
Mapping Learning Documentation

Alban Thomas

Dec 14, 2019

Table of Contents

1 Features 3

2 Install 5
2.1 Installing . 5
2.2 2. Before installing . 6

3 Use 7
3.1 Mapping Learning’s GUI . 7
3.2 Mapping Learning’s CLI . 10
3.3 Output . 11

4 Source code 13
4.1 Modules . 13

5 Contribute 41
5.1 Documentation . 41
5.2 Source code . 41
5.3 Philosophy . 42
5.4 Thanks . 42

6 Indices and tables 45

Python Module Index 47

Index 49

i

ii

Mapping Learning Documentation

Note: Mapping Learning (also called maplearn) makes use of machine learning easy (easier, at least). Initially
designed for geographical data (cartography based on remote sensing), Maplearn also deals very well with classical
data (ie tabular).

NB: information in french is available in maplearn’s wiki .

Maplearn is a free software and library, distributed under lGPL v3 license.

Written in Python, maplearn can be used whichever your operation system (Linux, Mac, Windows).

Table of Contents 1

https://bitbucket.org/thomas_a/maplearn/wiki/

Mapping Learning Documentation

2 Table of Contents

CHAPTER 1

Features

• many algorithms to make predictions (classification, clustering or regression)

• look for best hyper-parameters to improve accuracy of your results

• generalize machine learning’s best practices (k-fold. . .)

• several preprocessing tasks available : reduction of dimensions. . .

• reads/writes several file formats (geographic or not)

• synthetizes results in a standardized report

• statiscal and more empirical advices will help novice users

3

Mapping Learning Documentation

4 Chapter 1. Features

CHAPTER 2

Install

Note: Mapping Learning is still in an early stage of development . Will you dare installing an alpha version of a
software? Mapping Learning is worth it. . .

2.1 Installing

If you do not understand the below lines, check 2. Before installing.

2.1.1 Anaconda (easiest)

Just want to enjoy Mapping Learning? Type:

conda install -c sympythy maplearn

2.1.2 PIP

You can also use PIP, but you may have to deal with some tricky dependancies (ie GDAL):

pip install maplearn

2.1.3 From source code (for developpers/curious)

Want to contribute to the source code of Mapping Learning ? Or just curious ? You can also install maplearn from
source code:

5

Mapping Learning Documentation

git clone https://bitbucket.org/thomas_a/maplearn.git
cd maplearn
pip install .

Then, you will be able to get last changes (in maplearn folder):

get source code updates
git pull
upgrade maplearn
pip install .

2.2 2. Before installing

Mapping Learning is based on Python and you need a way to install properly its dependancies (either Anaconda or
PIP).

2.2.1 Using conda (Windows, Mac or Linux)

First, install an Anaconda distribution:

• either Anaconda (complete): https://www.anaconda.com/distribution/

• or Miniconda (lighter): https://docs.conda.io/en/latest/miniconda.html

Nb: if you wonder which one you should use, have a look on https://docs.conda.io/projects/conda/en/latest/user-guide/
install/download.html#anaconda-or-miniconda

Then, start “Anaconda prompt” and type:

conda install -c sympythy maplearn

2.2.2 Using system packages and PIP (Linux, Debian-based distributions)

First, install pip and some dependancies (Blas, Lapack..):

apt-get install python3-pip
apt-get install libblas-dev liblapack-dev libatlas-base-dev gfortran

Then, you can also install some Python librairies:

apt-get install python3-numpy python3-scipy python3-pandas python3-gdal
apt-get install python3-sklearn python3-seaborn python3-markdown

NB: you can install Python librairies thanks to system packages (apt) or Pip. Using System packages should be easier
and faster. PIP will bring libraries in latest version.

Finally, you can install maplearn:

pip install maplearn

6 Chapter 2. Install

https://www.anaconda.com/distribution/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html#anaconda-or-miniconda
https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html#anaconda-or-miniconda

CHAPTER 3

Use

Mapping Learning aims lets you choose how to use it:

• as a “classical” software (GUI - Graphical User Interface)

• typing in a terminal, with a CLI (Command Line Interface)

• as a Python library

Note:

• Whichever interface you choose, configuration is the same. Check maplearn.app.config for more
details.

• Machine Learning concepts are explained in maplearn.ml

This page describes how to use Mapping Learning as an application, whereas every other pages will help you to
develop your own scripts using one or several of its module(s).

3.1 Mapping Learning’s GUI

The Graphical User Interface (GUI) aims to help you to:

1. understand how to do machine learning well

2. properly configure the application and get results

To run maplearn with its GUI, type in a terminal:

maplearn_gui

NB: this command calls the Python script “run_gui.py”.

Structure:

• On the left, you can set paramaters

7

Mapping Learning Documentation

• On the right, you can read help about these parameters

NB: For now, the GUI is only available in French but its translation (at least in English) is considered.

The interface will accompany you through the 3 steps necessary to the configuration.

1. Input/Output

8 Chapter 3. Use

Mapping Learning Documentation

2. Preprocessing

3. Processing

After having defined all the necessary parameters, all you have to do is click on “Executer” and be a little patient. . .

maplearn.run_gui.main()

3.1. Mapping Learning’s GUI 9

Mapping Learning Documentation

Run Mapping Learning with its GUI (Graphical User Interface)

3.2 Mapping Learning’s CLI

The CLI (Commande Line Interface) is one of the main entry to play with Mapping Learning. Just specify a well-
formatted configuration file and run.

The syntax of configuration file is described on https://bitbucket.org/thomas_a/maplearn/wiki/configuration. A few
examples of configuration are also available in “examples” sub-folder.

Example:

maplearn -c /path/to/configfile

With its CLI you can call Maplearn in an automated way through planified tasks for instance. You can also check
easily the effect of a (few) parameter(s).

To get available parameters, type:

maplearn --help
or
maplearn -h

Now you can easy change the value of a parameter without creating a new configuration file:

Example:

Changing the number of k-folds (to 5):
maplearn -c /path/to/configfile -k 5

10 Chapter 3. Use

https://bitbucket.org/thomas_a/maplearn/wiki/configuration

Mapping Learning Documentation

Be careful about the output folder, or every new run of maplearn will replace previous results. Don’t worry: there is a
parameter for that.

maplearn -c /path/to/configfile -k 5 -out /path/to/new/directory

maplearn.run.run()
Run Mapping Learning using the previously loaded configuration

Mapping Learning : examples

This script is a good way to discover Mapping Learning possibilities. Using configuration files available in “examples”
subfolder and datasets included in “datasets” sub-folder, you will see what can do this application.

Example:

• Asks the user to choose which examples(s) he wants to test:

maplearn_example

• Execute 3rd example (CLI way):

maplearn_example 3

• Launch every available examples (takes some minutes. . .):

maplearn_example all

NB: “maplearn_example” calls the code inside “run_example.py”

maplearn.run_example.main()
Main script to run included examples

maplearn.run_example.run_cfg(cfg_file, path)
Run one of available examples in “examples” folder based on a configuration file

Args:

• cfg_file (str) : path to the configuration file

• path (str) : path to run.py script (that launches the application)

maplearn.run_example.run_example(*ex)
Run one or several examples based on their number

Arg:

• number (str) : identifies the example to run

3.3 Output

Note: When processing is done, maplearn will show you the results in a standardized report (HTML page), describ-
ing:

• the dataset used

• any pre-treatment(s)

• applied algorithm(s)

• statistical results (in the form of graphs and tables)

3.3. Output 11

Mapping Learning Documentation

• a synthesis comparing the result of the different algorithms

For your convenience, an example of output (in french) is available on this link .

12 Chapter 3. Use

./example_output/index.html

CHAPTER 4

Source code

Note: Mapping Learning is written in Python and uses major Open Source libraries, like scikit-learn (Machine
Learning algorithms), numpy and pandas to manipulate scientific data and Gdal to handle geographic data.

4.1 Modules

Mapping Learning consists of 4 modules. The first 3 modules allow you to start from your files and to obtain predic-
tions (based on machine learning), and vice versa. The fourth (app) is the “conductor”, who drives the other parts of
the code.

1. maplearn.ml : machine learning processing (and preprocessing)

2. maplearn.datahandler : to get/export a dataset usable in machine learning and the corresponding files

3. maplearn.filehandler : read/write a file

4. maplearn.app : application modules (configuration, . . .)

4.1.1 maplearn.ml package

Machine Learning

What is Machine Learning?

13

http://scikit-learn.org/
http://www.numpy.org/
https://pandas.pydata.org/
https://pypi.org/project/GDAL/

Mapping Learning Documentation

From Wikipedia: “Machine learning algorithms build a mathematical model based on sample data, known as “training
data”, in order to make predictions or decisions without being explicitly programmed to perform the task.”

So, we use Machine Learning to predict results about unknown data:

• Is this new email a spam?

• Is this an image of a cat or a dog?

• How many people are going to buy my new product?

• Applications are infinite. . .

To answer these questions, we will use mathematical models (the cloud in the above figure) that need to be trained (or
fitted) prior to make predictions.

What to predict?

Depending on the nature of the values to be predicted, we will talk about:

• classification when the values are discrete (also called categorical)

• regression when the values are continuous

Classification and regression both needs some samples for training, they belong to supervised learning. If you do not
have samples, then you should consider unsupervised classification, also called clustering.

Note: On the other hand, a regression can’t be made without samples.

Maplearn: machine Learning modules

14 Chapter 4. Source code

https://en.wikipedia.org/wiki/Machine_learning

Mapping Learning Documentation

In maplearn, machine learning is empowered by scikit-learn. One reason is its great documentation. Have a look to
go further.

Maplearn provides 3 modules corresponding to each of these tasks:

1. Classification

2. Clustering

3. Regression

Two other modules are linked to these tasks:

• Confusion: confusion matrix (used to evaluate classifications)

• Distance: computes distance using different formulas

Another task that can accomplish machine learning is to reduce the number of dimensions (also called features)

• Reduction: dimensionnality reduction

The last submodule is needed for programmation but should not be used itself:

• Machine: abstract class of a machine learning processor, one or more algorithms can be applied

Submodules

maplearn.ml.classification module

Classification

Classification methods are used to generate a map with each pixel assigned to a class based on its multispectral
composition. The classes are determined based on the spectral composition of training areas defined by the user.

Classification is supervised and need samples to fit on. The output will be be a matrix with integer values.

Example:

>>> from maplearn.datahandler.loader import Loader
>>> from maplearn.datahandler.packdata import PackData
>>> loader = Loader('iris')
>>> data = PackData(X=loader.X, Y=loader.Y, data=loader.aData)
>>> lst_algos = ['knn', 'lda', 'rforest']
>>> dir_out = os.path.join('maplean_path', 'tmp')
>>> clf = Classification(data=data, dirOut=dir_out, algorithm=lst_algos)
>>> clf.run()

class maplearn.ml.classification.Classification(data=None, algorithm=None,
**kwargs)

Bases: maplearn.ml.machine.Machine

Apply supervised classification onto a dataset:

• samples needed for fitting

• data to predict

Args:

• data (PackData): data to play with

4.1. Modules 15

https://scikit-learn.org/

Mapping Learning Documentation

• algorithm (list or str): name of an algorithm or list of algorithm(s)

• **kwargs: other parameters like kfold

export_tree(out_file=None)
Exports a decision tree

Args:

• out_file (str): path to the output file

fit_1(algo, verbose=True)
Fits a classifier using cross-validation

Arg:

• algo (str): name of the classifier

load(data)
Loads necessary data for supervised classification:

• samples (X and Y): necessary for fitting

• other (unknwon) data to predict, after fitting

Args:

• data (PackData)

optimize(algo)
Optimize parameters of a classifier

Args:

• algo (str): name of the classifier to use

predict_1(algo, proba=True, verbose=True)
Predict classes using a fitted algorithm applied to unknown data

Args:

• algo (str): name of the algorithme to apply

• proba (bool): should probabilities be added to result

run(predict=False, verbose=True)
Applies every classifiers specified in ‘algorithm’ property

Args: predict (bool): should be the classifier only fitted or also used to predict?

maplearn.ml.classification.lcs_kernel(x, y)
Custom kernel based on LCS (Longest Common Substring)

Args:

• x and y (matrices)

Returns: matrix of float values

maplearn.ml.classification.skreport_md(report)
Convert a classification report given by scikit-learn into a markdown table TODO: replaced by a pandas
dataframe

Arg:

• report (str): classification report

16 Chapter 4. Source code

Mapping Learning Documentation

Returns: str_table: a table formatted as markdown

maplearn.ml.classification.svm_kernel(x, y)
Custom Kernel based on DTW

Args:

• x and y (matrices)

Returns: matrix of float values

maplearn.ml.clustering module

Clustering (unsupervised classification)

A clustering algorithm groups the given samples, each represented as a vector x in the N-dimensional feature space,
into a set of clusters according to their spatial distribution in the N-D space. Clustering is an unsupervised classification
as no a priori knowledge (such as samples of known classes) is assumed to be available.

Clustering is unsupervised and does not need samples for fitting. The output will be a matrix with integer values.

Example:

>>> from maplearn.datahandler.loader import Loader
>>> from maplearn.datahandler.packdata import PackData
>>> loader = Loader('iris')
>>> data = PackData(X=loader.X, Y=loader.Y, data=loader.aData)
>>> lst_algos = ['mkmeans', 'birch']
>>> dir_out = os.path.join('maplean_path', 'tmp')
>>> cls = Clustering(data=data, dirOut=dir_out, algorithm='mkmeans')
>>> cls.run()

class maplearn.ml.clustering.Clustering(data=None, algorithm=None, **kwargs)
Bases: maplearn.ml.machine.Machine

Apply one or several methods of clustering onto a dataset

Args:

• data (PackData): dataset to play with

• algorithm (str or list): name of algorithm(s) to use

• **kwargs: more parameters about clustering. The ‘metric’ to use, the number of clusters expected
(‘n_clusters’)

fit_1(algo, verbose=True)
Fits one clustering algorithm

Arg:

• algo (str): name of the algorithm to fit

load(data)
Loads necessary data for clustering: no samples are needed.

Arg:

• data (PackData): data to play with

predict_1(algo, export=False, verbose=True)
Makes clustering prediction using one algorithme

Args:

4.1. Modules 17

Mapping Learning Documentation

• algo (str): name of the algorithm to use

• export (bool): should the result be exported?

maplearn.ml.confusion module

Confusion matrix

A confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance
of a classificarion algorithm (see ‘classification’ class).

Each column of the matrix represents the instances in a predicted class while each row represents the instances in an
actual class. The name stems from the fact that it makes it easy to see if the system is confusing two classes.

Example:

>>> import numpy as np
>>> # creates 2 vectors representing labels
>>> y_true = np.random.randint(0, 15, 100)
>>> y_pred = np.random.randint(0, 15, 100)
>>> cm = Confusion(y_true, y_pred)
>>> cm.calcul_matrice()
>>> cm.calcul_kappa()
>>> print(cm)

class maplearn.ml.confusion.Confusion(y_sample, y_predit, fTxt=None, fPlot=None)
Bases: object

Computes confusion matrix based on 2 vectors of labels:

1. labels of known samples

2. predicted labels

Args:

• y_sample (vector): vector with known labels

• y_predit (vector): vector with predicted labels

• fTxt (str): path to the text file to write confusion matrix into

• fPlot (str): id. with chart

Attributes:

• y_sample (vector): true labels (ground data)

• y_predit (vector): corresponding predicted labels

• cm (matrix): confusion matrix filled with integer values

• kappa (float): kappa index

• score (float): precision score

TODO:

• y_sample and y_predit should be renamed y_true and y_pred

calcul_matrice()
Computes a confusion matrix and display the result

Returns:

18 Chapter 4. Source code

Mapping Learning Documentation

• matrix (integer): confusion matrix

• float: kappa index

export(fTxt=None, fPlot=None, title=None)
Saves confusion matrix in:

• a text file

• a graphic file

Args:

• fTxt (str): path to the output text file

• fPlot (str): path to the output graphic file

• title (str): title of the chart

kappa
Computes kappa index based on 2 vectors

Returns:

• float: kappa index

maplearn.ml.confusion.confusion_cl(cm, labels, os1, os2)
Computes confusion between 2 given classes (expressed in percentage) based on a confusion matrix

Args:

• cm (matrix): confusion matrix

• labels (array): vector of labels

• os1 and os2 (int): codes of th classes

Returns:

• float: confusion percentage between 2 classes

maplearn.ml.distance module

Distance

Computes pairwise distance between 2 matrices, using several metric (euclidean is the default)

Example:

>>> import numpy as np
>>> y1 = np.random.random(50)
>>> y2 = np.random.random(50)
>>> dist = Distance(y1, y2)
>>> dist.run()

class maplearn.ml.distance.Distance(x=None, y=None)
Bases: object

Computes pairwise distance between 2 matrices (x and y)

Args:

• x (matrix)

• y (matrix)

4.1. Modules 19

Mapping Learning Documentation

compare(x=None, y=None, methods=[])
Compare pairwise distances got with different metrics

Args:

• x and y (matrices)

• methods (list): list of metrics used to compute pairwise distance. if empty, every available metrics
will be compared

dtw(x=None, y=None)
Dynamic Time-Warping distance

lcs(x=None, y=None, eps=10, delta=3)
Distance based on Longest Common Subsequence

run(x=None, y=None, meth=’euclidean’)
Distance calculation according to a specified method

Args:

• x (matrix)

• y (matrix)

• meth (str): name of the metric distance to use

Returns: matrix of pairwise distance values

simplex(x=None, y=None, sigma=50)
Simplex distance

maplearn.ml.reduction module

Dimensionnality reduction

The number of dimensions are reduced by selecting some of the features (like in kbest approach) or transforming them
(like in PCA. . .). This reduction is applied to samples and the data to predict in further step.

Several approaches are available, which are listed in the class attribute “ALG_ALGOS”.

class maplearn.ml.reduction.Reduction(data=None, algorithm=None, **kwargs)
Bases: maplearn.ml.machine.Machine

This class reduces the number of dimensions by selecting some of the features or transforming them (like in
PCA. . .). This reduction is applied to samples and the data to predict in further step.

Args:

• data (PackData): dataset to reduced

• algorithm (list): list of algorithm(s) to apply on dataset

• **kwargs: parameters about the reduction (numberof components) or the dataset (like features)

Attributes:

• attributes inherited from Machine classe

• ncomp (int): number of components expected

fit_1(algo)
Fits one reduction algorithm to the dataset

Args:

20 Chapter 4. Source code

Mapping Learning Documentation

• algo (str): name of the algorithm to fit

load(data)
Loads dataset to reduce

Args:

• data (PackData): dataset to load

predict_1(algo)
Applies chosen way of reduction to the dataset

Args: algo (str): name of the algorithm to apply

run(predict=True, ncomp=None)
Executes reduction of dimensions (fits and applies)

Args:

• predict (bool): should apply the reduction or just fit the algorithm ?

• ncomp (int): number of dimensions expected

Returns:

• array: reduced features data

• array: reduced samples features

• list: liste of features

maplearn.ml.regression module

Regression

In statistical modeling, regression analysis is a statistical process for estimating the relationships among variables. It
includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between
a dependent variable and one or more independent variables.

Regression analysis is supervised and need samples for fitting. The output will be a matrix with float values.

Example:

>>> from maplearn.datahandler.loader import Loader
>>> from maplearn.datahandler.packdata import PackData
>>> from maplearn.ml.regression import Regression
>>> loader = Loader('boston')
>>> data = PackData(X=loader.X, Y=loader.Y, data=loader.aData)
>>> reg = Regression(data=data, dirOut=os.path.join('maplearn_path', 'tmp'))
>>> reg.fit_1(self.__algo)

class maplearn.ml.regression.Regression(data=None, algorithm=None, **kwargs)
Bases: maplearn.ml.machine.Machine

Applies regression using 1 or several algorithm(s) onto a specified dataset

Args:

• data (PackData): dataset to play with

• algorithm (list or str): name of the algorithm(s) to use

• **kwargs: more parameters like k-fold

Attributes and properties are inherited from Machine class

4.1. Modules 21

Mapping Learning Documentation

fit_1(algo)
Fits one regression algorithm

Arg:

• algo (str): name of the algorithm to fit

load(data)
Loads necessary data for regression, with samples (labels are float values).

Arg:

• data (PackData): data to play with

Returns:

• int: did data load correctly (returns 0) or not (<> 0) ?

TODO:

• checks a few things when loading. . .

optimize(algo)
Optimize parameters of a regression algorithm

Args:

• algo (str): name of the regressor to use

predict_1(algo, proba=False)
Predicts Y using one regressor (specified by algo)

Args:

• algo (str): key of the regressor to use

• proba (bool): should probabilities (if available) given by algorithm be added to result?

run(predict=False)
Applies every regressors specified in ‘algorithm’ property

Args:

• predict (bool): should be the regressor only fitted or also used to predict?

maplearn.ml.machine module

Machine Learning class

Fits and predict result using one or several machine learning algorithm(s).

This is an abstract class that should not be used directly. Use instead one one of the these classes:

• Classification: supervised classification

• Clustering: unsupervised classification

• Regression: regression

• Reduction: to reduce dimensions of a dataset

class maplearn.ml.machine.Machine(data=None, algorithm=None, **kwargs)
Bases: object

Class to apply one or several machine learning algorithm(s) on a given dataset.

Args:

22 Chapter 4. Source code

Mapping Learning Documentation

• data (PackData): data to use with machine learning algorithm(s)

• algorithm (list or str): algorithm(s) to use

Attributes:

• algo (str): key code of the currently used algorithm

• result (dataframe): result(s) predicted by algorithm(s)

• proba (dataframe): probabilities produced by some algorithm(s)

Properties:

• algorithm (list): machine learning algorithm(s) to use

ALL_ALGOS = {}

algorithm
Gets list of algorithm that will be used when running the class

fit_1(algo)
Fits an algorithm to dataset

load(data)
Loads necessary data to machine learning algorithm(s)

Args:

• data (PackData): dataset used by machine learning algorithm(s)

predict_1(algo, export=False)
Predict a result using a given algorithm

Args:

• algo (str): key name identifying the algorithm to use

• export (bool): should the algorithm be used to predict results

run(predict=False)
Apply machine learning task(s) using every specified algorithm(s)

Args:

• predict (boolean): should machine learning algorithm(s) be used to predict results (or just be fitted to
samples) ?

4.1.2 maplearn.datahandler package

Data handlers

Interim classes between file(s) and dataset

• packdata: creates a dataset with samples and data

• labels: labels associated to features (in samples)

• loader: loads data from a file or known datasets

• writer: writes data into a file

• signature: graphs a dataset

• plotter: generic class to make charts

4.1. Modules 23

Mapping Learning Documentation

Submodules

maplearn.datahandler.packdata module

Machine Learning dataset

A machine learning dataset is classically a table where:

• columns are all variables that can be used by machine learning algorithms

• lines correspond to the individuals

Variables

The variables fall into two categories:

1. the variables for which you have information: these are the predictors (or features)

2. the variable to predict, also called label

Individuals

• The individuals for whom you know the label are called samples.

• The others are just called data

class maplearn.datahandler.packdata.PackData(X=None, Y=None, data=None, **kwargs)
Bases: object

PackData: a container for datasets

A PackData contains:

• samples (Y and X) to fit algorithm(s)

– Y: a vector with samples’ labels

– X: a matrix with samples’ features

• data: 2d matrix with features to use for prediction

PackData checks if samples are compatible with data (same features. . .) and is compatible with Machine Learn-
ing algorithm(s).

Example:

>>> import numpy as np
>>> data = np.random.random((10, 5))
>>> x = np.random.random((10, 5))
>>> y = np.random.randint(1, 10, size=10)
>>> ds = PackData(x, y, data)
>>> print(ds)

Args:

• X (array): 2d matrix with features of samples

• Y (array): vector with labels of samples

• data (array): 2d matrix with features

• **kwargs: other parameters about dataset (features, na. . .)

Attributes:

• not_nas: vector with non-NA indexes

24 Chapter 4. Source code

Mapping Learning Documentation

X
X (array): 2d matrix with features of samples

Y
Y (array): vector with labels of samples

balance(seuil=None)
Balance samples and remove some individuals within the biggest classes.

Args:

• seuil (int): max number of samples inside a class

classes
dict: labels classes and associated number of individuals

data
data (array): 2d matrix with features

features
list: list of features of the dataset

load(X=None, Y=None, data=None, features=None)
Loads data to the packdata

Args:

• X (array): 2d matrix with features of samples

• Y (array): vector with labels of samples

• data (array): 2d matrix with features

• features (list): list of features

plot(prefix=’sig’)
Plots the dataset (signature): * one chart for the whole samples * one chart per samples’ class

Args:

• prefix (str): prefix of output files to save charts in

reduit(meth=’lda’, ncomp=None)
Reduces number of dimensions of data and X

Args:

• meth (str): reduction method to apply

• ncomp (int): number of dimensions expected

scale()
Normalizes data and X matrices

separability(metric=’euclidean’)
Performs separability analysis between samples

Arg:

• metric (str): name of the distance used

maplearn.datahandler.labels module

Labels

This class handles labels associated to features in samples:

4.1. Modules 25

Mapping Learning Documentation

• counts how many samples for each class

class maplearn.datahandler.labels.Labels(Y, codes=None, output=None)
Bases: object

Samples labels used in PackData class

Args:

• Y (array): vector with samples’ labels

• codes (dict): dictionnary with labels code and associated description

Attributes:

• summary ()

• dct_codes (dict): dictionnary with labels code and associated description

Property:

• Y (array): vector containing labels of samples (codes)

Y
Samples (as a vector)

convert()
Conversion between codes

count()
Summarizes labels of each class (how many samples for each class)

libelle2code()
Converts labels’ names into corresponding codes

maplearn.datahandler.loader module

Loads data from a file

This class aims to feed a PackData. It gathers data from one or more files or uses known datasets stored in a library

class maplearn.datahandler.loader.Loader(source, **kwargs)
Bases: object

Loads data from a file or a known dataset

Args:

• source (str): path the file to load or name of a dataset (“iris” for example)

• **kwargs: other attributes to drive loading (handles NA, labels. . .)

Attributes:

• src (dct): informations about the source (type, path. . .)

• X: samples’ features

• Y: samples’ labels

• aData:

• matrix: (needed when loading from a raster file)

• features

• nomenclature

26 Chapter 4. Source code

Mapping Learning Documentation

Examples:

• Loading data from a know dataset:

>>> ldr = Loader('iris')
>>> print(ldr)
>>> print(ldr.X, ldr.Y)
>>> print(ldr.data)

• Loading data from a file (here a shapefile):

>>> ldr = Loader(os.path.join('maplearn_path', 'datasets',
'ex1.xlsx'))

>>> print(ldr)
>>> print(ldr.X, ldr.Y)

X
Matrix of values corresponding to samples

Y
Vector of labels describing samples. Values to be predicted by machine learning algorithm

aData
Data to predict

df
Dataframe loaded

features
List of features that contains the dataset

matrix
Data served as a matrix. Needed when loading data from an image

nomenclature
Legends of labels. Dictionnary combining labels codes and their corresponding names

run(**kwargs)
Gets samples (X with features and Y containing labels)

Args:

• **kwargs:

– features (list): features to load

– label (str): column with class labels (description)

– label_id (str): column with labels codes

maplearn.datahandler.writer module

Writes data into a file

This class is to be used with PackData. It puts data into one file (different formats are useable).

class maplearn.datahandler.writer.Writer(path=None, **kwargs)
Bases: object

Writes data in a file (different formats available)

Args:

4.1. Modules 27

Mapping Learning Documentation

• path (str): path towards the file to write data into

• **kwargs:

– origin (str): path to the original file used as a model

path

run(data, path=None, na=None, dtype=None)
Writes data into a file

Args:

• data (pandas dataframe): dataset to write

• path (str): path towards the file to write data into

• na : value used as a code for “NoData”

• dtype (np.dtype): desired data type

maplearn.datahandler.signature module

Signature

This class makes charts about a dataset:

• spectral signature

• temporal signature

Example:

>>> from maplearn.datahandler.loader import Loader
>>> from maplearn.datahandler.signature import Signature
>>> ldr = Loader('iris')
>>> sig = Signature()
>>> sig.plot(ldr.X, title='test')

class maplearn.datahandler.signature.Signature(data, features=None, model=’boxplot’,
output=None)

Bases: object

Makes charts about a dataset:

• one global graph

• one graph per class in samples (if samples are available)

Args:

• data (array or DataFrame): data to plot

• features (list): name of columns

• model (str): how to plot signature (plot or boxplot)

• ouput (str): path to the output directory where will be saved plots

plot(title=’Signature du jeu de donnees’, file=None)
Plots (spectral) signature of data as boxplots or points depending of the number of features

Args:

• title (str): title to add to the plot

28 Chapter 4. Source code

Mapping Learning Documentation

• file (str): name of the output file

plot_class(data_class, label=”, file=None)
Plots the signature of one class above the whole dataset

Args:

• data_class (dataframe): data of one class

• label (str): label of the class to plot

• file (str): path to the file to save the chart in

maplearn.datahandler.plotter module

4.1.3 maplearn.filehandler package

File handlers

Read/write data from different kind of files

• Csv: tabular data as a text file

• Excel: tabular data as a Microsoft Excel file

• Shapefile: geographical vector file

• ImageGeo: geographical raster file

• FileHandler: abstract class to handle files

Submodules

maplearn.filehandler.csv module

CSV file reader and writer

With this class, you can read a text file or write a new one with your own dataset (Pandas Dataframe).

Examples:

• Read an existing file

>>> exch = Csv(os.path.join('maplearn path', 'datasets', 'ex1.xlsx'))
>>> exch.read()
>>> print(exch.data)

• Write a new Excel File from scratch

>>> exc = Excel(None)
>>> out_file = os.path.join('maplearn path', 'tmp', 'scratch.xlsx')
>>> df = pd.DataFrame({'A' : 1,

'B' : pd.Timestamp('20130102'),
'C' : pd.Series(2,index=list(range(4))),
'D' : np.array([3] * 4,dtype='int64')})

exc.write(path=out_file, data=df)

class maplearn.filehandler.csv.Csv(path)
Bases: maplearn.filehandler.filehandler.FileHandler

Handler to read and write attributes in a text file. It inherits from the abstract class FileHandler.

4.1. Modules 29

Mapping Learning Documentation

Attributes:

• FileHandler’s attributes

Args:

• path (str): path to the Csv file to open

open_()
Opens the CSV file specified in dsn[‘path’]

read()
Reads the content of the CSV file

write(path=None, data=None, overwrite=True, **kwargs)
Write specified attributes in a text File

Args:

• path (str): path to the Excel to create and write

• data (pandas DataFrame): dataset to write in the Excel file

• overwrite (bool): should the output Excel file be overwritten ?

maplearn.filehandler.excel module

Excel file reader and writer

With this class, you can read an Excel file or write a new one with your own dataset (Pandas Dataframe).

Examples:

• Read an existing Excel file

>>> exch = Excel(os.path.join('maplearn path', 'datasets', 'ex1.xlsx'))
>>> exch.read()
>>> print(exch.data)

• Write a new Excel File from scratch

>>> exc = Excel(None)
>>> out_file = os.path.join('maplearn path', 'tmp', 'scratch.xlsx')
>>> df = pd.DataFrame({'A' : 1,

'B' : pd.Timestamp('20130102'),
'C' : pd.Series(2,index=list(range(4))),
'D' : np.array([3] * 4,dtype='int64')})

exc.write(path=out_file, data=df)

class maplearn.filehandler.excel.Excel(path, sheet=None)
Bases: maplearn.filehandler.filehandler.FileHandler

Handler to read and write attributes in an Excel file. It inherits from the abstract class FileHandler.

Attributes:

• FileHandler’s attributes

Args:

• path (str): path to the Excel file to open

• sheet (str): name of the sheet to open

30 Chapter 4. Source code

Mapping Learning Documentation

open_()
Opens the Excel file specified in dsn[‘path’]

read()
Reads the content of the opened Excel file

write(path=None, data=None, overwrite=True, **kwargs)
Write specified attributes in an Excel File

Args:

• path (str): path to the Excel to create and write

• data (pandas DataFrame): dataset to write in the Excel file

• overwrite (bool): should the output Excel file be overwritten ?

maplearn.filehandler.imagegeo module

Geographic Images (raster)

This class handles raster data with geographic dimension (projection system, bounding box expressed with coordi-
nates).

A raster data relies on:

• a matrix of pixels (data)

• geographic data (where to put this matrix on earth)

Example:

>>> img = ImageGeo(os.path.join('maplearn_path', 'datasets',
'landsat_rennes.tif'))

>>> img.read()
>>> print(img.data)

class maplearn.filehandler.imagegeo.ImageGeo(path=None, fmt=’GTiff’)
Bases: maplearn.filehandler.filehandler.FileHandler

Handler of geographical rasters

Args:

• path (str): path to the raster file to read

• fmt (str): format of the raster file (‘GTiff’. . . see GDAL documentation)

Attributes:

• Several attributes are inherited from FileHandler class

data
The dataset read from a file or to write in a file

data_2_img(data, overwrite=False, na=None)
Transforms a data set (dataframe) into a matrix in order to export it as an image (inverse operation to
__img_2_data () method).

Args:

• data (dataframe): the dataset to transform

• overwrite (bool): should the result data property ?

4.1. Modules 31

Mapping Learning Documentation

Returns: matrix: transformed dataset

img_2_data()
Transforms the data set in order to make it easier to handle in following steps.

Converts the data set (matrix) into to 2 dimensions dataframes (where 1 line = 1 individual and 1 column
= 1 feature)

Returns: dataframe: transformed dataset (2 dimensions)

init_data(dims, dtype=None)
Creates an empty matrix with specified dimension

Args:

• dims (list): dimensions of the image to create

• dtype (str): numerical type of pixels

open_()
Opens the Geographical Image to get information about projection system. . .

pixel2xy(j, i)
Computes the geographic coordinate (X,Y) corresponding to the specified position in an image (column,
row)

It does the inverse calculation of xy2pixel, and uses a gdal geomatrix

Source: http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html

Args:

• j (int): column position

• i (int): row position

Returns: list: geographical coordinate of the pixel (lon and lat)

read(dtype=None)
Reads the raster file and puts the matrix in data property

Args:

• dtype (str): type values stored in pixels (int, float. . .)

set_geo(transf=None, prj=None)

Sets geographical dimension of a raster:

• the projection system

• the bounding box, whose coordinates are compatible with the given

projection system

Args:

• prj (str): projection system

• transf (list): affine function to translate an image

Definition of ‘transf’ (to translate an image to the right place): [0] = top left x (x Origin) [1] = w-e pixel
resolution (pixel Width) [2] = rotation, 0 if image is “north up” [3] = top left y (y Origin) [4] = rotation, 0
if image is “north up” [5] = n-s pixel resolution (pixel Height)

TODO []

• Check compatibility between bounding box and image size

32 Chapter 4. Source code

http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html

Mapping Learning Documentation

• Adds EPSG code corresponding to prj in __geo

write(path=None, data=None, overwrite=True, **kwargs)
Writes a data in a raster file

Args:

• path (str): raster file to write data into

• data (array): data to write

• overwrite (bool): should the raster file be overwritten?

xy2pixel(lon, lat)
Computes the position in an image (column, row), given a geographic coordinate

Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate the pixel location of a geospatial coordinate
(http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html)

Args:

• lon (float): longitude (X)

• lat (float): latitude (Y)

Returns: list with the position in the image (column, row)

maplearn.filehandler.shapefile module

Shapefile reader and writer

With this class, you can read a shapefile or more precisely get attributes from a shapefile. You can also write a new
shapefile using geometry from an original shapefile and adding the attributes you want.

Examples:

>>> shp = Shapefile(os.path.join('maplearn path', 'datasets',
'echantillon.shp'))

>>> shp.read()
>>> print(shp.data)

TODO: Guess character encoding in shapefile’s attributes

class maplearn.filehandler.shapefile.Shapefile(path)
Bases: maplearn.filehandler.filehandler.FileHandler

Handler to read and write attributes in a shapefile. It inherits from the abstract class FileHandler.

Attributes:

• FileHandler’s attributes

• str_type (str): kind of geometry (polygon, point. . .)

• lst_flds (list): list of fields in dataset

open_()
Opens the shapefile and put in __ds attribute, so attributes can then be read

read()
Reads attributes associated to entities in the shapefile

Returns: Pandas Dataframe: data (attributes) available in the shapefile

4.1. Modules 33

http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html

Mapping Learning Documentation

write(path=None, data=None, overwrite=True, **kwargs)
Write attributes (and only attributes) in a new shapefile, using geometries of an original shapefile.

Args:

• path (str): path to the shapefile to create and write

• data (pandas DataFrame): dataset to write in the shapefile

• overwrite (bool): should the output shapefile be overwritten ?

maplearn.filehandler.filehandler module

Handling files (abstract class)

This class is to handle generic files. FileHandler is not supposed to be called directly. Use rather one of the classes
that inherits from it (ImageGeo, Excel, Shapefile. . .).

class maplearn.filehandler.filehandler.FileHandler(path=None, **kwargs)
Bases: object

Reads data from a generic file or write data into it.

Attributes:

• _drv (object): driver to communicate with a file (necessary for some formats)

• _data (numpy array or pandas dataframe): dataset got from a file or to write into it. See data
property.

• opened (bool): is the file opened or not ?

Args:

• path (str): path the file to read data from

• **kwargs: additional settings to specify how to load data from file

data
The dataset read from a file or to write in a file

dsn
Dictionnary containing informations about data source. For example, path contains the path of the file
to get data from. Other items can exist, which are specific to the data type (raster, vector or tabular,
geographical or not. . .)

open_()
Opens a file prior to write in it

read()
Reads the dataset from the file mentioned during initialization

write(path=None, data=None, overwrite=True, **kwargs)
Writes data in a file

Args:

• path (str): path to the file to write into

• data (numpy array or pandas dataframe): the data to write

• overwrite (bool): should the file be overwritten if it exists ?

34 Chapter 4. Source code

Mapping Learning Documentation

4.1.4 maplearn.app package

Application modules

Modules necessary to Mapping Learning when it is used as an application :

• config: configuration

• main: the main class that uses other classes to process your data

• reporting: a module to format results in an html output

Submodules

maplearn.app.config module

Mapping Learning Configuration

The configuration contains 3 mandatory parts :

• Inputs/outputs [io]: which file(s) and how to work with them, where to save results . . .)

• Preprocessing [preprocess]: what to do before training the algorithm(s)?

• Processing [process]: which kind of processing? Regression, supervised or unsupervised classification (clus-
tering)? Which algorithm(s)?

An optional part, [metadata] permits to include some information about your work in the output report.

Input/Output [io]

Mapping Learning allows you to work on many formats (csv, excel, tiff, shp. . .), but also in many ways. You can
choose:

• to use samples, a dataset without knowledge (data), or both

• the variable(s) (features) to use

• to use directly the values of the variable to be predicted (label) or some codes corresponding to these values
(label_id)

NB: don’t forget to check where will be saved your results (output).

[io]
[txt] path to the samples used to train algorithm(s)
samples=
[optional:txt] name of the column with class ID (as numbers)
label_id=
[optional:txt] name of column with class description (described as
strings)
label=
[optional:txt] list of features to use (separated with ',')
features=
[optional:txt] path to the dataset to predict with
data=
[txt] path to the output folder (which will contain the results)
output=

4.1. Modules 35

Mapping Learning Documentation

Preprocessing [preprocess]

Maplearn is not intended to perform all the necessary manipulations to your dataset to make it usable by machine
learning. Nevertheless, some preprocessing tools are available, that will modify the values of the data (scale), the
features (reduce and ncomp), the samples (balance). Finally, separability permits to estimate the chances of getting
good results with your samples.

NB: check maplearn.datahandler.packdata to see how dataset should be structured for machine learning
use.

[preprocess]
[optional:boolean] center/reduce? [true/false]
scale=
[optional:boolean] make number of individuals about similar between
classes? [true/false]
balance=
[optional:txt] name of the method to reduce dimensions of the dataset
[one between pca, lda, kbest, rfe, kernel_pca]
reduce=
[optional:number] number of expected dimensions after reduction
ncomp=
[optional:boolean] check separability between classes? [true/false]
separability=

Processing [process]

Note: Here we are finally at the most interesting part: what do you want to predict? Continuous numbers (temperature,
. . .) or discrete values (social class, land use. . .)? In any case, maplearn will allow you to use lots of algorithms, and
will help you obtain the most accurate predictions.

This process part will allow you to define:

• type of prediction (type)

• algorithm(s) to apply (algorithm)

• if you want to try to improve the accuracy (optimize)

• how to use your samples (kfold)

• should we predict?

Note: This question may seem absurd but it is prudent not to predict results immediately. If your dataset is large and
you do not know exactly which algorithm(s) are relevant, then you can focus first on the statistical results.

[process]
[txt] which kind of process? [classification, clustering ou regression]
type=classification
[optional:txt] how to measure distance?
distance=euclidean
[optional:txt] algorithm(s) to use (if several, separated with ',')
algorithm=
[optional:number] how many folds to use in cross-validation?

(continues on next page)

36 Chapter 4. Source code

Mapping Learning Documentation

(continued from previous page)

kfold=
[optional:boolean] look for best hyperparameters? [true/false]
optimize=
[optional:boolean] should predict results (exports)? [true/false]
predict=

Metadata [metadata]

[metadata]
[optional:txt] give a title to your work
title =
[optional:txt] describe your work (please avoid special characters)
description =
[optional:txt] name of the author(s)
author =

class maplearn.app.config.Config(file_config)
Bases: object

This class is the medium between a configuration file and the applicaton. It is able to load and check a configu-
ration file (Yaml) and rewrite a new configuration file (that can be re-used by Mappling Learning later).

Config checks that application will be able to run properly using a given configuration:

• input files exists?

• value of parameters belong to expected type

• . . .

Args: config_file (str) : path to a configuration file

The class attributes described below reflects the sections in configuration file.

Properties:

• io (dict): input/output. path to samples, dataset files and output. list of features to use. . .

• codes (dict): label codes and corresponding names

• preprocess (dict) : which preprocessing step(s) to apply

• process (dict) : which processes to apply (list of algorihms. . .)

check()
Check that parameters stored in attributes are correct

Returns: int : number of issues detected

codes
Dictionnary describing label codes and the name of classes

io
Input/Output property

preprocess
Dictionnary of preprocess parameters

process
Dictionnary of process parameters

4.1. Modules 37

Mapping Learning Documentation

read()
Load parameters from configuration file and put them in corresponding class attributes

Returns: int : number of issues got when reading the file

write(fichier=None)
Write a new configuration file feeded by class attributes content.

Args: fichier (str) : path to configuration file to write

maplearn.app.config.splitter(text)
Splits a character string based on several separators and remove useless empty characters.

Args: text (str) : character string to split

Returns: list: list of stripped character strings, None elsewhere

maplearn.app.main module

Main class (one class to rule the others)

This class is the engine powering Mapping Learning. It uses every other classes to load data, apply preprocesses and
finally process the dataset, using one or several algorithm(s). The results are synthetized and compared.

The class can apply classification, clustering and regression processes.

Examples:

>>> from maplearn.app.main import Main

• Apply 2 different classifications on a known dataset

>>> ben = Main('.', type='classification', algorithm=['knn', 'lda'])
>>> ben.load('iris')
>>> ben.preprocess()
>>> ben.process(True)

• Apply every available clustering algorithm(s) on the same dataset

>>> ben = Main('.', type='clustering')
>>> ben.load('iris')
>>> ben.preprocess()
>>> ben.process(False) # do not predict results

• Apply regression on another known dataset

>>> ben = Main('.', type='regression', algorithm='lm')
>>> ben.load('boston')
>>> ben.preprocess()
>>> ben.process(False) # do not predict results

class maplearn.app.main.Main(dossier, **kwargs)
Bases: object

Realizes every steps from loading dataset to processing

Args:

• dossier (str): output path where will be stored every results

• **kwargs: parameters data and processing to apply on it

38 Chapter 4. Source code

Mapping Learning Documentation

Attributes:

• dataset (PackData): dataset to play with

load(source, **kwargs)
Loads samples (labels with associated features) used for training algorithm(s)

Args:

• source (str): file to load or name of an available datasets

• **kwargs: parameters to specify how to use datasets (which features to use. . .)

load_data(source, label_id=None, label=None, features=None)
Load dataset to predict with previously trained algorithm(s)

Args:

• source (str): path to load or name of an available dataset

• label_id (optional[str]): column used to identify labels

• label (optional[str]): column with labels’ names

• features (list): columns to use as features. Every available columns are used if None

preprocess(**kwargs)
Apply preprocessings tasks asked by user and give the dataset to the Machine Learning processor

Args: **kwargs: available preprocessing tasks (scaling dataset, reducing number of features. . .)

process(predict=False, optimize=False, proba=True)
Apply algorithm(s) to dataset

Args:

• predict (bool): should the algorithm(s) be only fitted on samples or also predict results ?

• optimize (bool): should maplearn look for best hyperparameters for the algorithm(s) ?

• proba (bool): should maplearn try to get probabilities associated to predictions ?

maplearn.app.reporting module

4.1. Modules 39

Mapping Learning Documentation

40 Chapter 4. Source code

CHAPTER 5

Contribute

Note:

Mapping Learning is a free, open-source application, distributed under the lGPL v3 license. Feel free to contribute !

You do not have to know how to code, you can contribute by:

• Using it

• Tracing the issues or proposing improvements on the bug tracker

• Improving documentation

Feel free to contact me (alban.thomas@univ-rennes2.fr).

5.1 Documentation

The documentation is built from the source code (using sphinx) and is available in PDF, epub and HTML. Up-to-date
documentation is available at https://maplearn.readthedocs.io/en/latest/ .

5.2 Source code

Maplearn is written in Python. The source code is available at https://bitbucket.org/thomas_a/maplearn/src/master/.
You can simply download a copy from this link but using git you can easily get updates.

41

https://bitbucket.org/thomas_a/maplearn/issues?status=new&status=open
mailto:alban.thomas@univ-rennes2.fr
https://maplearn.readthedocs.io/en/latest/
https://bitbucket.org/thomas_a/maplearn/src/master/
https://bitbucket.org/thomas_a/maplearn/downloads/

Mapping Learning Documentation

git clone https://bitbucket.org/thomas_a/maplearn.git
then, to get updates
git pull

5.3 Philosophy

Wondering what you can expect from Mapping Learning software? The few points below give the “philosophy” of
the software:

• Mapping Learning should be able to be used as you wish (freedom)

Mapping Learning is usable whatever your environment (Windows, Linux or Mac) and the way you want (graphical
or online interface of commands, or even write a Python script).

• Mapping Learning should help you to learn machine learning (knowledge base)

We learn from our mistakes. Mapping Learning will not prevent you from making meaningless predictions but must
help you to realize you are doing it wrong (through advice, warnings . . .).

• Mapping Learning should help you to understand your data (visualization)

Data visualization really matters. Mapping Learning will integrate all possible means (not just graphics) to better
understand your data and results.

• Mapping Learning should be useful to everyone (openness)

Mapping Learning was initially dedicated to remote sensing, but the applications of machine learning are much larger.
Maplearn allows you to use your data whether they are geographic or not (text files, Excel, and more to come).

• Mapping Learning should be up to date

Machine Learning evolves quickly and Mapping Learning will try to give you access to the latest algorithms.

• Mapping Learning is about machine learning and only machine learning

Mapping Learning is not a GIS or data manipulation software (ETL). Very good software already exists.

5.4 Thanks

Rennes 2 University

LETG - UMR6554

42 Chapter 5. Contribute

https://international.univ-rennes2.fr/
http://letg.cnrs.fr/

Mapping Learning Documentation

AFPy - Association Francophone Python

5.4. Thanks 43

https://www.afpy.org/

Mapping Learning Documentation

44 Chapter 5. Contribute

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

45

Mapping Learning Documentation

46 Chapter 6. Indices and tables

Python Module Index

m
maplearn, ??
maplearn.app, 35
maplearn.app.config, 35
maplearn.app.main, 38
maplearn.app.reporting, 39
maplearn.datahandler, 23
maplearn.datahandler.labels, 25
maplearn.datahandler.loader, 26
maplearn.datahandler.packdata, 24
maplearn.datahandler.plotter, 29
maplearn.datahandler.signature, 28
maplearn.datahandler.writer, 27
maplearn.filehandler, 29
maplearn.filehandler.csv, 29
maplearn.filehandler.excel, 30
maplearn.filehandler.filehandler, 34
maplearn.filehandler.imagegeo, 31
maplearn.filehandler.shapefile, 33
maplearn.ml, 13
maplearn.ml.classification, 15
maplearn.ml.clustering, 17
maplearn.ml.confusion, 18
maplearn.ml.distance, 19
maplearn.ml.machine, 22
maplearn.ml.reduction, 20
maplearn.ml.regression, 21
maplearn.run, 10
maplearn.run_example, 11
maplearn.run_gui, 7

47

Mapping Learning Documentation

48 Python Module Index

Index

A
aData (maplearn.datahandler.loader.Loader attribute),

27
algorithm (maplearn.ml.machine.Machine attribute),

23
ALL_ALGOS (maplearn.ml.machine.Machine attribute),

23

B
balance() (maplearn.datahandler.packdata.PackData

method), 25

C
calcul_matrice() (maplearn.ml.confusion.Confusion

method), 18
check() (maplearn.app.config.Config method), 37
classes (maplearn.datahandler.packdata.PackData at-

tribute), 25
Classification (class in

maplearn.ml.classification), 15
Clustering (class in maplearn.ml.clustering), 17
codes (maplearn.app.config.Config attribute), 37
compare() (maplearn.ml.distance.Distance method),

19
Config (class in maplearn.app.config), 37
Confusion (class in maplearn.ml.confusion), 18
confusion_cl() (in module maplearn.ml.confusion),

19
convert() (maplearn.datahandler.labels.Labels

method), 26
count() (maplearn.datahandler.labels.Labels method),

26
Csv (class in maplearn.filehandler.csv), 29

D
data (maplearn.datahandler.packdata.PackData at-

tribute), 25
data (maplearn.filehandler.filehandler.FileHandler at-

tribute), 34

data (maplearn.filehandler.imagegeo.ImageGeo at-
tribute), 31

data_2_img() (maplearn.filehandler.imagegeo.ImageGeo
method), 31

df (maplearn.datahandler.loader.Loader attribute), 27
Distance (class in maplearn.ml.distance), 19
dsn (maplearn.filehandler.filehandler.FileHandler

attribute), 34
dtw() (maplearn.ml.distance.Distance method), 20

E
Excel (class in maplearn.filehandler.excel), 30
export() (maplearn.ml.confusion.Confusion method),

19
export_tree() (maplearn.ml.classification.Classification

method), 16

F
features (maplearn.datahandler.loader.Loader

attribute), 27
features (maplearn.datahandler.packdata.PackData

attribute), 25
FileHandler (class in

maplearn.filehandler.filehandler), 34
fit_1() (maplearn.ml.classification.Classification

method), 16
fit_1() (maplearn.ml.clustering.Clustering method),

17
fit_1() (maplearn.ml.machine.Machine method), 23
fit_1() (maplearn.ml.reduction.Reduction method),

20
fit_1() (maplearn.ml.regression.Regression method),

21

I
ImageGeo (class in maplearn.filehandler.imagegeo), 31
img_2_data() (maplearn.filehandler.imagegeo.ImageGeo

method), 32
init_data() (maplearn.filehandler.imagegeo.ImageGeo

method), 32

49

Mapping Learning Documentation

io (maplearn.app.config.Config attribute), 37

K
kappa (maplearn.ml.confusion.Confusion attribute), 19

L
Labels (class in maplearn.datahandler.labels), 26
lcs() (maplearn.ml.distance.Distance method), 20
lcs_kernel() (in module

maplearn.ml.classification), 16
libelle2code() (maplearn.datahandler.labels.Labels

method), 26
load() (maplearn.app.main.Main method), 39
load() (maplearn.datahandler.packdata.PackData

method), 25
load() (maplearn.ml.classification.Classification

method), 16
load() (maplearn.ml.clustering.Clustering method), 17
load() (maplearn.ml.machine.Machine method), 23
load() (maplearn.ml.reduction.Reduction method), 21
load() (maplearn.ml.regression.Regression method),

22
load_data() (maplearn.app.main.Main method), 39
Loader (class in maplearn.datahandler.loader), 26

M
Machine (class in maplearn.ml.machine), 22
Main (class in maplearn.app.main), 38
main() (in module maplearn.run_example), 11
main() (in module maplearn.run_gui), 9
maplearn (module), 1
maplearn.app (module), 35
maplearn.app.config (module), 35
maplearn.app.main (module), 38
maplearn.app.reporting (module), 39
maplearn.datahandler (module), 23
maplearn.datahandler.labels (module), 25
maplearn.datahandler.loader (module), 26
maplearn.datahandler.packdata (module), 24
maplearn.datahandler.plotter (module), 29
maplearn.datahandler.signature (module),

28
maplearn.datahandler.writer (module), 27
maplearn.filehandler (module), 29
maplearn.filehandler.csv (module), 29
maplearn.filehandler.excel (module), 30
maplearn.filehandler.filehandler (mod-

ule), 34
maplearn.filehandler.imagegeo (module), 31
maplearn.filehandler.shapefile (module),

33
maplearn.ml (module), 13
maplearn.ml.classification (module), 15
maplearn.ml.clustering (module), 17

maplearn.ml.confusion (module), 18
maplearn.ml.distance (module), 19
maplearn.ml.machine (module), 22
maplearn.ml.reduction (module), 20
maplearn.ml.regression (module), 21
maplearn.run (module), 10
maplearn.run_example (module), 11
maplearn.run_gui (module), 7
matrix (maplearn.datahandler.loader.Loader at-

tribute), 27

N
nomenclature (maplearn.datahandler.loader.Loader

attribute), 27

O
open_() (maplearn.filehandler.csv.Csv method), 30
open_() (maplearn.filehandler.excel.Excel method), 30
open_() (maplearn.filehandler.filehandler.FileHandler

method), 34
open_() (maplearn.filehandler.imagegeo.ImageGeo

method), 32
open_() (maplearn.filehandler.shapefile.Shapefile

method), 33
optimize() (maplearn.ml.classification.Classification

method), 16
optimize() (maplearn.ml.regression.Regression

method), 22

P
PackData (class in maplearn.datahandler.packdata),

24
path (maplearn.datahandler.writer.Writer attribute), 28
pixel2xy() (maplearn.filehandler.imagegeo.ImageGeo

method), 32
plot() (maplearn.datahandler.packdata.PackData

method), 25
plot() (maplearn.datahandler.signature.Signature

method), 28
plot_class() (maplearn.datahandler.signature.Signature

method), 29
predict_1() (maplearn.ml.classification.Classification

method), 16
predict_1() (maplearn.ml.clustering.Clustering

method), 17
predict_1() (maplearn.ml.machine.Machine

method), 23
predict_1() (maplearn.ml.reduction.Reduction

method), 21
predict_1() (maplearn.ml.regression.Regression

method), 22
preprocess (maplearn.app.config.Config attribute),

37
preprocess() (maplearn.app.main.Main method), 39

50 Index

Mapping Learning Documentation

process (maplearn.app.config.Config attribute), 37
process() (maplearn.app.main.Main method), 39

R
read() (maplearn.app.config.Config method), 37
read() (maplearn.filehandler.csv.Csv method), 30
read() (maplearn.filehandler.excel.Excel method), 31
read() (maplearn.filehandler.filehandler.FileHandler

method), 34
read() (maplearn.filehandler.imagegeo.ImageGeo

method), 32
read() (maplearn.filehandler.shapefile.Shapefile

method), 33
Reduction (class in maplearn.ml.reduction), 20
reduit() (maplearn.datahandler.packdata.PackData

method), 25
Regression (class in maplearn.ml.regression), 21
run() (in module maplearn.run), 11
run() (maplearn.datahandler.loader.Loader method),

27
run() (maplearn.datahandler.writer.Writer method), 28
run() (maplearn.ml.classification.Classification

method), 16
run() (maplearn.ml.distance.Distance method), 20
run() (maplearn.ml.machine.Machine method), 23
run() (maplearn.ml.reduction.Reduction method), 21
run() (maplearn.ml.regression.Regression method), 22
run_cfg() (in module maplearn.run_example), 11
run_example() (in module maplearn.run_example),

11

S
scale() (maplearn.datahandler.packdata.PackData

method), 25
separability() (maplearn.datahandler.packdata.PackData

method), 25
set_geo() (maplearn.filehandler.imagegeo.ImageGeo

method), 32
Shapefile (class in maplearn.filehandler.shapefile), 33
Signature (class in maplearn.datahandler.signature),

28
simplex() (maplearn.ml.distance.Distance method),

20
skreport_md() (in module

maplearn.ml.classification), 16
splitter() (in module maplearn.app.config), 38
svm_kernel() (in module

maplearn.ml.classification), 17

W
write() (maplearn.app.config.Config method), 38
write() (maplearn.filehandler.csv.Csv method), 30
write() (maplearn.filehandler.excel.Excel method), 31

write() (maplearn.filehandler.filehandler.FileHandler
method), 34

write() (maplearn.filehandler.imagegeo.ImageGeo
method), 33

write() (maplearn.filehandler.shapefile.Shapefile
method), 33

Writer (class in maplearn.datahandler.writer), 27

X
X (maplearn.datahandler.loader.Loader attribute), 27
X (maplearn.datahandler.packdata.PackData attribute),

24
xy2pixel() (maplearn.filehandler.imagegeo.ImageGeo

method), 33

Y
Y (maplearn.datahandler.labels.Labels attribute), 26
Y (maplearn.datahandler.loader.Loader attribute), 27
Y (maplearn.datahandler.packdata.PackData attribute),

25

Index 51

	Features
	Install
	Installing
	2. Before installing

	Use
	Mapping Learning’s GUI
	Mapping Learning’s CLI
	Output

	Source code
	Modules

	Contribute
	Documentation
	Source code
	Philosophy
	Thanks

	Indices and tables
	Python Module Index
	Index

