
ManifoldLearning Documentation
Release 0.1.0

Art Wild

Oct 04, 2018

Contents

1 Isomap 3

2 Diffusion maps 5

3 Laplacian Eigenmaps 7

4 Locally Linear Embedding 9

5 Hessian Eigenmaps 11

6 Local Tangent Space Alignment 13

i

ii

ManifoldLearning Documentation, Release 0.1.0

ManifoldLearning.jl is a Julia package for manifold learning and non-linear dimensionality reduction. It proides set
of nonlinear dimensionality reduction methods, such as Isomap, LLE, LTSA, etc.

Methods:

Contents 1

ManifoldLearning Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Isomap

Isomap is a method for low-dimensional embedding. Isomap is used for computing a quasi-isometric, low-dimensional
embedding of a set of high-dimensional data points1.

This package defines a Isomap type to represent a Isomap results, and provides a set of methods to access its proper-
ties.

1.1 Properties

Let M be an instance of Isomap, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

neighbors(M)
The number of nearest neighbors used for approximating local coordinate structure.

ccomponent(M)
The observations index array of the largest connected component of the distance matrix.

1.2 Data Transformation

One can use the transform method to perform Isomap over a given dataset.

transform(Isomap, X; ...)
Perform Isomap over the data given in a matrix X. Each column of X is an observation.

1 Tenenbaum, J. B., de Silva, V. and Langford, J. C. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”. Science 290
(5500): 2319-2323, 22 December 2000. http://isomap.stanford.edu/

3

http://en.wikipedia.org/wiki/Isomap
http://isomap.stanford.edu/

ManifoldLearning Documentation, Release 0.1.0

This method returns an instance of Isomap.

Keyword arguments:

name description default
k The number of nearest neighbors for determining local coordinate structure. 12
d Output dimension. 2

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply Isomap transformation to the dataset
Y = transform(Isomap, X; k = 12, d = 2)

References

4 Chapter 1. Isomap

CHAPTER 2

Diffusion maps

Diffusion maps leverages the relationship between heat diffusion and a random walk; an analogy is drawn between the
diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose
nodes were sampled from the manifold1.

This package defines a DiffMap type to represent a Hessian LLE results, and provides a set of methods to access its
properties.

2.1 Properties

Let M be an instance of DiffMap, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

kernel(M)
The kernel matrix.

2.2 Data Transformation

One can use the transform method to perform DiffMap over a given dataset.

transform(DiffMap, X; ...)
Perform DiffMap over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of DiffMap.
1 Coifman, R. & Lafon, S. “Diffusion maps”. Applied and Computational Harmonic Analysis, Elsevier, 2006, 21, 5-30.

DOI:10.1073/pnas.0500334102

5

http://en.wikipedia.org/wiki/Diffusion_map
http://dx.doi.org/doi:10.1073/pnas.0500334102

ManifoldLearning Documentation, Release 0.1.0

Keyword arguments:

name description default
d Output dimension. 2
t Number of time steps. 1

The scale parameter. 1.0

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply DiffMap transformation to the dataset
Y = transform(DiffMap, X; d=2, t=1, =1.0)

References

6 Chapter 2. Diffusion maps

CHAPTER 3

Laplacian Eigenmaps

Laplacian Eigenmaps (LEM) method uses spectral techniques to perform dimensionality reduction. This technique
relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. The algo-
rithm provides a computationally efficient approach to non-linear dimnsionality reduction that has locally preserving
properties1.

This package defines a LEM type to represent a Laplacian Eigenmaps results, and provides a set of methods to access
its properties.

3.1 Properties

Let M be an instance of LEM, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

neighbors(M)
The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)
The eigenvalues of alignment matrix.

3.2 Data Transformation

One can use the transform method to perform LEM over a given dataset.

1 Belkin, M. and Niyogi, P. “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation”. Neural Computation, June 2003;
15 (6):1373-1396. DOI:10.1162/089976603321780317

7

http://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Laplacian_eigenmaps
http://dx.doi.org/doi:10.1162/089976603321780317

ManifoldLearning Documentation, Release 0.1.0

transform(LEM, X; ...)
Perform LEM over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of LEM.

Keyword arguments:

name description default
k The number of nearest neighbors for determining local coordinate structure. 12
d Output dimension. 2
t The temperature parameters of the heat kernel. 1.0

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply Laplacian Eigenmaps transformation to the dataset
Y = transform(LEM, X; k = 12, d = 2, t = 1.0)

References

8 Chapter 3. Laplacian Eigenmaps

CHAPTER 4

Locally Linear Embedding

Locally Linear Embedding (LLE) technique builds a single global coordinate system of lower dimensionality. By
exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear mani-
folds1.

This package defines a LLE type to represent a LLE results, and provides a set of methods to access its properties.

4.1 Properties

Let M be an instance of LLE, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

neighbors(M)
The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)
The eigenvalues of alignment matrix.

4.2 Data Transformation

One can use the transform method to perform HLLE over a given dataset.

transform(LLE, X; ...)
Perform LLE over the data given in a matrix X. Each column of X is an observation.

1 Roweis, S. & Saul, L. “Nonlinear dimensionality reduction by locally linear embedding”, Science 290:2323 (2000).
DOI:10.1126/science.290.5500.2323

9

http://en.wikipedia.org/wiki/Locally_linear_embedding#Locally-linear_embedding
http://dx.doi.org/doi:10.1126/science.290.5500.2323

ManifoldLearning Documentation, Release 0.1.0

This method returns an instance of LLE.

Keyword arguments:

name description default
k The number of nearest neighbors for determining local coordinate structure. 12
d Output dimension. 2

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply LLE transformation to the dataset
Y = transform(LLE, X; k = 12, d = 2)

References

10 Chapter 4. Locally Linear Embedding

CHAPTER 5

Hessian Eigenmaps

The Hessian Eigenmaps (Hessian LLE, HLLE) method adapts the weights in LLE to minimize the Hessian operator.
Like LLE, it requires careful setting of the nearest neighbor parameter. The main advantage of Hessian LLE is the
only method designed for non-convex data sets1.

This package defines a HLLE type to represent a Hessian LLE results, and provides a set of methods to access its
properties.

5.1 Properties

Let M be an instance of HLLE, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

neighbors(M)
The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)
The eigenvalues of alignment matrix.

5.2 Data Transformation

One can use the transform method to perform HLLE over a given dataset.

1 Donoho, D. and Grimes, C. “Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data”, Proc. Natl. Acad. Sci.
USA. 2003 May 13; 100(10): 5591–5596. DOI:10.1073/pnas.1031596100

11

http://en.wikipedia.org/wiki/Hessian_matrix
http://dx.doi.org/doi:10.1073/pnas.1031596100

ManifoldLearning Documentation, Release 0.1.0

transform(HLLE, X; ...)
Perform HLLE over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of HLLE.

Keyword arguments:

name description default
k The number of nearest neighbors for determining local coordinate structure. 12
d Output dimension. 2

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply HLLE transformation to the dataset
Y = transform(HLLE, X; k = 12, d = 2)

References

12 Chapter 5. Hessian Eigenmaps

CHAPTER 6

Local Tangent Space Alignment

Local tangent space alignment (LTSA) is a method for manifold learning, which can efficiently learn a nonlinear
embedding into low-dimensional coordinates from high-dimensional data, and can also reconstruct high-dimensional
coordinates from embedding coordinates1.

This package defines a LTSA type to represent a LTSA results, and provides a set of methods to access its properties.

6.1 Properties

Let M be an instance of LTSA, n be the number of observations, and d be the output dimension.

outdim(M)
Get the output dimension d, i.e the dimension of the subspace.

projection(M)
Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation
in projected subspace.

neighbors(M)
The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)
The eigenvalues of alignment matrix.

6.2 Data Transformation

One can use the transform method to perform LTSA over a given dataset.

transform(LSTA, X; ...)
Perform LTSA over the data given in a matrix X. Each column of X is an observation.

1 Zhang, Zhenyue; Hongyuan Zha. “Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment”. SIAM
Journal on Scientific Computing 26 (1): 313–338, 2004. DOI:10.1137/s1064827502419154

13

http://en.wikipedia.org/wiki/Local_tangent_space_alignment
http://dx.doi.org/doi:10.1137/s1064827502419154

ManifoldLearning Documentation, Release 0.1.0

This method returns an instance of LTSA.

Keyword arguments:

name description default
k The number of nearest neighbors for determining local coordinate structure. 12
d Output dimension. 2

Example:

using ManifoldLearning

suppose X is a data matrix, with each observation in a column
apply LTSA transformation to the dataset
Y = transform(LTSA, X; k = 12, d = 2)

References

Notes:

All methods implemented in this package adopt the column-major convention of JuliaStats: in a data matrix, each
column corresponds to a sample/observation, while each row corresponds to a feature (variable or attribute).

14 Chapter 6. Local Tangent Space Alignment

Index

C
ccomponent() (built-in function), 3

E
eigvals() (built-in function), 7, 9, 11, 13

K
kernel() (built-in function), 5

N
neighbors() (built-in function), 3, 7, 9, 11, 13

O
outdim() (built-in function), 3, 5, 7, 9, 11, 13

P
projection() (built-in function), 3, 5, 7, 9, 11, 13

T
transform() (built-in function), 3, 5, 7, 9, 11, 13

15

	Isomap
	Diffusion maps
	Laplacian Eigenmaps
	Locally Linear Embedding
	Hessian Eigenmaps
	Local Tangent Space Alignment

