lovely.esdb
Release 0.3.8

September 29, 2016

Contents

Features 3
License 5
Contents 7
31 USage .« . o e e e e e e e e e 7
3.1.1 ImplementaDocument Class 7
3.1.2 Create and Store Documents 8
3.1.3 GetaDocument e e e e e e 8
3.1.4 GetMultiple Documents e e e e e e e e e e e e e 8
3.1.5 SearchDocuments i i i i e e e e e e e e 9
3.1.6 DeleteaDocument e e e e e e e 9
3.2 Relations e e e e e e e e e 9
3.2.1 L:TRelation L e e 9
3.22 LinRelation e e e e e e e e 11

lovely.esdb, Release 0.3.8

This package provides a simple elasticsearch document management. Its main purpose is to map ES documents to
python classes with the possibility to work with raw ES data for simple JSON mappings.

Contents 1

lovely.esdb, Release 0.3.8

2 Contents

CHAPTER 1

Features

provide a Document class for ES documents

allows property definition (currently untyped)

ObjectProperty to be able to store any JSON pickle-able object
automatic mapping of ES index data to Document classes

manage different Document classes in the same index

manage bulk operations for Documents

Document proxy LazyDocument for lazy loading

lovely.esdb, Release 0.3.8

4 Chapter 1. Features

CHAPTER 2

License

The MIT License (MIT) Copyright (c) 2016, Lovely Systems GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

lovely.esdb, Release 0.3.8

6 Chapter 2. License

CHAPTER 3

Contents

3.1 Usage

Contents

* Usage

— Implement a Document Class
Create and Store Documents
— Get a Document

Get Multiple Documents
Search Documents
Delete a Document

Here are some of the basics on how to use the Document class.

3.1.1 Implement a Document Class

Create your classes inherited from Document:

>>> from lovely.esdb.document import Document
>>> from lovely.esdb.properties import Property
>>> class MyDocument (Document) :

INDEX = 'mydocindex'

id = Property (primary_key=True)
name = Property (default=u'")

def _ _repr__ (self):

return '< [id=%r, name=2r]>' % (
self._ _class__._ name__,
self.id,

self.name,

The class can now globally be connected to an elasticsearch host.

lovely.esdbuses the elasticsearch python package. We need an instance of the Elasticsearch class to
connect our documents to a store:

lovely.esdb, Release 0.3.8

>>> from elasticsearch import Elasticsearch
>>> es_client = Elasticsearch(['localhost: ' % crate_port])
>>> MyDocument .ES = es_client

If you have only one elasticsearch cluster for your application it is also possible to set the ES client for all new classes
globally:

>>> Document.ES = es_client

Create an index for the documents:

>>> es_client.indices.create(
index=MyDocument . INDEX,

body={
'settings': {'number_of_shards': 1},
"mappings" : {
"default" : {
"properties" : {
"id" : { "type" : "string", "index" : "not_analyzed" 1},
"title" : { "type" : "string", "index" : "analyzed" }

b

{u'acknowledged': True}

3.1.2 Create and Store Documents

That’s all you need. Now you can use it:

>>> doc = MyDocument (id="1", name="John Doe")
>>> pprint (doc.store())

{u'_id': u'l"',

'_index': u'mydocindex',

u'_type': u'default',

u

u'_version': 1,
u'created': True}

3.1.3 Get a Document

To get a document back using its primary key use the get method of your class:

>>> MyDocument.get ("1")
<MyDocument [id=u'l', name=u'John Doe']>

3.1.4 Get Multiple Documents

mget allows to get multiple documents by their primary key:

>>> pprint (MyDocument.mget (["1", "2"]))
[<MyDocument [id=u'l', name=u'John Doe']>,
None]

8 Chapter 3. Contents

lovely.esdb, Release 0.3.8

3.1.5 Search Documents

Document provides a query method which allows to do any elasticsearch query. The difference is that the result hits
are resolved as Document instances:

>>> _ = MyDocument.refresh()
>>> query = {
"query": {
"match": {
"name": "John Doe"

}
>>> result = MyDocument.search (query)
>>> pprint (result)

{u'_shards': {u'failed': 0, u'successful': 1, u'total': 1},
u'hits': {u'hits': [<MyDocument [id=u'l', name=u'John Doe']>],
u'max_score': ...,
u'total': 1},
u'timed_out': False,
u'took': ...}
>>> result['hits']['hits']

[<MyDocument [id=u'l', name=u'John Doe']>]

3.1.6 Delete a Document

Deleting a document is as easy as creating it:

>>> doc = MyDocument (id="2", name="to be deleted")
>>> _ = doc.store()

>>> pprint (doc.delete())

{u'_id': u'2"',

u'_index': u'mydocindex',
u'_type': u'default',
u'_version': 2,

u'found': True}

3.2 Relations

Contents

e Relations
— 1:1 Relation
— 1:n Relation

3.2.1 1:1 Relation

A simple relation property allows to manage and resolve one to one relations between documents.

>>> from lovely.esdb.document import Document
>>> from lovely.esdb.properties import Property, LocalRelation

3.2. Relations 9

lovely.esdb, Release 0.3.8

>>> class LocalDoc (Document) :

"""References RemoteDoc via the rel property.
mmn

INDEX = 'localdoc'
id = Property (primary_key=True)

The relation is configured with the name/path to the local

property on which the relation stores its internal data and the
remote Document and property name. The remote property name must
be the primary key of the remote Document.

rel = LocalRelation('ref.ref_ id', 'RemoteDoc.id'")

ref is the property which is needed by the relation to store the
local relation data.
ref = Property()

RemoteDoc is the referenced document. There is nothing special about it:

>>> class RemoteDoc (Document) :
"""Referenced document with only an id

mmn

INDEX = 'remotedoc'
ES = es_client

id = Property (primary_key=True)

def _ _repr__ (self):
return "<RemoteDoc %r>" % self.id

Create an index on which the remote document can be stored:

>>> es_client.indices.create(
index=RemoteDoc.INDEX,

body={
'settings': {'number_of_shards': 1},
"mappings" : {
"default" : {
"properties" : {
"id" : { "type" : "string", "index" : "not_analyzed" },
}
}
}
1)
{u'acknowledged': True}

Create a document which can be used in LocalDoc:

>>> remote = RemoteDoc (id='1l")
>>> _ = remote.store()

>>> local = LocalDoc ()
>>> local.rel = remote
>>> local.rel ()
<RemoteDoc u'l'>

The ref property contains the id of the referenced document:

10 Chapter 3. Contents

lovely.esdb, Release 0.3.8

>>> local.ref
{'ref_id': '1'}

It is also possible to assign the primary key to the relation property:

>>> remote2 = RemoteDoc (id='2")
>>> _ = remote2.store()

>>> local.rel = '2"
>>> local.rel()
<RemoteDoc u'2'>

3.2.2 1:n Relation

The simple 1:n relation maintains a local list with the ids of the related documents.

>>> from lovely.esdb.properties import LocalOne2NRelation
>>> class LocalOne2NDoc (Document) :
"""References RemoteDoc via the rel property.

mon

INDEX = 'localoneZndoc'
id = Property (primary_key=True)

The relation is configured with the name/path to the local

property on which the relation stores its internal data and the
remote Document and property name. The remote property name must
be the primary key of the remote Document.

rel = LocalOne2NRelation('ref.ref_id', 'RemoteDoc.id")

ref is the property which is needed by the relation to store the
local relation data.
ref = Property()

>>> local = LocalOne2NDoc ()

>>> local.rel = [remote]

The relation provides a resolver:

>>> local.rel
<ListRelationResolver RemoteDoc (['1'])>

The resolver allows access to the items:

>>> local.rel[0]
<ListItemRelationResolver[0] RemoteDoc[l]>

>>> local.rel[0] ()
<RemoteDoc u'l'>

Item assignement:

>>> local.rel = [remote, '2', {'id': "3'}]
>>> local.rel
<ListRelationResolver RemoteDoc(['1l', '2', '3'])>

3.2. Relations 11

	Features
	License
	Contents
	Usage
	Implement a Document Class
	Create and Store Documents
	Get a Document
	Get Multiple Documents
	Search Documents
	Delete a Document

	Relations
	1:1 Relation
	1:n Relation

