

lts_workflows_sm_scrnaseq documentation

[image: Documentation Status]
 [https://lts-workflows-sm-scrnaseq.readthedocs.io/en/latest/?badge=latest]single-cell RNA sequencing snakemake workflow

	Free software: GNU General Public License v3

Quickstart

$ conda create -n py2.7 python=2.7 rpkmforgenes=1.0.1 rseqc=2.6.4
$ conda create -n lts-workflows-sm-scrnaseq python=3.6
$ source activate lts-workflows-sm-scrnaseq
$ conda install -c scilifelab-lts lts-workflows-sm-scrnaseq
$ lts_workflows_sm_scrnaseq
$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all -d /path/to/workdir --configfile config.yaml
$ lts_workflows_sm_scrnaseq --use-conda all -d /path/to/workdir --configfile config.yaml

$ docker pull scilifelablts/lts-workflows-sm-scrnaseq
$ docker run scilifelablts/lts-workflows-sm-scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts-workflows-sm-scrnaseq -l
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts-workflows-sm-scrnaseq all

Contents

	Installation
	Stable release from conda

	From sources

	Tests

	Usage
	Running the wrapper script

	Running snakemake

	Running docker/singularity containers

	Example Snakefile

	Configuration
	Required configuration

	Workflow specific configuration

	Application level configuration

	Additional advice

	Troubleshooting
	Installation of rsem hangs when using –use-conda

	The workflow cannot find RSeQC or rpkmforgenes

	STAR align cannot find the input files even though they are present

	Single-cell RNA sequencing workflow
	Workflow

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Development
	Development environment

	Test-based development

	Credits
	Development Lead

	Contributors

	History
	0.3.0 (2018-04-09)

	0.2.0 (2017-01-30)

	0.1.0 (2017-02-12)

	lts_workflows_sm_scrnaseq
	lts_workflows_sm_scrnaseq package

Indices and tables

	Index

	Module Index

	Search Page

Installation

Although installing lts_workflows_sm_scrnaseq itself should be
easy enough, installing the workflow dependencies requires that you
perform some manual steps. The number of steps depend on the
installation route you take. For instance, the conda installation will
install all python3 dependencies on the fly.

Hint

Whatever installation route you choose, it is recommended to create
conda environments [https://conda.io/docs/] for python2 and
python3 packages. The workflow will be executed from the python3
environment and by default is configured to load a python2
environment named py2.7. You can modify the python2 environment
name in the configuration setting config[‘conda’][‘python2’].

Stable release from conda

Note

Make sure your channel order complies with the instructions
provided by bioconda [https://bioconda.github.io/#set-up-channels]. In short, your
~/.condarc file should have the following channel configuration:

channels:
 - bioconda
 - conda-forge
 - defaults

The workflow depends on a couple of python2 packages that cannot be
added as requirement to conda. Therefore, these packages must be
installed manually.

$ conda create -n py2.7 python=2.7 rpkmforgenes=1.0.1 rseqc=2.6.4

To install lts_workflows_sm_scrnaseq, create a new environment,
activate it and install the package:

$ conda create -n lts-workflows-sm-scrnaseq python=3.6
$ source activate lts-workflows-sm-scrnaseq
$ conda install -c scilifelab-lts lts-workflows-sm-scrnaseq

This is the preferred method to install
lts_workflows_sm_scrnaseq, as it will always install the most
recent stable release.

You can also create a new environment with
lts_workflows_sm_scrnaseq as a dependency:

$ conda create -n lts-workflows-sm-scrnaseq -c scilifelab-lts lts-workflows-sm-scrnaseq python=3.6

From sources

The sources for lts_workflows_sm_scrnaseq can be downloaded from the
Bitbucket repo [https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq].

$ git clone git@bitbucket.org:scilifelab-lts/lts-workflows-sm-scrnaseq.git

Once you have a copy of the source, you can install it with:

$ cd lts-workflows-sm-scrnaseq
$ python setup.py install

You can also install in development mode with:

$ python setup.py develop

See the section on Development for more information.

You can setup the python 2 packages as in the previous section, or by using the environment file lts_workflows_sm_scrnaseq/environment-27.yaml:

$ conda env create -n py2.7 -f lts_workflows_sm_scrnaseq/environment-27.yaml

Tests

If lts_workflows_sm_scrnaseq has been installed as a module, run

$ pytest -v -rs -s --pyargs lts_workflows_sm_scrnaseq

In order to load the pytest options provided by the module, the full
path to the test suite needs to be given:

$ pytest -v -rs -s /path/to/lts_workflows_sm_scrnaseq/tests

See Test-based development for more information.

Usage

This section provides some simple usage examples. For more information
what the workflow does, see Single-cell RNA sequencing workflow.

Running the wrapper script

lts_workflows_sm_scrnaseq comes with a wrapper script that
calls snakemake and provides additional help messages. Running the
wrapper without any arguments will generate a help message. If any
arguments are provided they are passed on to snakemake.

$ lts_workflows_sm_scrnaseq
$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all
$ lts_workflows_sm_scrnaseq --use-conda all
$ lts_workflows_sm_scrnaseq -s /path/to/Snakefile --use-conda all

If no Snakefile is provided, the wrapper script will automatically
load the Snakefile from the package root directory (see
example_snakefile). Note that you will have to pass a configuration
file with the –configfile parameter.

In the case you need to add custom rules, or want to hardcode
parameters such as the working directory and configuration file, you
can of course copy and edit the provided Snakefile.

Running snakemake

You can of course bypass the provided wrapper script and run snakemake
directly on your own Snakefile. If so, the intended usage is to
include the main workflow file in a Snakefile. See the examples in the
test directory.

$ snakemake -s Snakefile -d /path/to/workdir --configfile config.yaml all

Running docker/singularity containers

Note

Singularity is still WIP.

lts_workflows_sm_scrnaseq is also shipped with all the
dependencies packaged in a docker image. This eliminates some of the
installation issues, at the cost of having to download a large image
file (>5GB). In any case, the entry point of the image points to the
lts_workflows_sm_scrnaseq wrapper script.

$ docker pull scilifelablts/lts_workflows_sm_scrnaseq
$ docker run scilifelablts/lts_workflows_sm_scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_sm_scrnaseq -l
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_sm_scrnaseq all

Example Snakefile

The provided minimum Snakefile looks as follows:

-*- snakemake -*-
from lts_workflows_sm_scrnaseq import WORKFLOW

include: WORKFLOW

Configuration

Note

The configuration key nomenclature hasn’t been settled yet

Note

The main lts_workflows documentation provides more
information about general configuration settings [http://lts-workflows.readthedocs.io/en/latest/configuration.html].

Required configuration

The following options must be set in the configuration file:

settings:
 sampleinfo: sampleinfo.csv
 runfmt: "{SM}/{SM}_{PU}_{DT}"
 samplefmt: "{SM}/{SM}"
ngs.settings:
 db:
 ref: # Reference sequences
 - ref.fa
 - gfp.fa
 - ercc.fa
 transcripts:
 - ref-transcripts.fa
 - gfp.fa
 - ercc.fa
 annotation:
 sources:
 - ref-transcripts.gtf
 - gfp.genbank
 - ercc.gb
 # Optional; change these if read names and fastq file suffixes differ
 read1_label: "_1"
 read2_label: "_2"
 fastq_suffix: ".fastq.gz"

list of sample identifiers corresponding to the sampleinfo 'SM'
column
samples:
 - sample1
 - sample2

The configuration settings runfmt and samplefmt describe how
your data is organized. They represent python miniformat strings [https://docs.python.org/3/library/string.html#formatspec], where
the entries correspond to columns in the sampleinfo file; hence, in
this case, the columns SM, PU and DT must be present in
the sampleinfo file.

Note

Since the runfmt and samplefmt can represent any format you
wish, in principle, you could use any label formatting names. This
is true except for SM, which represents the sample name and
must be present in the sampleinfo file. The two-letter sample
labels above are convienient representations of metadata and
correspond to samtools read group record types [https://samtools.github.io/hts-specs/SAMv1.pdf].

Example sampleinfo.csv

SM,PU,DT,fastq
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_1.fastq.gz
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_2.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_1.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_2.fastq.gz
s2,AAABBB11XX,010101,s2_AAABBB11XX_010101_1.fastq.gz
s2,AAABBB11XX,010101,s2_AAABBB11XX_010101_2.fastq.gz

The example sampleinfo file would work with the required settings
above. The following runfmt and samplefmt would be generated
for sample s2, read 1:

runfmt = s2/s2_AAABBB11XX_010101
samplefmt = s2/s2

Workflow specific configuration

In addition to the required configuration, there are some
configuration settings that affect the workflow itself. These settings
are accessed and set via config['workflow'].

	use_multimapped

	(boolean) Use multimapped reads for quantification. Default false.

	quantification

	(list) List quantification methods to use. Available options are
rsem and rpkmforgenes.

Example workflow configuration section

workflow:
 use_multimapped: false
 quantification:
 - rsem
 - rpkmforgenes

Application level configuration

Note

Unfortunately, there is no straightforward way to automatically
list the available application configuration options. You therefore
have look in the rule files themselves for available options. In
most cases, the default settings should work fine.

Note

Rules live in separate files whose names consist of the application
name followed by the rule name. Rules are located in package
subdirectory rules, in which each application lives in a separate
directory.

Tip

There is a option configuration key for each rule. Most often,
this is the setting one wants to modify.

Individual applications (e.g. star) are located at the top level, with
sublevels corresponding to specific application rules. For instance,
the following configuration would affect settings in star and
rsem:

star:
 star_index:
 # The test genome is small; 2000000 bases. --genomeSAindexNbases
 # needs to be adjusted to (min(14, log2(GenomeLength)/2 - 1))
 options: --genomeSAindexNbases 10

rsem:
 index: ../ref/rsem_index

Additional advice

There are a couple of helper rules for generating spikein input files
and the transcript annotation file.

	dbutils_make_transcript_annot_gtf

	For QC statistics calculated by RSEQC, the gtf annotation file
should reflect the content of the alignment index. You can
automatically create the file name defined in
['ngs.settings']['annotation']['transcript_annot_gtf'] from
the list of files defined in
['ngs.settings']['annotation']['sources'] via the rule
dbutils_make_transcript_annot_gtf. gtf and genbank input format is
accepted.

	ercc_create_ref

	The ERCC RNA Spike-In Mix [https://www.thermofisher.com/order/catalog/product/4456740] is
commonly used as spike-in. The rule ercc_create_ref automates
download of the sequences in fasta and genbank formats.

Troubleshooting

Installation of rsem hangs when using –use-conda

This is a known conda issue (#5536 [https://github.com/conda/conda/issues/5536]). One suggested
solution is to remove the r channel from defaults in ~/.condarc:

default_channels:
- https://repo.continuum.io/pkgs/free
- https://repo.continuum.io/pkgs/pro

Also make sure your package order follows the ordering from bioconda:

channels:
 - bioconda
 - conda-forge
 - defaults

The workflow cannot find RSeQC or rpkmforgenes

Make sure you have created a conda environment for python2 packages
whose name matches that of the configuration setting
config[‘conda’][‘python2’] (default is py2.7).

STAR align cannot find the input files even though they are present

The input fastq file names depend on the configuration setting
config[‘settings’][‘runfmt’] as well as
config[‘ngs.settings’][‘read1_label’] (read2_label for read 2) and
config[‘ngs.settings’][‘fastq_suffix’]. Make sure that read labels
and fastq suffix are correctly configured.

Single-cell RNA sequencing workflow

This workflow does the following:

	align reads with STAR to a genome or transcriptome reference

	gene/transcript quantification with RSEM and/or rpkmforgenes

	basic qc with RSeQC and MultiQC

Workflow

The figure below illustrates the workflow included in the test
directory. Here, use has been made of the additional rule mentioned in
Additional advice to generate the transcript annotation gtf.

[image: _images/scrnaseq.png]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at
https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the Bitbucket issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the Bitbucket issues for features. Anything tagged with
“enhancement” and “help wanted” is open to whoever wants to implement
it.

Write Documentation

lts_workflows_sm_scrnaseq could always use more documentation, whether
as part of the official lts_workflows_sm_scrnaseq docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up lts_workflows_sm_scrnaseq
for local development.

	Fork the lts_workflows_sm_scrnaseq repo on Bitbucket.

	Clone your fork locally:

.. code-block:: console

 $ git clone git@bitbucket.org:your_name_here/lts-workflows-sm-scrnaseq.git

	Follow the instructions in Development to install a conda
development environment and the package.

	Create a branch for local development:

.. code-block:: console

 $ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass
flake8 and the tests:

$ make lint
$ pytest -v -s -rs

	Commit your changes and push your branch to Bitbucket:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the Bitbucket website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests (optional).

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature HISTORY.rst.

	Check
https://bitbucket.org/scilifelab-lts/lts-workflows-sm-scrnaseq/addon/pipelines/home
and make sure that the CI tests pass.

Development

If you want to contribute to the development of
lts_workflows_sm_scrnaseq, you need to setup a development
enviromnent and follow some basic guidelines. In addition, there are
workflow tests that provide convenient help for test-based
development. This section details some of this information.

Development environment

Setting up a conda development environment

Start by setting up the main conda development environment for python3
packages. This is where the source code will live.

$ conda env create -n lts-workflows-sm-scrnaseq-devel python=3.6

You can also use python 3.5.

For the workflow tests, you also need a conda environment for python2
packages:

$ conda env create -n py2.7 python=2.7

Hint

By default, the workflow tests are configured to use a python 2
environment named py2.7. Should you name it otherwise, you can
tell pytest with the flag --python2-conda:

pytest -v -s --python2-conda mypython2env lts_workflows_sm_scrnaseq/tests/test_workflows_sm_scrnaseq.py

Finally, activate the development environment:

$ source activate lts-workflows-sm-scrnaseq-devel

Hint

Instead of having to remember when to activate a specific
environment, maybe also setting environment variables in the
process, we recommend using direnv [https://direnv.net/]. With
direnv, you can add a hidden file .envrc to the source root
directory with the following content:

source activate lts-workflows-sm-scrnaseq-devel
export DOCKER_REPO=scilifelablts

Now, every time you cd into the source directory, the correct
environment will be activated. Likewise, the environment will be
deactivated once you cd out of the source directory.

Checkout the source repository and install

Once the conda environments are setup, checkout the source
repository. If you haven’t done so already, fork the
lts_workflows_sm_scrnaseq bitbucket repository.

$ git clone git@bitbucket.org:your_name_here/lts-workflows-sm-scrnaseq.git

Change directory to the source code directory and install in
development mode:

$ cd lts-workflows-sm-scrnaseq
$ python setup.py develop

Install development requirements

Install the package requirements for development with pip:

$ pip install -r requirements_dev.txt

Note

In principle, conda should work as follows:

$ conda install --file requirements_dev.txt

However, for some reason the docker-py module is named
docker [https://pypi.python.org/pypi/docker] on PyPI and
docker-py [https://anaconda.org/conda-forge/docker-py] on
anaconda, causing the install to fail.

If everything works ok, you should now have a operating development
environment! Now you are ready to create and test your new features.
Follow the guidelines in Get Started! to submit a
pull request.

Test-based development

lts_workflows_sm_scrnaseq includes tests to ensure code and
workflow integrity. Some tests are run on the codebase itself (located
in the tests directory), whereas others execute pipeline runs
(located in the lts_workflows_sm_scrnaseq/tests directory). The
workflow tests are shipped with the package. The development
environment requirements include the module pytest-ngsfixtures,
a pytest [https://docs.pytest.org] which provides pytest fixtures [https://docs.pytest.org/en/latest/fixture.html] in the shape of
next generation sequencing test data sets.

The tests are located in the lts_workflows_sm_scrnaseq/tests
directory. You can execute all the tests by executing

$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests

Note

Since the tests reside in the module directory, they are actually
installed as a part of the module upon installation. This means you
(theoretically) can run the tests like this:

$ pytest -v -s -rs --pyargs lts_workflows_sm_scrnaseq

Workflow tests

When developing, you are most likely only interested in runnig the
workflow tests in
lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py.
Running

$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py

will run a listing of the workflow as well as an entire workflow run
on two samples.

You can control some aspects of the tests by applying module-specific
pytest options. The conftest plugin
lts_workflows_sm_scrnaseq.tests.conftest is a pytest local
per-directory plugin [https://docs.pytest.org/en/3.3.2/writing_plugins.html#local-conftest-plugins]
that among other things adds command line options to pytest.

Note

For some reason, these options disappear when running the test from
the source root directory, or with the –pyargs option.

For instance, the option –ngs-test-command controls whether
workflow list or run is executed. The following command will only run
the workflow.

$ cd lts_workflows_sm_scrnaseq/tests
$ pytest -v -s -rs test_lts_workflows_sm_scrnaseq.py --ngs-test-command run

A full list of test-specific options is given here:

 single cell rna sequencing options:
--no-slow don't run slow tests
-H, --hide-workflow-output
 hide workflow output
-T THREADS, --threads=THREADS
 number of threads to use
--enable-test-conda enable test conda setup; automatically install all
 dependencies in semi-persistent test conda
 environments
--conda-install-dir=CONDA_INSTALL_DIR
 set conda install dir
--conda-update update local conda installation
-2 PYTHON2_CONDA, --python2-conda=PYTHON2_CONDA
 name of python2 conda environment [default: py2.7]
-C, --use-conda pass --use-conda flag to snakemake workflows; will
 install conda environments on a rule by rule basis
--ngs-test-unit=unit [unit ...]
 test unit - test source code locally or distributed in
 docker container (choices: local,docker)
--smode={se} [{se} ...], --sequencing-modes={se} [{se} ...]
 sequencing modes (paired end or single end) to run
--ngs-test-command=command [command ...]
 test command - run or list

Rerunning workflow tests in pytest tmp directory

By default, pytest outputs test results in numbered subdirectories of
directory /tmp/pytest-of-user/. In order to facilitate test-based
development, for each workflow test, pytest-ngsfixtures outputs
a file command.sh in the resulting test directory. For instance, if
the workflow test has been run, this file should exist in a
subdirectory run-se-local in one of the numbered subdirectories of
/tmp/pytest-of-user. command.sh is an executable that records the
environment and command used to run the test. Therefore, if a workflow
run has failed, the test can be rerun as follows:

$ cd /tmp/pytest-of-user/pytest-#/run-se-local
$./command.sh

Consequently, this is a convenient way of setting up a current test
data environment for the workflow. Fix the code and rerun command.sh
until the test passes.

Hint

By default, command.sh runs the all target. Edit the file to
your liking to target other outputs of interest when developing a
new feature.

Testing the docker images

Apart from providing source code and conda packages,
lts_workflows_sm_scrnaseq also provides Docker images at
https://hub.docker.com/r/scilifelablts/lts-workflows-sm-scrnaseq/.

Important

The docker tests use docker swarm [https://docs.docker.com/engine/swarm/] mode to maintain and
manage running containers. In order to do test development on the
Dockerfile, you first need to initialize docker swarm; see docker
create swarm [https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/]
for more information.

When developing the Dockerfile and the resulting images, you can use
the make commands. For instance, to build and test changes to the main
Dockerfile, run (assuming you’re standing in the source root
directory):

$ make docker
$ pytest -v -s -rs lts_workflows_sm_scrnaseq/tests/test_lts_workflows_sm_scrnaseq.py --ngs-test-unit docker

The option ngs-test-unit selects what test unit to run, either
local (i.e. local source code) or docker which tests the docker
container. The test will fire up a docker stack and provide a docker
service named lts_scrnaseq_snakemake, which you can see by running
the command

$ docker service ls

Note

Developing with docker swarm can at first be confusing since on
some occasions, updates to the local repository are not present
in an updated image. This has to do with how docker handles version
tags and repositories. It may help to restart services, but it may
also be necessary to use a local registry (usually
localhost:5000) and push updated images to this registry. See the
docker documentation for more information.

Credits

Development Lead

	Per Unneberg <per.unneberg@scilifelab.se>

	Rasmus Ågren <rasmus.agren@scilifelab.se>

	Leif Väremo <leif.varemo@scilifelab.se>

	Åsa Björklund <asa.bjorklund@scilifelab.se>

Contributors

None yet. Why not be the first?

History

0.3.5 (2018-05-29)

	Added the option to execute jobs in a singularity container

	Added lts-workflows-sm-scrnaseq-slim Conda package, which is only the workflow without the tools. To be used with “–use-singularity”

	Modified Docker images to install to “base” environment rather than to “snakemake”

0.3.4 (2018-05-25)

	Added the option to group sets of cells and run as group jobs

	Changed to use scater v1.6 and SingleCellExperiment

	Changed to use “runtime” as a rule resource rather than a parameter

0.3.3 (2018-05-07)

	Rewrote QC report from scratch

	Added filtering of contaminating cells based on marker gene expression

	Changed QC config structure

	No longer built for Python 3.5 (dumping settings to yaml relies on that dicts are ordered, which was implemented in 3.6)

0.3.2 (2018-04-23)

	Rewrote QC report to fit better as part of a workflow

	Added biotypes to the QC and filtering steps

	Removed unnecessary logs to reduce the number of files created

	Explicitly include all files generated by the workflow rules

	Flag more files as temporary to reduce space usage

	General clean up of the code

0.3.1 (2018-04-17)

	Change to use R-markdown 1.8 due to error in the conda-forge recipe for 1.5.

0.3.0 (2018-04-09)

	Added QC and filtering

	Changed CI and testing Docker images

0.2.0 (2017-01-30)

	Simplify test setup

	Make pytest-ngsfixtures optional

	Use picard instead of samtools rules for sorting

	Update rseqc rule for empty fastq input (#37)

	Add multiqc rule (#33)

	Add rule for rpkm/count matrix (#31)

	Add gene entry to gtf file (#28)

0.1.0 (2017-02-12)

	First release on conda.

lts_workflows_sm_scrnaseq

	lts_workflows_sm_scrnaseq package
	Subpackages
	lts_workflows_sm_scrnaseq.core package
	Submodules

	lts_workflows_sm_scrnaseq.core.utils module

	lts_workflows_sm_scrnaseq.core.wrappers module

	Module contents

	Module contents

lts_workflows_sm_scrnaseq package

Subpackages

	lts_workflows_sm_scrnaseq.core package
	Submodules

	lts_workflows_sm_scrnaseq.core.utils module

	lts_workflows_sm_scrnaseq.core.wrappers module

	Module contents

Module contents

lts_workflows_sm_scrnaseq.core package

Submodules

lts_workflows_sm_scrnaseq.core.utils module

	
lts_workflows_sm_scrnaseq.core.utils.get_samples(config, logger)

	

	
lts_workflows_sm_scrnaseq.core.utils.python2_path(config, logger)

	Add python 2 path if possible

	
lts_workflows_sm_scrnaseq.core.utils.to_min(timestr)

	

lts_workflows_sm_scrnaseq.core.wrappers module

	
lts_workflows_sm_scrnaseq.core.wrappers.lts_workflows_sm_scrnaseq_wrapper()

	Wrapper for running lts_workflows_sm_scrnaseq workflow. Any argument
will be passed to snakemake. Consequently, this means you must
supply a workflow target to run the workflow. By default, the wrapper
will use a generic Snakefile shipped with the package. Note that in
this case you must supply a configuration file via the –configfile
option.

Examples

$ lts_workflows_sm_scrnaseq -l
$ lts_workflows_sm_scrnaseq all --configfile config.yaml -d /path/to/workdir

If the docker image is used to run the workflow, this wrapper serves
as the entry point. The image uses gosu to set the user id of the main
process, which defaults to user id 9001. In order to run as the local
user, the environment variable LOCAL_USER_ID must be passed to the
docker run process (recommended).

Examples

$ docker run scilifelablts/lts_workflows_sm_scrnaseq
$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_sm_scrnaseq all --configfile config.yaml
$ docker run -e LOCAL_USER_ID=1000 -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_sm_scrnaseq all --configfile config.yaml
$ docker run -e LOCAL_USER_ID=1000 -v /path/to/workdir:/workspace -w /workspace --entrypoint "/bin/bash" scilifelablts/lts_workflows_sm_scrnaseq

All commands are handled by the lts_workflows_sm_scrnaseq wrapper, but
you can also explicitly call snakemake:

$ docker run -v /path/to/workdir:/workspace -w /workspace scilifelablts/lts_workflows_sm_scrnaseq snakemake all --configfile config.yaml

The wrapper runs a package Snakefile with the following minimum content:

from lts_workflows_sm_scrnaseq import WORKFLOW
include: WORKFLOW

If need be, extend this file with custom rules and directives and run
it with the wrapper or as usual with regular Snakemake.

Module contents

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lts_workflows_sm_scrnaseq	

 	
 	
 lts_workflows_sm_scrnaseq.core	

 	
 	
 lts_workflows_sm_scrnaseq.core.utils	

 	
 	
 lts_workflows_sm_scrnaseq.core.wrappers	

 	
 	
 lts_workflows_sm_scrnaseq.rules	

Index

 G
 | L
 | P
 | T

G

 	
 	get_samples() (in module lts_workflows_sm_scrnaseq.core.utils)

L

 	
 	lts_workflows_sm_scrnaseq (module)

 	lts_workflows_sm_scrnaseq.core (module)

 	lts_workflows_sm_scrnaseq.core.utils (module)

 	
 	lts_workflows_sm_scrnaseq.core.wrappers (module)

 	lts_workflows_sm_scrnaseq.rules (module)

 	lts_workflows_sm_scrnaseq_wrapper() (in module lts_workflows_sm_scrnaseq.core.wrappers)

P

 	
 	python2_path() (in module lts_workflows_sm_scrnaseq.core.utils)

T

 	
 	to_min() (in module lts_workflows_sm_scrnaseq.core.utils)

lts_workflows_sm_scrnaseq.rules package

Module contents

 _static/up-pressed.png

_static/up.png

_images/scrnaseq.png
dbutils_fasta_to_genbank

dbutils_make_transcript_annot_gtf dbutils_genbank_to_fasta

gif_to_bed12
rseqc_read_distribution rseqc_junction_annotation

rseqc_geneBody_coverage

make_court_matie

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 lts_workflows_sm_scrnaseq documentation

 		
 Installation

 		
 Stable release from conda

 		
 From sources

 		
 Tests

 		
 Usage

 		
 Running the wrapper script

 		
 Running snakemake

 		
 Running docker/singularity containers

 		
 Example Snakefile

 		
 Configuration

 		
 Required configuration

 		
 Example sampleinfo.csv

 		
 Workflow specific configuration

 		
 Example workflow configuration section

 		
 Application level configuration

 		
 Additional advice

 		
 Troubleshooting

 		
 Installation of rsem hangs when using –use-conda

 		
 The workflow cannot find RSeQC or rpkmforgenes

 		
 STAR align cannot find the input files even though they are present

 		
 Single-cell RNA sequencing workflow

 		
 Workflow

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Development

 		
 Development environment

 		
 Setting up a conda development environment

 		
 Checkout the source repository and install

 		
 Install development requirements

 		
 Test-based development

 		
 Workflow tests

 		
 Rerunning workflow tests in pytest tmp directory

 		
 Testing the docker images

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.3.0 (2018-04-09)

 		
 0.2.0 (2017-01-30)

 		
 0.1.0 (2017-02-12)

 		
 lts_workflows_sm_scrnaseq

 		
 lts_workflows_sm_scrnaseq package

 		
 Subpackages

 		
 Module contents

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

