
Luma.OLED Documentation
Release 3.0.1

Richard Hull and contributors

Dec 21, 2018

Contents

1 Introduction 3

2 Python usage 7
2.1 Color Model . 8
2.2 Landscape / Portrait Orientation . 8
2.3 Examples . 8

3 Hardware 9
3.1 Identifying your serial interface . 9
3.2 I2C vs. SPI . 9
3.3 Tips for connecting the display . 9
3.4 Pre-requisites . 10

4 Installation 13

5 Upgrade 15
5.1 2.0.0 . 15

6 API Documentation 17
6.1 luma.oled.device . 17

7 Troubleshooting 29
7.1 Corrupted display due to using incorrect driver . 29

8 References 31

9 Contributing 33
9.1 GitHub . 33
9.2 Contributors . 33

10 ChangeLog 35

11 The MIT License (MIT) 43

Python Module Index 45

i

ii

Luma.OLED Documentation, Release 3.0.1

Contents 1

https://travis-ci.org/rm-hull/luma.oled
https://coveralls.io/github/rm-hull/luma.oled?branch=master
https://pypi.python.org/pypi/luma.oled
https://pypi.python.org/pypi/luma.oled

Luma.OLED Documentation, Release 3.0.1

2 Contents

CHAPTER 1

Introduction

Interfacing OLED matrix displays with the SSD1306, SSD1309, SSD1322, SSD1325, SSD1327, SSD1331, SSD1351
or SH1106 driver in Python 2 or 3 using I2C/SPI on the Raspberry Pi and other linux-based single-board computers:
the library provides a Pillow-compatible drawing canvas, and other functionality to support:

• scrolling/panning capability,

• terminal-style printing,

• state management,

• color/greyscale (where supported),

• dithering to monochrome

The SSD1306 display pictured below is 128 x 64 pixels, and the board is tiny, and will fit neatly inside the RPi case.

3

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking

Luma.OLED Documentation, Release 3.0.1

4 Chapter 1. Introduction

Luma.OLED Documentation, Release 3.0.1

See also:

Further technical information for the specific implemented devices can be found in the following datasheets:

• SSD1306

• SSD1309

• SSD1322

• SSD1325

• SSD1327

• SSD1331

• SSD1351

• SH1106

Benchmarks for tested devices can be found in the wiki.

As well as display drivers for various physical OLED devices there are emulators that run in real-time (with pygame)
and others that can take screenshots, or assemble animated GIFs, as per the examples below (source code for these is
available in the luma.examples git repository:

5

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/luma.examples

Luma.OLED Documentation, Release 3.0.1

6 Chapter 1. Introduction

CHAPTER 2

Python usage

OLED displays can be driven with python using the varous implementations in the luma.oled.device package.
There are several device classes available and usage is very simple if you have ever used Pillow or PIL.

First, import and initialise the device:

from luma.core.interface.serial import i2c, spi
from luma.core.render import canvas
from luma.oled.device import ssd1306, ssd1309, ssd1325, ssd1331, sh1106

rev.1 users set port=0
substitute spi(device=0, port=0) below if using that interface
serial = i2c(port=1, address=0x3C)

substitute ssd1331(...) or sh1106(...) below if using that device
device = ssd1306(serial)

The display device should now be configured for use. The specific luma.oled.device.ssd1306, luma.
oled.device.ssd1325, luma.oled.device.ssd1331, or luma.oled.device.sh1106, classes all
expose a display() method which takes an image with attributes consistent with the capabilities of the device.
However, for most cases, for drawing text and graphics primitives, the canvas class should be used as follows:

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((30, 40), "Hello World", fill="white")

The luma.core.render.canvas class automatically creates an PIL.ImageDraw object of the correct dimen-
sions and bit depth suitable for the device, so you may then call the usual Pillow methods to draw onto the canvas.

As soon as the with scope is ended, the resultant image is automatically flushed to the device’s display memory and
the PIL.ImageDraw object is garbage collected.

7

https://pillow.readthedocs.io/en/latest/
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.render.canvas
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw

Luma.OLED Documentation, Release 3.0.1

2.1 Color Model

Any of the standard PIL.ImageColor color formats may be used, but since the SSD1306 and SH1106 OLEDs are
monochrome, only the HTML color names "black" and "white" values should really be used; in fact, by default,
any value other than black is treated as white. The luma.core.canvas object does have a dither flag which if
set to True, will convert color drawings to a dithered monochrome effect (see the 3d_box.py example, below).

with canvas(device, dither=True) as draw:
draw.rectangle((10, 10, 30, 30), outline="white", fill="red")

There is no such constraint on the SSD1331 or SSD1351 OLEDs, which features 16-bit RGB colors: 24-bit RGB
images are downsized to 16-bit using a 565 scheme.

The SSD1322 and SSD1325 OLEDs both support 16 greyscale graduations: 24-bit RGB images are downsized to
4-bit using a Luma conversion which is approximately calculated as follows:

Y' = 0.299 R' + 0.587 G' + 0.114 B'

2.2 Landscape / Portrait Orientation

By default the display will be oriented in landscape mode (128x64 pixels for the SSD1306, for example). Should you
have an application that requires the display to be mounted in a portrait aspect, then add a rotate=N parameter when
creating the device:

from luma.core.interface.serial import i2c
from luma.core.render import canvas
from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106

serial = i2c(port=1, address=0x3C)
device = ssd1306(serial, rotate=1)

Box and text rendered in portrait mode
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((10, 40), "Hello World", fill="white")

N should be a value of 0, 1, 2 or 3 only, where 0 is no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

The device.size, device.width and device.height properties reflect the rotated dimensions rather than
the physical dimensions.

2.3 Examples

After installing the library, head over to the luma.examples repository. Details of how to run the examples is shown in
the example repo’s README.

8 Chapter 2. Python usage

https://pillow.readthedocs.io/en/latest/reference/ImageColor.html#module-PIL.ImageColor
https://github.com/rm-hull/luma.examples

CHAPTER 3

Hardware

3.1 Identifying your serial interface

You can determine if you have an I2C or a SPI interface by counting the number of pins on your card. An I2C display
will have 4 pins while an SPI interface will have 6 or 7 pins.

If you have a SPI display, check the back of your display for a configuration such as this:

For this display, the two 0 Ohm (jumper) resistors have been connected to “0” and the table shows that “0 0” is 4-wire
SPI. That is the type of connection that is currently supported by the SPI mode of this library.

A list of tested devices can be found in the wiki.

3.2 I2C vs. SPI

If you have not yet purchased your display, you may be wondering if you should get an I2C or SPI display. The basic
trade-off is that I2C will be easier to connect because it has fewer pins while SPI may have a faster display update rate
due to running at a higher frequency and having less overhead (see benchmarks).

3.3 Tips for connecting the display

• If you don’t want to solder directly on the Pi, get 2.54mm 40 pin female single row headers, cut them to length,
push them onto the Pi pins, then solder wires to the headers.

• If you need to remove existing pins to connect wires, be careful to heat each pin thoroughly, or circuit board
traces may be broken.

9

https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking
https://github.com/rm-hull/luma.oled/wiki/Usage-&-Benchmarking

Luma.OLED Documentation, Release 3.0.1

• Triple check your connections. In particular, do not reverse VCC and GND.

3.4 Pre-requisites

3.4.1 I2C

The P1 header pins should be connected as follows:

OLED Pin Name Remarks RPi Pin RPi Function
1 GND Ground P01-6 GND
2 VCC +3.3V Power P01-1 3V3
3 SCL Clock P01-5 GPIO 3 (SCL)
4 SDA Data P01-3 GPIO 2 (SDA)

You can also solder the wires directly to the underside of the RPi GPIO pins.

See also:

Alternatively, on rev.2 RPi’s, right next to the male pins of the P1 header, there is a bare P5 header which features I2C
channel 0, although this doesn’t appear to be initially enabled and may be configured for use with the Camera module.

OLED Pin Name Remarks RPi Pin RPi Function Location

1 GND Ground P5-07 GND
2 VCC +3.3V Power P5-02 3V3
3 SCL Clock P5-04 GPIO 29 (SCL)
4 SDA Data P5-03 GPIO 28 (SDA)

Ensure that the I2C kernel driver is enabled:

$ dmesg | grep i2c
[4.925554] bcm2708_i2c 20804000.i2c: BSC1 Controller at 0x20804000 (irq 79)
→˓(baudrate 100000)
[4.929325] i2c /dev entries driver

or:

$ lsmod | grep i2c
i2c_dev 5769 0
i2c_bcm2708 4943 0
regmap_i2c 1661 3 snd_soc_pcm512x,snd_soc_wm8804,snd_soc_core

If you have no kernel modules listed and nothing is showing using dmesg then this implies the kernel I2C driver is
not loaded. Enable the I2C as follows:

1. Run sudo raspi-config

10 Chapter 3. Hardware

Luma.OLED Documentation, Release 3.0.1

2. Use the down arrow to select 5 Interfacing Options

3. Arrow down to P5 I2C

4. Select yes when it asks you to enable I2C

5. Also select yes when it asks about automatically loading the kernel module

6. Use the right arrow to select the <Finish> button

After rebooting re-check that the dmesg | grep i2c command shows whether I2C driver is loaded before pro-
ceeding. You can also enable I2C manually if the raspi-config utility is not available.

Optionally, to improve performance, increase the I2C baudrate from the default of 100KHz to 400KHz by altering
/boot/config.txt to include:

dtparam=i2c_arm=on,i2c_baudrate=400000

Then reboot.

Next, add your user to the i2c group and install i2c-tools:

$ sudo usermod -a -G i2c pi
$ sudo apt-get install i2c-tools

Logout and in again so that the group membership permissions take effect, and then check that the device is commu-
nicating properly (if using a rev.1 board, use 0 for the bus, not 1):

$ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- UU 3c -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

According to the man-page, “UU” means that probing was skipped, because the address was in use by a driver. It
suggest that there is a chip at that address. Indeed the documentation for the device indicates it uses two addresses.

3.4.2 SPI

The GPIO pins used for this SPI connection are the same for all versions of the Raspberry Pi, up to and including the
Raspberry Pi 3 B.

OLED Pin Name Remarks RPi Pin RPi Function
1 VCC +3.3V Power P01-17 3V3
2 GND Ground P01-20 GND
3 D0 Clock P01-23 GPIO 11 (SCLK)
4 D1 MOSI P01-19 GPIO 10 (MOSI)
5 RST Reset P01-22 GPIO 25
6 DC Data/Command P01-18 GPIO 24
7 CS Chip Select P01-24 GPIO 8 (CE0)

Note:

3.4. Pre-requisites 11

http://elinux.org/RPiconfig#Device_Tree

Luma.OLED Documentation, Release 3.0.1

• When using the 4-wire SPI connection, Data/Command is an “out of band” signal that tells the controller if
you’re sending commands or display data. This line is not a part of SPI and the library controls it with a separate
GPIO pin. With 3-wire SPI and I2C, the Data/Command signal is sent “in band”.

• If you’re already using the listed GPIO pins for Data/Command and/or Reset, you can select other pins and pass
a bcm_DC and/or a bcm_RST argument specifying the new BCM pin numbers in your serial interface create
call.

• The use of the terms 4-wire and 3-wire SPI are a bit confusing because, in most SPI documentation, the terms
are used to describe the regular 4-wire configuration of SPI and a 3-wire mode where the input and output lines,
MOSI and MISO, have been combined into a single line called SISO. However, in the context of these OLED
controllers, 4-wire means MOSI + Data/Command and 3-wire means Data/Command sent as an extra bit over
MOSI.

• Because CS is connected to CE0, the display is available on SPI port 0. You can connect it to CE1 to have it
available on port 1. If so, pass port=1 in your serial interface create call.

Enable the SPI port:

$ sudo raspi-config
> Advanced Options > A6 SPI

If raspi-config is not available, enabling the SPI port can be done manually.

Ensure that the SPI kernel driver is enabled:

$ ls -l /dev/spi*
crw-rw---- 1 root spi 153, 0 Nov 25 08:32 /dev/spidev0.0
crw-rw---- 1 root spi 153, 1 Nov 25 08:32 /dev/spidev0.1

or:

$ lsmod | grep spi
spi_bcm2835 6678 0

Then add your user to the spi and gpio groups:

$ sudo usermod -a -G spi,gpio pi

Log out and back in again to ensure that the group permissions are applied successfully.

12 Chapter 3. Hardware

http://elinux.org/RPiconfig#Device_Tree

CHAPTER 4

Installation

Warning: Ensure that the Pre-requisites from the previous section have been performed, checked and tested
before proceeding.

Note: The library has been tested against Python 2.7, 3.4, 3.5 and 3.6.

For Python3 installation, substitute the following in the instructions below.

• pip pip3,

• python python3,

• python-dev python3-dev,

• python-pip python3-pip.

It was originally tested with Raspbian on a rev.2 model B, with a vanilla kernel version 4.1.16+, and has subsequently
been tested on Raspberry Pi (both Raspbian Jessie and Stretch) models A, B2, 3B, Zero, Zero W and OrangePi Zero
(Armbian Jessie).

Install the latest version of the library directly from PyPI:

$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg-dev build-
→˓essential
$ sudo -H pip install --upgrade luma.oled

If you are upgrading from a previous version, make sure to read the upgrade document.

13

https://pypi.python.org/pypi?:action=display&name=luma.oled

Luma.OLED Documentation, Release 3.0.1

14 Chapter 4. Installation

CHAPTER 5

Upgrade

5.1 2.0.0

Version 2.0.0 was released on 11 January 2017: this came with a rename of the project in github from ssd1306
to luma.oled to reflect the changing nature of the codebase. It introduces some structural changes to the package
structure, namely breaking the library up into smaller components and renaming existing packages.

This should largely be restricted to having to update import statements only. To upgrade any existing code that uses
the old package structure:

• rename instances of oled.device to luma.oled.device.

• rename any other usages of oled.* to luma.core.*.

This breaking change was necessary to be able to add different classes of devices, so that they could reuse core
components.

15

Luma.OLED Documentation, Release 3.0.1

16 Chapter 5. Upgrade

CHAPTER 6

API Documentation

OLED display driver for SSD1306, SSD1309, SSD1322, SSD1325, SSD1327, SSD1331, SSD1351 and SH1106
devices.

luma.core.device.device

luma.core.device.dummy

luma.oled.device.color.color_device

luma.oled.device.greyscale.greyscale_device

luma.oled.device.sh1106

luma.oled.device.ssd1306
luma.core.mixin.capabilities

luma.core.virtual.history

luma.core.virtual.hotspot

luma.core.virtual.viewport

luma.core.virtual.snapshot

luma.core.virtual.sevensegment

luma.core.virtual.terminal

luma.oled.device.ssd1331

luma.oled.device.ssd1351

luma.oled.device.ssd1322

luma.oled.device.ssd1325

luma.oled.device.ssd1327

luma.oled.device.ssd1309

6.1 luma.oled.device

Collection of serial interfaces to OLED devices.

class luma.oled.device.ssd1306(serial_interface=None, width=128, height=64, rotate=0,
**kwargs)

Bases: luma.core.device.device

Serial interface to a monochrome SSD1306 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

17

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device

Luma.OLED Documentation, Release 3.0.1

Parameters

• serial_interface – the serial interface (usually a luma.core.interface.
serial.i2c instance) to delegate sending data and commands through.

• width (int) – the number of horizontal pixels (optional, defaults to 128).

• height (int) – the number of vertical pixels (optional, defaults to 64).

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

18 Chapter 6. API Documentation

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.i2c
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.i2c
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.OLED Documentation, Release 3.0.1

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1309(serial_interface=None, width=128, height=64, rotate=0,
**kwargs)

Bases: luma.oled.device.ssd1306

Serial interface to a monochrome SSD1309 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

Parameters

• serial_interface – the serial interface (usually a luma.core.interface.
serial.spi instance) to delegate sending data and commands through.

• width (int) – the number of horizontal pixels (optional, defaults to 128).

• height (int) – the number of vertical pixels (optional, defaults to 64).

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

New in version 3.1.0.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

6.1. luma.oled.device 19

https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Luma.OLED Documentation, Release 3.0.1

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1322(serial_interface=None, width=256, height=64, rotate=0,
mode=’RGB’, framebuffer=’diff_to_previous’, **kwargs)

Bases: luma.oled.device.greyscale.greyscale_device

Serial interface to a 4-bit greyscale SSD1322 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

Parameters

• serial_interface – the serial interface (usually a luma.core.interface.
serial.spi instance) to delegate sending data and commands through.

• width (int) – the number of horizontal pixels (optional, defaults to 96).

• height (int) – the number of vertical pixels (optional, defaults to 64).

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – Supplying “1” or “RGB” effects a different rendering mechanism, either to
monochrome or 4-bit greyscale.

• framebuffer (str) – Framebuffering strategy, currently values of
diff_to_previous or full_frame are only supported

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

20 Chapter 6. API Documentation

https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Luma.OLED Documentation, Release 3.0.1

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(cmd, *args)
Sends a command and an (optional) sequence of arguments through to the delegated serial interface. Note
that the arguments are passed through as data.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit monochrome or 24-bit RGB image and renders it to the greyscale OLED display.
RGB pixels are converted to 4-bit greyscale values using a simplified Luma calculation, based on
Y’=0.299R’+0.587G’+0.114B’.

Parameters image (PIL.Image.Image) – the image to render

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1325(serial_interface=None, width=128, height=64, rotate=0,
mode=’RGB’, framebuffer=’full_frame’, **kwargs)

Bases: luma.oled.device.greyscale.greyscale_device

Serial interface to a 4-bit greyscale SSD1325 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

6.1. luma.oled.device 21

https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://docs.python.org/3/library/functions.html#int

Luma.OLED Documentation, Release 3.0.1

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit monochrome or 24-bit RGB image and renders it to the greyscale OLED display.
RGB pixels are converted to 4-bit greyscale values using a simplified Luma calculation, based on
Y’=0.299R’+0.587G’+0.114B’.

Parameters image (PIL.Image.Image) – the image to render

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1327(serial_interface=None, width=128, height=128, rotate=0,
mode=’RGB’, framebuffer=’full_frame’, **kwargs)

Bases: luma.oled.device.greyscale.greyscale_device

Serial interface to a 4-bit greyscale SSD1327 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

New in version 2.4.0.

22 Chapter 6. API Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.OLED Documentation, Release 3.0.1

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit monochrome or 24-bit RGB image and renders it to the greyscale OLED display.
RGB pixels are converted to 4-bit greyscale values using a simplified Luma calculation, based on
Y’=0.299R’+0.587G’+0.114B’.

Parameters image (PIL.Image.Image) – the image to render

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

6.1. luma.oled.device 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.OLED Documentation, Release 3.0.1

class luma.oled.device.ssd1331(serial_interface=None, width=96, height=64, rotate=0, frame-
buffer=’diff_to_previous’, **kwargs)

Bases: luma.oled.device.color.color_device

Serial interface to a 16-bit color (5-6-5 RGB) SSD1331 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

Parameters

• serial_interface – the serial interface (usually a luma.core.interface.
serial.spi instance) to delegate sending data and commands through.

• width (int) – the number of horizontal pixels (optional, defaults to 96).

• height (int) – the number of vertical pixels (optional, defaults to 64).

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• framebuffer (str) – Framebuffering strategy, currently values of
diff_to_previous or full_frame are only supported.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Renders a 24-bit RGB image to the Color OLED display.

24 Chapter 6. API Documentation

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Luma.OLED Documentation, Release 3.0.1

Parameters image (PIL.Image.Image) – the image to render.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.ssd1351(serial_interface=None, width=128, height=128, rotate=0,
framebuffer=’diff_to_previous’, h_offset=0, v_offset=0,
bgr=False, **kwargs)

Bases: luma.oled.device.color.color_device

Serial interface to the 16-bit color (5-6-5 RGB) SSD1351 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

Parameters

• serial_interface – the serial interface (usually a luma.core.interface.
serial.spi instance) to delegate sending data and commands through.

• width (int) – the number of horizontal pixels (optional, defaults to 128).

• height (int) – the number of vertical pixels (optional, defaults to 128).

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• framebuffer (str) – Framebuffering strategy, currently values of
diff_to_previous or full_frame are only supported.

• bgr (bool) – Set to True if device pixels are BGR order (rather than RGB).

• h_offset (int) – horizontal offset (in pixels) of screen to device memory (default: 0)

• v_offset – vertical offset (in pixels) of screen to device memory (default: 0)

New in version 2.3.0.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

6.1. luma.oled.device 25

https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Luma.OLED Documentation, Release 3.0.1

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(cmd, *args)
Sends a command and an (optional) sequence of arguments through to the delegated serial interface. Note
that the arguments are passed through as data.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Renders a 24-bit RGB image to the Color OLED display.

Parameters image (PIL.Image.Image) – the image to render.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

class luma.oled.device.sh1106(serial_interface=None, width=128, height=64, rotate=0,
**kwargs)

Bases: luma.core.device.device

Serial interface to a monochrome SH1106 OLED display.

On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

26 Chapter 6. API Documentation

https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Luma.OLED Documentation, Release 3.0.1

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(level)
Switches the display contrast to the desired level, in the range 0-255. Note that setting the level to a low (or
zero) value will not necessarily dim the display to nearly off. In other words, this method is NOT suitable
for fade-in/out animation.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the SH1106 OLED display.

hide()
Switches the display mode OFF, putting the device in low-power sleep mode.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

6.1. luma.oled.device 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.OLED Documentation, Release 3.0.1

28 Chapter 6. API Documentation

CHAPTER 7

Troubleshooting

7.1 Corrupted display due to using incorrect driver

Using the SSD1306 driver on a display that has a SH1106 controller can result in the display showing a small section
of the expected output with the rest of the display consisting of semi-random pixels (uninitialized memory).

Fig. 1: Display corruption due to using driver for incorrect controller when running the maze.py example

This is due to differences in required initialization sequences and how memory is mapped in the two controllers.

29

Luma.OLED Documentation, Release 3.0.1

The included examples default to the SSD1306 driver. To use the SH1106 driver instead, include the –display sh1106
command line switch. To use the SSH1106 driver in code, use the luma.oled.device.sh1106 serial interface class.

30 Chapter 7. Troubleshooting

CHAPTER 8

References

• https://learn.adafruit.com/monochrome-oled-breakouts

• https://github.com/adafruit/Adafruit_Python_SSD1306

• http://www.dafont.com/bitmap.php

• http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm

• http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/

• https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/

• https://pinout.xyz/

• https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

• http://code.activestate.com/recipes/577187-python-thread-pool/

31

https://learn.adafruit.com/monochrome-oled-breakouts
https://github.com/adafruit/Adafruit_Python_SSD1306
http://www.dafont.com/bitmap.php
http://raspberrypi.znix.com/hipidocs/topic_i2cbus_2.htm
http://martin-jones.com/2013/08/20/how-to-get-the-second-raspberry-pi-i2c-bus-to-work/
https://projects.drogon.net/understanding-spi-on-the-raspberry-pi/
https://pinout.xyz/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://code.activestate.com/recipes/577187-python-thread-pool/

Luma.OLED Documentation, Release 3.0.1

32 Chapter 8. References

CHAPTER 9

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are intending
to introduce some large-scale changes, please get in touch first to make sure we’re on the same page: try to include a
docstring for any new method or class, and keep method bodies small, readable and PEP8-compliant. Add tests and
strive to keep the code coverage levels high.

9.1 GitHub

The source code is available to clone at: https://github.com/rm-hull/luma.oled

9.2 Contributors

• Thijs Triemstra (@thijstriemstra)

• Christoph Handel (@fragfutter)

• Boeeerb (@Boeeerb)

• xes (@xes)

• Roger Dahl (@rogerdahl)

• Václav Šmilauer (@eudoxos)

• Claus Bjerre (@bjerrep)

• Vx Displays LLC (@VxGeeks)

• Christopher Arndt (@SpotlightKid)

• Sascha Walther (@leragequit)

• Marcus Kellerman (@sharkusk)

• Phil Howard (@gadgetoid)

33

https://github.com/rm-hull/luma.oled

Luma.OLED Documentation, Release 3.0.1

34 Chapter 9. Contributing

CHAPTER 10

ChangeLog

Version Description Date
upcoming

• Add support for 128x64
monochrome OLED
(SSD1309)

3.0.1
• Fix bug where

SSD1325/1327 didn’t handle
framebuffer properly

3.0.0
• BREAKING Fix SSD1351

init sequence didn’t set
RGB/BGR color order
properly. Users of this de-
vice should verify proper
color rendering and add
bgr=True if blue/red color
components appear to be
reversed

• Device consolidation -
greyscale and colour
SSD13xx devices now
share common base classes.

2018/12/02

Continued on next page

35

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
2.5.1

• Fix bug where
SSD1331/1351 didn’t render
green accurately

2018/09/14

2.5.0
• Add support form 128x128

Monochrome OLED
(SH1106) (by @Gadgetoid)

• Dependency and documenta-
tion updates

• Minor packaging changes

2018/09/07

2.4.1
• Fix bug where SSD1327 init

sequence exceeds serial com-
mand size

2018/05/28

2.4.0
• Support for 128x128 4-bit

OLED (SSD1327)

2018/04/18

2.3.2
• Support for 96x96 color

OLED (SSD1351)

2018/03/03

2.3.1
• Changed version number

to inside luma/oled/
__init__.py

2017/11/23

2.3.0
• Support for 128x128 color

OLED (SSD1351)

2017/10/30

2.2.12
• Explicitly state ‘UTF-8’ en-

coding in setup when reading
files

2017/10/18

2.2.11
• Update dependencies
• Additional troubleshooting

documentation

2017/09/19

2.2.10
• Add support for 128x32 mode

for SH1106

2017/05/01

Continued on next page

36 Chapter 10. ChangeLog

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
2.2.9

• luma.core 0.9.0 or newer is
required now

• Documentation amends

2017/04/22

2.2.8
• SSD1331 & SSD1322 frame-

buffer & API docstrings

2017/04/13

2.2.7
• Add support for 64x32

SSD1306 OLED

2017/04/12

2.2.6
• Add support for 64x48

SSD1306 OLED

2017/03/30

2.2.5
• Restrict exported Python

symbols from luma.oled.
device

2017/03/02

2.2.4
• Tweaked SSD1325 init set-

tings & replaced constants
• Update dependencies

2017/02/17

2.2.3
• Monochrome rendering on

SSD1322 & SSD1325

2017/02/14

2.2.2
• SSD1325 performance im-

provements (perfloop: 25.50
–> 34.31 FPS)

• SSD1331 performance im-
provements (perfloop: 34.64
–> 51.89 FPS)

2017/02/02

2.2.1
• Support for 256x64 4-bit

greyscale OLED (SSD1322)
• Improved API documentation

(shows inherited members)

2017/01/29

2.1.0
• Simplify/optimize SSD1306

display logic

2017/01/22

Continued on next page

37

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
2.0.1

• Moved examples to separate
git repo

• Add notes about breaking
changes

2017/01/15

2.0.0
• Package rename to luma.
oled (Note: Breaking
changes)

2017/01/11

1.5.0
• Performance improvements

for SH1106 driver (2x frame
rate!)

• Support for 4-bit greyscale
OLED (SSD1325)

• Landscape/portrait orienta-
tion with rotate=N parameter

2017/01/09

1.4.0
• Add savepoint/restore func-

tionality
• Add terminal functionality
• Canvas image dithering
• Additional & improved ex-

amples
• Load config settings from file

(for examples)
• Universal wheel distribution
• Improved/simplified error re-

porting
• Documentation updates

2016/12/23

1.3.1
• Add ability to adjust bright-

ness of screen
• Fix for wrong value

NORMALDISPLAY for
SSD1331 device

2016/12/11

Continued on next page

38 Chapter 10. ChangeLog

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
1.3.0

• Support for 16-bit color
OLED (SSD1331)

• Viewport/scrolling support
• Remove pygame as an install

dependency in setup
• Ensure SH1106 device

collapses color images to
monochrome

• Fix for emulated devices: do
not need cleanup

• Fix to allow gifanim emulator
to process 1-bit images

• Establish a single threadpool
for all virtual viewports

• Fix issue preventing multiple
threads from running concur-
rently

• Documentation updates

2016/12/11

1.2.0
• Add support for 128x32,

96x16 OLED screens
(SSD1306 chipset only)

• Fix boundary condition error
when supplying max-frames
to gifanim

• Bit pattern calc rework
when conveting color ->
monochrome

• Approx 20% performance
improvement in display
method

2016/12/08

1.1.0
• Add animated-GIF emulator
• Add color-mode flag to emu-

lator
• Fix regression in SPI interface
• Rename emulator transform

option ‘scale’ to ‘identity’

2016/12/05

Continued on next page

39

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
1.0.0

• Add HQX scaling to capture
and pygame emulators

• SPI support (NOTE: contains
breaking changes)

• Improve benchmarking ex-
amples

• Fix resource leakage & noops
on emulated devices

• Additional tests

2016/12/03

0.3.5
• Pygame-based device emula-

tor & screen capture device
emulator

• Add bouncing balls demo,
clock & Space Invaders ex-
amples

• Auto cleanup on exit
• Add bounding_box

attribute to devices
• Demote buffer & pages at-

tributes to “internal use” only
• Replaced SH1106 data sheet

with version that is not “pre-
liminary”

• Add font attribution
• Tests for SSD1306 &

SSH1106 devices
• Add code coverage & upload

to coveralls.io
• flake8 code compliance
• Documentation updates

2016/11/30

0.3.4
• Performance improvements -

render speeds ~2x faster
• Documentation updates

2016/11/15

0.3.3
• Add PyPi badge
• Use smbus2

2016/11/15

Continued on next page

40 Chapter 10. ChangeLog

Luma.OLED Documentation, Release 3.0.1

Table 1 – continued from previous page
Version Description Date
0.3.2

• Fix bug in maze example (in-
teger division on python 3)

• Use latest pip
• Add tox & travis config (+

badge)
• Add RTFD config
• Documentation updates

2016/11/13

0.3.1
• Adjust requirements (remove

smbus)
• Default RTFD theme
• Documentation updates

2016/11/13

0.3.0
• Allow SMBus implementa-

tion to be supplied
• Add show, hide and clear

methods
• Catch & rethrow IOError

exceptions
• Fix error in ‘hello world’ ex-

ample
• Cleanup imports
• Allow setting width/height
• Documentation updates

2016/11/13

0.2.0
• Add Python 3 support
• Add options to demos
• Micro-optimizations
• Remove unused optional arg
• Fix bug in rendering image

data
• Added more examples
• Add setup file
• Support SH1106
• Documentation updates

2016/09/06

41

Luma.OLED Documentation, Release 3.0.1

42 Chapter 10. ChangeLog

CHAPTER 11

The MIT License (MIT)

Copyright (c) 2014-18 Richard Hull and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

43

Luma.OLED Documentation, Release 3.0.1

44 Chapter 11. The MIT License (MIT)

Python Module Index

l
luma.oled, 17
luma.oled.device, 17

45

Luma.OLED Documentation, Release 3.0.1

46 Python Module Index

Index

C
capabilities() (luma.oled.device.sh1106 method),

26
capabilities() (luma.oled.device.ssd1306 method),

18
capabilities() (luma.oled.device.ssd1309 method),

19
capabilities() (luma.oled.device.ssd1322 method),

20
capabilities() (luma.oled.device.ssd1325 method),

21
capabilities() (luma.oled.device.ssd1327 method),

22
capabilities() (luma.oled.device.ssd1331 method),

24
capabilities() (luma.oled.device.ssd1351 method),

25
cleanup() (luma.oled.device.sh1106 method), 27
cleanup() (luma.oled.device.ssd1306 method), 18
cleanup() (luma.oled.device.ssd1309 method), 19
cleanup() (luma.oled.device.ssd1322 method), 20
cleanup() (luma.oled.device.ssd1325 method), 22
cleanup() (luma.oled.device.ssd1327 method), 23
cleanup() (luma.oled.device.ssd1331 method), 24
cleanup() (luma.oled.device.ssd1351 method), 25
clear() (luma.oled.device.sh1106 method), 27
clear() (luma.oled.device.ssd1306 method), 18
clear() (luma.oled.device.ssd1309 method), 19
clear() (luma.oled.device.ssd1322 method), 21
clear() (luma.oled.device.ssd1325 method), 22
clear() (luma.oled.device.ssd1327 method), 23
clear() (luma.oled.device.ssd1331 method), 24
clear() (luma.oled.device.ssd1351 method), 26
command() (luma.oled.device.sh1106 method), 27
command() (luma.oled.device.ssd1306 method), 18
command() (luma.oled.device.ssd1309 method), 19
command() (luma.oled.device.ssd1322 method), 21
command() (luma.oled.device.ssd1325 method), 22
command() (luma.oled.device.ssd1327 method), 23

command() (luma.oled.device.ssd1331 method), 24
command() (luma.oled.device.ssd1351 method), 26
contrast() (luma.oled.device.sh1106 method), 27
contrast() (luma.oled.device.ssd1306 method), 18
contrast() (luma.oled.device.ssd1309 method), 19
contrast() (luma.oled.device.ssd1322 method), 21
contrast() (luma.oled.device.ssd1325 method), 22
contrast() (luma.oled.device.ssd1327 method), 23
contrast() (luma.oled.device.ssd1331 method), 24
contrast() (luma.oled.device.ssd1351 method), 26

D
data() (luma.oled.device.sh1106 method), 27
data() (luma.oled.device.ssd1306 method), 18
data() (luma.oled.device.ssd1309 method), 19
data() (luma.oled.device.ssd1322 method), 21
data() (luma.oled.device.ssd1325 method), 22
data() (luma.oled.device.ssd1327 method), 23
data() (luma.oled.device.ssd1331 method), 24
data() (luma.oled.device.ssd1351 method), 26
display() (luma.oled.device.sh1106 method), 27
display() (luma.oled.device.ssd1306 method), 18
display() (luma.oled.device.ssd1309 method), 20
display() (luma.oled.device.ssd1322 method), 21
display() (luma.oled.device.ssd1325 method), 22
display() (luma.oled.device.ssd1327 method), 23
display() (luma.oled.device.ssd1331 method), 24
display() (luma.oled.device.ssd1351 method), 26

H
hide() (luma.oled.device.sh1106 method), 27
hide() (luma.oled.device.ssd1306 method), 18
hide() (luma.oled.device.ssd1309 method), 20
hide() (luma.oled.device.ssd1322 method), 21
hide() (luma.oled.device.ssd1325 method), 22
hide() (luma.oled.device.ssd1327 method), 23
hide() (luma.oled.device.ssd1331 method), 25
hide() (luma.oled.device.ssd1351 method), 26

47

Luma.OLED Documentation, Release 3.0.1

L
luma.oled (module), 17
luma.oled.device (module), 17

P
preprocess() (luma.oled.device.sh1106 method), 27
preprocess() (luma.oled.device.ssd1306 method), 18
preprocess() (luma.oled.device.ssd1309 method), 20
preprocess() (luma.oled.device.ssd1322 method), 21
preprocess() (luma.oled.device.ssd1325 method), 22
preprocess() (luma.oled.device.ssd1327 method), 23
preprocess() (luma.oled.device.ssd1331 method), 25
preprocess() (luma.oled.device.ssd1351 method), 26

S
sh1106 (class in luma.oled.device), 26
show() (luma.oled.device.sh1106 method), 27
show() (luma.oled.device.ssd1306 method), 19
show() (luma.oled.device.ssd1309 method), 20
show() (luma.oled.device.ssd1322 method), 21
show() (luma.oled.device.ssd1325 method), 22
show() (luma.oled.device.ssd1327 method), 23
show() (luma.oled.device.ssd1331 method), 25
show() (luma.oled.device.ssd1351 method), 26
ssd1306 (class in luma.oled.device), 17
ssd1309 (class in luma.oled.device), 19
ssd1322 (class in luma.oled.device), 20
ssd1325 (class in luma.oled.device), 21
ssd1327 (class in luma.oled.device), 22
ssd1331 (class in luma.oled.device), 23
ssd1351 (class in luma.oled.device), 25

48 Index

	Introduction
	Python usage
	Color Model
	Landscape / Portrait Orientation
	Examples

	Hardware
	Identifying your serial interface
	I2C vs. SPI
	Tips for connecting the display
	Pre-requisites

	Installation
	Upgrade
	2.0.0

	API Documentation
	luma.oled.device

	Troubleshooting
	Corrupted display due to using incorrect driver

	References
	Contributing
	GitHub
	Contributors

	ChangeLog
	The MIT License (MIT)
	Python Module Index

