
marvin Documentation
Release 0.3

Justus Adam

Aug 04, 2017

Contents

1 Links 3

2 A quick snippet of code 5

3 Testing and Talking 7

4 Contents: 9
4.1 Getting started . 9
4.2 Writing marvin scripts . 11
4.3 The abstract data model of marvin . 17
4.4 Runtime configuration . 18
4.5 Files . 20
4.6 External scripts . 21
4.7 Logging in marvin . 21
4.8 The marvin preprocessor (marvin-pp) . 23
4.9 Adapters . 24
4.10 Strings and String conversions (in Haskell) . 28
4.11 Lens quickstart . 29
4.12 marvin-interpolate, A simple string interpolation library . 30
4.13 API breaking changes . 33
4.14 FAQ . 33

5 Indices and tables 35

i

ii

marvin Documentation, Release 0.3

Marvin is a Haskell framework for creating chat bots, inspired by Hubot. Marvin aims to recreate the ease of use
and straightforward API of Hubot, and combine it with the safety guarantees and purity of Haskell and the higher
efficiency.

If you are new to marvin you may want to begin with the Getting started section or the how to script with marvin
section to get a sense of how scripting works with marvin.

Contents 1

https://hubot.github.com

marvin Documentation, Release 0.3

2 Contents

CHAPTER 1

Links

• Hackage

• GitHub Repository

• Bugtracker

• Documentation repository and bugtracker

• Slack channel (signup instructions)

3

https://hackage.haskell.org/package/marvin
https://github.com/JustusAdam/marvin
https://github.com/JustusAdam/marvin/issues
https://github.com/JustusAdam/marvin-docs
https://github.com/JustusAdam/marvin-docs/issues

marvin Documentation, Release 0.3

4 Chapter 1. Links

CHAPTER 2

A quick snippet of code

module MyScript where

import Marvin.Prelude

script :: (IsAdapter a, SupportsFiles a) => ScriptInit a
script = defineScript "my-script" $ do

hear "sudo (.+)" $ do
match <- getMatch

reply $(isL "All right, i'll do #{match !! 1}")

respond "repeat" $ do
message <- getMessage

send $(isL "You wrote #{message}")

respond "what is in file ([\\w\\._/-]+)\\??" $ do
match <- getMatch
let file = match !! 1

contents <- liftIO $ readFile file

send contents

respond "upload file ([\\w\\._/-]+)" $ do
[_, filepath] <- getMatch
chan <- getChannel
f <- sendFile filepath [chan]
case res of

Left err -> send $(isL "Failed to share file: #{err}")
Right _ -> send "File successfully uploaded"

enterIn "random" $ do
user <- getUser
send $(isL "Hello #{user^.username} welcome to the random channel!")

5

marvin Documentation, Release 0.3

fileSharedIn "announcements" $ do
file <- getFile
safeFileToDir file "shared-files"

6 Chapter 2. A quick snippet of code

CHAPTER 3

Testing and Talking

There’s a slack channel where you can ask questions or play around with a test instance of marvin.

It’s currently invite-only, so send me an email if you would like to join.

7

https://github.com/JustusAdam/marvin/blob/master/test/integration/slack/Script1.hs
mailto:dev@justus.science

marvin Documentation, Release 0.3

8 Chapter 3. Testing and Talking

CHAPTER 4

Contents:

Getting started

Marvin projects basically comprise of a collection of individual scripts and a main file which ties them all together.

To start a new project marvin provides an initializer, called marvin-init. The initializer will set up a new project
for you, including a sample script, the main file and the Haskell project configuration to make compiling smooth and
easy.

Note: Always run marvin-init in an empty directory, as it will place certain files there and overwrite existing
files with the same name.

If you install marvin through cabal (cabal install marvin) or stack (stack install marvin) it will
install the initializer as well and add it to your path. To see the options of the initializer run marvin-init --help
on your command line.

marvin-init ~ make a new marvin project

Usage: marvin-init BOTNAME [-a|--adapter ID]

Available options:
-h,--help Show this help text
-a,--adapter ID id of the adapter to use

Information on Adapters and their id’s can be found in the Adapters section.

Installing marvin

You can get a release version of marvin on Hackage

However the recommended way to install this package is via stack. The marvin package is part if the stack lts as of
lts-8.5. You can let stack do the resolving for you if you’ve added marvin in your .cabal file you can simply run

9

https://www.haskell.org/cabal/
https://docs.haskellstack.org
https://hackage.haskell.org/package/marvin
https://docs.haskellstack.org

marvin Documentation, Release 0.3

stack solver --update-config and it will choose the right versions for you.

After that stack build will pull and install marvin for you.

Important: Marvin uses the text-icu library for regexes. It therefore requires the -dev version of the icu C
library.

Linux Simply install the -dev version of the icu library.

For instance apt install libicu-dev on Ubuntu.

OSX You also need the icu library. If you are using Homebrew you are looking for the icu4c package (brew
install icu4c). Because OSX also provides some headers you will also need to link the headers manually.
If you are using stack to build your projects the easiest way is to add the following lines to $HOME/.stack/
config.yaml.

extra-include-dirs:
- /usr/local/opt/icu4c/include

extra-lib-dirs:
- /usr/local/opt/icu4c/lib

alternatively you can pass the paths via --extra-include-dirs and extra-lib-dirs to the stack
build and stack install command.

Scripts

The functionality for your marvin installation is split into individual parts, called scripts. Each script is some Haskell
structure created with defineScript. Scripts can be user defined or be included externally.

External scripts

You can include external scripts in the form of a library. To do this you must add the library name to the .cabal and
stack.yaml file of your project.

You can find more information on external scripts and an example external-scripts.json file in the external
scripts section

User defined scripts

You can also write some scripts yourself. Typically scripts are a Haskell source file which defines a script value.

As an example, a “hello world” script.

-- file named "HelloWorld.hs" (must be the same as module name + ".hs")
module HelloWorld where

import Marvin.Prelude

-- This type signature is necessary to help the compiler
script :: IsAdapter a => ScriptInit a
script = defineScript

"hello-world" -- script name (for logging and config)
$ do -- here follows the actual script definition

...

10 Chapter 4. Contents:

marvin Documentation, Release 0.3

You can find more information on the actual script content in the Writing marvin scripts section.

The main file

This file (ususally called Main.hs) ties the scripts together and defines the Adapters which your marvin project uses.

Note: If you use the initializer marvin-init the main file will already be defined for you and registered in the
.cabal file.

The file must be a Haskell source file i.e. end with .hs and be mentioned in the main-is section of your .cabal
file. It will look someting like this:

-- import marvin runner
import Marvin.Run
-- imports chosen adapter
import Marvin.Adapter.Slack

-- import all scripts
import qualified HelloWorld
import qualified MyScript

-- list of all scripts to use
scripts :: [ScriptInit SlackRTMAdapter]
scripts = [HelloWorld.script

, MyScript.script
]

main :: IO ()
main = runMarvin scripts

You can write the main file yourself, but this can get tedious as you add more and more scripts. To make this easier
Marvin includes a utility which allows you to let the main file be generated automatically, called The marvin pre-
processor (marvin-pp). marvin-pp creates the main file dynamically at compile time by scanning your project for
scripts. You can add external scripts by adding an external-scripts.json file and marvin-pp will add those to your
main file then.

To use marvin-pp simply add an empty main file, except for this line: {-# OPTIONS_GHC -F -pgmF
marvin-pp -optF --adapter -optF slack-rtm #-} (this is what marvin-init does as well).

Important: The marvin-pp generator is a compile time preprocessor and thus its output is often cached by your
build system. As a result you have to run cabal clean or stack clean after you added or removed a script to
force the build system to regenerate the main file.

Writing marvin scripts

Each script in marvin is a Haskell module that defines a value script with the type ScriptInit. This value
contains the code necessary to set up the script and will be run automatically by the marvin runner at startup. It returns
the script.

It does not matter where in the module you define this value, only that it sits at the top level so that the main file can
import it. You can define arbitrary other values in the top level of your script, such as mutable variables and you can
import any Haskell library you like including other marvin scripts (for Data sharing).

4.2. Writing marvin scripts 11

marvin Documentation, Release 0.3

Script boilerplate

Since each script is a Haskell module the module name and the file name must match. I.e. a script module MyScript
must be in a file called MyScript.hs. Furthermore the module and file name may only contain word characters and
the underscore _ and must begin with an upper case letter.

Note: A file which starts with an underscore _ or dot . is ignored by the automatic script discovery of the main file.
This is a way to hide unfinished scripts from being included in the program.

When you have created your source file you should first import marvins prelude Marvin.Prelude (something like
marvins standard library). It contains all the marvin related functions you will need.

Hint: You dont have to use Marvin.Prelude. The prelude is just a convenient collection of other modules, you
can also import just the ones you need directly, but this is only recommended for people experienced with Haskell.

-- File: MyScript.hs
module MyScript where -- Module definition (must match filename)

-- import the prelude
import Marvin.Prelude

-- import other modules and libraries you need

script :: IsAdapter a => ScriptInit a
script = defineScript "my-script" $ do

-- here follows the actual scripting part

Lastly we define a value called script with the type signature IsAdapter a => ScriptInit a. This com-
plicated looking type signature ensures our script will work with any adapter that satisfies the adapter type class
(adapter interface). Here we call the function defineScript which takes an id string and an initializer block.

The id string is used fo two things

1. Scoping the config, i.e. the config for this script will be stored in the scripts.<id-string> key.

2. Logging. All logging messages from this script will be prefixed with scripts.<id-string>.

Usually the id string is some variation on the name of the script file and module.

The initializer block is where the actual scripting starts.

The initializer block

The initializer block is the code that is run when you start marvin.

First and foremost this block is used to add new reactions to your marvin script, which is most likely the main part of
your scripts functionality.

But you can do a variety of other things here such as define periodic tasks, read data and define mutable variables for
state tracking or data sharing.

12 Chapter 4. Contents:

http://hackage.haskell.org/package/marvin-0.2.0/docs/Marvin-Prelude.html

marvin Documentation, Release 0.3

The reaction Monad

data BotReacting a d r = ... deriving (Monad, MonadIO, MonadReader (BotActionState a
→˓d)

, MonadLogger, MonadLoggerIO)

The reaction monad offers basically four different capabilities.

1. MonadIO allows the user to execute arbitrary IO actions by lifting them with liftIO. This can be
things such as performing HTTP requests, reading files etc.

2. MonadReader (BotActionState a d) allows read access to the data carried by the monad. In
general you dont need to use this directly as functions such as getUser are much more convenient to use.
However the readable data you get by using ask contains not only the payload which is of type d and
different depending on each handler function, but also access to the adapter, the config and script id. And
is therefore capable of

3. Accessing the adapter. This enables the handler to communicate. Functions such as send and messageChannel
can be used to send messages to the chat application.

4. MonadLogger(IO) Allows you to write log messages using functions from the monad-logger package by
importing Control.Monad.Logging.

Reaction functions

There are several functions for reacting to some event happening in you chat application. The type of reaction in-
fluences the kind of data available in the reaction handler. The data available in the handler can be seen listed in a
tuple in the BotReacting monad. For instance BotReacting a (User' a, Channel' a, Message,
Match, TimeStamp) () will have access to a user, a channel, a message and so on. Functions for getting access
to this data are listed in functions for handlers

The basic structure of a reaction is <reaction-type> <matcher> <handler>.

<reaction-type> Is one of the reaction functions, like hear or respond (more are to follow).

This also determines the type of data available in the handler.

<matcher> Is some selection criterium for which events you wish to handle, and also often influences the contents
of the data available to the handler.

For instance for hear and respond this is a regex. The message will only be handled if the regex matches, and
the result of the match, as well as the original message is available to the handler later.

<handler> Arbitrary code which runs whenever a matched event occurs.

Has access to message specific data (like a regex match of the message). Can communicate with the chat (send
messages to people or channels).

Reacting to messages

There are two ways to react to a text message. A reaction defined with hear will trigger on any incoming message
which matches its defined pattern (a regular expresion). By contrast reactions defined with respond will only trigger
if the bot itself is being adressed. How one adresses the bot depends on the concrete adapter. However typically
prefixing the message with the bots name or sending a direct message (if the adapter supports this) to the bot ususally
trigger these reactions.

4.2. Writing marvin scripts 13

https://hackage.haskell.org/package/monad-logger

marvin Documentation, Release 0.3

In the handler that is being attached you have access to the match groups of the regex with getMatch, the user who
sent the message (getUser), the full text of the message (getMessage), the channel to which the message was
posted (getChannel) and a timestamp for when the message arrived (getTimeStamp).

The type signature for both is the same.

hear, respond :: Regex -> BotReacting a (User' a, Channel' a, Match, Message,
→˓TimeStamp) () -> ScriptDefinition a ()
hear regex handler = ...
respond regex handler = ...

A working example could be something like this:

defineScript "test" $ do

hear "\\bmarvin\\b" $ do
user <- getUser

send $(isL "Yes #{user^.username}, that is my name")

respond "^\\bsudo\\b(.+)" $ do
match <- getMatch
send #(isL "I will do #{match !! 1} immediately!"

hear ".*" $ do
channel <- getChannel
unless (channel^.name == "#nsa") $ do

message <- getMessage
messageChannel "#nsa" $(isL "Psst, this message was just posted in #

→˓{channel^.name}: #{message}")

Reacting to the topic

You can react to changes in the topic in two different ways. Using topic the handler will trigger whenever the topic
in any channel changes. Using topicIn you can provide the name of a channel which you wish to watch for changes
in the topic and the handler will only be run for changes to the topic in the specified channel.

In the handler you have access to the user which triggered the change (getUser), the channel in which the
topic was changed (getChannel), the new topic (getTopic) and a timestamp for when this change occurred
(getTimeStamp).

topic :: BotReacting a (User' a, Channel' a, Topic, TimeStamp) () -> ScriptDefinition
→˓a ()
topic handler = ...

topicIn :: Text -> BotReacting a (User' a, Channel' a, Topic, TimeStamp) () ->
→˓ScriptDefinition a ()
topicIn channelName handler = ...

Note: The Topic type is just for readability, it is just an alternate name for Text.

14 Chapter 4. Contents:

marvin Documentation, Release 0.3

Reacting to changes in channel participants

Marvin can react both to people joining and leaving channels. enter triggers when a user enters any channel in
which the bot is also participating. enterIn takes as an argument the name of a channel and ony triggers if a user
joins that specific channel. exit triggers when a user leaves any channel in which the bot is also participating.
exitFrom takes as an argument the name of a channel and ony triggers if a user leaves that specific channel.

All of these handlers have access to the channel which the user joined/left (getChannel), the user that joined/left
(getUser) and a timestamp for when this occurred (getTimeStamp)

enter :: BotReacting a (User' a, Channel' a, TimeStamp) () -> ScriptDefinition a ()
enter handler = ...

enterIn :: Text -> BotReacting a (User' a, Channel' a, TimeStamp) () ->
→˓ScriptDefinition a ()
enterIn channelName handler = ...

exit :: BotReacting a (User' a, Channel' a, TimeStamp) () -> ScriptDefinition a ()
exit handler = ...

exitFrom :: Text -> BotReacting a (User' a, Channel' a, TimeStamp) () ->
→˓ScriptDefinition a ()
exitFrom channelName handler = ...

Reacting to files

The fileShared handler is invoked any time a file is shared in any channel the bot is participating in. By contrast
the fileSharedIn handler takes as its first argument a channel name and only reacts to files being shared in that
channel.

The handlers provide access to the user who shared the file (getUser), the channel in which the file was shared
(getChannel), the RemoteFile object, containing information about the file being shared (getRemoteFile)
and a timestamp for when the file was shared getTimeStamp).

fileShared :: BotReacting a (User' a, Channel' a, TimeStamp) () -> ScriptDefinition a
→˓()
fileShared handler = ...

fileSharedFrom :: Text -> BotReacting a (User' a, Channel' a, TimeStamp) () ->
→˓ScriptDefinition a ()
fileSharedFrom channelName handler = ...

Generic functions for handlers

The send function

send :: (IsAdapter a, Get m (Channel' a)) => Text -> BotReacting a m ()
send msg = ...

The send function is used to post messages to the same channel from which the event that triggered the handler came.

Explanation of the type signature:

IsAdapter a We require the saved a in BotReacting to be an adapter. This means this function actually
interacts with the chat service (sends a message in this case).

4.2. Writing marvin scripts 15

marvin Documentation, Release 0.3

Get m (Channel' a) The data in the monad must have an originating Channel in it somewhere to which the
message will be posted. This is true for most handler functions, for instance hear, respond, enter all enter, exit
and topic handlers.

The reply function

reply :: (IsAdapter a, Get m (User' a), Get m (Channel' a)) => Text -> BotReacting a
→˓m ()
reply msg = ...

Reply is similar to send. It posts back to the same channel the original message came from, but it also references the
author of the original message.

The messageChannel function

messageChannel :: (HasConfigAccess m, AccessAdapter m, IsAdapter (AdapterT m)) => L.
→˓Text -> L.Text -> m ()
messageChannel channelName message = ...

Similar to send and reply this functions sends a message to the channel with the (human readable) channelName. If
instead of a name you have a Channel a object, you can use messageChannel’.

The messageChannel' function

messageChannel' :: (HasConfigAccess m, AccessAdapter m, IsAdapter (AdapterT m),
→˓MonadIO m) => Channel (AdapterT m) -> L.Text -> m ()
messageChannel' channel message = ...

Like messgeChannel but references the channel by channel object, rather than name.

The getMatch function

getMatch :: HasMatch m => BotReacting a m Match

Retrieves the result of a regex match inside a handler monad whos state supports it. Examples are the handlers for
hear and respond.

Regex matches are a list of strings. The 0’th index is the full match, the following indexes are matched groups.

The getMessage function

getMessage :: Get m (Message a) => BotReacting a m (Message a)

Retrieves the respond structure for the message this handler is reacting to inside a handler monad whos state supports
it. Examples are the handlers for hear and respond.

16 Chapter 4. Contents:

marvin Documentation, Release 0.3

The getTopic function

getTopic :: HasTopic m => BotReacting a m Topic

This function is usable in handlers which react to changes of the topic of a channel. It returns the new topic.

Note: The Topic type is just for readability, it is just an alternate name for Text.

The getChannel function

getChannel :: Get m (Channel' a) => BotReacting a m (Channel a)

Usable in most handler functions, this function returns the channel in which some event occurred.

The getUser function

getUser :: Get m (User' a) => BotReacting a m User

Usable in all handler functions which involve an acting user (most). Returns the user who triggered an event.

Persistence

In memory

On disk

Periodic tasks

Data sharing

The abstract data model of marvin

The data model of marvin is that for many data types such as a User or a RemoteFile marvin leaves the concrete
representation of the data structure to the used adapter. This is the reason these structures always contain a type
variable for the adapter, like User a, Channel a or RemoteFile a. Adapters define these types as part of the
implementation of the IsAdapter or HasFiles typeclasses.

The concrete representation of these types of course depends on the adapters and as such we do not know what the
structure looks like. However to ensure some basic interactions marvins isAdapter and HasFiles typeclass place
constraints on the data types int he form of lens class superclasses.

Generally a Has<field> <stucture> <field-type> class means that structure has a reachable field of field-
type. For more thorough information on lenses see the Lens quickstart section, but for just some basics of lenses we
can use the operators .^ to access the field with the lens and .~ to set the field at the lens.

let user1 = ... :: User SomeAdapter
username = ... :: Lens' (User SomeAdapter) Text

4.3. The abstract data model of marvin 17

marvin Documentation, Release 0.3

x^.username -- returns the username

let y = x & username .~ "new_name"

y^.username - now returns "new_name"

Runtime configuration

Configuration for marvin is written in the configurator syntax.

The configuration is read-only, aka the program does not alter the config itself. However the config is also auto-reload,
meaning that the live system can adapt to changes in the config which are made while the system is running.

Therefore it is recommended that scripts using config values do not cache those values if possible, but reread them
instead.

Please note that the config refresh interval means that it takes up to a minute until changes to the config are live.

System config

Configuration pertaining to the system itself is stored under the “bot” key.

bot {
name = "my-bot"
logging = "INFO"
adapter = "slack-rtm"

}

Script config

Configuration for scripts is automatically scoped. Each script has access to a configuration stored under script.
<script-id> with the functions getConfigVal and requireConfigVal. And of course these scripts can
have nested config groups.

bot {
name = "my-bot"

}

script {
script-1 {

some-string = "foo"
some-int = 1337
bome-bool = true

}
script 2 {

nested-group {
val = false

}
name = "Trump"
capable = false

}
}

18 Chapter 4. Contents:

https://hackage.haskell.com/package/configurator

marvin Documentation, Release 0.3

Adapter config

Configuration pertaining to a particular adapter is stored under adapter.<adapter-name>. The exact nature of
the adapter config depends on the adapter itself.

bot {
name = "my-bot"
logging = "INFO"

}
adapter {

slack-rtm {
token = "eofk"

}
}

Example

An example config with all currently available config options (excludes script config as those are user defined).

bot {
String, one of WARNING, ERROR, INFO, DEBUG, optional, defaults to WARNING
Logging level for the bot
logging = "WARNING"

String, optional, default to "marvin", name for the bot
Also sometimes used to identify whether a given message should be interpreted

→˓as a command
name = "marvin"

String, one of the available adapter identifiers, optional, defaults to "slack-
→˓rtm"

Adapter to use in the main file.
Only used by the preprocessor.
adapter = "slack-rtm"

}

adapter {
shell {

String, filepath, optional.
If present records the history in this file
history-file = ""

}
slack-rtm {

token = "" # String, required. Authentication token for slack api
}
slack-events {

token = "" # String, required. This token is used to confirm recieved
→˓messages come from slack

boolean, defaults to true. Whether to use TLS for encryption.
Note that slack requires a webhook receiver to be tls protected.
Therefore this must be activated unless the server is behind a proxy using

→˓tls.
use-tls = true
certfile = "" # String (filepath), required if tls is used. As the server

→˓needs to use ssl, a certificate is required.
keyfile = "" # String (filepath), required if tls is used. As the server

→˓needs to use ssl, a certificate is required.

4.4. Runtime configuration 19

marvin Documentation, Release 0.3

port = 7000 # Integer, optional. Defaults to 7000. Port on which the server
→˓listens for requests.

}
telegram-poll {

token = "" # String, required. Authentication token for telegram api
polling-timeout = 120 # positive integer, optional. Timeout for long polling

→˓requests
}
telegram-push {

token = "" # String, required. Authentication token for telegram api

url = "https://..." # String, required. Url of this server. (target for the
→˓webhook)

use-tls = false # boolean, defaults to true. Whether to use TLS for
→˓encryption.

certfile = "" # String (filepath), required if tls is used. As the server
→˓needs to use ssl, a certificate is required.

keyfile = "" # String (filepath), required if tls is used. As the server
→˓needs to use ssl, a certificate is required.

port = 7000 # Integer, optional. Defaults to 7000. Port on which the server
→˓listens for requests.

}
}

Files

Some adapters support up- and download of files. Not all adapters support this and the individual interactions are
different between each of the adapters.

API

Marvin encodes its file interaction API in a separate typeclass SupportsFiles. Adapters can opt to implement this
class to support file interactions. The concrete structure of local and remote files and metadata differs between each
adapter. However the API enforces certain basic rules on the data.

Each adapter may implement additional custom functionality, but if you wish to be adapter agnostic, for instance when
implementing a library of reactions, you can rely on the API interface.

Remote Files

Remote files must have

• An optional name, available through the name lens

• An optional url, from which the file can be downloaded, available through the url lens

• An optional file type, available through the fileType lens

• A creation date, available through the creationDate lens

• and a size, available through the size lens

20 Chapter 4. Contents:

marvin Documentation, Release 0.3

All optional fields use lenses which return Maybe values.

Content of remote files can be downloaded using readTextFile or readFileBytes.

Local Files

Local files must have

• A name, available through the name lens

• content, which is either in-memory or on-disk, available through the content lens

• and an optional file type, available through the fileType lens

Local files can be created using the newLocalFile function and uploaded using shareFile.

Adapters which support the HasFiles class can emit the FileSharedEvent. This event can be handled with the
fileShared and fileSharedIn triggers.

External scripts

Since marvin scripts are just Haskell values adding external scripts is as easy as importing a library.

Assuming you use cabal or stack for building your project you need to add the library to your .cabal file. Each
library may define multiple scripts.

As with user scripts you need to wire the scripts into the main file.

If you manually create the main file, you add the script like a user script by importing the module and adding the
scripts to the list of scripts.

If you use the automatic main file you can add external scripts by listing the modules to import in the
external-scripts.json file. Currently the external-scripts.json only supports listing modules. This
means each external script must be in its own module and be named script.

[
"Marvin.Script.SomeScript",
"Marvin.Script.AnotherScript",
"SomeUserScript",
"Some.Library.Script"

]

Note: The API around external-scripts.json is not stable and it will probably change in the future, although
we might preserve backward compatibility.

You can join the discussion around its design on GitHub.

Logging in marvin

Marvin integrates with a logging library monad-logger.

This means all marvin monads are an instance of MonadLogger, meaning they already know how to log messages.
You can use all the functions in Control.Monad.Logger to log messages in marvin and they will be automatically
filtered and processed as the config specifies.

4.6. External scripts 21

https://github.com/JustusAdam/marvin/issues/8
https://hackage.haskell.org/package/monad-logger

marvin Documentation, Release 0.3

Basics of how to log messages

The monad-logger library exposes some nice functions for logging messages. For basic logging you should use
functions such as logWarnN and logErrorN.

Marvin will automatically prepend some location information for you i.e. if you log a message in the money script it
will show up in the log with script.money. This makes it easier to trace where a logging message came from.

{-# LANGUAGE OverloadedStrings #-}

script = defineScript "hello" $ do
logDebugN "Starting definition of script"

hear "hello .*" $ do
logInfoN "Heard a hello"
send "Hello to you too"

Since the logging functions all use strict Text as input it is recommended to use marvins strict text interpolator if
your messages should contain external strings and data as the interpolator will take care of converting the data for you.
The interpolator for strict text is called isT and exposed by default if you import Marvin.Prelude. For more
information on how interpolation is used in general see interpolation.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE OverloadedStrings #-}
import Marvin.Interpolate.Text

script =
...

hear "sudo .*" $ do
match <- getMatch

logInfoN $(isT "I'm asked to do #{match !! 1}")

send "okay"

For more advanced logging monad-logger offers some template Haskell functions which also record the place in the
source code where the message came from. The functions are called logWarning and logError. They require
template Haskell to be enabled and must be invoked like so: $logWarning "my str".

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE OverloadedStrings #-}

script =
...
$logDebug "my message"

And again it is recommende to use this in conjuction with the interpolator to easily include data in the message.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE OverloadedStrings #-}

script =
...

hear "sudo .*" $ do
match <- getMatch

22 Chapter 4. Contents:

https://hackage.haskell.org/package/monad-logger

marvin Documentation, Release 0.3

$logInfo $(isT "I'm asked to do #{match !! 1}")

send "okay"

Filtering log messages

You can set a lower bound for the level of log messages which are reported.

The config key bot.logging controls which is the lowest level of log messages which are recorded. Available
levels are (in ascending order, case insensitive) debug, info, warning, error. Currently the choice of level is
final, meaning changes in the config will not take effect until the program is restarted. This is likely to change in the
future.

Command line parameters can be used to overwrite the logging settings. Passing -v to marvin during startup sets the
logging level to info regardles of the config parameters. Similarly passing --debug sets it to debug.

Choosing a logging target

Attention: Not implemented yet. Currently log messages will always be printed to stderr.

The marvin preprocessor (marvin-pp)

The basic usage of the marvin preprocessor is to generate the main file.

To use marvin-pp add a line like {-# OPTIONS_GHC -F -pgmF marvin-pp -optF --adapter
-optF slack-rtm #-} to the top of your main file.

Note: If you use marvin-pp it will generate the entre file, any previous content of the file is ignored completely.

Explanation of the preprocessor invocation

{-# OPTIONS_GHC -F -pgmF marvin-pp #-} tells the Haskell compiler to use marvin-pp as a prepro-
cessor.

You can pass additional arguments to the preprocessor by prepending -optF ARGUMENT to the option line.

Important: Each argument has to be prefixed with -optF, i.e. to pass --adapter slack-rtm to the prepro-
cessor you have to add -optF --adapter -optF slack-rtm to the option line.

Arguments to marvin-pp

Output from marvin-pp --help:

Note: The order of options is irrelevant.

4.8. The marvin preprocessor (marvin-pp) 23

marvin Documentation, Release 0.3

marvin-pp ~ the marvin preprocessor

Usage: marvin-pp [-a|--adapter ID] NAME PATH PATH [-s|--external-scripts PATH] [-c|--
→˓config-location PATH]

Available options:
-h,--help Show this help text
-a,--adapter ID adapter to use
-s,--external-scripts PATH

config file of external scripts to
load (default: "external-scripts.json")

-c,--config-location PATH
config to use (default: "config.cfg")

Option Usage
-h,--help Only used for printing the help on the command line
NAME PATH PATH Arguments. Passed by GHC. (irrelevant for user)
-a,--adapter identifier for the adapter to use. If omitted will attempt to read from the config

(--config) at the bot.adapter key.
-s,
--external-scripts

Point to an alternative file containting :ref‘external scripts <external-scripts>‘

-c,
--config-location

Point to an alternate config file. See the Runtime configuration section. (only used for
looking up the adapter to use, see --adapter)

Adapters

Adapters are the backend of marvin. The exchangeable part that talks to the chat service itself.

Adapters are not yet exchangeable at runtime. The bot application is compiled against one adapter.

Adapter polymorphism

The capabilties required of an adapter is defined via the typeclass IsAdapter in Marvin.Adapter. Therefore
you may define generic scripts which will work with any adapter using just the IsAdapter constraint in the script
initializer type signature.

import Marvin

script :: IsAdapter a => ScriptInit a
script = defineScript "name" $ do ...

Or if you need capabilities specific to some adapter you can reference the adapter type directly.

import Marvin
import Marvin.Adapter.Slack.RTM

script :: ScriptInit (Slack RTM)
script = defineScript "name" $ do ...

Users can define their own adapters of course but are strongly encouraged to release generic adapters publicly or
contribute them to marvin.

24 Chapter 4. Contents:

https://github.com/JustusAdam/marvin/pulls

marvin Documentation, Release 0.3

Shell

Quick info

Adapter id shell
Module Marvin.Adapter.Shell
Type ShellAdapter

Supports ‘files‘_

The simplest of all adapters, the shell adapter is used mostly for testing purposes.

The adapter id (for including it via the preprocessor) is “shell”. To wire manually import ShellAdapter from
Marvin.Adapter.Shell.

It is recommended to run a shell instance of marvin with stderr piped to a file so that it does not interfere with your
interactions with marvin.

The shell adapter supports a persistent history by specifying adapters.shell.history-file in your config.

Configuration keys

Name Type Necessity Description
history-file String optional If set the history of entered commands will be persisted here

Slack

For both of the following adapters you’ll have to create a new bot user for your slack team.

Also for both of the following adapters you’ll have to invite your bot to any channel in which it should be active (in
slack) using /invite <botname>.

Channel references (for instance for enterIn and messageChannel) for this adapter use the actual channel name
without the #. For instance the channel #random is referenced only with the string random.

Supports ‘files‘_

Real Time Messaging API

Quick info

Adapter id slack-rtm
Module Marvin.Adapter.Slack.RTM
Type SlackAdapter RTM

The adapter for the slack real time messaging api is currently the best supported adapter.

It works by opening a websocket to the slack servers from which it recieves events in real time.

The adapter id is “slack-rtm”. For manual wiring you’ll need the (SlackAdapter RTM) data structure from
Marvin.Adapter.Slack.RTM.

Configuration keys

4.9. Adapters 25

https://api.slack.com/bot-users
https://api.slack.com/rtm

marvin Documentation, Release 0.3

Name Type Necessity Description
token String required Authentication token for the slack API

Events API

Quick info

Adapter id slack-events
Module Marvin.Adapter.Slack.EventsAPI
Type SlackAdapter EventsAPI

This adapter creates a server, which listens for events from the slack Events API.

In addition to configuring marvin for this adapter you’ll also have tell slack the url for this bots server when configuring
the bot.

The adapter id is “slack-rtm”. For manual wiring you’ll need the (SlackAdapter RTM) data structure from
Marvin.Adapter.Slack.RTM.

Configuration keys

Name Type Necessity Description
token String required Authentication token for the slack API
use-tls Bool optional Whether to use TLS encryption, defaults to true
certfile String required if TLS is used Path to the TLS certificate
keyfile String required if TLS is used Path to the TLS key
port Int optional Port on which to run the server

Important: This adapter is not very well tested yet, please report any issues you encounter here.

Telegram

Both of the following adapters require you to create and register a telegram bot

<<<<<<< Updated upstream .. admonition:: Caveats

In telegram file size for remote files is optional. Since the marvin adapter class requires a size field this
field will be negative if there was no size present on the file.

Additionally since there is per default no url property the field will always be Nothing and setting it
is a no-op.

Poll

Quick info

Adapter id telegram-poll
Module Marvin.Adapter.Telegram.Poll
Type TelegramAdapter Poll

26 Chapter 4. Contents:

https://api.slack.com/events
https://core.telegram.org/bots#6-botfather

marvin Documentation, Release 0.3

The telegram poll adapter sends long running http requests to the telegram servers to recieve events in near real time.

A unique trait of this adapter is the polling-timeout configuration key, which governs how long at maximum the
polling requests may be kept open if no new event has arrived.

Configuration keys

Name Type Necessity Description
token String required Authentication token for the Telegram API
polling-timeout Int optional Timeout for the polling requests (seconds) defaults to 120

Important: This adapter is not very well tested yet, please report any issues you encounter here.

Push

Quick info

Adapter id telegram-push
Module Marvin.Adapter.Telegram.Push
Type TelegramAdapter Push

The telegram push adapter creates a server and registers a webhook with telegram to receive event updates.

Configuration keys

Name Type Necessity Description
token String required Authentication token for the slack API
url String required URL on which this server runs
use-tls Bool optional Whether to use TLS encryption, defaults to true
certfile String required if TLS is used Path to the TLS certificate
keyfile String required if TLS is used Path to the TLS key
port Int optional Port on which to run the server

Important: This adapter is not very well tested yet, please report any issues you encounter here.

IRC

Quick info

Adapter id irc
Module Marvin.Adapter.IRC
Type IRCAdapter

The irc adapter connects to your IRC server via the irc-conduit library.

Configuration keys

4.9. Adapters 27

https://hackage.haskell.org/package/irc-conduit

marvin Documentation, Release 0.3

Name Type Necessity Description
host String required Url for the IRC server
port Int reqired Port for the irc server

Command and message events

• All direct messages (privmsg) to the bot are interpreted as a command, and the contents of the message is
passed to the handlers such as respond.

• Messages in a channel, which are directed at the bot are also interpreted as commands.

• All other messages are interpreted as message events.

Important: Caveats

Message encoding As I am not very familiar with the IRC API and its message encodings in the current adapter I
assume that all messages are utf-8 encoded. Should this not be the case, please report it. Should you be someone
who is familiar with the encodings of IRC messages, please contact me so that we can improve this adapter.

CTCP messages CTCP messages are not supported. All CTCP messages are currently ignored. However I welcome
anyone who would like to try and implement some CTCP functionality.

Strings and String conversions (in Haskell)

Representation of Strings is a sore spot in Haskell, unfortunately.

The fundamental problem is that the ‘default’ String, the String type from the standard library, is a linked list of
characters. Nicely enough it is unicode capeable and handles special characters nicely, however using linked lists as
strings is very inefficient.

Therefore marvin uses a more efficient string type called Text. To be precise the Text type in Data.Text.Lazy
from the text library.

Functions exposed by the marvin library generally ALL deal with this string type, to make it as easy as possible for
the user.

However when you interact with other libraries you might encounter other string types, such as ByteString (often
the result of HTTP requests or input for JSON decoding) and String from the standard library, often in the form of
FilePath as name for files and directories.

Strict and lazy Text and ByteString

Furthermore both Text and ByteString have a strict and a lazy variant. It is not really necessary to know the
difference between the lazy and strict variants of these strings, suffice to say they are not the same thing.

If you need to convert between the strict and lazy variants of these strings there is a fromStrict (converts strict to
lazy) and toStrict (converts lazy to strict). This is the case for both Text and ByteString. The two conversion
functions toStrict and fromStrict are always contained in the module holding the lazy version of the type.
This means for Text it is Data.Text.Lazy and for ByteString it is Data.ByteString.Lazy.

If you want to know which String type you have, look at the module.

• strict Text comes from either Data.Text or Data.Text.Internal

28 Chapter 4. Contents:

mailto:dev@justus.science
https://www.stackage.org/haddock/lts-7.13/base-4.9.0.0/Data-String.html#t:String
https://hackage.haskell.org/package/text

marvin Documentation, Release 0.3

• lazy Text comes from either Data.Text.Lazy or Data.Text.Internal.Lazy

ByteString uses the same naming scheme, just replace Text with ByteString.

Converting String

To convert a String value to the string type used in marvin use pack from the Data.Text.Lazy module. To
convert a String value from the string type used in marvin use unpack from the Data.Text.Lazy module.

You can use the same functions for FilePath as it is only an alias for String.

Converting ByteString

ByteString values are a lot harder to convert than String, becuase they have no specified encoding.

To convert a ByteString value you, first make sure it is a lazy ByteString. If it is not convert it with
fromStrict.

Now you’ll have to decode the ByteString. The text library offers a number of decoding functions in the Data.
Text.Lazy.Encoding module. The encode* functions are used to create ByteString``s from text
and the ``decode* functions are used to turn ByteString``s into ``Text.

If you are not sure what encoding your source text is try Utf8, its the most common.

Lens quickstart

The lens library is a clever library which brings some useful parts of object oriented syntax to Haskell. Namely the
ability to easily access and manipulate nested data structures and. Marvin depends on and uses, both internally and in
its interfaces, a library called microlens. microlens is very similar to lens. It offers a smaller set of features (which
suffice for marvin) but also has far fewer dependencies. It is however fully compatible with lens, meaning a Lens
value from microlens can be used as a Lens value lens as both are simply type aliases. So if you want to use
features from lens you don’t need to also use microlens to be compatible with marvin.

The Lens' type can be used to manipulate a field in a data structure. For example a lens foo :: Lens' Bar
Int pertains to a field of type Int in a data structure called Bar.

Getting

The operator ^. is used to access the contents of a field. x ^. foo accesses the foo field in the x value.

These lenses are composable. If we have a lens bar :: Lens' Baz Bar and a value y :: Baz we can
access the nested foo value with y ^. bar . foo.

Setting

The same lenses can also be used to modify the contents of the referenced field. foo .~ value creates a function
which sets the foo field to value. Often this is combined with the revers application operator & to write code such
as x & foo .~ value which sets foo in x to value. Using & we can also chain modifications like so x & foo
.~ value & anotherField .~ anotherValue. This does not modify the original x but instead returns a
new value of type Bar which is identical to x except for the contents of the foo field.

Another operator for modification is %~ where foo %~ f modifies the content of the foo field with the function f.

4.11. Lens quickstart 29

https://hackage.haskell.org/package/microlens-platform
https://hackage.haskell.org/package/lens

marvin Documentation, Release 0.3

Lenses in modification operations are also composable. For instance to set the nested foo field in y we can say y &
baz . foo .~ value.

marvin-interpolate, A simple string interpolation library

Note: The marvin interpolation library, with no dependencies on marvin itself, is separately available on hackage.

The marvin string interpolation library is an attempt to make it easy for the user to write text with some generated data
in it. The design is very similar to the string interpolation in Scala and CoffeeScript, in that the hard work happens at
compile time (no parsing overhead at runtime) and any valid Haskell expression can be interpolated.

TLDR and Marvin.Prelude specifics

By default Marvin.Prelude exposes two interpolators isL for composing messages which can be sent to the chat
(produces lazy Text) and isT for composing log messages (produces strict Text).

Both require Template Haskell and Overloaded Strings which is enabled by adding the lines {-# LANGUAGE
TemplateHaskell #-} and {-# LANGUAGE OverloadedStrings #-} at the beginning of your script
file.

Example:

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE OverloadedStrings #-}

myStr = let x = "data" in $(isL "some string with #{x}: #{ 1 + 1 }")
-- "some string with data: 2"

The syntax is $(interpolator "interpolated string") where interpolator is either isL or isT. As in
CoffeeScript you can use #{} to interpolate an expression. Any valid Haskell expression can be interpolated, it can
reference both local and global bindings.

The result of the expression must either be a type of string or be convertible to one via Show or ShowL or ShowT
respectivley which is true for most basic data types. More information on conversion can be found here

How to interpolate

The library uses the builtin Haskell compiler extension in the form of QuasiQuoters (QuasiQuotes language extension)
and /or splices (Template Haskell language extension)

Some examples to start with:

{-# LANGUAGE QuasiQuotes #-}

import Marvin.Interpolate

str1 = [iq|some string #{show $ map succ [1,2,3]} and data|]
-- "some string [2,3,4] and data"

str2 =
let

x = "multiple"
y = "can"

30 Chapter 4. Contents:

https://hackage.haskell.org/package/marvin-interpolate
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#template-haskell
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#overloaded-string-literals
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#template-haskell-quasi-quotation
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#template-haskell

marvin Documentation, Release 0.3

z = "local scope"
in [iq|We #{y} interpolate #{x} bindings from #{z}|]

-- "We can interpolate multiple bindings from local scope"

str2 =
let

x = ["haskell", "expression"]
y = " can be"

in [iq|Any #{intercalate ' ' x ++ y} interpolated|]
-- "Any haskell expression can be interpolated"

Alternatively the interpolators are available as splices

{-# LANGUAGE TemplateHaskell #-}

import Marvin.Interpolate

str1 = $(is "some string #{show $ map succ [1,2,3]} and data")
-- "some string [2,3,4] and data"

It basically transforms the interpolated string, which is [iq|interpolated string|] or in splices $(is
"interpolated string") into a concatenation of all string bits and the expressions in #{}. Therefore it is
not limited to String alone, rather it produces a literal at compile time, which can either be interpreted as String
or, using the Overloaded Strings extension, as Text or ByteString or any other string type.

Interpolators and conversion

iq (for interpolate quoter) and is (for interpolate splice) is the basic interpolator, which inserts the expressions
verbatim. Hence when using iq or is all expressions must return the desired string type, otherwise the compiler will
raise a type error.

There are specialized interpolators, which also perform automatic conversion of non-string types into the desired string
type. As an example, from earlier, if we use a specialized interpolator we dont need the call to show.

str1 = [iq|some string #{show $ map succ [1,2,3]} and data|]
-- "some string [2,3,4] and data"

-- is the same as
str2 = [iqS|some string #{map succ [1,2,3]} and data|]

-- ('iqS' is the specialized interpolator for 'String')

These specialized interpolators each have an associated typeclass, which converts string types (String, Text and
lazy Text) to the target type, but leaves the contents unchanged and calls show on all other types before converting.
This last instance, which is based on the Show typeclass, can be overlapped by specifying a custom instance for your
type, allowing the user to define the conversion.

The naming scheme of the interpolators in general is i<splice|quoter><pecialization?>. I. e. isS
expands to interpolate splice to String and iqL to interpolate quoter to Lazy Text.

• iqS and isS in Marvin.Interpolate.String converts to String via the ShowStr typeclass

• iqT and isT in Marvin.Interpolate.Text converts to Text via the ShowT typeclass

• iqL and isL in Marvin.Interpolate.Text.Lazy converts to lazy Text via the ShowLT typeclass

To import all interpolators, import Marvin.Interpolate.All.

4.12. marvin-interpolate, A simple string interpolation library 31

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#overloaded-string-literals

marvin Documentation, Release 0.3

Syntax for the interpolated String

Interpolation uses the quasi quoter sytax, which starts with [interpolator_name| and ends with |]. Anything
in between is interpreted by the library.

The format string in between uses the syntax #{expression}. Any valid Haskell expression can be used inside the
braces. Anything outside the braces is interpreted as literal string. And all names which are in scope can be used, like
so.

let x = 5 in [iqS|x equals #{x}|] -- > "x equals 5"

Escape sequences

str3 = [iq|Two escape sequences allow us to write literal ##{ and |#] inside
→˓expressions"}|]
-- "Two escape sequence allow us to write literal #{, |] and } inside expressions"

There are two escape sequences to allow literal #{ and |]

Input Output
#]]
#

As a result the sequence ##{ will show up as a literal #{ in the output and |#] results in a literal |].

Differences between QuasiQuotes and splices

When using QuasiQuotes ([i|interpolated string|]) any character between is interpreted as literal, includ-
ing this such as tabs and newlines. No escaping like \n, \t or \\ is required.

In splices the input is interpreted as a Haskell String, therefore no newlines are allowed for instance and escape
sequences such as \n, \t and \\ are necessary. Furthermore literal " must be escaped also, as \".

Note: The library internal Escape sequences are identical in QuasiQuotes and splices

Differences to/Advantages over other libraries

There are a few advantages this libary has over other string formatting options.

1. The hard work happens at compile time

Unlike libraries like text-format and the Text.Printf module parsing the format string, producing the
string fragments and interleaving data and strings happens all at compile time. At runtime a single
fusable string concatenation expression is produced.

Furthermore all errors, like missing identifiers happen at compile time, not at runtime.

2. Type Polymorphism

The created, interpolated string has no type. It can be interpreted as any string type, so long as there
is an IsString instance and the expressions inside return the appropriate type.

This is different format string libraries like text-format and the Text.Printf module which always
produce strings of a particular type and interpolation libraries like interpolate and interpol which
require instances of Show.

32 Chapter 4. Contents:

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#template-haskell-quasi-quotation
https://hackage.haskell.org/package/text-format
https://www.stackage.org/haddock/lts-7.14/base-4.9.0.0/Text-Printf.html
https://www.stackage.org/haddock/lts-7.14/base-4.9.0.0/Data-String.html#t:IsString
https://hackage.haskell.org/package/text-format
https://www.stackage.org/haddock/lts-7.14/base-4.9.0.0/Text-Printf.html
http://hackage.haskell.org/package/interpolate
http://hackage.haskell.org/package/interpol

marvin Documentation, Release 0.3

3. Simple API and full Haskell support

The interpolated expressions are just plain Haskell expressions, no extra syntax, beyond the interpo-
lation braces #{}. Also all Haskell expressions, including infix expressions, are fully supported.

This is different from Interpolation which introduces additional syntax and does not fully support
infix expressions.

API breaking changes

Since version 0.3

The slack adapter no longer automatically prepends a "#" to channel names. This means channel resolution functions
such as resolveChannel now work on the channel name directly. Example: to resolve the channel #random use
resolveChannel "random".

This also affects channel referencing handlers and functions such as enterIn and messageChannel. Example:
what was previously the handler enterIn "#random" is now enterIn "random".

FAQ

I added a new script, why is the functionality not present?

If you are using the automatic main file

You have to force the main file to be recompiled after adding or removing a script. You can do this by running stack
clean (if you use stack for building) or cabal clean (if you use cabal for building).

If that didn’t fix:

• For user scripts: make sure the new script is in the script directory and the file does not start with . or _ (those
are ignored by marvin-pp). See The marvin preprocessor (marvin-pp)

• For external scripts: make sure the script is mentioned in the external-scripts.json file. See [external
scripts](external-scripts).

If you are defining the main script manually

Make sure you imported the script module in your main file and added the script to the list of scripts for the call to
runMarvin.

This will look something like this:

import qualified MyScript

main = runMarvin [MyScript.script]

4.13. API breaking changes 33

http://hackage.haskell.org/package/Interpolation

marvin Documentation, Release 0.3

34 Chapter 4. Contents:

CHAPTER 5

Indices and tables

• genindex

• search

35

	Links
	A quick snippet of code
	Testing and Talking
	Contents:
	Getting started
	Writing marvin scripts
	The abstract data model of marvin
	Runtime configuration
	Files
	External scripts
	Logging in marvin
	The marvin preprocessor (marvin-pp)
	Adapters
	Strings and String conversions (in Haskell)
	Lens quickstart
	marvin-interpolate, A simple string interpolation library
	API breaking changes
	FAQ

	Indices and tables

