
Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.10.1

Richard Hull

Jul 21, 2017

Contents

1 Introduction 3

2 Installation 5
2.1 Pre-requisites . 5
2.2 GPIO pin-outs . 6
2.3 Installing from PyPi . 7
2.4 Examples . 8

3 Python Usage 9
3.1 8x8 LED Matrices . 9
3.2 7-Segment LED Displays . 13
3.3 WS2812 NeoPixels . 14
3.4 Next-generation APA102 NeoPixels . 15
3.5 Emulators . 16

4 API Documentation 17
4.1 Breaking changes . 17
4.2 luma.led_matrix.device . 17
4.3 luma.led_matrix.virtual . 21

5 Notes 23
5.1 Cascading, power supply & level shifting . 23

6 References 25

7 Contributing 27
7.1 GitHub . 27
7.2 Contributors . 27

8 ChangeLog 29

9 The MIT License (MIT) 31

Python Module Index 33

i

ii

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

Contents 1

https://travis-ci.org/rm-hull/luma.led_matrix
https://coveralls.io/github/rm-hull/luma.led_matrix?branch=master
http://luma-led-matrix.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/luma.led_matrix
https://pypi.python.org/pypi/luma.led_matrix

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

2 Contents

CHAPTER 1

Introduction

Python library interfacing LED matrix displays with the MAX7219 driver (using SPI) and WS2812 & APA102
NeoPixels on the Raspberry Pi and other linux-based single board computers - it provides a Pillow-compatible drawing
canvas, and other functionality to support:

• multiple cascaded devices

• LED matrix, seven-segment and NeoPixel variants

• scrolling/panning capability,

• terminal-style printing,

• state management,

• dithering to monochrome,

• Python 2.7 and 3.4+ are both supported

A LED matrix can be acquired for a few pounds from outlets like Banggood. Likewise 7-segment displays are available
from Ali-Express or Ebay.

See also:

3

http://www.banggood.com/MAX7219-Dot-Matrix-Module-DIY-Kit-SCM-Control-Module-For-Arduino-p-72178.html?currency=GBP
http://www.aliexpress.com/item/MAX7219-Red-Module-8-Digit-7-Segment-Digital-LED-Display-Tube-For-Arduino-MCU/1449630475.html
http://www.ebay.com/itm/-/172317726225

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

Further technical information for the specific devices can be found in the datasheets below:

• MAX7219

• WS2812

• WS2812B

• APA102

4 Chapter 1. Introduction

CHAPTER 2

Installation

Note: The library has been tested against Python 2.7 and 3.4+.

For Python3 installation, substitute the following in the instructions below.

• pip pip3,

• python python3,

• python-dev python3-dev,

• python-pip python3-pip.

2.1 Pre-requisites

2.1.1 MAX7219 Devices

By default, the SPI kernel driver is NOT enabled on the Raspberry Pi Raspian image. You can confirm whether it is
enabled using the shell commands below:

$ lsmod | grep -i spi
spi_bcm2835 7424 0

Depending on the hardware/kernel version, this may report spi_bcm2807 rather than spi_bcm2835 - either should be
adequate.

And that the devices are successfully installed in /dev:

$ ls -l /dev/spi*
crw------- 1 root root 153, 0 Jan 1 1970 /dev/spidev0.0
crw------- 1 root root 153, 1 Jan 1 1970 /dev/spidev0.1

5

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

If you have no /dev/spi files and nothing is showing using lsmod then this implies the kernel SPI
driver is not loaded. Enable the SPI as follows (steps taken from https://learn.sparkfun.com/tutorials/
raspberry-pi-spi-and-i2c-tutorial#spi-on-pi):

1. Run sudo raspi-config

2. Use the down arrow to select 9 Advanced Options

3. Arrow down to A6 SPI.

4. Select yes when it asks you to enable SPI,

5. Also select yes when it asks about automatically loading the kernel module.

6. Use the right arrow to select the <Finish> button.

7. Select yes when it asks to reboot.

After rebooting re-check that the lsmod | grep -i spi command shows whether SPI driver is loaded before
proceeding. If you are stil experiencing problems, refer to the official Raspberry Pi SPI troubleshooting guide for
further details, or ask a new question - but please remember to add as much detail as possible.

2.2 GPIO pin-outs

2.2.1 MAX7219 Devices (SPI)

The breakout board has two headers to allow daisy-chaining:

6 Chapter 2. Installation

https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial#spi-on-pi
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial#spi-on-pi
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md#troubleshooting
https://github.com/rm-hull/luma.led_matrix/issues/new

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

Board Pin Name Remarks RPi Pin RPi Function
1 VCC +5V Power 2 5V0
2 GND Ground 6 GND
3 DIN Data In 19 GPIO 10 (MOSI)
4 CS Chip Select 24 GPIO 8 (SPI CE0)
5 CLK Clock 23 GPIO 11 (SPI CLK)

See also:

See notes section for cascading/daisy-chaining, power supply and level-shifting.

2.2.2 WS2812 NeoPixels (DMA)

Typically, WS2812 NeoPixels reqire VCC, VSS (GND) and DI pins connecting to the Raspberry Pi, where the DI pin
is usually connected to a PWM control pin such as GPIO 18.

Board Pin Name Remarks RPi Pin RPi Function
1 DO Data Out • •

2 DI Data In 12 GPIO 18 (PWM0)
3 VCC +5V Power 2 5V0
4 NC Not connected • •

5 VDD Not connected • •

6 VSS Ground 6 GND

The DO pin should be connected to the DI pin on the next (daisy-chained) neopixel, while the VCC and VSS are
supplied in-parallel to all LED’s. WS2812b devices now are becoming more prevalent, and only have 4 pins.

2.2.3 NeoSegments

@msurguy’s NeoSegments should be connected as follows:

Board Pin Name Remarks RPi Pin RPi Function
1 GND Ground 6 GND
2 DI Data In 12 GPIO 18 (PWM0)
3 VCC +5V Power 2 5V0

2.3 Installing from PyPi

Install the dependencies for library first with:

$ sudo usermod -a -G spi,gpio pi
$ sudo apt-get install python-dev python-pip libfreetype6-dev libjpeg-dev
$ sudo -i pip install --upgrade pip setuptools
$ sudo apt-get purge python-pip

2.3. Installing from PyPi 7

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

Warning: The default pip bundled with apt on Raspbian is really old, and can cause components to not be installed
properly. Please ensure that pip 9.0.1 or newer is installed prior to continuing:

$ pip --version
pip 9.0.1 from /usr/local/lib/python2.7/dist-packages (python 2.7)

Proceed to install latest version of the library directly from PyPI:

$ sudo -H pip install --upgrade luma.led_matrix

2.4 Examples

Ensure you have followed the installation instructions above. Clone the repo from github, and run the example code
as follows:

$ python examples/matrix_demo.py

The matrix demo accepts optional flags to configure the number of cascaded devices and correct the block orientation
phase shift when using 4x8x8 matrices:

$ python examples/matrix_demo.py -h
usage: matrix_demo.py [-h] [--cascaded CASCADED]

[--block-orientation {0, 90, -90}]

matrix_demo arguments

optional arguments:
-h, --help show this help message and exit
--cascaded CASCADED, -n CASCADED

Number of cascaded MAX7219 LED matrices (default: 1)
--block-orientation {0, 90, -90}

Corrects block orientation when wired vertically
(default: 0)

Similarly, there is a basic demo of the capabilities of the luma.led_matrix.virtual.sevensegment wrap-
per:

$ python examples/sevensegment_demo.py

and for the luma.led_matrix.device.neopixel device:

$ sudo python examples/neopixel_demo.py

Further examples are available in the luma.examples. git repository. Follow the instructions in the README for more
details.

A small example application using ZeroSeg to display TOTP secrets can be found in https://github.com/rm-hull/zaup.

8 Chapter 2. Installation

https://pypi.python.org/pypi?:action=display&name=luma.led_matrix
https://github.com/rm-hull/luma.led_matrix
https://github.com/rm-hull/luma.examples
https://thepihut.com/products/zeroseg
https://github.com/rm-hull/zaup

CHAPTER 3

Python Usage

3.1 8x8 LED Matrices

For the matrix device, initialize the luma.led_matrix.device.max7219 class, as follows:

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.led_matrix.device import max7219

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial)

The display device should now be configured for use. The specific max7219 class exposes a display() method
which takes an image with attributes consistent with the capabilities of the configured device’s capabilities. However,
for most cases, for drawing text and graphics primitives, the canvas class should be used as follows:

font = ImageFont.truetype("examples/pixelmix.ttf", 8)

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")

The luma.core.render.canvas class automatically creates an PIL.ImageDraw object of the correct dimen-
sions and bit depth suitable for the device, so you may then call the usual Pillow methods to draw onto the canvas.

As soon as the with scope is ended, the resultant image is automatically flushed to the device’s display memory and
the PIL.ImageDraw object is garbage collected.

Note: The default Pillow font is too big for 8px high devices like the LED matrices here, so the luma.examples repo
inclues a small TTF pixel font called pixelmix.ttf (attribution: http://www.dafont.com/) which just fits.

Alternatively, a set of “legacy” fixed-width bitmap fonts are included in the luma.core codebase and may be used as
follows:

9

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.render.canvas
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw
https://github.com/rm-hull/luma.examples
http://www.dafont.com/
https://github.com/rm-hull/luma.core

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

from luma.core import legacy
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT

with canvas(device) as draw:
legacy.text(draw, (0, 0), "A", fill="white", font=proportional(CP437_FONT))

The fixed-width fonts can be “converted” on-the-fly to proportionally spaced by wrapping them with the luma.
core.legacy.font.proportional class.

3.1.1 Scrolling / Virtual viewports

A single 8x8 LED matrix clearly hasn’t got a lot of area for displaying useful information. Obviously they can be
daisy-chained together to provide a longer line of text, but as this library extends luma.core, then we can use the
luma.core.virtual.viewport class to allow scrolling support:

import time

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial)

virtual = viewport(device, width=200, height=100)

with canvas(virtual) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((3, 3), "Hello world", fill="white")

for offset in range(8):
virtual.set_position((offset, offset))
time.sleep(0.1)

Calling set_position() on a virtual viewport, causes the device to render what is visible at that specific position;
altering the position in a loop refreshes every time it is called, and gives an animated scrolling effect.

By altering both the X and Y co-ordinates allows scrolling in any direction, not just horizontally.

3.1.2 Color Model

Any of the standard PIL.ImageColor color formats may be used, but since the 8x8 LED Matrices are monochrome,
only the HTML color names "black" and "white" values should really be used; in fact, by default, any value other
than black is treated as white. The luma.core.render.canvas constructor does have a dither flag which if
set to True, will convert color drawings to a dithered monochrome effect.

with canvas(device, dither=True) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="red")

10 Chapter 3. Python Usage

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.legacy.font.proportional
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.legacy.font.proportional
https://github.com/rm-hull/luma.core
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.viewport
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.viewport.set_position
https://pillow.readthedocs.io/en/latest/reference/ImageColor.html#module-PIL.ImageColor
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.render.canvas

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

3.1.3 Landscape / Portrait Orientation

By default, cascaded matrices will be oriented in landscape mode. Should you have an application that requires the
display to be mounted in a portrait aspect, then add a rotate=N parameter when creating the device:

from luma.core.interface.serial import i2c
from luma.core.render import canvas
from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106

serial = i2c(port=1, address=0x3C)
device = ssd1306(serial, rotate=1)

Box and text rendered in portrait mode
with canvas(device) as draw:

draw.rectangle(device.bounding_box, outline="white", fill="black")

N should be a value of 0, 1, 2 or 3 only, where 0 is no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

The device.size, device.width and device.height properties reflect the rotated dimensions rather than
the physical dimensions.

3.1.4 Daisy-chaining

The MAX7219 chipset supports a serial 16-bit register/data buffer which is clocked in on pin DIN every time the clock
edge falls, and clocked out on DOUT 16.5 clock cycles later. This allows multiple devices to be chained together.

If you have more than one device and they are daisy-chained together, you can initialize the library in one of two ways,
either using cascaded=N to indicate the number of daisychained devices:

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.led_matrix.device import max7219

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, cascaded=3)

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")

Using cascaded=N implies there are N devices arranged linearly and horizontally, running left to right.

Alternatively, the device configuration may configured with width=W and height=H. These dimensions denote the
number of LEDs in the all the daisychained devices. The width and height must both be multiples of 8: this has scope
for arranging in blocks in, say 3x3 or 5x2 matrices (24x24 or 40x16 pixels, respectively).

Given 12 daisychained MAX7219’s arranged in a 4x3 layout, the simple example below,

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.led_matrix.device import max7219
from luma.core.legacy.font import proportional, LCD_FONT

serial = spi(port=0, device=0, gpio=noop(), block_orientation=-90)
device = max7219(serial, width=32, height=24)

with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white")

3.1. 8x8 LED Matrices 11

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

text(draw, (2, 2), "Hello", fill="white", font=proportional(LCD_FONT))
text(draw, (2, 10), "World", fill="white", font=proportional(LCD_FONT))

displays as:

3.1.5 Trouble-shooting / common problems

Some online retailers are selling pre-assembled ‘4-in-1’ LED matrix displays, but they appear to be wired 90° out-of-
phase such that horizontal scrolling appears as below:

This can be rectified by initializing the max7219 device with a parameter of block_orientation=-90 (or +90,
if your device is aligned the other way):

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.led_matrix.device import max7219

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, cascaded=4, block_orientation=-90)

Every time a display render is subsequenly requested, the underlying image representation is corrected to reverse the
90° phase shift.

12 Chapter 3. Python Usage

http://www.ebay.co.uk/itm/371306583204

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

3.2 7-Segment LED Displays

For the 7-segment device, initialize the luma.core.virtual.sevensegment class, and wrap it around a pre-
viously created max7219 device:

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import sevensegment
from luma.led_matrix.device import max7219

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, cascaded=2)
seg = sevensegment(device)

The seg instance now has a text property which may be assigned, and when it does will update all digits according
to the limited alphabet the 7-segment displays support. For example, assuming there are 2 cascaded modules, we have
16 character available, and so can write:

seg.text = "Hello world"

Rather than updating the whole display buffer, it is possible to update ‘slices’, as per the below example:

seg.text[0:5] = "Goodbye"

This replaces Hello in the previous example, replacing it with Gooobye. The usual python idioms for slicing
(inserting / replacing / deleteing) can be used here, but note if inserted text exceeds the underlying buffer size, a
ValueError is raised.

Floating point numbers (or text with ‘.’) are handled slightly differently - the decimal-place is fused in place on the
character immediately preceding it. This means that it is technically possible to get more characters displayed than the
buffer allows, but only because dots are folded into their host character

3.2. 7-Segment LED Displays 13

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment.text

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

3.3 WS2812 NeoPixels

For a strip of neopixels, initialize the luma.led_matrix.device.ws2812 class (also aliased to luma.
led_matrix.device.neopixel), supplying a parameter cascaded=N where N is the number of daisy-
chained LEDs.

This script creates a drawing surface 100 pixels long, and lights up three specific pixels, and a contiguous block:

from luma.core.render import canvas
from luma.led_matrix.device import ws2812

device = ws2812(cascaded=100)

with canvas(device) as draw:
draw.point((0,0), fill="white")
draw.point((4,0), fill="blue")
draw.point((11,0), fill="orange")
draw.rectange((20, 0, 40, 0), fill="red")

If you have a device like Pimoroni’s Unicorn pHat, initialize the device with width=N and height=N attributes
instead:

from luma.core.render import canvas
from luma.led_matrix.device import ws2812

Pimoroni's Unicorn pHat is 8x4 neopixels
device = ws2812(width=8, height=4)

with canvas(device) as draw:
draw.line((0, 0, 0, device.height), fill="red")
draw.line((1, 0, 1, device.height), fill="orange")
draw.line((2, 0, 2, device.height), fill="yellow")
draw.line((3, 0, 3, device.height), fill="green")
draw.line((4, 0, 4, device.height), fill="blue")
draw.line((5, 0, 5, device.height), fill="indigo")
draw.line((6, 0, 6, device.height), fill="violet")
draw.line((7, 0, 7, device.height), fill="white")

Note: The ws2812 driver uses the ws2812 PyPi package to interface to the daisychained LEDs. It uses DMA (direct
memory access) via /dev/mem which means that it has to run in privileged mode (via sudo root access).

The same viewport, scroll support, portrait/landscape orientation and color model idioms provided in luma.core are
equally applicable to the ws2812 implementation.

3.3.1 Pimoroni Unicorn HAT

Pimoroni sells the Unicorn HAT, comprising 64 WS2812b NeoPixels in an 8x8 arrangement. The pixels are cascaded,
but arranged in a ‘snake’ layout, rather than a ‘scan’ layout. In order to accomodate this, a translation mapping is
required, as follows:

import time

from luma.led_matrix.device import ws2812, UNICORN_HAT
from luma.core.render import canvas

14 Chapter 3. Python Usage

https://shop.pimoroni.com/products/unicorn-phat
https://pypi.python.org/pypi/ws2812
https://shop.pimoroni.com/products/unicorn-hat

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

device = ws2812(width=8, height=8, mapping=UNICORN_HAT)

for y in range(device.height):
for x in range(device.width):

with canvas(device) as draw:
draw.point((x, y), fill="green")

time.sleep(0.5)

This should animate a green dot moving left-to-right down each line.

3.3.2 NeoSegments

@msurguy has crowdsourced some WS2812 neopixels into a modular 3D-printed seven-segment unit. To program
these devices:

import time

from luma.led_matrix_device import neosegment

neoseg = neosegment(width=6)

Defaults to "white" color initially
neoseg.text = "NEOSEG"
time.sleep(1)

Set the first char ('N') to red
neoseg.color[0] = "red"
time.sleep(1)

Set fourth and fifth chars ('S','E') accordingly
neoseg.color[3:5] = ["cyan", "blue"]
time.sleep(1)

Set the entire string to green
neoseg.color = "green"

The neosegment class extends sevensegment, so the same text assignment (Python slicing paradigms) can be
used here as well - see the earlier section for further details.

The underlying device is exposed as attribute device, so methods such as show, hide and contrast are available.

3.4 Next-generation APA102 NeoPixels

APA102 RGB neopixels are easier to control that WS2812 devices - they are driven using SPI rather than precise
timings that the WS2812 devices need. Initialize the luma.led_matrix.device.apa102 class, supplying a
parameter cascaded=N where N is the number of daisy-chained LEDs.

The following script creates a drawing surface 8 pixels long, and lights up three specific pixels:

from luma.core.render import canvas
from luma.led_matrix.device import apa102

device = apa102(cascaded=8)

3.4. Next-generation APA102 NeoPixels 15

https://twitter.com/msurguy?lang=en
https://www.crowdsupply.com/maksmakes/neosegment
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

with canvas(device) as draw:
draw.point((0,0), fill="white")
draw.point((0,1), fill="blue")
draw.point((0,2), fill=(0xFF, 0x00, 0x00, 0x80)) # RGBA tuple, alpha controls

→˓brightness

APA102 RGB pixels can have their brightness individually controlled: by setting the alpha chanel to a translucent
value (as per the above example) will set the brightness accordingly.

3.5 Emulators

There are various display emulators available for running code against, for debugging and screen capture functionality:

• The luma.emulator.device.capture device will persist a numbered PNG file to disk every time its
display() method is called.

• The luma.emulator.device.gifanim device will record every image when its display() method is
called, and on program exit (or Ctrl-C), will assemble the images into an animated GIF.

• The luma.emulator.device.pygame device uses the pygame library to render the displayed image to
a pygame display surface.

Invoke the demos with:

$ python examples/clock.py -d capture --transform=led_matrix

or:

$ python examples/clock.py -d pygame --transform=led_matrix

Note: Pygame is required to use any of the emulated devices, but it is NOT installed as a dependency by default, and
so must be manually installed before using any of these emulation devices (e.g. pip install pygame). See the
install instructions in luma.emulator for further details.

16 Chapter 3. Python Usage

http://github.com/rm-hull/luma.emulator
https://luma-emulator.readthedocs.io/en/latest/api-documentation.html#luma.emulator.device.capture
https://luma-emulator.readthedocs.io/en/latest/api-documentation.html#luma.emulator.device.capture.display
https://luma-emulator.readthedocs.io/en/latest/api-documentation.html#luma.emulator.device.gifanim
https://luma-emulator.readthedocs.io/en/latest/api-documentation.html#luma.emulator.device.gifanim.display
https://luma-emulator.readthedocs.io/en/latest/api-documentation.html#luma.emulator.device.pygame
http://github.com/rm-hull/luma.emulator

CHAPTER 4

API Documentation

LED matrix display driver for max7219 devices.

4.1 Breaking changes

Warning: Version 0.3.0 was released on 19 January 2017: this came with a rename of the project in github from
max7219 to luma.led_matrix to reflect the changing nature of the codebase. It introduces a complete rewrite of
the codebase to bring it in line with other ‘luma’ implementations.

There is no direct migration path, but the old documentation and PyPi packages will remain available indefinitely,
but that deprecated codebase will no longer recieve updates or fixes.

This breaking change was necessary to be able to add different classes of devices, so that they could reuse core
components.

4.2 luma.led_matrix.device

class luma.led_matrix.device.max7219(serial_interface=None, width=8, height=8, cas-
caded=None, rotate=0, block_orientation=0,
**kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to a series of 8x8 LED matrixes daisychained together with MAX7219 chips.
On creation, an initialization sequence is pumped to the display to properly configure it. Further control com-
mands can then be called to affect the brightness and other settings.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

17

https://max7219.readthedocs.io
https://pypi.python.org/pypi/max7219
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(value)
Sets the LED intensity to the desired level, in the range 0-255.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 1-bit PIL.Image and dumps it to the LED matrix display via the MAX7219 serializers.

hide()
Sets the display mode ON, waking the device out of a prior low-power sleep mode.

preprocess(image)
Performs the inherited behviour (if any), and if the LED matrix orientation is declared to need correction,
each 8x8 block of pixels is rotated 90° clockwise or counter-clockwise.

show()
Switches the display mode OFF, putting the device in low-power sleep mode.

class luma.led_matrix.device.ws2812(dma_interface=None, width=8, height=4, cas-
caded=None, rotate=0, mapping=None, **kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to a series of RGB neopixels daisy-chained together with WS281x chips. On
creation, the array is initialized with the correct number of cascaded devices. Further control commands can
then be called to affect the brightness and other settings.

Parameters

• dma_interface – The WS2812 interface to write to (usually omit this parameter and it
will default to the correct value - it is only needed for testing whereby a mock implementa-
tion is supplied)

• width (int) – The number of pixels laid out horizontally

• height – The number of pixels laid out vertically

• cascaded – The number of pixels in a single strip - if supplied, this will override width
and height.

18 Chapter 4. API Documentation

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://docs.python.org/2/library/functions.html#str
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

• rotate (int) – Whether the device dimenstions should be rotated in-situ: A value of:
0=0°, 1=90°, 2=180°, 3=270°. If not supplied, zero is assumed.

• mapping (int[]) – An (optional) array of integer values that translate the pixel to physi-
cal offsets. If supplied, should be the same size as width * height

New in version 0.4.0.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(value)
Sets the LED intensity to the desired level, in the range 0-255.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 24-bit RGB PIL.Image and dumps it to the daisy-chained WS2812 neopixels.

hide()
Simulates switching the display mode OFF; this is acheived by setting the contrast level to zero.

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Simulates switching the display mode ON; this is acheived by restoring the contrast to the level prior to
the last time hide() was called.

4.2. luma.led_matrix.device 19

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://docs.python.org/2/library/functions.html#str
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

luma.led_matrix.device.neopixel
alias of ws2812

class luma.led_matrix.device.neosegment(width, undefined=’_’, **kwargs)
Bases: luma.core.virtual.sevensegment

Extends the sevensegment class specifically for @msurguy’s modular NeoSegments. It uses the same under-
lying render techniques as the base class, but provides additional functionality to be able to adddress individual
characters colors.

Parameters

• width (int) – The number of 7-segment elements that are cascaded.

• undefined (char) – The default character to substitute when an unrenderable character
is supplied to the text property.

New in version 0.11.0.

color

segment_mapper(text, notfound=’_’)

text
Returns the current state of the text buffer. This may not reflect accurately what is displayed on the seven-
segment device, as certain alpha-numerics and most punctuation cannot be rendered on the limited display

class luma.led_matrix.device.apa102(serial_interface=None, width=8, height=1, cas-
caded=None, rotate=0, mapping=None, **kwargs)

Bases: luma.core.device.device

Encapsulates the serial interface to a series of ‘next-gen’ RGB neopixels daisy-chained together with APA102
chips. On creation, the array is initialized with the correct number of cascaded devices. Further control com-
mands can then be called to affect the brightness and other settings.

Note that the brightness of individual pixels can be set by altering the alpha channel of the RGBA image that is
being displayed.

Parameters

• serial_interface – The serial interface to write to (usually omit this parameter and it
will default to the correct value - it is only needed for testing whereby a mock implementa-
tion is supplied)

• width (int) – The number of pixels laid out horizontally

• height – The number of pixels laid out vertically

• cascaded – The number of pixels in a single strip - if supplied, this will override width
and height.

• rotate (int) – Whether the device dimenstions should be rotated in-situ: A value of:
0=0°, 1=90°, 2=180°, 3=270°. If not supplied, zero is assumed.

• mapping (int[]) – An (optional) array of integer values that translate the pixel to physi-
cal offsets. If supplied, should be the same size as width * height

New in version 0.9.0.

capabilities(width, height, rotate, mode=’1’)
Assigns attributes such as width, height, size and bounding_box correctly oriented from the
supplied parameters.

Parameters

• width (int) – the device width

20 Chapter 4. API Documentation

https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

• height (int) – the device height

• rotate (int) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

• mode (str) – the supported color model, one of “1”, “RGB” or “RGBA” only.

cleanup()
Attempt to switch the device off or put into low power mode (this helps prolong the life of the device),
clear the screen and close resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs is being shutdown, so shouldn’t
usually need be called directly in application code.

clear()
Initializes the device memory with an empty (blank) image.

command(*cmd)
Sends a command or sequence of commands through to the delegated serial interface.

contrast(value)
Sets the LED intensity to the desired level, in the range 0-255.

Parameters level (int) – Desired contrast level in the range of 0-255.

data(data)
Sends a data byte or sequence of data bytes through to the delegated serial interface.

display(image)
Takes a 32-bit RGBA PIL.Image and dumps it to the daisy-chained APA102 neopixels. If a pixel is not
fully opaque, the alpha channel value is used to set the brightness of the respective RGB LED.

hide()
Not supported

preprocess(image)
Provides a preprocessing facility (which may be overridden) whereby the supplied image is rotated ac-
cording to the device’s rotate capability. If this method is overridden, it is important to call the super

Parameters image (PIL.Image.Image) – An image to pre-process

Returns A new processed image

Return type PIL.Image.Image

show()
Not supported

4.3 luma.led_matrix.virtual

4.3. luma.led_matrix.virtual 21

https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://docs.python.org/2/library/functions.html#str
https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int
https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image
https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

22 Chapter 4. API Documentation

CHAPTER 5

Notes

5.1 Cascading, power supply & level shifting

The MAX7219 chip supports cascading devices by connecting the DIN of one chip to the DOUT of another chip. For a
long time I was puzzled as to why this didnt seem to work properly for me, despite spending a lot of time investigating
and always assuming it was a bug in code.

• Because the Raspberry PI can only supply a limited amount of power from the 5V rail, it is recommended that
any LED matrices are powered separately by a 5V supply, and grounded with the Raspberry PI. It is possible to
power one or two LED matrices directly from a Raspberry PI, but any more is likely to cause intermittent faults
& crashes.

• Also because the GPIO ports used for SPI are 3.3V, a simple level shifter (as per the diagram below) should be
employed on the DIN, CS and CLK inputs to boost the levels to 5V. Again it is possible to drive them directly
by the 3.3V GPIO pins, it is just outside tolerance, and will result in intermittent issues.

Despite the above two points, I still had no success getting cascaded matrices to work properly. Revisiting the wiring,
I had connected the devices in serial connecting the out pins of one device to the in pins of another. This just produced
garbled bit patterns.

Connecting all the CS lines on the input side together and CLK lines on the input side all together worked. The same

23

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

should probably apply to GND and VCC respectively: Only the DOUT of one device should be connected to the next
devices DIN pins. Connecting through the output side, never worked consistently; I can only assume that there is some
noise on the clock line, or a dry solder joint somewhere.

24 Chapter 5. Notes

CHAPTER 6

References

• http://hackaday.com/2013/01/06/hardware-spi-with-python-on-a-raspberry-pi/

• http://gammon.com.au/forum/?id=11516

• http://louisthiery.com/spi-python-hardware-spi-for-raspi/

• http://www.brianhensley.net/2012/07/getting-spi-working-on-raspberry-pi.html

• http://raspi.tv/2013/8-x-8-led-array-driven-by-max7219-on-the-raspberry-pi-via-python

• http://quick2wire.com/non-root-access-to-spi-on-the-pi

25

http://hackaday.com/2013/01/06/hardware-spi-with-python-on-a-raspberry-pi/
http://gammon.com.au/forum/?id=11516
http://louisthiery.com/spi-python-hardware-spi-for-raspi/
http://www.brianhensley.net/2012/07/getting-spi-working-on-raspberry-pi.html
http://raspi.tv/2013/8-x-8-led-array-driven-by-max7219-on-the-raspberry-pi-via-python
http://quick2wire.com/non-root-access-to-spi-on-the-pi

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

26 Chapter 6. References

CHAPTER 7

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are intending
some large-scale changes, please get in touch first to make sure we’re on the same page: try and include a docstring
for any new methods, and try and keep method bodies small, readable and PEP8-compliant.

7.1 GitHub

The source code is available to clone at: http://github.com/rm-hull/luma.led_matrix

7.2 Contributors

• Thijs Triemstra (@thijstriemstra)

• Jon Carlos (@webmonger)

• Unattributed (@wkapga)

• Taras (@tarasius)

• Brice Parent (@agripo)

• Thomas De Keulenaer (@twdkeule)

• Tero Korpela (@terokorp)

27

http://github.com/rm-hull/luma.led_matrix

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

28 Chapter 7. Contributing

29

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

CHAPTER 8

ChangeLog

Version Description Date
Upcoming

• Alternative WS2812 low
level implementation

• Add support for @msurguy’s
modular NeoSegments

0.10.1
• Add block_orientation=180

option

2017/05/01

0.10.0
• BREAKING CHANGE:

Move sevensegment class
to luma.core.virtual
package

2017/04/22

0.9.0
• Add support for APA102

RGB neopixels

2017/03/30

0.8.0
• Change MAX7219’s

block_orientation to sup-
port ±90° angle correction

• Deprecate “verti-
cal” and “horizontal”
block_orientation

2017/03/19

0.7.0
• BREAKING CHANGE:

Move sevensegment class
to luma.led_matrix.
virtual package

• Documentation updates &
corrections

2017/03/04

0.6.2
• Allow MAX7219 and

NeoPixel driver constructors
to accept any args

2017/03/02

0.6.1
• Restrict exported Python

symbols from luma.
led_matrix.device

2017/03/02

0.6.0
• Add support for arbitrary

MxN matrices rather than a
single chain

2017/02/22

0.5.3
• Huge performance im-

provements for cascaded
MAX7219 devices

• Documentation updates

2017/02/21

0.5.2
• Add apostrophe representa-

tion to seven-segment display
• Deprecate luma.
led_matrix.legacy
(moved to luma.core.
legacy)

2017/02/19

0.4.4
• Support both common-row

anode and common-row cath-
ode LED matrices

2017/02/02

0.4.3
• Add translation mapping to

accomodate Pimoroni’s 8x8
Unicorn HAT

• MAX7219 optimizations

2017/01/29

0.4.2
• Fix bug in neopixel initializa-

tion
• Improved demo scripts
• Additional tests

2017/01/27

0.4.0
• Add support for WS2812

NeoPixel strips/arrays

2017/01/23

0.3.3
• Fix for dot muncher: not han-

dling full-stop at line end
• Documentation updates

2017/01/21

0.3.2
• Replace bytearray with
mutable_string imple-
mentation

• More tests

2017/01/20

0.3.1
• Python 3 compatibility (fix

exception in bytearray cre-
ation)

• Begin to add tests & test in-
frastructure

2017/01/20

0.3.0
• BREAKING CHANGE:

Package rename to luma.
led_matrix

2017/01/19

0.2.3
• Bit-bang version using

wiringPi

2013/01/28

30 Chapter 8. ChangeLog

CHAPTER 9

The MIT License (MIT)

Copyright (c) 2017 Richard Hull & Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

31

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

32 Chapter 9. The MIT License (MIT)

Python Module Index

l
luma.led_matrix, 17
luma.led_matrix.device, 17

33

Luma.LED𝑀𝑎𝑡𝑟𝑖𝑥𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.10.1

34 Python Module Index

Index

A
apa102 (class in luma.led_matrix.device), 20

C
capabilities() (luma.led_matrix.device.apa102 method),

20
capabilities() (luma.led_matrix.device.max7219 method),

17
capabilities() (luma.led_matrix.device.ws2812 method),

19
cleanup() (luma.led_matrix.device.apa102 method), 21
cleanup() (luma.led_matrix.device.max7219 method), 18
cleanup() (luma.led_matrix.device.ws2812 method), 19
clear() (luma.led_matrix.device.apa102 method), 21
clear() (luma.led_matrix.device.max7219 method), 18
clear() (luma.led_matrix.device.ws2812 method), 19
color (luma.led_matrix.device.neosegment attribute), 20
command() (luma.led_matrix.device.apa102 method), 21
command() (luma.led_matrix.device.max7219 method),

18
command() (luma.led_matrix.device.ws2812 method), 19
contrast() (luma.led_matrix.device.apa102 method), 21
contrast() (luma.led_matrix.device.max7219 method), 18
contrast() (luma.led_matrix.device.ws2812 method), 19

D
data() (luma.led_matrix.device.apa102 method), 21
data() (luma.led_matrix.device.max7219 method), 18
data() (luma.led_matrix.device.ws2812 method), 19
display() (luma.led_matrix.device.apa102 method), 21
display() (luma.led_matrix.device.max7219 method), 18
display() (luma.led_matrix.device.ws2812 method), 19

H
hide() (luma.led_matrix.device.apa102 method), 21
hide() (luma.led_matrix.device.max7219 method), 18
hide() (luma.led_matrix.device.ws2812 method), 19

L
luma.led_matrix (module), 17

luma.led_matrix.device (module), 17

M
max7219 (class in luma.led_matrix.device), 17

N
neopixel (in module luma.led_matrix.device), 19
neosegment (class in luma.led_matrix.device), 20

P
preprocess() (luma.led_matrix.device.apa102 method),

21
preprocess() (luma.led_matrix.device.max7219 method),

18
preprocess() (luma.led_matrix.device.ws2812 method),

19

S
segment_mapper() (luma.led_matrix.device.neosegment

method), 20
show() (luma.led_matrix.device.apa102 method), 21
show() (luma.led_matrix.device.max7219 method), 18
show() (luma.led_matrix.device.ws2812 method), 19

T
text (luma.led_matrix.device.neosegment attribute), 20

W
ws2812 (class in luma.led_matrix.device), 18

35

	Introduction
	Installation
	Pre-requisites
	GPIO pin-outs
	Installing from PyPi
	Examples

	Python Usage
	8x8 LED Matrices
	7-Segment LED Displays
	WS2812 NeoPixels
	Next-generation APA102 NeoPixels
	Emulators

	API Documentation
	Breaking changes
	luma.led_matrix.device
	luma.led_matrix.virtual

	Notes
	Cascading, power supply & level shifting

	References
	Contributing
	GitHub
	Contributors

	ChangeLog
	The MIT License (MIT)
	Python Module Index

