search\Event\HitEvent;

class HitListener
{

public function onHit(HitEvent $event)
{

$reflection = $event->getDocumentReflection();
if (false === $reflection->isSubclassOf(’MyClass’)) {

return;
}

$document = $event->getDocument();
$docuemnt->setUrl(’Foo’ . $document->getUrl());

}
}

14 Chapter 6. Extending

	Installation
	Mapping
	Indexing
	Searching
	Commands
	massive:search:query
	massive:search:status

	Extending
	Factory
	Metadata Drivers
	Hit Listeners

