

[MarryDoc] Easy DocString Maintenance

[image: Documentation Status]
 [https://marrydoc.readthedocs.io/en/latest/?badge=latest]The marrydoc Python module makes maintaining consistency of
related Python docstrings easy. marrydoc provides decorators to
“wed” a docstring to another and provides a command line tool to
automatically update a module’s docstrings when their basis docstrings
have changed.

The decorators offered annotate class, function, and method docstrings to
identify if their docstring is to be inherited from, maintained as a copy
of, or maintained as a modified copy of a docstring of another program
construct.

Quick Start

@inherit

Use the inherit() decorator to dynamically copy a docstring from
one program construct to another when a module is imported. For example:

import marrydoc
from foo import bar

@marrydoc.inherit(bar)
def my_bar():
 pass

assert bar.__doc__ == my_bar.__doc__

@copied_from

Use the copied_from() decorator in combination with the command line
tool to evaluate if one program construct docstring is up to date with
another and automatically update the script if they are unequal. For
example:

import marrydoc
from foo import bar

@marrydoc.copied_from(bar)
def my_bar():
 """Perform foo bar."""
 pass

Then use the command line tool to evaluate if the source docstring has
changed and automatically update if so:

$ python -m marrydoc --merge my_foo.py
my_foo.py ... OK

@based_on

Use the based_on() decorator instead of copied_from()
when the docstring is a copy but has been modified. Pass an unmodified
copy of the source docstring as the second argument to based_on()
(to facilitate source docstring change detection and provide a basis of
a three way merge). For example:

import marrydoc
from foo import bar

@marrydoc.based_on(
 bar,
 """Perform foo bar.""")
def my_bar():
 """Perform my special foo bar."""
 pass

Then use the command line tool to evaluate if the source docstring has
changed and automatically perform a three way merge if so:

$ python -m marrydoc --merge my_foo.py
my_foo.py ... UPDATED

[baseline] About

Contributors

	
	Dan Gass (dan.gass@gmail.com)

	
	Primary author

Development

	Repository

	https://gitlab.com/dangass/marrydoc

License

MIT License

Copyright (c) 2018 Daniel Mark Gass (dan.gass@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

[MarryDoc] API Reference

	Decorators

	Command Line Tool

Decorators

Command Line Tool

$ python -m marrydoc --help
usage: marrydoc [-h] [-m] [-v] [-w] path [path ...]

Ensure related docstrings are consistent.

positional arguments:
 path module or directory path

optional arguments:
 -h, --help show this help message and exit
 -m, --merge update module docstrings
 -w, --walk recursively walk directories

Note

After installation, a marrydoc “shim” executable exists in the
Scripts subdirectory of your Python installation. If your
operating system has been configured to include the Scripts
subdirectory in the path, the tool may be invoked directly:

$ marrydoc --help

[MarryDoc] Installation

Prerequisites

	Python [https://www.python.org/]

	version 2.7

	version 3.4 or higher

	Requirements for Installing Packages [https://packaging.python.org/tutorials/installing-packages/#requirements-for-installing-packages]
(located in the Installing Packages [https://packaging.python.org/tutorials/installing-packages/] tutorial within the
Python Packaging User Guide [https://packaging.python.org/]).

Install Steps

At a shell prompt, use pip [https://pypi.python.org/pypi/pip] to
automatically download and install marrydoc:

python -m pip install --upgrade marrydoc

[MarryDoc] Release Notes

Versions are incremented according to semver [http://semver.org/].

0.2

	
	0.2.0 (2018-05-23)

	
	Support specifying module name on command line.

0.1

	
	0.1.0 (2018-05-02)

	
	Initial “beta” release.

[MarryDoc] Usage

	Inherit DocString

	Maintain DocString Copies

	Maintain DocString With Modifications

	Configure Your Favorite Merge Tool

	Test DocStrings In A Module Collection

	Tips and Tricks

Inherit DocString

The inherit() decorator copies a docstring from a specified object
and attaches it to the function or method it decorates. In the following
example, standard library b2a_hex() function serves as
the docstring source:

inherit_example.py.

import binascii
import marrydoc

@marrydoc.inherit(binascii.b2a_hex)
def b2a_hex(data, sep=''):
 mashed = binascii.b2a_hex(data)
 return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

The inherit() decorator guarentees that the docstrings are always
synchronized and does not require maintenance of the module when the original
docstring changes:

>>> import binascii
>>> import inherit_example
>>>
>>> print binascii.hexlify.__doc__
b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()".
>>>
>>> print inherit_example.hexlify.__doc__
b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()".
>>>
>>> binascii.hexlify.__doc__ == inherit_example.hexlify.__doc__
True

Maintain DocString Copies

The shortcoming of the inherit() decorator is that the copied docstring
does not appear in the module and makes module maintenance more difficult.
The copied_from() decorator defines a one to one relationship between
the source of the docstring and the docstring of the function it decorates:

copied_from_example.py.

import binascii
import marrydoc

@marrydoc.copied_from(binascii.b2a_hex)
def b2a_hex(data, sep=''):
 """b2a_hex(data) -> s; Hexadecimal representation of binary data.

 This function is also available as "hexlify()"."""
 mashed = binascii.b2a_hex(data)
 return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

The defined relationship allows the Command Line Tool to check the
module’s docstring:

$ python -m marrydoc copied_from_example.py
copied_from_example.py ... OK

If the docstring source changed, the command line tool updates the
docstring in the module when specifying the --merge option:

$ python -m marrydoc --merge copied_from_example.py
copied_from_example.py ... UPDATED

Note

During normal import of a module, the copied_from() decorator
acts as a passthrough and introduces very little overhead.

Maintain DocString With Modifications

The based_on() decorator defines a relationship between the docstring
of the function it decorates and the basis from which it was derived.
The same as copied_from() and inherit(), the first argument
to based_on() is the program construct containing the docstring that
is to be tracked. based_on() requires a second argument that is a copy
of the source docstring (the source docstring is compared against the copy
and if they are unequal, the two values in combination with the actual
docstring facilitate a three way merge). For example:

based_on_example.py.

import binascii
import marrydoc

@marrydoc.based_on(
 binascii.b2a_hex,
 """b2a_hex(data) -> s; Hexadecimal representation of binary data.

 This function is also available as "hexlify()".""")
def b2a_hex(data, sep=''):
 """b2a_hex(data) -> s; Hexadecimal representation of binary data.
 b2a_hex(data, sep) -> s; Separated hexadecimal representation of binary data.

 This function is also available as "hexlify()"."""
 mashed = binascii.hexlify(data)
 return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

The defined relationship to the source in combination with the docstring
copy provided as the second argument allow the Command Line Tool to
check if the source docstring has changed:

$ python -m marrydoc based_on_example.py
based_on_example.py ... OK

If the source docstring has changed, the Command Line Tool updates
the module’s docstrings by performing a three way merge when specifying
the --merge option:

$ python -m marrydoc --merge based_on_example.py
based_on_example.py ... UPDATED

Note

The three way merge requires a merge tool of your choosing. Without
configuring, the three way merge attempts usage of kdiff3. See
the next section for more information on configuring your favorite
merge tool to be used.

During normal import of a module, the based_on() decorator
acts as a passthrough and introduces very little overhead.

Configure Your Favorite Merge Tool

For three way merges, the marrydoc command line tool uses kdiff3 when
it is installed and in your system path. Otherwise marrydoc generates
“base”, “left”, and “right” files on your file system for you to merge manually.

To automatically invoke your favorite three way merge tool instead, set the
MARRYDOC_MERGE environment variable and specify the command line invocation
using Python’s string format substitution syntax.

For example, on Linux:

export MARRYDOC_MERGE="kdiff3 --merge --auto {base} {left} {right} --output {orig}"

Or on Microsoft Windows:

set MARRYDOC_MERGE="kdiff3 --merge --auto {base} {left} {right} --output {orig}"

Warning

The executable name/path must not contain spaces. The current implementation
of marrydoc splits the string on whitespace and passes the result to a
subprocess command.

Test DocStrings In A Module Collection

The main() function exposes the command line interface
and offers a convenient method to check if the docstrings in a module
are up to date. Add a test case within the module’s regression test to
call the command line interface and to check the returned exit code for
success indication (0).

The --walk option is useful for checking an entire package hierarchy,
for example:

import os
import unittest
import marrydoc
import mypackage

class TestDocStrings(unittest.TestCase):

 def test_package(self):
 package_path = os.path.dirname(mypackage.__file__)
 exitcode = marrydoc.main(['--walk', package_path])
 self.assertEqual(exitcode, 0)

Tips and Tricks

	based_on(), copied_from() may also be used to decorate
a class to wed its docstring to another. (inherit() cannot be
used to decorate a class because the class docstring is not settable
by the time the docorator executes.)

	The based_on(), copied_from(), and inherit()
decorators may also be used in combination with the @classmethod()
or staticmethod() decorators. The marrydoc decorator
implementations accomodate decorating in either order. For better
readability, place the @classmethod() and staticmethod()
decorators first (on the outside).

	When decorating a method using based_on(), copied_from(),
or inherit(), a class may be passed as the first argument
to specify the source of the docstring. The docstring of the method by
the same name in the specified class then acts as the docstring basis.

	Ensure your operating system path includes the Scripts subdirectory
that is part of the normal Python installation. After installation, a
marrydoc “shim” executable exists that subdirectory to invoke the
command line tool directly:

$ marrydoc --help

	The marrydoc command line also accepts importable module and
package names. Use this form when the module is in the Python
system path. This form may be used in combination with the --walk
option to check an entire package, for example:

$ marrydoc baseline --walk
/usr/local/lib/python3.5/dist-packages/baseline/__about__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/__init__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/__main__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/_baseline.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/_script.py ... OK

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 [MarryDoc] Easy DocString Maintenance

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

