
mannequin Documentation
Release 0.1

Dustin Lacewell

Aug 04, 2018

Contents

1 Writing Models 3
1.1 Code Listing . 3
1.2 Initialization . 4

2 Writing Fields 5
2.1 Descriptors! . 5
2.2 Continuing from here . 7

3 Glossary 9

4 Overview 11

5 Getting Started 15

6 Indices and tables 17

i

ii

mannequin Documentation, Release 0.1

Contents:

Contents 1

mannequin Documentation, Release 0.1

2 Contents

CHAPTER 1

Writing Models

1.1 Code Listing

The main class in mannequin is the Model. It represents your object and contains all of the data fields provided in
its declaration. Other than that, the Model base-class provides only a few other methods for the book-keeping of said
Fields.

Here is the Model implementation:

class Model(object):
version = "unknown"

def gather_fields(self, cls=None, sub=None):
"""Utility to locate class-attributed Fields"""
assert cls or sub

self.fields = dict()

def _gather_fields():
for name, value in vars(type(self)).items():

if cls:
if isinstance(value, cls):

self.bind_field(name, value)
elif sub:

if issubclass(type(value), sub):
self.bind_field(name, value)

_gather_fields()
self.fields_gathered(self.fields)

def bind_field(self, name, field):
field.parent = self
self.fields[name] = field

(continues on next page)

3

mannequin Documentation, Release 0.1

(continued from previous page)

def fields_gathered(self, fields):
pass

1.2 Initialization

When you instantiate your Model subclasses, they will already feature the various Field descriptors you defined on
those subclasses. In fact, nothing about the declarative technique supported by mannequin depends on any of the
code in this class.

The gather_fields method here is provided purely as a convenience. It introspects the class and determines each
of the instance attributes are subclasses of the mannequin Field type. It stores each of Fields into a .fields
dictionary on the Model so that you can use for whatever you’d like.

While gathering the fields, the bind_field method will be called for each. This is one place you can hook in the
case you happen to need to “post-process” each field. The other place is the fields_gathered method which will
be called with the final dictionary of Fields.

As you can see the Model class is very minimal. However this makes more room for your application specific
methods. These models are your data objects after all and your subclasses will likely feature a number of methods
relevant to that type, in addition to any Fields you put there.

4 Chapter 1. Writing Models

CHAPTER 2

Writing Fields

2.1 Descriptors!

The second class in mannequin is the Field and it is slightly more interesting than the Model. It represents
the various data attributes of your objects but does so in an interesting way. The Field class is what is called a
Descriptor in Python. This is a special object that, when assigned to the attribute of a class, takes on some special
properties.

For a full explanation see the Descriptor How-to Guide

Essentially, a Descriptor is an object that implements a __get__ and a __set__ method. When a Descriptor
instance is assigned to an attribute of a class, instances of that class will aquire the Descriptor. Because the attribute
is a Descriptor, all access and assignment to that attribute is controlled by these methods on the Descriptor. Here is a
trivial example of a Descriptor that returns squares of it’s internal value:

class SquaredDescriptor(object):
def __init__(self):

self.__value = None

def __get__(self, obj, obj_type):
try:

return self.__value * self.__value
except TypeError:

return self.__value

def __set__(self, obj, value):
self.__value = value

class Dummy(object):
squared = SquaredDescriptor()

We can see this descriptor in action in the interactive session below:

5

http://docs.python.org/2/howto/descriptor.html

mannequin Documentation, Release 0.1

first create an instance of the Dummy class
>>> obj = Dummy()

our instance has the `squared` attribue
>>> print obj.squared
None

if we assign a numerical value...
>>> obj.squared = 5

it is squared when accessed
>>> print obj.squared
25

according to the implementation
>>> obj.squared = "five"

non-numeric values should be returned as-is
>>> print obj.squared
five

The nature of Descriptors is what makes the Field class interesting and useful. Since assignment can be mediated
through the Field it can provide data sanitation or parsing benefits. The base Field class has a couple methods
already for implementing such behaviors. Here is the base Field implementation below:

class Field(object):

defaults = tuple()

def __init__(self, **kwargs):
for (defname, defvalue) in self.defaults:

if defname in kwargs:
setattr(self, defname, kwargs.pop(defname))

if not hasattr(self, defname):
setattr(self, defname, dict(self.defaults)[defname])

if kwargs:
raise TypeError("Unexpected field initialization parameters: " +

', '.join(kwargs.keys()))

def clean(self, value):
return value

def validate(self, value):
pass

def __get__(self, obj, objtype):
return getattr(obj, "__field_{0}".format(id(self)))

def __set__(self, obj, value):
cleaned_value = self.clean(value)
self.validate(cleaned_value)
setattr(obj, '__field_{0}'.format(id(self)), cleaned_value)

When you instantiate a Field class the first thing that the base implementation does, is loop through the Field.
defaults. This tuple designates what the optional initialization parameters are for the Field. Any keyword
arguments passed to the Field that it doesn’t expect will raise a TypeError. Any missing keyword arguments will
be given the corresponding default from the defaults attribute.

6 Chapter 2. Writing Fields

mannequin Documentation, Release 0.1

The second important thing about the Field class is that it is a Descriptor. Once instantiated and assigned to a
Model Class declaration, all access and assignment will be regulated by the Field instance. We can see that the
base Field implementation provides some basic handling here:

def __set__(self, obj, value):
cleaned_value = self.clean(value)
self.validate(cleaned_value)
setattr(obj, '__field_{0}'.format(id(self)), cleaned_value)

When we assign a value to a Field descriptor a few things happen. The first is that the value is passed to Field.
clean(). The default implementation simply returns the value “as is”; however this is a great method in which
you can provide your own santiation or other parsing operations. Next, the cleaned value is passed to Field.
validate(). The default implementation here does nothing, but you can stick in your own validation code by
overriding the method.

Lastly, once your Field considers the data value as cleaned and validated, the value is stored in a slightly obsfucated
manner. Foremost, the value is stored on the *Model instance* that the Field is bound to. The attribute name given
to the value interpolates the Python object ID of the current *Field instance*. The current Field instance is used so
that multiple Fields of the same type can be bound to the same Model.

def __get__(self, obj, objtype):
return getattr(obj, "__field_{0}".format(id(self)))

Here we can see that when accessing the Field value, the same attribute name is generated and the value is returned.

2.2 Continuing from here

Now that you have a good idea about how both mannequin Models and Fields work, head over to the XML Parser
Tutorial to see how a real library can be written using mannequin and the declarative technique.

2.2. Continuing from here 7

mannequin Documentation, Release 0.1

8 Chapter 2. Writing Fields

CHAPTER 3

Glossary

application protocol In computer network programming, the application layer is an abstraction layer reserved for
communications protocols and methods designed for process-to- process communications across an Internet
Protocol (IP) computer network. Application layer protocols use the underlying transport layer protocols to
establish host-to-host connections.

binary stream A binary file is a computer file that is not a text file; it may contain any type of data, encoded in
binary form for computer storage and processing purposes. Many binary file formats contain parts that can
be interpreted as text; for example, some computer document files containing formatted text, such as older
Microsoft Word document files, contain the text of the document but also contain formatting information in
binary form.

declarative In computer science, declarative programming is a programming paradigm that expresses the logic of
a computation without describing its control flow. Many languages applying this style attempt to minimize
or eliminate side effects by describing what the program should accomplish, rather than describing how to go
about accomplishing it (the how is left up to the language’s implementation). This is in contrast with imperative
programming, in which algorithms are implemented in terms of explicit steps.

django Django is an open source web application framework, written in Python, which follows the
model–view–controller architectural pattern. It was originally developed to manage several news- oriented sites
for The World Company of Lawrence, Kansas, and was released publicly under a BSD license in July 2005; the
framework was named after guitarist Django Reinhardt. In June 2008 it was announced that a newly formed
Django Software Foundation will maintain Django in the future. https://djangoproject.com/

namedtuple Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also
have a helpful docstring (with typename and field_names) and a helpful __repr__() method which lists the tuple
contents in a name=value format. http://docs.python.org/2/library/collections.html#collections.namedtuple

package A Python package is a module defined by a directory, containing a __init__.py file, and can contain
other modules or other packages within it.

package/
__init__.py
subpackage/

(continues on next page)

9

https://djangoproject.com/
http://docs.python.org/2/library/collections.html#collections.namedtuple

mannequin Documentation, Release 0.1

(continued from previous page)

__init__.py
submodule.py

see also, namespace package

packet In computer networking, a packet is a formatted unit of data carried by a packet mode computer network.
Computer communications links that do not support packets, such as traditional point-to-point telecommuni-
cations links, simply transmit data as a series of bytes, characters, or bits alone. When data is formatted into
packets, the bitrate of the communication medium can be better shared among users than if the network were
circuit switched.

struct This module performs conversions between Python values and C structs represented as Python strings. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python
values. http://docs.python.org/2/library/struct.html

Full Documentation: http://readthedocs.org/docs/mannequin/

10 Chapter 3. Glossary

http://docs.python.org/2/library/struct.html
http://readthedocs.org/docs/mannequin/

CHAPTER 4

Overview

mannequin is very simple.

It is a small library that helps you create declarative models for your own libraries and applications using Python class
definitions. Declarative models are a nice way to define the structure of your data or objects. Using Python classes
for this keeps it natural and familiar.

If you’ve ever encountered the Python web-framework Django you might be familiar with it’s Models or Forms.
Django uses this declarative technique to allow you to naturally define tables in your database:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

Or the types and ordering of fields of your web-forms:

from django import forms

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField()
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=False)

There are other database libraries that use this technique to represent database schemas like SQLAlchemy and Axiom.

Let’s look at a theoretical example of unpacking binary data from structures. With the standard struct module this
can be a painful exercise. Given some imagined packet structure, unpacking a binary stream into the various fields is
cumbersome:

header = struct.unpack('B',data[0])
length = struct.unpack('B',data[1])
typeID = struct.unpack('!I',data[2:6])
param1 = struct.unpack('!H',data[6:8])

(continues on next page)

11

mannequin Documentation, Release 0.1

(continued from previous page)

param2 = struct.unpack('!H',data[8:10])
param3 = struct.unpack('!H',data[10:12])
param4 = struct.unpack('!H',data[12:14])
name = struct.unpack('20s',data[14:38])
checksum = struct.unpack('!I',data[38:42])
footer = struct.unpack('B',data[42])

Yikes! Even if we ask struct to unpack all of the fields at once, we are then relegated to numerical indexing. We
can use namedtuple but we still have the feeling that there has to be a better way:

fields = struct.unpack('!BBI4H20sIB', data)

fields[0] # get the header

this might be a more comfortable alternative, perhaps:

(header, length, typeID, param1, param2,
param3, param4, name_string, checksum, footer,
) = struct.unpack("!2B I 4H 24s I B", data)

One could imagine a library that uses the same sort of class-based schema delcaratives that Django does to solve this
problem. Here is a hypothetical definition of the same packet structure as above:

class TCPPacket(PacketModel):

endian = BIG

header = fields.Byte()
length = fields.Byte()
type = fields.Integer()
params = fields.List(4, fields.Short())
name = fields.String(20)
checksum = fields.Integer()
footer = fields.Byte()

The obvious advantage here is readability. But there are some other not so obvious advantages. The fact that this
packet declaration is a class means that it can be subclassed into more specific implementations, perhaps adding
additional fields. If we were implementing an application protocol we could implement the header of our protocol in
a base class and use that in the actual implementation of our various packet types.

Another advantage is that it keeps the handling of each specific packet close to the structure definition. Each class
declarative can contain methods specific to usage inside your application.

Since we are using Field objects to define the types of our various packet fields we also gain the ability to do implicit
validation on data. For example, if we had an application protocol that featured an authentication mechanism the Field
classes can work harder for us than in the TCPPacket example:

class UsernameField(fields.String):
def __init__(self):

UsernameField provides an implicit length to String
super(UsernameField, self).__init__(32)

def clean(self, value):
try:

lookup user in database
and return it

(continues on next page)

12 Chapter 4. Overview

mannequin Documentation, Release 0.1

(continued from previous page)

return User.objects.get(username=cleaned)
except User.DoesNotExist, e:

ValidationError indicates this field failed
to clean
raise ValidationError(e.message)

def validate(self, cleaned):
recieves actual user instance from self.clean()
if not user.active:

msg = "%s is not a currently activated user." % cleaned.username
raise ValidationError(msg) # indicate failure to validate

class PasswordField(fields.String):
def __init__(self):

PasswordField provides an implicit length to String
super(UsernameField, self).__init__(32)

def validate(self, cleaned):
user = self.parent.user
try:

check the password for the user
user.check_password(cleaned)
authenticate user if no exception
user.authenticate()

except AuthenticationError, e:
raise ValidationError(e.message)

class LoginPacket(MyAppPacket):
MyAppPacket provides MyApp's protocol header fields
user = UsernameField() # verifies user exists in database
password = PasswordField() # authenticates user on validation

13

mannequin Documentation, Release 0.1

14 Chapter 4. Overview

CHAPTER 5

Getting Started

The easiest way to get started is to checkout the examples in the source repository. It may be beneficial to read about
Models and Fields. You may also enjoy the tutorial which describes how to use mannequin to create a declarative
XML parser.

Read the Writing Models documentation to get started.

15

mannequin Documentation, Release 0.1

16 Chapter 5. Getting Started

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

mannequin Documentation, Release 0.1

18 Chapter 6. Indices and tables

Index

A
application protocol, 9

B
binary stream, 9

D
declarative, 9
django, 9

N
namedtuple, 9

P
package, 9
packet, 10

S
struct, 10

19

	Writing Models
	Code Listing
	Initialization

	Writing Fields
	Descriptors!
	Continuing from here

	Glossary
	Overview
	Getting Started
	Indices and tables

