
lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.3.5+0.gbff34f9.dirty

Per Unneberg

Sep 12, 2018

Contents

1 Quickstart 3

2 Contents 5
2.1 Installation . 5
2.2 Usage . 6
2.3 Configuration . 8
2.4 Troubleshooting . 10
2.5 Single-cell RNA sequencing workflow . 11
2.6 Contributing . 11
2.7 Development . 13
2.8 Credits . 17
2.9 History . 17
2.10 lts_workflows_sm_scrnaseq . 18

3 Indices and tables 21

Python Module Index 23

i

ii

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

single-cell RNA sequencing snakemake workflow

• Free software: GNU General Public License v3

Contents 1

https://lts-workflows-sm-scrnaseq.readthedocs.io/en/latest/?badge=latest

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2 Contents

CHAPTER 1

Quickstart

$ conda create -n py2.7 python=2.7 rpkmforgenes=1.0.1 rseqc=2.6.4
$ conda create -n lts-workflows-sm-scrnaseq python=3.6
$ source activate lts-workflows-sm-scrnaseq
$ conda install -c scilifelab-lts lts-workflows-sm-scrnaseq
$ lts_workflows_sm_scrnaseq
$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all -d /path/to/workdir --configfile config.yaml
$ lts_workflows_sm_scrnaseq --use-conda all -d /path/to/workdir --configfile config.
→˓yaml

$ docker pull scilifelablts/lts-workflows-sm-scrnaseq
$ docker run scilifelablts/lts-workflows-sm-scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts-workflows-
→˓sm-scrnaseq -l
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts-workflows-
→˓sm-scrnaseq all

3

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

4 Chapter 1. Quickstart

CHAPTER 2

Contents

2.1 Installation

Although installing lts_workflows_sm_scrnaseq itself should be easy enough, installing the workflow depen-
dencies requires that you perform some manual steps. The number of steps depend on the installation route you take.
For instance, the conda installation will install all python3 dependencies on the fly.

Hint: Whatever installation route you choose, it is recommended to create conda environments for python2 and
python3 packages. The workflow will be executed from the python3 environment and by default is configured to load
a python2 environment named py2.7. You can modify the python2 environment name in the configuration setting
config[‘conda’][‘python2’].

2.1.1 Stable release from conda

Note: Make sure your channel order complies with the instructions provided by bioconda. In short, your ~/.condarc
file should have the following channel configuration:

channels:
- bioconda
- conda-forge
- defaults

The workflow depends on a couple of python2 packages that cannot be added as requirement to conda. Therefore,
these packages must be installed manually.

$ conda create -n py2.7 python=2.7 rpkmforgenes=1.0.1 rseqc=2.6.4

To install lts_workflows_sm_scrnaseq , create a new environment, activate it and install the package:

5

https://conda.io/docs/
https://bioconda.github.io/#set-up-channels

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

$ conda create -n lts-workflows-sm-scrnaseq python=3.6
$ source activate lts-workflows-sm-scrnaseq
$ conda install -c scilifelab-lts lts-workflows-sm-scrnaseq

This is the preferred method to install lts_workflows_sm_scrnaseq , as it will always install the most recent
stable release.

You can also create a new environment with lts_workflows_sm_scrnaseq as a dependency:

$ conda create -n lts-workflows-sm-scrnaseq -c scilifelab-lts lts-workflows-sm-
→˓scrnaseq python=3.6

2.1.2 From sources

The sources for lts_workflows_sm_scrnaseq can be downloaded from the Bitbucket repo.

$ git clone git@bitbucket.org:scilifelab-lts/lts-workflows-sm-scrnaseq.git

Once you have a copy of the source, you can install it with:

$ cd lts-workflows-sm-scrnaseq
$ python setup.py install

You can also install in development mode with:

$ python setup.py develop

See the section on Development for more information.

You can setup the python 2 packages as in the previous section, or by using the environment file
lts_workflows_sm_scrnaseq/environment-27.yaml:

$ conda env create -n py2.7 -f lts_workflows_sm_scrnaseq/environment-27.yaml

2.1.3 Tests

If lts_workflows_sm_scrnaseq has been installed as a module, run

$ pytest -v -rs -s --pyargs lts_workflows_sm_scrnaseq

In order to load the pytest options provided by the module, the full path to the test suite needs to be given:

$ pytest -v -rs -s /path/to/lts_workflows_sm_scrnaseq/tests

See Test-based development for more information.

2.2 Usage

This section provides some simple usage examples. For more information what the workflow does, see Single-cell
RNA sequencing workflow.

6 Chapter 2. Contents

https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2.2.1 Running the wrapper script

lts_workflows_sm_scrnaseq comes with a wrapper script that calls snakemake and provides additional help
messages. Running the wrapper without any arguments will generate a help message. If any arguments are provided
they are passed on to snakemake.

$ lts_workflows_sm_scrnaseq
$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all
$ lts_workflows_sm_scrnaseq --use-conda all
$ lts_workflows_sm_scrnaseq -s /path/to/Snakefile --use-conda all

If no Snakefile is provided, the wrapper script will automatically load the Snakefile from the package root directory
(see example_snakefile). Note that you will have to pass a configuration file with the –configfile parameter.

In the case you need to add custom rules, or want to hardcode parameters such as the working directory and configu-
ration file, you can of course copy and edit the provided Snakefile.

2.2.2 Running snakemake

You can of course bypass the provided wrapper script and run snakemake directly on your own Snakefile. If so, the
intended usage is to include the main workflow file in a Snakefile. See the examples in the test directory.

$ snakemake -s Snakefile -d /path/to/workdir --configfile config.yaml all

2.2.3 Running docker/singularity containers

Note: Singularity is still WIP.

lts_workflows_sm_scrnaseq is also shipped with all the dependencies packaged in a docker image. This
eliminates some of the installation issues, at the cost of having to download a large image file (>5GB). In any case, the
entry point of the image points to the lts_workflows_sm_scrnaseq wrapper script.

$ docker pull scilifelablts/lts_workflows_sm_scrnaseq
$ docker run scilifelablts/lts_workflows_sm_scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_
→˓sm_scrnaseq -l
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_
→˓sm_scrnaseq all

2.2.4 Example Snakefile

The provided minimum Snakefile looks as follows:

-*- snakemake -*-
from lts_workflows_sm_scrnaseq import WORKFLOW

include: WORKFLOW

2.2. Usage 7

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2.3 Configuration

Note: The configuration key nomenclature hasn’t been settled yet

Note: The main lts_workflows documentation provides more information about general configuration settings.

2.3.1 Required configuration

The following options must be set in the configuration file:

settings:
sampleinfo: sampleinfo.csv
runfmt: "{SM}/{SM}_{PU}_{DT}"
samplefmt: "{SM}/{SM}"

ngs.settings:
db:
ref: # Reference sequences

- ref.fa
- gfp.fa
- ercc.fa

transcripts:
- ref-transcripts.fa
- gfp.fa
- ercc.fa

annotation:
sources:

- ref-transcripts.gtf
- gfp.genbank
- ercc.gb

Optional; change these if read names and fastq file suffixes differ
read1_label: "_1"
read2_label: "_2"
fastq_suffix: ".fastq.gz"

list of sample identifiers corresponding to the sampleinfo 'SM'
column
samples:

- sample1
- sample2

The configuration settings runfmt and samplefmt describe how your data is organized. They represent python
miniformat strings, where the entries correspond to columns in the sampleinfo file; hence, in this case, the columns
SM, PU and DT must be present in the sampleinfo file.

Note: Since the runfmt and samplefmt can represent any format you wish, in principle, you could use any
label formatting names. This is true except for SM, which represents the sample name and must be present in the
sampleinfo file. The two-letter sample labels above are convienient representations of metadata and correspond to
samtools read group record types.

8 Chapter 2. Contents

http://lts-workflows.readthedocs.io/en/latest/configuration.html
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://samtools.github.io/hts-specs/SAMv1.pdf

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

Example sampleinfo.csv

SM,PU,DT,fastq
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_1.fastq.gz
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_2.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_1.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_2.fastq.gz
s2,AAABBB11XX,010101,s2_AAABBB11XX_010101_1.fastq.gz
s2,AAABBB11XX,010101,s2_AAABBB11XX_010101_2.fastq.gz

The example sampleinfo file would work with the required settings above. The following runfmt and samplefmt
would be generated for sample s2, read 1:

runfmt = s2/s2_AAABBB11XX_010101
samplefmt = s2/s2

2.3.2 Workflow specific configuration

In addition to the required configuration, there are some configuration settings that affect the workflow itself. These
settings are accessed and set via config['workflow'].

use_multimapped (boolean) Use multimapped reads for quantification. Default false.

quantification (list) List quantification methods to use. Available options are rsem and rpkmforgenes.

Example workflow configuration section

workflow:
use_multimapped: false
quantification:
- rsem
- rpkmforgenes

2.3.3 Application level configuration

Note: Unfortunately, there is no straightforward way to automatically list the available application configuration
options. You therefore have look in the rule files themselves for available options. In most cases, the default settings
should work fine.

Note: Rules live in separate files whose names consist of the application name followed by the rule name. Rules are
located in package subdirectory rules, in which each application lives in a separate directory.

Tip: There is a option configuration key for each rule. Most often, this is the setting one wants to modify.

Individual applications (e.g. star) are located at the top level, with sublevels corresponding to specific application
rules. For instance, the following configuration would affect settings in star and rsem:

2.3. Configuration 9

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

star:
star_index:
The test genome is small; 2000000 bases. --genomeSAindexNbases
needs to be adjusted to (min(14, log2(GenomeLength)/2 - 1))
options: --genomeSAindexNbases 10

rsem:
index: ../ref/rsem_index

2.3.4 Additional advice

There are a couple of helper rules for generating spikein input files and the transcript annotation file.

dbutils_make_transcript_annot_gtf For QC statistics calculated by RSEQC, the gtf annota-
tion file should reflect the content of the alignment index. You can automatically create the
file name defined in ['ngs.settings']['annotation']['transcript_annot_gtf'] from
the list of files defined in ['ngs.settings']['annotation']['sources'] via the rule
dbutils_make_transcript_annot_gtf. gtf and genbank input format is accepted.

ercc_create_ref The ERCC RNA Spike-In Mix is commonly used as spike-in. The rule ercc_create_ref
automates download of the sequences in fasta and genbank formats.

2.4 Troubleshooting

2.4.1 Installation of rsem hangs when using –use-conda

This is a known conda issue (#5536). One suggested solution is to remove the r channel from defaults in ~/.condarc:

default_channels:
- https://repo.continuum.io/pkgs/free
- https://repo.continuum.io/pkgs/pro

Also make sure your package order follows the ordering from bioconda:

channels:
- bioconda
- conda-forge
- defaults

2.4.2 The workflow cannot find RSeQC or rpkmforgenes

Make sure you have created a conda environment for python2 packages whose name matches that of the configuration
setting config[‘conda’][‘python2’] (default is py2.7).

2.4.3 STAR align cannot find the input files even though they are present

The input fastq file names depend on the configuration setting config[‘settings’][‘runfmt’] as well as con-
fig[‘ngs.settings’][‘read1_label’] (read2_label for read 2) and config[‘ngs.settings’][‘fastq_suffix’]. Make sure that
read labels and fastq suffix are correctly configured.

10 Chapter 2. Contents

https://www.thermofisher.com/order/catalog/product/4456740
https://github.com/conda/conda/issues/5536

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2.5 Single-cell RNA sequencing workflow

This workflow does the following:

1. align reads with STAR to a genome or transcriptome reference

2. gene/transcript quantification with RSEM and/or rpkmforgenes

3. basic qc with RSeQC and MultiQC

2.5.1 Workflow

The figure below illustrates the workflow included in the test directory. Here, use has been made of the additional rule
mentioned in Additional advice to generate the transcript annotation gtf.

2.6 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

2.5. Single-cell RNA sequencing workflow 11

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2.6.1 Types of Contributions

Report Bugs

Report bugs at https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the Bitbucket issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the Bitbucket issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

lts_workflows_sm_scrnaseq could always use more documentation, whether as part of the official
lts_workflows_sm_scrnaseq docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/
issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.6.2 Get Started!

Ready to contribute? Here’s how to set up lts_workflows_sm_scrnaseq for local development.

1. Fork the lts_workflows_sm_scrnaseq repo on Bitbucket.

2. Clone your fork locally:

.. code-block:: console

$ git clone git@bitbucket.org:your_name_here/lts-workflows-sm-scrnaseq.git

3. Follow the instructions in Development to install a conda development environment and the package.

12 Chapter 2. Contents

https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues
https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues
https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

4. Create a branch for local development:

.. code-block:: console

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests:

$ make lint
$ pytest -v -s -rs

6. Commit your changes and push your branch to Bitbucket:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the Bitbucket website.

2.6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests (optional).

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature HISTORY.rst.

3. Check https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/addon/pipelines/home and make sure that
the CI tests pass.

2.7 Development

If you want to contribute to the development of lts_workflows_sm_scrnaseq , you need to setup a development
enviromnent and follow some basic guidelines. In addition, there are workflow tests that provide convenient help for
test-based development. This section details some of this information.

2.7.1 Development environment

Setting up a conda development environment

Start by setting up the main conda development environment for python3 packages. This is where the source code will
live.

$ conda env create -n lts-workflows-sm-scrnaseq-devel python=3.6

You can also use python 3.5.

For the workflow tests, you also need a conda environment for python2 packages:

$ conda env create -n py2.7 python=2.7

2.7. Development 13

https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/addon/pipelines/home

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

Hint: By default, the workflow tests are configured to use a python 2 environment named py2.7. Should you name it
otherwise, you can tell pytest with the flag --python2-conda:

pytest -v -s --python2-conda mypython2env lts_workflows_sm_scrnaseq/tests/test_
→˓workflows_sm_scrnaseq.py

Finally, activate the development environment:

$ source activate lts-workflows-sm-scrnaseq-devel

Hint: Instead of having to remember when to activate a specific environment, maybe also setting environment
variables in the process, we recommend using direnv. With direnv, you can add a hidden file .envrc to the source root
directory with the following content:

source activate lts-workflows-sm-scrnaseq-devel
export DOCKER_REPO=scilifelablts

Now, every time you cd into the source directory, the correct environment will be activated. Likewise, the environment
will be deactivated once you cd out of the source directory.

Checkout the source repository and install

Once the conda environments are setup, checkout the source repository. If you haven’t done so already, fork the
lts_workflows_sm_scrnaseq bitbucket repository.

$ git clone git@bitbucket.org:your_name_here/lts-workflows-sm-scrnaseq.git

Change directory to the source code directory and install in development mode:

$ cd lts-workflows-sm-scrnaseq
$ python setup.py develop

Install development requirements

Install the package requirements for development with pip:

$ pip install -r requirements_dev.txt

Note: In principle, conda should work as follows:

$ conda install --file requirements_dev.txt

However, for some reason the docker-py module is named docker on PyPI and docker-py on anaconda, causing the
install to fail.

If everything works ok, you should now have a operating development environment! Now you are ready to create and
test your new features. Follow the guidelines in Get Started! to submit a pull request.

14 Chapter 2. Contents

https://direnv.net/
https://pypi.python.org/pypi/docker
https://anaconda.org/conda-forge/docker-py

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

2.7.2 Test-based development

lts_workflows_sm_scrnaseq includes tests to ensure code and workflow integrity. Some tests are run
on the codebase itself (located in the tests directory), whereas others execute pipeline runs (located in the
lts_workflows_sm_scrnaseq/tests directory). The workflow tests are shipped with the package. The development
environment requirements include the module pytest-ngsfixtures, a pytest which provides pytest fixtures in
the shape of next generation sequencing test data sets.

The tests are located in the lts_workflows_sm_scrnaseq/tests directory. You can execute all the tests by executing

$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests

Note: Since the tests reside in the module directory, they are actually installed as a part of the module upon installa-
tion. This means you (theoretically) can run the tests like this:

$ pytest -v -s -rs --pyargs lts_workflows_sm_scrnaseq

Workflow tests

When developing, you are most likely only interested in runnig the workflow tests in
lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py. Running

$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py

will run a listing of the workflow as well as an entire workflow run on two samples.

You can control some aspects of the tests by applying module-specific pytest options. The conftest plugin
lts_workflows_sm_scrnaseq.tests.conftest is a pytest local per-directory plugin that among other
things adds command line options to pytest.

Note: For some reason, these options disappear when running the test from the source root directory, or with the
–pyargs option.

For instance, the option –ngs-test-command controls whether workflow list or run is executed. The following command
will only run the workflow.

$ cd lts_workflows_sm_scrnaseq/tests
$ pytest -v -s -rs test_lts_workflows_sm_scrnaseq.py --ngs-test-command run

A full list of test-specific options is given here:

single cell rna sequencing options:
--no-slow don't run slow tests
-H, --hide-workflow-output

hide workflow output
-T THREADS, --threads=THREADS

number of threads to use
--enable-test-conda enable test conda setup; automatically install all

dependencies in semi-persistent test conda
environments

--conda-install-dir=CONDA_INSTALL_DIR
set conda install dir

--conda-update update local conda installation

2.7. Development 15

https://docs.pytest.org
https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/3.3.2/writing_plugins.html#local-conftest-plugins

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

-2 PYTHON2_CONDA, --python2-conda=PYTHON2_CONDA
name of python2 conda environment [default: py2.7]

-C, --use-conda pass --use-conda flag to snakemake workflows; will
install conda environments on a rule by rule basis

--ngs-test-unit=unit [unit ...]
test unit - test source code locally or distributed in
docker container (choices: local,docker)

--smode={se} [{se} ...], --sequencing-modes={se} [{se} ...]
sequencing modes (paired end or single end) to run

--ngs-test-command=command [command ...]
test command - run or list

Rerunning workflow tests in pytest tmp directory

By default, pytest outputs test results in numbered subdirectories of directory /tmp/pytest-of-user/. In order to facilitate
test-based development, for each workflow test, pytest-ngsfixtures outputs a file command.sh in the resulting
test directory. For instance, if the workflow test has been run, this file should exist in a subdirectory run-se-local in
one of the numbered subdirectories of /tmp/pytest-of-user. command.sh is an executable that records the environment
and command used to run the test. Therefore, if a workflow run has failed, the test can be rerun as follows:

$ cd /tmp/pytest-of-user/pytest-#/run-se-local
$./command.sh

Consequently, this is a convenient way of setting up a current test data environment for the workflow. Fix the code and
rerun command.sh until the test passes.

Hint: By default, command.sh runs the all target. Edit the file to your liking to target other outputs of interest when
developing a new feature.

Testing the docker images

Apart from providing source code and conda packages, lts_workflows_sm_scrnaseq also provides Docker
images at https://hub.docker.com/r/scilifelablts/lts-workflows-sm-scrnaseq/.

Important: The docker tests use docker swarm mode to maintain and manage running containers. In order to
do test development on the Dockerfile, you first need to initialize docker swarm; see docker create swarm for more
information.

When developing the Dockerfile and the resulting images, you can use the make commands. For instance, to build and
test changes to the main Dockerfile, run (assuming you’re standing in the source root directory):

$ make docker
$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py -
→˓-ngs-test-unit docker

The option ngs-test-unit selects what test unit to run, either local (i.e. local source code) or docker which tests
the docker container. The test will fire up a docker stack and provide a docker service named lts_scrnaseq_snakemake,
which you can see by running the command

$ docker service ls

16 Chapter 2. Contents

https://hub.docker.com/r/scilifelablts/lts-workflows-sm-scrnaseq/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

Note: Developing with docker swarm can at first be confusing since on some occasions, updates to the local repository
are not present in an updated image. This has to do with how docker handles version tags and repositories. It may
help to restart services, but it may also be necessary to use a local registry (usually localhost:5000) and push updated
images to this registry. See the docker documentation for more information.

2.8 Credits

2.8.1 Development Lead

• Per Unneberg <per.unneberg@scilifelab.se>

• Rasmus Ågren <rasmus.agren@scilifelab.se>

• Leif Väremo <leif.varemo@scilifelab.se>

• Åsa Björklund <asa.bjorklund@scilifelab.se>

2.8.2 Contributors

None yet. Why not be the first?

2.9 History

0.3.5 (2018-05-29)

• Added the option to execute jobs in a singularity container

• Added lts-workflows-sm-scrnaseq-slim Conda package, which is only the workflow without the tools. To be
used with “–use-singularity”

• Modified Docker images to install to “base” environment rather than to “snakemake”

0.3.4 (2018-05-25)

• Added the option to group sets of cells and run as group jobs

• Changed to use scater v1.6 and SingleCellExperiment

• Changed to use “runtime” as a rule resource rather than a parameter

0.3.3 (2018-05-07)

• Rewrote QC report from scratch

• Added filtering of contaminating cells based on marker gene expression

• Changed QC config structure

• No longer built for Python 3.5 (dumping settings to yaml relies on that dicts are ordered, which was implemented
in 3.6)

0.3.2 (2018-04-23)

• Rewrote QC report to fit better as part of a workflow

• Added biotypes to the QC and filtering steps

2.8. Credits 17

mailto:per.unneberg@scilifelab.se
mailto:rasmus.agren@scilifelab.se
mailto:leif.varemo@scilifelab.se
mailto:asa.bjorklund@scilifelab.se

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

• Removed unnecessary logs to reduce the number of files created

• Explicitly include all files generated by the workflow rules

• Flag more files as temporary to reduce space usage

• General clean up of the code

0.3.1 (2018-04-17)

• Change to use R-markdown 1.8 due to error in the conda-forge recipe for 1.5.

2.9.1 0.3.0 (2018-04-09)

• Added QC and filtering

• Changed CI and testing Docker images

2.9.2 0.2.0 (2017-01-30)

• Simplify test setup

• Make pytest-ngsfixtures optional

• Use picard instead of samtools rules for sorting

• Update rseqc rule for empty fastq input (#37)

• Add multiqc rule (#33)

• Add rule for rpkm/count matrix (#31)

• Add gene entry to gtf file (#28)

2.9.3 0.1.0 (2017-02-12)

• First release on conda.

2.10 lts_workflows_sm_scrnaseq

2.10.1 lts_workflows_sm_scrnaseq package

Subpackages

lts_workflows_sm_scrnaseq.core package

Submodules

lts_workflows_sm_scrnaseq.core.utils module

lts_workflows_sm_scrnaseq.core.utils.get_samples(config, logger)

lts_workflows_sm_scrnaseq.core.utils.python2_path(config, logger)
Add python 2 path if possible

18 Chapter 2. Contents

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

lts_workflows_sm_scrnaseq.core.utils.to_min(timestr)

lts_workflows_sm_scrnaseq.core.wrappers module

lts_workflows_sm_scrnaseq.core.wrappers.lts_workflows_sm_scrnaseq_wrapper()
Wrapper for running lts_workflows_sm_scrnaseq workflow. Any argument will be passed to snakemake. Con-
sequently, this means you must supply a workflow target to run the workflow. By default, the wrapper will use
a generic Snakefile shipped with the package. Note that in this case you must supply a configuration file via the
–configfile option.

Examples

$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all --configfile config.yaml -d /path/to/workdir

If the docker image is used to run the workflow, this wrapper serves as the entry point. The image uses gosu
to set the user id of the main process, which defaults to user id 9001. In order to run as the local user, the
environment variable LOCAL_USER_ID must be passed to the docker run process (recommended).

Examples

$ docker run scilifelablts/lts_workflows_sm_scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_
→˓workflows_sm_scrnaseq all --configfile config.yaml
$ docker run -e LOCAL_USER_ID=1000 -v /path/to/workdir:/workspace -w /workspace
→˓scilifelablts/lts_workflows_sm_scrnaseq all --configfile config.yaml
$ docker run -e LOCAL_USER_ID=1000 -v /path/to/workdir:/workspace -w /workspace --
→˓entrypoint "/bin/bash" scilifelablts/lts_workflows_sm_scrnaseq

All commands are handled by the lts_workflows_sm_scrnaseq wrapper, but you can also explicitly call snake-
make:

$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_
→˓workflows_sm_scrnaseq snakemake all --configfile config.yaml

The wrapper runs a package Snakefile with the following minimum content:

from lts_workflows_sm_scrnaseq import WORKFLOW
include: WORKFLOW

If need be, extend this file with custom rules and directives and run it with the wrapper or as usual with regular
Snakemake.

Module contents

Module contents

2.10. lts_workflows_sm_scrnaseq 19

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

20 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

21

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

22 Chapter 3. Indices and tables

Python Module Index

l
lts_workflows_sm_scrnaseq, 19
lts_workflows_sm_scrnaseq.core, 19
lts_workflows_sm_scrnaseq.core.utils,

18
lts_workflows_sm_scrnaseq.core.wrappers,

19

23

lts𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠𝑠𝑚𝑠𝑐𝑟𝑛𝑎𝑠𝑒𝑞𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.3.5 + 0.𝑔𝑏𝑓𝑓34𝑓9.𝑑𝑖𝑟𝑡𝑦

24 Python Module Index

Index

G
get_samples() (in module

lts_workflows_sm_scrnaseq.core.utils), 18

L
lts_workflows_sm_scrnaseq (module), 19
lts_workflows_sm_scrnaseq.core (module), 19
lts_workflows_sm_scrnaseq.core.utils (module), 18
lts_workflows_sm_scrnaseq.core.wrappers (module), 19
lts_workflows_sm_scrnaseq_wrapper() (in module

lts_workflows_sm_scrnaseq.core.wrappers), 19

P
python2_path() (in module

lts_workflows_sm_scrnaseq.core.utils), 18

T
to_min() (in module lts_workflows_sm_scrnaseq.core.utils),

18

25

	Quickstart
	Contents
	Installation
	Usage
	Configuration
	Troubleshooting
	Single-cell RNA sequencing workflow
	Contributing
	Development
	Credits
	History
	lts_workflows_sm_scrnaseq

	Indices and tables
	Python Module Index

