
MAP++ Documentation
Release 1.15

Marco Masciola

Mar 16, 2018

Contents

1 Release Notes 3
1.1 License . 3
1.2 Disclaimer . 5
1.3 Dependencies . 5
1.4 Change Log . 6

2 Definitions 7
2.1 What MAP++ Solves . 7
2.2 Nomenclature . 8

3 Theory 9
3.1 Line Theory . 10
3.2 Vessel . 13

4 Input File 15
4.1 Baseline Example . 15
4.2 Line Dictionary . 17
4.3 Node Properties . 19
4.4 Line Properties . 20
4.5 Flags . 20
4.6 Solver Options . 21

5 Python Example 23
5.1 Static Configuration . 23
5.2 Time-Marching for Dynamics Simulation . 25

6 API Documentation 31
6.1 Python API . 31

7 FAQ 33
7.1 Using with Python . 33
7.2 Initialization Errors . 33
7.3 Running MAP++ . 34

8 Help 37

9 References 39

i

Bibliography 41

ii

MAP++ Documentation, Release 1.15

Contents 1

MAP++ Documentation, Release 1.15

2 Contents

CHAPTER 1

Release Notes

Note: Example input files are provided to demonstrate MAP++. These fake examples do not represent realistic,
practical moorings for permanent installations.

1.1 License

MAP++ is licensed under Apache v 2.0 License.

1.1.1 License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1
through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the
License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or
are under common control with that entity. For the purposes of this definition, “control” means (i) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software
source code, documentation source, and configuration files.

3

http://www.apache.org/licenses/

MAP++ Documentation, Release 1.15

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form,
including but not limited to compiled object code, generated documentation, and conversions to other media
types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License,
as indicated by a copyright notice that is included in or attached to the work (an example is provided in the
Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from)
the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as
a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modi-
fications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has
been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as
of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

i. You must cause any modified files to carry prominent notices stating that You changed the files; and

A. You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

B. If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, if and wherever such third-party notices

4 Chapter 1. Release Notes

MAP++ Documentation, Release 1.15

normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

4. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

5. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or
product names of the Licensor, except as required for reasonable and customary use in describing the origin of
the Work and reproducing the content of the NOTICE file.

6. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work
(and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CON-
DITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

7. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,
or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of
the possibility of such damages.

8. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You
may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obliga-
tions and/or rights consistent with this License. However, in accepting such obligations, You may act only on
Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against,
such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

1.2 Disclaimer

This software is provided as-is and without warranty. There are no guarantees it is bug free or provides the correct
answers, even if it is used for the intended purpose. By using this software and as a condition of the Apache license,
you agree to not hold any MAP++ developer liable for damages.

1.3 Dependencies

Third party dependencies are distributed with the MAP++ archive on BitBucket. Required libraries include the fol-
lowing:

1.2. Disclaimer 5

MAP++ Documentation, Release 1.15

Library Version Distributed with MAP++
LAPACK Version 3.5.0
C/C++ Minpack Version 1.3.3
SimCList Version 1.6
Better String Library Version 0.1.1

1.4 Change Log

v1.20.00 – First release.

v1.20.10 – Repaired the linearized stiffness matrix function and improved the input file parsing in python.

6 Chapter 1. Release Notes

http://www.netlib.org/lapack/
http://devernay.free.fr/hacks/cminpack/
http://mij.oltrelinux.com/devel/simclist/
http://mike.steinert.ca/bstring/doc/

CHAPTER 2

Definitions

2.1 What MAP++ Solves

Mooring models can be classified into two groups: static models and dynamic models. Static models ignore the inertia
forces and fluid drag loads, and only account for the mean forces in the mooring system, including elasticity, weight
(in fluid), and geometric nonlinearities. Static models are the type concerned in MAP++. Extra steps are taken to
reformulate the classic single line, closed–form solution [1] into a piece-wise, multi-sgemented system. This piece
wise system is composed of a collection of nodes and elements.

Each element in Fig. 1 is expressed as a single line counterpart in two configurations. One configuration has the line
hanging freely, whereas the second orientation account for friction and contact at the bottom boundary.

7

MAP++ Documentation, Release 1.15

Fig. 2.1: Fig. 1

2.2 Nomenclature

Variable Definition Units
𝐴 Cable cross-sectional area [m^2]
𝐶𝐵 Seabed contact friction coefficient –
𝐸 Young’s modulus [N/m^2]
𝑔 Acceleration due to gravity [m/s^2]
ℎ Vertical fairlead excursion [m]
𝐻 Horizontal fairlead force [N]
𝐻𝑎 Horizontal anchor force [N]
𝑙 Horizontal fairlead excursion [m]
𝐿 Unstretched line length [m]
𝐿𝐵 Line length resting on the seabed [m]
𝑀𝑖 Point mass applied to the ith node [kg]
𝑟𝑖 Node position vector [xi ; yi ; zi] [m]
𝑅𝑖 Rotation angle between the 𝑥𝑖 and 𝑋 axis –
𝑠 Unstretched distance from the anchor (0 ≤ 𝑠 ≤ 𝐿) [m]
𝑇𝑗 Cable tension vector for the jth elemetn [N]
𝑇𝑒(𝑠) Cable tangential tension at distance s [N]
𝑉 Vertical fairlead force [N]
𝑉𝑎 Vertical anchor force [N]
𝑤 Cable weight-per-unit length in fluid [N/m]
𝑥0 Horizontal force transition point for 𝐻(𝑠) > 0 [N]
𝜌 Fluid density [kg/m^3]

8 Chapter 2. Definitions

CHAPTER 3

Theory

The solution process begins by evaluating the two continuous analytical catenary equations for each element based on
𝑙 and ℎ values obtained through node displacement relationships. An element is defined as the component connecting
two adjacent nodes together. Once the element fairlead (𝐻 , 𝑉) and anchor (𝐻𝑎, 𝑉𝑎) values are known at the ele-
ment level, the forces are transformed from the local 𝑥𝑖𝑧𝑖 frame into the global 𝑋𝑌 𝑍 coordinate system. The force
contribution at each element’s anchor and fairlead is added to the corresponding node it attaches to.

The force-balance equation is evaluated for each node, as follows:

{F}𝑗𝑋 =

Element i at Node 𝑗∑︁
𝑖=1

[𝐻𝑖 cos(𝛼𝑖)]− 𝐹 𝑒𝑥𝑡
𝑋𝑗

= 0

{F}𝑗𝑌 =

Element 𝑖 at Node 𝑗∑︁
𝑖=1

[𝐻𝑖 sin(𝛼𝑖)]− 𝐹 𝑒𝑥𝑡
𝑌𝑗

= 0

{F}𝑗𝑍 =

Element 𝑖 at Node 𝑗∑︁
𝑖=1

[𝑉𝑖]− 𝐹 𝑒𝑥𝑡
𝑍𝑗

+𝑀𝑗𝑔 − 𝜌𝑔𝐵𝑗 = 0

Node forces are found based on the connectivity geometry between element and external forces applied at the boundary
conditions. This is initiated by defining a series of ℱ𝑖 local frames at the origin in which the individual line elements
are expressed in. Frame ℱ0 is an arbitrary global axis, but it is usually observed as the vessel reference origin.

Note: Simplistic way to think of MAP++’s dichotomy between nodes and elements: Nodes define the force at
connection points. Elements define the mooring geometry.

Clearly, this process requires two distinct sets of equations, one of which must be solved within the other routine, to
find the static cable configuration. The first set of equations are the force{balance relationships in three directions for
each node; the second set of equations are the catenary functions proportional to the number of elements. Interactions
between solves is captured in the flowchart below to summarize the solve procedure. This method was first proposed
in [4].

9

MAP++ Documentation, Release 1.15

Fig. 3.1: Fig. 2

3.1 Line Theory

3.1.1 Free–Hanging Line

The equations used to describe the shape of a suspended chain illustrated in Fig. 4 have been derived in numerous
works [1]. For completeness, a summary of the governing equations used inside the MSQS model are presented.
Given a set of line properties, the line geometry can be expressed as a function of the forces exerted at the end of the
line:

𝑥 (𝑠) =
𝐻

𝜔

⎧⎨⎩ln

⎡⎣𝑉𝑎 + 𝜔𝑠

𝐻
+

√︃
1 +

(︂
𝑉𝑎 + 𝜔𝑠

𝐻

)︂2
⎤⎦− ln

⎡⎣𝑉𝑎
𝐻

+

√︃
1 +

(︂
𝑉𝑎
𝐻

)︂2
⎤⎦⎫⎬⎭+

𝐻𝑠

𝐸𝐴

𝑧 (𝑠) =
𝐻

𝜔

⎡⎣√︃1 +

(︂
𝑉𝑎 + 𝜔𝑠

𝐻

)︂2

−

√︃
1 +

(︂
𝑉𝑎
𝐻

)︂2
⎤⎦+

1

𝐸𝐴

(︂
𝑉𝑎𝑠+

𝜔𝑠2

2

)︂
where:

𝜔 = 𝑔𝐴 (𝜌cable − 𝜌)

and 𝑥 and 𝑧 are coordinate axes in the local (element) frame, Fig. 2. The following substitution can be made for 𝑉𝑎 in
the above equations:

𝐻𝑎 = 𝐻

𝑉𝑎 = 𝑉 − 𝜔𝐿

which simply states the decrease in the vertical anchor force component is proportional to the mass of the suspended
line. The equations for 𝑥(𝑠) and 𝑧(𝑠) both describe the catenary profile provided all entries on the right side of the
equations are known. However, in practice, the force terms 𝐻 and 𝑉 are sought, and the known entity is the fairlead

10 Chapter 3. Theory

MAP++ Documentation, Release 1.15

Fig. 3.2: Fig. 3

3.1. Line Theory 11

MAP++ Documentation, Release 1.15

excursion dimensions, 𝑙 and 𝑙. In this case, the forces 𝐻 and 𝑉 are found by simultaneously solving the following two
equations:

𝑙 =
𝐻

𝜔

⎡⎣ln
⎛⎝𝑉

𝐻
+

√︃
1 +

(︂
𝑉

𝐻

)︂2
⎞⎠− ln

⎛⎝𝑉 − 𝜔𝐿

𝐻
+

√︃
1 +

(︂
𝑉 − 𝜔𝐿

𝐻

)︂2
⎞⎠⎤⎦+

𝐻𝐿

𝐸𝐴

ℎ =
𝐻

𝜔

⎡⎣√︃1 +

(︂
𝑉

𝐻

)︂2

−

√︃
1 +

(︂
𝑉 − 𝜔𝐿

𝐻

)︂2
⎤⎦+

1

𝐸𝐴

(︂
𝑉 𝐿− 𝜔𝐿2

2

)︂

Fig. 3.3: Fig. 4

3.1.2 Line Touching the Bottom

The solution for the line in contact with a bottom boundary is found by continuing 𝑥(𝑠) and 𝑧(𝑠) beyond the seabed
touch–down point 𝑠 = 𝐿𝐵 . Integration constants are added to ensure continuity of boundary conditions between
equations:

𝑥 (𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠 if 0 ≤ 𝑠 ≤ 𝑥0

𝑠 +
𝐶𝐵𝜔

2𝐸𝐴

[︀
𝑠2 − 2𝑥0𝑠 + 𝑥0𝜆

]︀
if 𝑥0 < 𝑠 ≤ 𝐿𝐵

𝐿𝐵 + 𝐻
𝜔 ln

[︃
𝜔(𝑠−𝐿𝐵)

𝐻 +

√︃
1 +

(︂
𝜔(𝑠−𝐿𝐵)

𝐻

)︂2
]︃
+ 𝐻𝑠

𝐸𝐴 +
𝐶𝐵𝜔

2𝐸𝐴

[︀
𝑥0𝜆 − 𝐿2

𝐵

]︀
if 𝐿𝐵 < 𝑠 ≤ 𝐿

where 𝜆 is:

𝜆 =

{︂
𝐿𝐵 − 𝐻

𝐶𝐵𝜔 if 𝑥0 > 0

0 otherwise

Between the range 0 ≤ 𝑠 ≤ 𝐿𝐵 , the vertical height is zero since the line is resting on the seabed and forces can only
occur parallel to the horizontal plane. This produces:

𝑧 (𝑠) =

⎧⎨⎩
0 if 0 ≤ 𝑠 ≤ 𝐿𝐵

𝐻
𝜔

[︃√︃
1 +

(︂
𝜔(𝑠−𝐿𝐵)

𝐻

)︂2

− 1

]︃
+

𝜔(𝑠−𝐿𝐵)2

2𝐸𝐴 if 𝐿𝐵 < 𝑠 ≤ 𝐿

12 Chapter 3. Theory

MAP++ Documentation, Release 1.15

The equations above produce the mooring line profile as a function of 𝑠. Ideally, a closed–form solution for 𝑙 and ℎ
is sought to permit simultaneous solves for 𝐻 and 𝑉 , analogous to the freely–hanging chase in the previous section.
This is obtained by substituting 𝑠 = 𝐿 to give:

𝑙 = 𝐿𝐵 +

(︂
𝐻

𝜔

)︂
ln

⎡⎣𝑉
𝐻

+

√︃
1 +

(︂
𝑉

𝐻

)︂2
⎤⎦+

𝐻𝐿

𝐸𝐴
+
𝐶𝐵𝜔

2𝐸𝐴

[︀
𝑥0𝜆− 𝐿2

𝐵

]︀

ℎ =
𝐻

𝜔

⎡⎣√︃1 +

(︂
𝑉

𝐻

)︂2

− 1

⎤⎦+
𝑉 2

2𝐸𝐴𝜔

Finally, a useful quantity that is often evaluated is the tension as a function of 𝑠 along the line. This is given using:

𝑇𝑒 (𝑠) =

{︃
MAX [𝐻 + 𝐶𝐵𝜔 (𝑠 − 𝐿𝐵) , 0] if 0 ≤ 𝑠 ≤ 𝐿𝐵√︁

𝐻2 + [𝜔 (𝑠 − 𝐿𝐵)]2 if 𝐿𝐵 < 𝑠 ≤ 𝐿

Fig. 3.4: Fig. 5

3.2 Vessel

3.2.1 Reference Origin

R =

⎡⎣cos𝜓 cos 𝜃 cos𝜓 sin 𝜃 sin𝜑− sin𝜓 cos𝜑 cos𝜓 sin 𝜃 cos𝜑+ sin𝜓 sin𝜑
sin𝜓 cos 𝜃 sin𝜑 sin 𝜃 sin𝜑+ cos𝜓 cos𝜑 sin𝜓 sin 𝜃 cos𝜑− cos𝜓 sin𝜑
− sin 𝜃 cos 𝜃 sin𝜑 cos 𝜃 cos𝜑

⎤⎦

3.2. Vessel 13

MAP++ Documentation, Release 1.15

Fig. 3.5: Fig. 6

14 Chapter 3. Theory

CHAPTER 4

Input File

The MAP++ input file define the mooring properties, material definitions, connections between lines, and identify
lines anchored or attached to a vessel. We use the extension <*.map> to identify the MAP++ input file. The sample
MAP++ input deck and relevant commands are defined on this page.

4.1 Baseline Example

The baseline example below is a template on how properties are defined in MAP++:

--------------- LINE DICTIONARY --
LineType Diam MassDenInAir EA CB CIntDamp Ca Cdn Cdt
(-) (m) (kg/m) (N) (-) (Pa-s) (-) (-) (-)
mat_1 0.25 320.0 9800000000 1.0 -999.9 -999.9 -999.9 -999.9
mat_2 0.30 100.0 980000000 1.0 -999.9 -999.9 -999.9 -999.9
--------------- NODE PROPERTIES --
Node Type X Y Z M B FX FY FZ
(-) (-) (m) (m) (m) (kg) (m^3) (N) (N) (N)
1 fix 400 0 depth 0 0 # # #
2 connect #90 #0 #-80 0 0 0 0 0
3 vessel 20 20 -10 0 0 # # #
4 vessel 20 -20 -10 0 0 # # #
--------------- LINE PROPERTIES --
Line LineType UnstrLen NodeAnch NodeFair Flags
(-) (-) (m) (-) (-) (-)
1 mat_1 450 1 2 altitude x_excursion
2 mat_2 90 2 3 tension_fair
3 mat_2 90 2 4
--------------- SOLVER OPTIONS--
Option
(-)
outer_tol 1e-5
repeat 120 240

15

MAP++ Documentation, Release 1.15

The space preceeding repeat 120 240 indicates that line is a comment and is ignored by MAP++. Executing this
input file produced the mooring geoemtry illustrated here:

Note: Environmental properties like water depth, sea density, and gavity constant are set by the calling program.
They are purposely absent in the MAP++ input file to prevent force imbalances from coefficient mismatches.

The MAP++ input file is divided into four sections:

• LINE DICTIONARY: Defines the material properties of the line.

• NODE PROPERTIES: Defines boundary constraints and extensional limits.

• LINE PROPERTIES: Associates a line with material properties and connectivity between nodes.

• SOLVER OPTIONS: Run-time options to engage different solve strategies.

16 Chapter 4. Input File

MAP++ Documentation, Release 1.15

4.2 Line Dictionary

Variable | Definition
LineType User–defined name [-]
Diam Material diameter [m]
MassDenInAir Mass density in air [kg/m^3]
EA Element axial stiffness [N/m]
CB Cable/seabed friction coefficient [-]
CIntDamp Unused
Ca Unused
Cdn Unused
Cdt Unused

4.2. Line Dictionary 17

MAP++ Documentation, Release 1.15

18 Chapter 4. Input File

MAP++ Documentation, Release 1.15

4.3 Node Properties

Variable Definition
NODE Node number (sequential)
TYPE

Type of node, which can be one of FIX, CONNECT, or
VESSEL.
Vessel implied the node motion is prescribed.

X

Global 𝑥 coordinate if node is FIX or CONNECT [m].
Local 𝑥 cooridinate relative to vessel if node is
VESSEL [m].
Connect nodes must be preceeded by a # is indicate
this is as an initial guess.

Y

Global 𝑦 coordinate if node is FIX or CONNECT [m].
Local 𝑦 cooridinate relative to vessel if node is
VESSEL [m].
Connect nodes must be preceeded by a # is indicate
this is as an initial guess.

Z

Global 𝑧 coordinate if node is FIX or CONNECT [m].
Local 𝑧 cooridinate relative to vessel if node is
VESSEL [m].
Connect nodes must be preceeded by a # is indicate
this is as an initial guess.

M

Point mass applied to the node [kg].
The force appled to the node is 𝑀 × 𝑔 applied in the
direction of gravity.

B

Displaced volume applied to node [m^3].
The force applied is 𝐵 × 𝜌× 𝑔 applied opposite of
gravity.

FX

𝑥 direction external force applied to CONNECT node
[N].
VESSEL and FIX must use # to indicate iterated value.
can be preceeded by user–suplied initial guess to
speed convergence.

FY

𝑦 direction external force applied to CONNECT node
[N].
VESSEL and FIX must use # to indicate iterated value.
can be preceeded by user–suplied initial guess to
speed convergence.

FZ

𝑧 direction external force applied to CONNECT node
[N].
VESSEL and FIX must use # to indicate iterated value.
can be preceeded by user–suplied initial guess to
speed convergence.

4.3. Node Properties 19

MAP++ Documentation, Release 1.15

4.4 Line Properties

Variable Definition
Line Line number (sequential).
LineType Line type. Must be one type defined in LineType from dictionary.
UnstrLen Unstretched line length [m].
NodeAnch Anchor node number
NodeFair Fairlead node number
Flags Line flag. Can include any command included in Flags

4.5 Flags

Flags are applied to individual lines as indicated in the ‘LINE PROPERTIES’ section of the input file above. These
flags control the output text stream:

Variable Definition
GX_POS global X fairlead position [m]
GY_POS global Y fairlead position [m]
GZ_POS global Z fairlead position [m]
GX_A_POS global X position of anchor [m]
GY_A_POS global Y position of anchor [m]
GZ_A_POS global Z position of anchor [m]
GX_FORCE global X fairlead force [N]
GY_FORCE global Y fairlead force [N]
GZ_FORCE global Z fairlead force [N]
H_FAIR horizontal (XY plane) fairlead force [N]
H_ANCH horizontal (XY plane) anchor force [N]
V_FAIR vertical (Z axis) fairlead force [N]
V_ANCH vertical (Z axis) anchor force [N]
TENSION_FAIR fairlead force magnitude, [N]
TENSION_ANCH anchor force magnitude, [N]
X_EXCURSION line horizontal excursion [m]
Z_EXCURSION line veritical excursion [m]
AZIMUTH line azimuth angle with respect to the inertial reference frame [deg]
ALTITUDE angle of declination at the fairlead [deg]
ALTITUDE_ANCH line lift|off angle at the anchor [deg]

The follow flags enable/disable features for each line they are applied to:

Variable Definition
LINE_TENSION line tension force magnitude at fairlead [N]
OMIT_CONTACT ignore seabed boundary and treat line as freely hanging
LINEAR_SPRING model the line as a linear spring. Intended for taut lines
LAY_LENGTH amount of line laying on the seabed [m]
DIAGNOSTIC run diagonostics on line for each solve iteration
DAMAGE_TIME time [sec] to disconnect fairlead from node. Not used

20 Chapter 4. Input File

MAP++ Documentation, Release 1.15

4.6 Solver Options

Solver options are applied to the entire model domain.

Variable Definition
HELP prints a list of options on the command line when

MAP++ initializes
INNER_FTOL inner loop function tolerance
INNER_GTOL

desired orthogonality between the function evaluations
and Jacobian
column

INNER_XTOL inner loop consecutive iterate tolerance
INNER_MAX_ITS maximum inner loop iterations
OUTER_MAX_ITS maximum outer loop iterations
OUTER_TOL outer loop tolerance
OUTER_EPSILON Not used
INTEGRATION_DT Not used
KB_DEFAULT Not used
CB_DEFAULT Not used
OUTER_CD central difference Jacobian (outer loop solve only)
OUTER_BD backward difference Jacobian (outer loop solve only)
OUTER_FD forward difference Jacobian (outer loop solve only)
LM_MODEL Not used
PG_COOKED use the relaxation algorithm developed in [4]
KRYLOV_ACCELERATOR use the Krylov accelerator algorithm developed in [5]
REPEAT

repeat the element/nodes defined in the input file by
mirroring the
mooring pattern with a rotation about the Z-axis

REF_POSITION reference position

Todo: The REF_POSITION options is disabled in MAP++ until this feature can be fully integrated into the program.
The reference position is fixed at < 0, 0, 0 > until then.

4.6. Solver Options 21

MAP++ Documentation, Release 1.15

4.6.1 Default Solver Options

Variable Definition
INNER_FTOL 1.0E-6
INNER_GTOL 1.0E-6
INNER_XTOL 1.0E-6
INNER_MAX_ITS 500
OUTER_MAX_ITS 500
OUTER_TOL 1.0E-6
OUTER_EPSILON 1.0E-3
OUTER_BD
REF_POSITION <0.0 , 0.0 , 0.0>

22 Chapter 4. Input File

CHAPTER 5

Python Example

5.1 Static Configuration

This example will be run against the baseline input file. The water depth is 350 meters. The space preceeding the
repeat 120 240 solver option flag is removed to enable duplication of the mooring geometry twice with 120∘

and 240∘ offsets about the 𝑍 axis.

#! /usr/bin/env python
-*- coding: utf-8 -*-

'''
Copyright (C) 2015
map[dot]plus[dot]plus[dot]help[at]gmail
License: http://www.apache.org/licenses/LICENSE-2.0
'''

from mapsys import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
np.set_printoptions(precision=2)
np.set_printoptions(suppress=True)

if __name__ == '__main__':
mooring_1 = Map()

mooring_1.map_set_sea_depth(350) # m
mooring_1.map_set_gravity(9.81) # m/s^2
mooring_1.map_set_sea_density(1025.0) # kg/m^3

mooring_1.read_file("../test/baseline_2.map")
mooring_1.summary_file('summary_file.txt')

mooring_1.init()

23

MAP++ Documentation, Release 1.15

epsilon = 1e-3 # finite difference epsilon
K = mooring_1.linear(epsilon)
print "\nLinearized stiffness matrix with 0.0 vessel displacement:\n"
print np.array(K)

surge = 5.0 # 5 meter surge displacements
mooring_1.displace_vessel(surge,0,0,0,0,0)
mooring_1.update_states(0.0,0)

K = mooring_1.linear(epsilon)
print "\nLinearized stiffness matrix with %2.2f surge vessel displacement:\n"

→˓%(surge)
print np.array(K)

We need to call update states after linearization to find the equilibrium
mooring_1.update_states(0.0,0)

line_number = 0
H,V = mooring_1.get_fairlead_force_2d(line_number)
print "Line %d: H = %2.2f [N] V = %2.2f [N]"%(line_number, H, V)

fx,fy,fz = mooring_1.get_fairlead_force_3d(line_number)
print "Line %d: Fx = %2.2f [N] Fy = %2.2f [N] Fz = %2.2f [N]\n"%(line_number,

→˓fx, fy, fz)

print "These values come from the output buffer as defined in the 'LINE PROPERTIES
→˓' portion of the input file"

print "Labels : ", mooring_1.get_output_labels()[0:6]
print "Units : ", mooring_1.get_output_units()[0:6]
v = mooring_1.get_output_buffer()[0:6]
print "Values : ", ["{0:0.2f}".format(i) for i in v]

fig = plt.figure()
ax = Axes3D(fig)
num_points = 20
for i in range(0,mooring_1.size_lines()):

x = mooring_1.plot_x(i, num_points)
y = mooring_1.plot_y(i, num_points)
z = mooring_1.plot_z(i, num_points)
ax.plot(x,y,z,'b-')

ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_zlabel('Z [m]')

plt.show()

mooring_1.end()

5.1.1 Output

Two outputs are produced executing the stript above. Information explicitly requested is printed to the command line:

MAP++ (Mooring Analysis Program++) Ver. 1.20.10 Mar-22-2016
MAP++ environment properties (set externally)...

24 Chapter 5. Python Example

MAP++ Documentation, Release 1.15

Gravity constant [m/s^2] : 9.81
Sea density [kg/m^3] : 1025.00
Water depth [m] : 350.00
Vessel reference position [m] : 0.00 , 0.00 , 0.00

Linearized stiffness matrix with 0.0 vessel displacement:

[[1.99e+04 -3.78e-03 5.19e-03 -4.89e-02 -2.00e+05 -1.77e-02]
[1.18e-03 1.99e+04 -1.06e-02 2.00e+05 3.50e-02 -6.17e-01]
[2.49e-03 -1.01e-03 2.27e+04 2.21e-03 2.23e-01 -2.12e-01]
[1.95e-03 2.00e+05 -7.14e-03 2.17e+08 1.10e-02 -5.23e+01]
[-2.00e+05 3.33e-04 4.85e-01 -4.89e-02 2.17e+08 -2.19e-02]
[8.83e-04 -5.59e-01 1.12e-03 -8.53e+01 -7.90e-02 1.41e+08]]

Linearized stiffness matrix with 5.00 surge vessel displacement:

[[1.96e+04 -2.58e-05 1.17e+03 9.61e-03 -2.15e+05 -1.67e-01]
[-4.57e-04 2.07e+04 1.41e-03 1.81e+05 -5.24e-02 1.72e+03]
[1.17e+03 -3.32e-04 2.32e+04 -5.38e-03 -1.19e+04 1.12e-03]
[1.05e-03 2.00e+05 1.51e-03 2.17e+08 4.25e-02 -5.21e+01]
[-2.00e+05 -8.91e-05 4.79e-01 5.43e-03 2.17e+08 6.60e-02]
[2.10e-03 -5.60e-01 5.77e-03 -8.52e+01 1.07e-01 1.41e+08]]

Line 0: H = 597513.33 [N] V = 1143438.75 [N]
Line 0: Fx = -597513.33 [N] Fy = -0.00 [N] Fz = 1143438.75 [N]

These values come from the output buffer as defined in the 'LINE PROPERTIES' portion
→˓of the input file
Labels : ['l[1]', 'alpha[1]', 'T[2]', 'l[4]', 'alpha[4]', 'T[5]']
Units : ['[m]', '[rad]', '[N]', '[m]', '[rad]', '[N]']
Values : ['338.18', '1.07', '711942.60', '338.18', '1.07', '711942.39']

A figure is also produced to show the mooring geometry with a 5 meter vessel offset:

Note: The default units for the linearized stiffness matrix are [N/m], [N/rad], [Nm/m], and [Nm/rad]. See the section
on the linearized stiffness matrix in the FAQ for more information.

5.2 Time-Marching for Dynamics Simulation

#! /usr/bin/env python
-*- coding: utf-8 -*-

'''
Copyright (C) 2015
map[dot]plus[dot]plus[dot]help[at]gmail
License: http://www.apache.org/licenses/LICENSE-2.0
'''

from mapsys import *
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.ticker as mtick
from matplotlib import rcParams
import numpy as np

5.2. Time-Marching for Dynamics Simulation 25

MAP++ Documentation, Release 1.15

Fig. 5.1: Fig. 7

np.set_printoptions(precision=2)
np.set_printoptions(suppress=True)
rcParams.update({'figure.autolayout': True})

user function to plot the mooring profile and footprint
def plot_mooring_system(mooring_data):

plot the mooring profile
fig = plt.figure(1)
ax = Axes3D(fig)
colors = ['b','g','r','c']
for i in xrange(mooring_data.size_lines()):

x = mooring_data.plot_x(i, 20) # i is the the line number, and 20 is the
→˓number of points plotted on the line

y = mooring_data.plot_y(i, 20)
z = mooring_data.plot_z(i, 20)
ax.plot(x,y,z,colors[i]+'-')

ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_zlabel('Z [m]')

def start():
"""
Step 1) First initialize an instance of a mooring system

Step 2) Assume that (X, Y, Z, phi, theta, psi) are the translation and rotation
→˓displacement of the vessel.

These displacements are fed into MAP as an argument to displace the fairlead.
→˓With the fairlead(s)

rigidly connected to the vessel, the (X, Y, Z, phi, theta, psi) directly
→˓manifests into the fairlead

position in the global frame.

For the time being, assume a sinusoidal displacement of the vessel

26 Chapter 5. Python Example

MAP++ Documentation, Release 1.15

Step 3) This for-loop emulates the time-stepping procedure. You want to loop
→˓through the length of

the arrays (X,Y,Z,phi,theta,psi) to retrieve the fairlead force

Step 4) update the MAP state. The arguments in displace_vessel are the displace
→˓displacements and rotations about the reference origin.

In this case, the reference origin is (0,0,0).
They can be set to a different potision using a run-time argument (this is an

→˓advanced feature).

Step 5) get the fairlead tension. The get_fairlead_force_3d returns the fairlead
→˓force in

X, Y Z coordinates. This must be called at each time-step, and then stored into
→˓an array. We append

the empty lists created on lines 84-88.

.. Note::

MAP does *NOT* return the mooring restoring moment, The user must calculate
→˓this

themself using the cross-product between the WEC reference origin and the
→˓mooring attached

point, i.e.,

:math:`\mathbf{Moment} = \mathbf{r} \times \mathbf{F}`
"""

Step 1
mooring = Map()
mooring.map_set_sea_depth(120) # m
mooring.map_set_gravity(9.81) # m/s^2
mooring.map_set_sea_density(1020.0) # kg/m^2
mooring.read_file('../test/baseline_1.map') # input file
mooring.summary_file('summary_file.sum.txt') # output summary file name at the

→˓conclusion of initialization

mooring.init() # solve the cable equilibrium profile
plot_mooring_system(mooring) # Optional: call the user function to illustrate the

→˓mooring equilibrium profile

initialize list to zero (this is artificial. This would be prescribed the by
→˓vessel program)

X,Y,Z,phi,theta,psi = ([0.0 for i in xrange(500)] for _ in xrange(6))
time = []

variable to specify the amplitude of surge oscillation and period factor
dt = 0.1
amplitude = 10.0

prescribe artificial surge and pitch displacement. Again, this should be
→˓supplied based on the WEC motion or from time-marching routine

for i in xrange(len(X)):
time.append(i*dt)
X[i] = (amplitude)*(math.sin(i*0.05))
theta[i] = (amplitude)*(math.sin(i*0.025))

5.2. Time-Marching for Dynamics Simulation 27

MAP++ Documentation, Release 1.15

create an empty list of the line tension. We will store result from MAP in
→˓these lists

line1_fx, line1_fy, line1_fz = ([] for _ in xrange(3))
line2_fx, line2_fy, line2_fz = ([] for _ in xrange(3))
line3_fx, line3_fy, line3_fz = ([] for _ in xrange(3))
line4_fx, line4_fy, line4_fz = ([] for _ in xrange(3))

Step 3) Time marching
for i in xrange(len(X)):

Step 4)

displace the vessel, X,Y,X are in units of m, and phi, theta, psi are in
→˓units of degrees

mooring.displace_vessel(X[i], Y[i], Z[i], phi[i], theta[i], psi[i])

first argument is the current time. Second argument is the coupling
→˓interval (used in FAST)

mooring.update_states(time[i], 0)

Step 5)
line 1 tensions in X, Y and Z. Note that python is indexed started at zero
fx, fy, fz = mooring.get_fairlead_force_3d(0) # arugment is the line number
line1_fx.append(fx)
line1_fy.append(fy)
line1_fz.append(fz)

line 2 tensions in X, Y and Z.
fx, fy, fz = mooring.get_fairlead_force_3d(1)
line2_fx.append(fx)
line2_fy.append(fy)
line2_fz.append(fz)

line 3 tensions in X, Y and Z.
fx, fy, fz = mooring.get_fairlead_force_3d(2)
line3_fx.append(fx)
line3_fy.append(fy)
line3_fz.append(fz)

line 4 tensions in X, Y and Z.
fx, fy, fz = mooring.get_fairlead_force_3d(3)
line4_fx.append(fx)
line4_fy.append(fy)
line4_fz.append(fz)

Optional: plot the vessel displacement (surge=X and pitch=theta) as a function
→˓of time

plt.figure(2)
plt.plot(time,X,lw=2,label='Surge displacement')
plt.plot(time,theta,lw=2,label='Pitch displacement')
plt.title('Vessel Translation/Rotation')
plt.ylabel('Amplitude [m,deg]')
plt.xlabel('Time [sec]')
plt.legend()

Optional: plot line tension time history
plt.figure(3)
ax=plt.subplot(3,1,1)
plt.plot(time,line1_fx,label='Line 1')

28 Chapter 5. Python Example

MAP++ Documentation, Release 1.15

plt.plot(time,line2_fx,label='Line 2')
plt.plot(time,line3_fx,label='Line 3')
plt.plot(time,line4_fx,label='Line 4')
ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
plt.ylabel('X Fairlead Force [N]')
plt.legend()

ax = plt.subplot(3,1,2)
ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
plt.plot(time,line1_fy)
plt.plot(time,line2_fy)
plt.plot(time,line3_fy)
plt.plot(time,line4_fy)
plt.ylabel('Y Fairlead Force [N]')

ax = plt.subplot(3,1,3)
ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e'))
plt.plot(time,line1_fz)
plt.plot(time,line2_fz)
plt.plot(time,line3_fz)
plt.plot(time,line4_fz)
plt.ylabel('Z Fairlead Force [N]')
plt.xlabel('Time [sec]')

plt.show()

if __name__ == '__main__':
start()

5.2.1 Output

Fig. 5.2: Fig. 8

5.2. Time-Marching for Dynamics Simulation 29

MAP++ Documentation, Release 1.15

Fig. 5.3: Fig. 9

Fig. 5.4: Fig. 10

30 Chapter 5. Python Example

CHAPTER 6

API Documentation

6.1 Python API

31

MAP++ Documentation, Release 1.15

32 Chapter 6. API Documentation

CHAPTER 7

FAQ

7.1 Using with Python

7.1.1 Python doesn’t load MAP

If importing MAP++ into Python leads to this error on Linux/OSx:

OSError: ../src/libmap-1.20.00.so: cannot open shared object file: No such file or
→˓directory

or on Windows:

WindowsError: [Error 126] The specified module could not be found

then the issue is the MAP++ shared object/dll can’t be located by the MAP++ module. This is corrected by changing
the path where the .so/.dll is picked up in mapsys.py:

lib = cdll.LoadLibrary("/directory/to/map/libmap-1.20.00.so")

On Windows, it would look something like this:

lib = cdll.LoadLibrary("C:\User\local\directory\map_x64.dll")

If the error still persists, the solution could be one of the answers on this post at Stack Overflow.

7.2 Initialization Errors

7.2.1 I get WARNING [5] or FATAL [41] and can’t emerge from initialization

The error thrown at initialization is either:

33

http://stackoverflow.com/questions/1940578/windowserror-error-126-the-specified-module-could-not-be-found

MAP++ Documentation, Release 1.15

MAP_WARNING[5] : Cable density is approaching the density of seawater.
This may result in the problem becoming poorly conditioned.

or

MAP_FATAL[41] : Cable mass density is zero. Neutrally buoyant cables cannot
be solved using quasi-statis model

We insert a check to warning the user if the cable is nearly neutrally buoyant. This causes the solver to go on the fritz,
and sometimes fail, because the algebraic equation is close to dividing by zero; see the horizontal cable equation. The
straightforward way to fix this is to change 𝜔 tolerance levels in mapinit.c The default tolerance levels are omega
𝜔 < 1.0 for a warning, and omega 𝜔 < 10−3 for fatal. In some cases, this is unavoidable and a different mooring
program is needed.

1 if (fabs(library_iter->omega)<=1.0) {
2 set_universal_error_with_message(map_msg, ierr, MAP_WARNING_5,
3 "omega = %f <= 1.0", library_iter->omega);
4 };
5 };
6 list_iterator_stop(&domain->library); /* ending the iteration "session" */
7

8 if (fabs(library_iter->omega)<=1.0E-3) {
9 return MAP_FATAL;

10 }

Todo: Include a run-time tolerance override option in the input file.

7.2.2 Maximum iterations are exceeded with taut mooring

The mooring system probably has a connect node. I’d start by increasing OUTER_TOL by an order of magnitude more
than the default option. It doesn’t take much displacement error in the inner solve to cause a large difference in the
outer loop, so there’s this constant game of playing catch-up. Alternatively, you can decrease the inner loop solve
tolerance, but you might be already approaching machine precision. Taut lines are strange like that.

A good solver option/initial guess strategy should converge on a solution in under 100-500 total iterations in the first
solve.

7.3 Running MAP++

7.3.1 What are the units of the linearized stiffness matrix?

The linearized stiffness matrix is a 6× 6 entry comprised of four 3× 3 blocks:

K6×6 =

[︂
A3×3 B3×3

C3×3 D3×3

]︂
The units are:

• [N/m] for A

• [N/rad] for B

• [Nm/m] for C

34 Chapter 7. FAQ

MAP++ Documentation, Release 1.15

• [Nm/rad] for D

Note that the reference position is fixed at the global origin.

7.3.2 The linearized stiffness values are not consistent

This is likely attributed to round-off errors. We recommend testing linearized stiffness matrix entries for sensitiv-
ity against different epsilon values, tolerances, and finite differencing methods. The matrix entries should converge
towards a set of values for those different options.

7.3. Running MAP++ 35

MAP++ Documentation, Release 1.15

36 Chapter 7. FAQ

CHAPTER 8

Help

You can forward inquiries to the following:

map[dot]plus[dot]plus[dot]help[at]gmail[dot]com

37

MAP++ Documentation, Release 1.15

38 Chapter 8. Help

CHAPTER 9

References

The Mooring Analysis Program is a library to model static loads and geometry of cables. MAP++ is designed to hook
into other simulation codes through its API and can be customized to do a few things:

• Prototype a design

• Find the force-displacement relation for a given footprint

• Integrate into other dynamic simulation programs to produce a nonlinear restoring force time history

A quick–start guide is available here. We integrated MAP++ into other programs written in Python, C, C++, and
Fortran. MAP++ follows the FAST Offshore Wind Turbine Framework [2] pattern.

More information on the theory behind MAP++ is described [3]. MAP++ is licensed under Apache version 2.

39

MAP++ Documentation, Release 1.15

40 Chapter 9. References

Bibliography

[1] H.M. Irvine. Cable structures. Volume 5. Dover Publication,s New York, NY, 1992.

[2] J.M. Jonkman. The new modularization framework for the fast wind turbine cae tool. In 51st AIAA Aerospace
Sciences Meeting and 31st ASME Wind Energy Symposium, Grapevine, Texas. 2013.

[3] M., Masciola, J., Jonkman, and A. Robertson. Implementation of a multisegmented, quasi-static cable model. In
The Twenty-third International Offshore and Polar Engineering Conference. International Society of Offshore and
Polar Engineers, 2013.

[4] A.H., Pevrot and A.M. Goulois. Analysis of cable structures. Computers & Structures, 10(5):805–813, 1979.

[5] M. H., Scott and G. L. Fenves. Krylov subspace accelerated newton algorithm: application to dynamic progressive
collapse simulation of frames. Journal of Structural Engineering, 2009.

41

	Release Notes
	License
	Disclaimer
	Dependencies
	Change Log

	Definitions
	What MAP++ Solves
	Nomenclature

	Theory
	Line Theory
	Vessel

	Input File
	Baseline Example
	Line Dictionary
	Node Properties
	Line Properties
	Flags
	Solver Options

	Python Example
	Static Configuration
	Time-Marching for Dynamics Simulation

	API Documentation
	Python API

	FAQ
	Using with Python
	Initialization Errors
	Running MAP++

	Help
	References
	Bibliography

