
Margate Documentation
Release 0.1

Tim Martin

Jul 04, 2017

Contents:

1 Using from Django 1
1.1 Language compatibility . 1
1.2 Configuring Django to use the engine . 1

2 TODO List 3

3 Reference 5
3.1 Compiler . 5
3.2 Code generation . 5
3.3 Block parser . 6
3.4 Parser . 7

4 Introduction 9

5 Example 11

6 FAQ 13
6.1 Why oh why? . 13
6.2 You don’t really expect the speed benefit to be worth it, do you? . 13
6.3 What’s with the name? . 13

7 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER 1

Using from Django

Language compatibility

The Margate language is very similar in style to the built-in Django template engine, but differs in a number of
important details.

Most importantly, {{ }} expressions (and expressions in for loop commands etc.) are treated as arbitrary Python
code. This means that they are more flexible than Django template language, but prevents you from taking advantage
of the shortcuts that automatically convert object attributes into dictionary member lookup.

For example, instead of writing:

{% for tag in blog_post.tags %}
...
{% endfor %}

if blog_post is a dictionary, you will need to write:

{% for tag in blog_post["tags"] %}
...
{% endfor %}

Another limitation is that none of the built-in filters are currently supported.

Configuring Django to use the engine

To enable Margate in Django, simply add it to the TEMPLATES in settings.py:

TEMPLATES = [
{
'BACKEND': 'margate.django.MargateEngine',
'DIRS': [],
'APP_DIRS': True

1

Margate Documentation, Release 0.1

}
]

2 Chapter 1. Using from Django

CHAPTER 2

TODO List

Todo

This doesn’t really belong in this module. It’s here because we’re combining two different types: block parser output
and code generation.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/margate/envs/latest/lib/python3.5/site-
packages/margate-0.0.1-py3.5.egg/margate/code_generation.py:docstring of margate.code_generation.Execution, line
1.)

3

Margate Documentation, Release 0.1

4 Chapter 2. TODO List

CHAPTER 3

Reference

The process of building a template into a function has the following steps:

• The template is broken down into blocks (such as literal text and code execution) that are treated differently.
This is handled by the block parser.

• The resultant sequence of blocks is passed to the Parser to be turned into a parse tree.

• The parse tree is processed by code generation to make Python bytecode.

Compiler

The compiler module contains the public interface to the library.

class margate.compiler.Compiler(template_locator=None)
The Compiler takes a template in string form and returns bytecode that implements the template.

compile(source)
Compile the template source code into a callable function.

Returns A callable function that returns rendered content as a string when called.

class margate.compiler.TemplateLocator
The template locator abstracts the details of locating templates when one template extends another (such as with
the {% extends %} tag)self.

Code generation

This module contains the building blocks of the final template function, in the form of bytecode generators.

There are a series of classes in here that are used as nodes in the code generation tree, and each one implements a
make_bytecode() method.

5

Margate Documentation, Release 0.1

class margate.code_generation.Sequence
A sequence of nodes that occur in a parse tree. Elements in the sequence can themselves be sequences (thus
forming a tree).

class margate.code_generation.ForBlock(for_node)

class margate.code_generation.IfBlock(condition)
The IfBlock generates code for a conditional expression.

This currently only includes literal True and False as expressions, and doesn’t support an else branch.

class margate.code_generation.ExtendsBlock(template)

class margate.code_generation.ReplaceableBlock(name)

class margate.code_generation.VariableExpansion(variable_name)
A variable expansion takes the value of an expression and includes it in the template output.

class margate.code_generation.Literal(contents)

class margate.code_generation.Execution(expression)

Todo

This doesn’t really belong in this module. It’s here because we’re combining two different types: block parser
output and code generation.

Block parser

The block parser splits a template into the blocks that make it up. There are three different sorts of data in a template
that get handled in different ways:

• Literal text, which just gets embedded in the output (but may be skipped or repeated by executing code around
it).

• Executable code

• Embedded variable expressions that get expanded into text output.

It’s implemented as a state machine, where the template starts out in literal text and transitions to a different state
depending on whether it encounters {{, }}, {% or %}.

class margate.block_parser.LiteralState(text)
The literal state is the state the block parser is in when it is processing anything that will be included in the
template output as a literal. The template starts out in literal state and transitions back into it every time a block
is closed.

class margate.block_parser.ExecutionState(text)
Execution state is the state when any kind of code execution is occurring. This includes the start and ends of
blocks.

class margate.block_parser.ExpressionState(text)
Expression state occurs when processing a {{ ... }} expression that embeds the value of an expression into
the output.

6 Chapter 3. Reference

Margate Documentation, Release 0.1

Parser

The parser converts the template language into a usable structured form.

There are two layers to the parsing: breaking the template down into blocks (which is done by the block_parser
module), and parsing the expressions that appear in the execution blocks within the template.

The parser in this module uses a combination of ad hoc parsing, funcparserlib and ast.parse. The top-level rules in
the language (if, for, endif etc.) are handled ad hoc since they are not recursive. However, the expression that is
given as an argument to if is an arbitrary expression and parsed

class margate.parser.Parser(template_locator=None)
The Parser is responsible for turning a template in “tokenised” form into a tree structure from which it is straight-
forward to generate bytecode.

The input is in the form of a flat list of atomic elements of the template, where literal text (of any length) is a
single element, and a {% %} or {{ }} expression is a single element.

Figuring out nesting of starting and ending of loops happens within the parser.

parse(tokens)
Parse a token sequence into a Sequence object.

margate.parser.parse_expression(expression)
Parse an expression that appears in an execution node, i.e. a block delimited by {% %}.

This can be a compound expression like a for statement with several sub-expressions, or it can just be a single
statement such as endif.

Parameters expression (list) – Tokenised expression.

3.4. Parser 7

https://pypi.python.org/pypi/funcparserlib
https://docs.python.org/3/library/ast.html#ast.parse

Margate Documentation, Release 0.1

8 Chapter 3. Reference

CHAPTER 4

Introduction

Margate is a templating engine for Python that compiles templates down to Python bytecode. It is mostly Django-
compatible in spirit, though it falls short of being a drop-in replacement for Django templates.

Early performance testing suggests that it is around 10 times faster than regular Django templates.

9

Margate Documentation, Release 0.1

10 Chapter 4. Introduction

CHAPTER 5

Example

Simply instantiate a Compiler and call its compile() method with the template source:

template_source = """
<p>Hello {{ person }}, my name is {{ me }}
"""

compiler = margate.compiler.Compiler()
template_function = compiler.compile(template_source)

You now have a function that can be called to yield the rendered content. Pass variable values in keyword arguments:

print(template_function(person="alice",
me="a template"))

11

Margate Documentation, Release 0.1

12 Chapter 5. Example

CHAPTER 6

FAQ

Why oh why?

Mostly to learn about Python bytecode.

You don’t really expect the speed benefit to be worth it, do you?

Template rendering is extremely unlikely to be the bottleneck in your web application. Optimising it will at best save
a constant overhead from each page view, and will have a proportionately lower impact on your slowest pages.

On the other hand, it’s free speed. It can probably save you a few milliseconds per page view, which might help when
you’re trying to get your landing page to load as fast as possible. Assuming the templating language has all the same
features, why wouldn’t you? Template expansion probably can’t be parallelised with anything else your web app is
doing, so miliseconds here contribute directly to the bottom line.

What’s with the name?

The library was originally called Stencil, but it turns out that lots of people call their templating library Stencil, so I
had to change.

I hate spending time thinking of names for projects, so when I get stuck I just use the name of an English seaside town.
There are plenty of them and they are reasonably unique and memorable names.

13

Margate Documentation, Release 0.1

14 Chapter 6. FAQ

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

Margate Documentation, Release 0.1

16 Chapter 7. Indices and tables

Python Module Index

m
margate.block_parser, 6
margate.code_generation, 5
margate.compiler, 5
margate.parser, 7

17

Margate Documentation, Release 0.1

18 Python Module Index

Index

C
compile() (margate.compiler.Compiler method), 5
Compiler (class in margate.compiler), 5

E
Execution (class in margate.code_generation), 6
ExecutionState (class in margate.block_parser), 6
ExpressionState (class in margate.block_parser), 6
ExtendsBlock (class in margate.code_generation), 6

F
ForBlock (class in margate.code_generation), 6

I
IfBlock (class in margate.code_generation), 6

L
Literal (class in margate.code_generation), 6
LiteralState (class in margate.block_parser), 6

M
margate.block_parser (module), 6
margate.code_generation (module), 5
margate.compiler (module), 5
margate.parser (module), 7

P
parse() (margate.parser.Parser method), 7
parse_expression() (in module margate.parser), 7
Parser (class in margate.parser), 7

R
ReplaceableBlock (class in margate.code_generation), 6

S
Sequence (class in margate.code_generation), 5

T
TemplateLocator (class in margate.compiler), 5

V
VariableExpansion (class in margate.code_generation), 6

19

	Using from Django
	Language compatibility
	Configuring Django to use the engine

	TODO List
	Reference
	Compiler
	Code generation
	Block parser
	Parser

	Introduction
	Example
	FAQ
	Why oh why?
	You don't really expect the speed benefit to be worth it, do you?
	What's with the name?

	Indices and tables
	Python Module Index

