

Maggy

Maggy is a framework for efficient asynchronous optimization of expensive
black-box functions on top of Apache Spark. Compared to existing frameworks,
maggy is not bound to stage based optimization algorithms and therefore it is
able to make extensive use of early stopping in order to achieve efficient
resource utilization.

Right now, maggy supports asynchronous hyperparameter tuning of machine
learning and deep learning models, but other use cases include ablation studies
and asynchronous distributed training.

Moreover, it provides a developer API that allows advanced usage by
implementing custom optimization algorithms and early stopping criteria.

In order to make decisions on early stopping, the Spark executors are sending
heart beats with the current performance of the model they are training to the
maggy experiment driver which is running on the Spark driver. We call the
process of training a model with a certain hyperparameter combination a
trial. The experiment driver then uses all information of finished trials and
the currently running ones to check in a specified interval, which of the
trials should be stopped early.
Subsequently, the experiment driver provides a new trial to the Spark
executor.

Quick Start

To Install:

>>> pip install maggy

The programming model is that you wrap the code containing the model training
inside a wrapper function. Inside that wrapper function provide all imports and
parts that make up your experiment.

There are three requirements for this wrapper function:

	The function should take the hyperparameters as arguments, plus one
additional parameter reporter which is needed for reporting the current
metric to the experiment driver.

	The function should return the metric that you want to optimize for. This
should coincide with the metric being reported in the Keras callback (see
next point).

	In order to leverage on the early stopping capabilities of maggy, you need
to make use of the maggy reporter API. By including the reporter in your
training loop, you are telling maggy which metric to report back to the
experiment driver for optimization and to check for global stopping. It is
as easy as adding reporter.broadcast(metric=YOUR_METRIC) for example at the
end of your epoch or batch training step and adding a reporter argument to
your function signature. If you are not writing your own training loop you
can use the pre-written Keras callbacks in the maggy.callbacks module.

Sample usage:

>>> # Define Searchspace
>>> from maggy import Searchspace
>>> # The searchspace can be instantiated with parameters
>>> sp = Searchspace(kernel=('INTEGER', [2, 8]), pool=('INTEGER', [2, 8]))
>>> # Or additional parameters can be added one by one
>>> sp.add('dropout', ('DOUBLE', [0.01, 0.99]))

>>> # Define training wrapper function:
>>> def mnist(kernel, pool, dropout, reporter):
>>> # This is your training iteration loop
>>> for i in range(number_iterations):
>>> ...
>>> # add the maggy reporter to report the metric to be optimized
>>> reporter.broadcast(metric=accuracy)
>>> ...
>>> # Return the same final metric
>>> return accuracy

>>> # Launch maggy experiment
>>> from maggy import experiment
>>> result = experiment.lagom(map_fun=mnist,
>>> searchspace=sp,
>>> optimizer='randomsearch',
>>> direction='max',
>>> num_trials=15,
>>> name='MNIST'
>>>)

lagom is a Swedish word meaning “just the right amount”. This is how maggy
uses your resources.

MNIST Example

For a full MNIST example with random search using Keras,
see the Jupyter Notebook in the examples folder.

Documentation

API documentation is available here [https://maggy.readthedocs.io/en/latest/].

Contents:

	User API
	maggy.experiment module

	maggy.searchspace module

	maggy.callbacks module

	Developer API

	Release notes

	LICENSE

Indices and tables

	Index

	Module Index

	Search Page

Maggy User API

maggy.experiment module

Experiment module used for running asynchronous optimization tasks.

The programming model is that you wrap the code containing the model
training inside a wrapper function.
Inside that wrapper function provide all imports and parts that make up your
experiment, see examples below. Whenever a function to run an experiment is
invoked it is also registered in the Experiments service along with the
provided information.

	
maggy.experiment.lagom(map_fun, searchspace, optimizer, direction, num_trials, name, hb_interval=1, es_policy='median', es_interval=300, es_min=10, description='')

	Launches a maggy experiment for hyperparameter optimization.

Given a search space, objective and a model training procedure map_fun
(black-box function), an experiment is the whole process of finding the
best hyperparameter combination in the search space, optimizing the
black-box function. Currently maggy supports random search and a median
stopping rule.

lagom is a Swedish word meaning “just the right amount”.

	Parameters

	
	map_fun (function) – User defined experiment containing the model training.

	searchspace (Searchspace) – A maggy Searchspace object from which samples are drawn.

	optimizer (str, AbstractOptimizer) – The optimizer is the part generating new trials.

	direction (str) – If set to ‘max’ the highest value returned will
correspond to the best solution, if set to ‘min’ the opposite is true.

	num_trials (int) – the number of trials to evaluate given the search space,
each containing a different hyperparameter combination

	name (str) – A user defined experiment identifier.

	hb_interval (int, optional) – The heartbeat interval in secondss from trial executor
to experiment driver, defaults to 1

	es_policy (str, optional) – The earlystopping policy, defaults to ‘median’

	es_interval (int, optional) – Frequency interval in seconds to check currently
running trials for early stopping, defaults to 300

	es_min (int, optional) – Minimum number of trials finalized before checking for
early stopping, defaults to 10

	description (str, optional) – A longer description of the experiment.

	Raises

	RuntimeError – An experiment is currently running.

	Returns

	A dictionary indicating the best trial and best hyperparameter
combination with it’s performance metric

	Return type

	dict

maggy.searchspace module

	
class maggy.Searchspace(**kwargs)

	Create an instance of Searchspace from keyword arguments.

The keyword arguments specify name-values pairs for the hyperparameters,
where values are tuples of the form (type, list). Type is a string with
one of the following values:

	DOUBLE

	INTEGER

	DISCRETE

	CATEGORICAL

And the list in the tuple specifies either two values only, the start
and end point of of the feasible interval for DOUBLE and INTEGER,
or the discrete possible values for the types DISCRETE and CATEGORICAL.

Sample usage:

>>> # Define Searchspace
>>> from maggy import Searchspace
>>> # The searchspace can be instantiated with parameters
>>> sp = Searchspace(kernel=('INTEGER', [2, 8]), pool=('INTEGER', [2, 8]))
>>> # Or additional parameters can be added one by one
>>> sp.add('dropout', ('DOUBLE', [0.01, 0.99]))

The Searchspace object can also be initialized from a python dictionary:

>>> sp_dict = sp.to_dict()
>>> sp_new = Searchspace(**sp_dict)

The parameter names are added as attributes of Searchspace object,
so they can be accessed directly with the dot notation
searchspace._name_.

	
add(name, value)

	Adds {name, value} pair to hyperparameters.

	Parameters

	
	name (str) – Name of the hyperparameter

	value (tuple) – A tuple of the parameter type and its feasible region

	Raises

	
	ValueError – Hyperparameter name is reserved

	ValueError – Hyperparameter feasible region in wrong format

	
get(name, default=None)

	Returns the value of name if it exists, else default.

	
get_random_parameter_values(num)

	Generate random parameter dictionaries, e.g. to be used for initializing an optimizer.

	Parameters

	num (int) – number of random parameter dictionaries to be generated.

	Raises

	ValueError – num is not an int.

	Returns

	a list containing parameter dictionaries

	Return type

	list

	
names()

	Returns the dictionary with the names and types of all
hyperparameters.

	Returns

	Dictionary of hyperparameter names, with types as value

	Return type

	dict

	
to_dict()

	Return the hyperparameters as a Python dictionary.

	Returns

	A dictionary with hyperparameter names as keys. The values are
the hyperparameter values.

	Return type

	dict

maggy.callbacks module

	
class maggy.callbacks.KerasBatchEnd(reporter, metric='loss')

	A Keras callback reporting a specified metric at the end of the batch
to the maggy experiment driver.

loss is always available as a metric, and optionally acc (if accuracy
monitoring is enabled, that is, accuracy is added to keras model metrics).
Validation metrics are not available for the BatchEnd callback. Validation
after every batch would be too expensive.
Default is training loss (loss).

Example usage:

>>> from maggy.callbacks import KerasBatchEnd
>>> callbacks = [KerasBatchEnd(reporter, metric='acc')]

	
class maggy.callbacks.KerasEpochEnd(reporter, metric='val_loss')

	A Keras callback reporting a specified metric at the end of an epoch
to the maggy experiment driver.

val_loss is always available as a metric, and optionally val_acc (if
accuracy monitoring is enabled, that is, accuracy is added to keras model
metrics). Training metrics are available under the names loss and acc.
Default is validation loss (val_loss).

Example usage:

>>> from maggy.callbacks import KerasBatchEnd
>>> callbacks = [KerasBatchEnd(reporter, metric='val_acc')]

Maggy Developer API

Release 0.1

License

GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007.
See LICENSE [https://github.com/logicalclocks/maggy/blob/master/LICENSE].

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 maggy	

 	
 	
 maggy.experiment	

Index

 A
 | G
 | K
 | L
 | M
 | N
 | S
 | T

A

 	
 	add() (maggy.Searchspace method)

G

 	
 	get() (maggy.Searchspace method)

 	
 	get_random_parameter_values() (maggy.Searchspace method)

K

 	
 	KerasBatchEnd (class in maggy.callbacks)

 	
 	KerasEpochEnd (class in maggy.callbacks)

L

 	
 	lagom() (in module maggy.experiment)

M

 	
 	maggy.experiment (module)

N

 	
 	names() (maggy.Searchspace method)

S

 	
 	Searchspace (class in maggy)

T

 	
 	to_dict() (maggy.Searchspace method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Maggy

 		
 User API

 		
 maggy.experiment module

 		
 maggy.searchspace module

 		
 maggy.callbacks module

 		
 Developer API

 		
 Release notes

 		
 LICENSE

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

