

Mail Sender documentation

	Quickstart
	Installation

	Configuration

	Design
	Application

	Infrastructure

	Tradeoffs

	API
	Send: /send

	Validation: /validation

Indices and tables

	Index

	Search Page

Quickstart

Mail Sender is a Python application allowing to send emails through 2
providers, AmazonSES and Mailgun, with an automatic failover. It provides a
REST API, documented with Swagger, and a python client to use it.

An demo is hosted on https://mail-sender.uber.aruhier.fr.

A client can be found
here [https://github.com/Anthony25/mail-sender-client].

Table of Contents

	Quickstart
	Installation

	Configuration

Installation

First clone the project:

$ git clone https://github.com/Anthony25/mail-sender-daemon.git
$ cd mail-sender-daemon

Install it via pip3 (requires python3-pip or python-pip, depending
whether python 2 or 3 is the default):

$ pip3 install -e

Then use a WSGI container, like Gunicorn, by refering to the Flask
documentation [http://flask.pocoo.org/docs/0.12/deploying/wsgi-standalone/].
The application can be imported with mail_sender_daemon:app.

Configuration

A configuration file is needed for the daemon to run. Copy and tweak the self
documented config.yml.default file (available at the repository root) in
one of the following paths:

	~/.config/mail-sender-daemon/config.yml: user separated configuration

	/etc/mail-sender-daemon/config.yml: systemd-wide configuration

Design

This part will present the different design choices made for this project.

Table of Contents

	Design
	Application

	Infrastructure

	Tradeoffs
	Synchronous vs asynchronous

Application

A separation between a frontend and a backend application has been adopted:
the last one provide a REST API, used by the first one to interact with it.

Python has been chosen for its simplicity. Compute time is not important here,
as the application relies mainly on its providers. The REST API is done by
flask-restplus [https://github.com/noirbizarre/flask-restplus], using
Swagger to provide data verification and documentation. requests is
used to implement a client for the 2 providers’ web API.

Infrastructure

Different redundancy techniques have been used to host the daemon:

[image: Infrastructure]Mail Sender infrastructure

The infrastructure is split as 2 main parts: my home infrastructure, and 2 vm
hosted on Digital Ocean. Round Robin DNS is used between each entry point.

On Digital Ocean, each host runs a HAProxy and Mail Sender Daemon (in a
docker). keepalived is used to setup VRRP, detecting if HAProxy is still
up, otherwise the other host will take up the relay. Digital Ocean only
provides IPv4 floating addresses, that is why the IPv6 is not included into
VRRP.

On my home infrastructure, a public IP is dynamically routed through OSPF
from a Online server. HAProxy is used, and load balances to 3 nodes, running
on LXC. VRRP cannot be used here, as Online does not provide a floating API,
and I do not have the control on the IP external announcement.

Tradeoffs

Synchronous vs asynchronous

When sending an email, a synchronous design has been chosen: the web API will
try to send the email when requested, and the client will wait for an answer
indicating if it failed or not.

However, an asynchronous design has been thought: a client could send a request
to the API, which then transmits it to a message broker, and returns a token to
the client as a response. The message broker then load balances the mail
sending to different nodes, which store the sending status in a database. The
client could check the sending status by calling a method in the API with the
same token they previously received.

This design has the advantage to handle much more capacity, as all messages
could be stacked into the message broker queue, and be sent when a node is
free. Clients will not timeout if their mail take longer than usual to be sent,
and a retry could be implemented if no provider is available.

However, it is way more complex: users should be able to request the sending
status, a database and a message broker have to be added. On the infrastructure
side, it also means that, in order to avoid any SPOF, the database and the
message broker should both be in a cluster. Also, as the current infrastructure
is divided into 2 sites (home infrastructure and Digital Ocean), a split brain
could occur.

Regarding the delay of this project, an asynchronous design would have brought
too much complexity to be implemented. For this reason, the synchronous design
has followed.

API

A Swagger documentation is already available here [https://mail-sender.uber.aruhier.fr/], so this part only contains quick
description of each method.

Table of Contents

	API
	Send: /send

	Validation: /validation

Send: /send

Allows to send an email. Depending on the provider, the destination address
has to be validated, or the email will be unauthorized.

Validation: /validation

Some providers does not allow email sending to addresses that have not been
validated before (AmazonSES for example). To check the validation status of an
address, use GET /validation/{address}. To validate an address, use POST
/validation/{address}. An email will be send to the specified address, asking
if wanted to be white-listed.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Mail Sender documentation

 		Quickstart

 		Installation

 		Configuration

 		Design

 		Application

 		Infrastructure

 		Tradeoffs

 		Synchronous vs asynchronous

 		API

 		Send: /send

 		Validation: /validation

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

