

 Navigation

 	
 index

 	
 next |

 	Manner Core 0.0.1 documentation

Manner Core

Manner Core is a JavaScript library for managing the validity and visibility
aspects of a schema. It is heavily geared towards complex web forms but uses
standard data structures and is not reliant on the DOM at all.

As such Manner Core does not actually validate web forms or provide any web
components to do so, this is left to the various framework integrations such as
react-manner [http://example.com/does_not_exist_yet].

	Models

	Asynchronicity

	Predicates
	Overview

	Boolean predicates

	Bound predicates

	Combining predicates

	Predicate status

	Custom messages

	Long-running predicates

	Validators
	Overview

	Creating a validator

	Long-running predicates

	Conditions
	Overview

	Condition actions

	Creating a condition

	Long-running predicates

	Condition status

	Internationalization
	Predicates

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Manner Core 0.0.1 documentation

Models

XXX: Subject to change.

Models are simply an Immutable.Map of field names to field values.

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Manner Core 0.0.1 documentation

Asynchronicity

The documentation about the results of most aspects of Manner will talk about
them as though they’re synchronous in an attempt to simplify the explanation of
Manner’s operations. Under the hood, however, Manner will assume that any
predicate may potentially return an asynchronous result. The nature of
asynchronous results means that this assumption has to propagate throughout the
library, the results of both Validators and Conditions are
Promises that only resolve when all their predicates have resolved.

XXX: Talk about pending result state that doesn’t exist yet.

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Manner Core 0.0.1 documentation

Predicates

Overview

At the heart of Manner is the concept of a predicate: A function taking some
inputs and returning a result indicating whether it considers those inputs as
valid or invalid. For example, equalTo(42) constructs a predicate
that only considers input equal to 42 valid.

A predicate does not return true or false but a status value that more richly describes the result by providing the reason for
some input not passing the predicate. However, predicates are usually
constructed from boolean predicates which do return true or false. It is
strongly encouraged to make your own and combine existing predicates to better
suit your domain.

Finally, it is important to note that Manner assumes that predicates—and, by
extension, boolean predicates—are pure: Given the same inputs they always have the
same output.

Boolean predicates

A boolean predicate is a simple factory that takes some arguments, used to set up
any conditions, and returns a new function that may accept more parameters and
finally returns true or false. As an example, here is the implementation of
the between boolean predicate:

/** Between `a` and `b`, inclusively. */
function between(a, b) {
 return function (v) { return v >= a && v <= b; };
}

Often predicates are implemented in terms of boolean predicates, while not
strictly required this tends to result in a collection of small composable
functions which means easier testing and greater implementation flexibility.

Creating a predicate from a boolean predicate is so common that there is a public
helper, predicate, in Manner to do this. Here is the implementation of the
between predicate:

import * as P from "manner/predicates";
import * as PB from "manner/predicates/boolean";
/** Between `a` and `b`, inclusively. */
let between = P.predicate(PB.between, a_message);

Bound predicates

A predicate only takes input as parameters and returns an output, it has no
knowledge of fields and their values. As one might imagine, invoking a predicate
with values from your model is a very common operation and for this reason there
exist bound predicates. Bound predicates enable you to describe the
relationship between field names in a model and a predicate, in effect binding
them.

For example, is binds a single field to a predicate: is('one',
equalTo(42)) produces a bound predicate that, when invoked with an
Immutable.Map of field names to field values, will extract the value for the
field one, pass it to the equalTo(42) predicate and return the result.

Combining predicates

Predicates are generally small, simple functions with a single purpose, meaning
they can easily be combined to form more complex predicates. Some built-in
predicates are combinations of others, such as numeric.

Requiring all combined predicates to pass can be done with and (as in
logical AND), while requiring at least one combined predicate to pass can be
done with or (as in logical OR); both return a single new predicate. For
example:

import * as P from "manner/predicates";
let positiveAndNot42 = P.and(P.greaterThan(0),
 P.notEqualTo(42));

Predicate status

While a predicate essentially returns only one of two values—valid or
invalid—the result needs to be richer than a simple boolean value. If nothing
else, there needs to be a reason indicating why the input failed to
validate; which is where Status comes in.

A status is intended to be constructed only via its static methods and in the
case of predicates there are only two such methods: valid() and
invalid(reason).

In the event that there is more than one status for a field—imagine that a
field is involved in multiple predicates—the statuses are combined to form a
new Status with invalid statuses trumping valid statuses.

Custom messages

In the event that a custom message for a predicate is necessary, it’s possible
to use message to wrap an existing predicate with a customized message:

Note

message always returns an asynchronous result, see Asynchronicity.

import * as P from "manner/predicates";
let myEqualTo = P.message("Nope", P.equalTo);
myEqualTo(42)(21).call('message'); // => "Nope"

Or provide a message function to access input arguments or perform
Internationalization:

import * as P from "manner/predicates";
function myEqualToMsg(_, args, rest) {
 return args[0] + ' !== ' + rest[0];
}
let myEqualTo2 = P.message(myEqualToMsg, P.equalTo);
myEqualTo(42)(21).call('message') // => "42 !== 21"

Long-running predicates

There may be some cases where it is undesirable to run a predicate too
frequently, for example predicates that make an HTTP request. Usually these
situations are resolved via a technique commonly referred to as “debouncing”,
only calling the function at most within some user-specified time frame, which
may be achieved with the debounce function.

If the predicate is run again before the debounce interval elapses, the pending
predicate is cancelled and a new one, with a fresh interval, started in its
place.

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Manner Core 0.0.1 documentation

Validators

Overview

If a bound predicate is a way to check a single predicate against some fields,
then a validator is a way to check many bound predicates against a model.

Note

Internally validators keep track of pending predicate results and a cache of
results for the previous inputs, which means they need an extra layer of
indirection if they are to be used with multiple models.

Creating a validator

Since validators are simply a list of bound predicates, creating one is a short
two-step process:

	Create a validators definition that can be reused:

import * as P from "manner/predicates";
import * as V from "manner/validators";
let someValidators = V.validators(
 P.is('one', P.equalTo(42)),
 P.is('two', P.notNull()));

	Instantiate a validators definition to create an instance, a validator,
with its own state suitable for repeated use with one particular model:

let formValidator = V.instantiate(someValidators);
formValidator(my_model); // => Validation results

The ultimate result of invoking an validator is an Immutable.Map of field
names to predicate status, which can then be used to
update the state of a form, perhaps indicating which fields failed to validate.

Long-running predicates

A validator takes an optional second argument: a callback function,
passed the result of a bound predicate, that is called as soon as the result is
resolved.

Asynchronous predicates may prevent a validator from resolving for an extended
period of time thus delaying any important user interface updates, in this case
the callback function can be used to update the user interface as predicate
results are resolved.

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Manner Core 0.0.1 documentation

Conditions

Overview

In complex forms it is often the case that some inputs need to be hidden or
disabled under certain conditions, such as an earlier field having a particular
value, this is what conditions in Manner provide.

Conditions in Manner, which are separate from Validators, build on bound
predicates and additionally specify resulting actions. An action might be
something like “hide fields X, Y and Z” or “enable fields A, B and C” or
possibly even both.

Note

Internally conditions keep track of pending predicate results and a cache of
results for the previous inputs, which means they need an extra layer of
indirection if they are to be used with multiple models.

Condition actions

Condition actions are the way a condition acts on the result of a bound
predicate, multiple condition actions may occur for a single
condition. Available actions are: hide, show, disable and
enable.

Note

Conditions will always emit a resulting action, the result of the bound
predicate will dictate what the result of an action will be: The hide
action will suggest hiding the bound fields on success and showing them on
failure, and vice versa for show; likewise the disable action will
suggest disabling the bound fields on success and enabling them on failure,
and vice versa for enable.

The result of conflicting actions for a single field is not well defined.

Creating a condition

Conditions are only marginally more complex than validators to construct, in
addition to containing a bound predicate they must also specify actions; the
when function assists in this regard by creating a condition
checker. Still, this is only a short two-step process:

	Create a conditions definition that can be reused, read as: When one is
equal to 42 then hide x, y and z, and enable a, b and
c:

import * as P from "manner/predicates";
import * as C from "manner/conditions";
let someConditions = C.conditions(
 C.when(P.is('one', P.equalTo(42)),
 // Hide "x", "y" and "z" fields on valid input.
 C.hide('x', 'y', 'z'),
 // Enable "a", "b" and "c" fields on valid input.
 C.enable('a', 'b', 'c')));

	Instantiate a conditions definition to create an instance, a condition,
with its own state suitable for repeated use with one particular model:

let formConditions = C.instantiate(someConditions);
formConditions(my_model); // => Condition results

The ultimate result of invoking a condition is an Immutable.Map of field
names to condition status, which can then be used to
update the state of a form.

Long-running predicates

A condition takes an optional second argument: a callback function,
passed the result of a condition checker, that is called as soon as the result is
resolved.

Asynchronous predicates may prevent a validator from resolving for an extended
period of time thus delaying any important user interface updates, in this case
the callback function can be used to update the user interface as predicate
results are resolved.

Condition status

The results of a condition are more complex than those of a predicate because
there are three possible states: hidden, disabled and
normal. Conditions have a separate Status to predicates for two main
reasons:

	There is an additional state;

	Every state constructor accepts an optional message, which may be useful when
describing why something is available or unavailable in a user interface

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Manner Core 0.0.1 documentation

Internationalization

Internationalization is an essential part of being able to effectively
communicate schema requirements and reasons to users; it’s also a problem that
is best considered at an early stage in software.

In every case where Manner specifies that a function requires a message input,
the value can either be a plain string—and thus no internationalization takes
place—or a message function that accepts a mapping of keywords to a function
taking some number of arguments and returning an internationalized message.

In every, but the final, case where Manner specifies that it returns a message
it will return a function that needs to be called with an internationalization
map for the desired output language and any arguments that may need to be
formatted into the result.

We can better illustrate the concept with an example:

import {Status} from "manner/predicates";
import {i18nMessage} from "manner/i18n";
// A message with no internationalization.
let plain = Status.invalid("Hello Bob");
plain.message() // => "Hello Bob"
// Define some internationalization maps for our internationalized message.
let i18n_en = {'greetings': {'hello': args => "Hello " + args.value}};
let i18n_se = {'greetings': {'hello': args => "Hej " + args.value}};
let enhanced = Status.invalid(i18nMessage('greetings', 'hello'));
enhanced.message(i18n_en, ['Bob']); // => "Hello Bob"
enhanced.message(i18n_se, ['Bob']); // => "Hej Bob"

Predicates

Predicate messages in Manner are all defined in a way that all the input
arguments are closed over by the returned function and only the
internationalization map is needed to yield a message, thanks to the
predicate function. For example:

import * as P from "manner/predicates";
import en from "manner/i18n/en";
P.notEqual(42)(21).message(en) // => 'Must be "42"'
P.empty()(21).message(en) // => 'Must be empty not "21"'

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Manner Core 0.0.1 documentation

Index

 Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		Manner Core 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Jonathan Jacobs.
 Created using Sphinx 1.2.2.

_static/plus.png

