

Introducing Lovebeat

Have you ever had a nightly backup job fail, and it took you weeks until you
noticed it? Say hi to lovebeat, a zero-configuration heartbeat monitor.

Other use-cases include creating triggers for manual tasks that you haven’t
automated yet (like moving your backup tapes to an offsite location, watering
your plants or changing sheets in your bed). It can also be used for the
opposite - for finding out when things start to happen that shouldn’t, like
your frontend calling deprecated methods in the backend.

Lovebeat provides a lot of different APIs. We recommend the “statsd”-compatible
UDP protocol when adding triggers to your software for minimum impact on your
performance (when you’re running Lovebeat on the same machine or trust the
network to deliver your UDP packets). A TCP protocol is available if you
don’t trust UDP and HTTP protocol for curl. And don’t forget the web UI.

	Installation
	Prebuilt executable

	Using docker

	Building from source

	Getting started
	Concepts

	Services

	States

	Alarms

	Alerts

	Web UI

	Alerters
	Send Mail

	Outgoing Webhooks

	Slack

	Script

	Advanced Topics
	Automatic Setting of Timeouts

	Monitoring

	Logging

	Metrics reporting

	Behind a reverse proxy

	Database on S3

	API
	statsd API

	HTTP API

	Configuration

	License

Installation

Prebuilt executable

Our releases are built and uploaded to github. You can download a binary
matching your architecture and OS at:

https://github.com/boivie/lovebeat/releases

Using docker

We keep up-to-date docker [https://www.docker.com/] images.

To get started, simply:

$ docker run -it -p 8127:8127/udp -p 8127:8127/tcp -p 8080:8080 boivie/lovebeat

You may want to run with other options to specify volumes for the data and
configuration.

Building from source

You will need to have a go [http://golang.org] toolchain installed as well
as npm [https://www.npmjs.com/] which will be used for downloading all other
dependencies for the frontend development.

After that, simply:

$ mkdir go
$ cd go
$ export GOPATH=`pwd`
$ go get github.com/boivie/lovebeat
$ cd src/github.com/boivie/lovebeat
$ make
$./lovebeat

Getting started

Concepts

It’s really helpful if you understand the different concepts in lovebeat.

Services send “heartbeats” with regular intervals to lovebeat. If they for some
reason stop sending these heartbeats, lovebeat will react to this and update
the service state, which in may trigger and alarm, which in turn will trigger
alerts, such as sending e-mails.

And you can monitor it all in the Lovebeat web UI.

So let’s break it down a bit:

Services

This is the name of the “thing” you want to monitor. You can choose anything
as the name, and it typically looks like “myapp.mailers.invoice” with periods
as the delimiter.

As you grow and have a lot of services to monitor, it’s good to have some
sort of hierarchy. It’s up to you to choose one.

States

A service can be in different states. OK is the state you want to keep
your services in. You can set a timeout so that the service will change state
into ERROR if the service hasn’t issued a beat within that period of time.

A service can also be muted. This will move it into the MUTED state, and then
it will not trigger any alerts or cause alarms to be in ERROR.

Alarms

An alarm contains a filtered subset of your services. You specify a matching
pattern and all services whose identifiers match this pattern will be part of
the alarm.

This is an example of an alarm called “backup-jobs” that match all services
starting with “backup.”

[[alarms]]
name = "backup-jobs"
pattern = "backup.*"

Alarms also have states. If all services within the alarm are OK, the alarm
will be OK. But if any service is in ERROR state, the alarm will
transition into the ERROR state.

Alarms can be automatically created based on the service names, which is a
powerful feature when your service names have a structure.

Say that you have an application running on three servers (alpha, beta and
delta), and the application provides two heartbeats, ”.healthcheck” and
”.background-job-1”. The complete list of services will thus be:

	application-name.alpha.healthcheck

	application-name.alpha.background-job-1

	application-name.beta.healthcheck

	application-name.beta.background-job-1

	application-name.delta.healthcheck

	application-name.delta.background-job-1

By having an alarm configuration such as:

[[alarms]]
name = "server-$name"
pattern = "application-name.$name.*"

You will then end up with three alarms, “server-alpha” including the services
“application-name.alpha.healthcheck” and “application-name.alpha.background-job-1”
and similar for “server-beta” and “server-delta”.

For more advanced pattern matching, use includes and excludes to specify a list
of patterns. If any pattern in includes match, and no pattern in excludes match,
the service will be part of the alarm. Example as below:

[[alarms]]
name = "source-$name"
includes = ["source.$name.*", "old-source.$name.*"]
excludes = ["source.deprecated.*"]

Alerts

When an alarm changes state (to ERROR or OK), it can trigger alerts
that e.g. sends and e-mail (through SMTP or Mailgun [https://mailgun.com/]), posts a Slack [https://slack.com/] message
to your team’s channel, sends an outgoing webhook or runs a shell script.

Web UI

Just point your browser to http://localhost:8080/ to see the current status
of all your services and alarms.

Alerters

You can setup lovebeat to send mails or issue outgoing webhooks (HTTP POST) to
your web service whenever an alarm changes state. This is done on an alarm by
modifying the configuration file.

Send Mail

The first step is to specify the SMTP server address and the e-mail address
that will be used when sending the e-mails. It doesn’t currently support
SMTP authentication, so you might want to run a local SMTP server to proxy
the sent e-mails.

If you have an account at Mailgun [https://mailgun.com/], you can specify your domain and API key
to let Lovebeat send mails using Mailgun’s API. By doing this, the SMTP settings
will not be used.

The configuration file should look as following for SMTP:

[mail]
server = "localhost:25"
from = "lovebeat@example.com"

If you’re using Mailgun for sending your mails, your configuration will look
as follows:

[mailgun]
domain = "example.com"
from = "lovebeat@example.com"
api_key = "key-5ap419x2asxge9a6xaqq0ztagv-a4axj"

Example of specifying an alarm that sends mails:

[[alarms]]
name = "example"
pattern = "test.*"
alerts = ["mail-alert"]

[alerts.mail-alert]
mail = "administrator@example.com"

Outgoing Webhooks

When an alarm changes state, a POST will be sent to the URL(s) specified in the
configuration. The JSON data that is sent follows:

POST /your/url/endpoint HTTP/1.1
Content-Type: application/json
Accept: application/json
User-Agent: Lovebeat
X-Lovebeat: 1

{
 "name": "alarm.name.here",
 "from_state": "ok",
 "to_state": "error",
 "incident_number": 4
}

Example of the configuration file:

[[alarms]]
name = "example"
pattern = "test.*"
alerts = ["to-requestbin"]

[alerts.to-requestbin]
webhook = "http://requestb.in/19lw85o1"

Slack

Lovebeat can post messages to a slack [https://slack.com/] channel whenever an alarm changes state.
First of all, setup an incoming webhook to get a Webhook URL that you will
enter in the lovebeat configuration file.

A working example would look like:

[[alarms]]
name = "example"
pattern = "test.*"
alerts = ["message-to-ops"]

[alerts.message-to-ops]
slack_channel = "#ops"

[slack]
webhook_url = "https://hooks.slack.com/services/T12345678/B12345678/abrakadabra"

Script

Lovebeat can run arbitrary scripts (or other executable files) whenever an alarm
changes state. The details of the alert will be posted as environment variables:

	LOVEBEAT_ALARM=<name of the alarm>

	LOVEBEAT_STATE=<the current state>

	LOVEBEAT_PREVIOUS_STATE=<the previous state>

	LOVEBEAT_INCIDENT=<incident number>

The script will also inherit any environment variables that Lovebeat was started
with.

The script’s stdout and stderr will be printed, and the script will be invoked
with no arguments. If a script doesn’t finish within 10 seconds, it will be
terminated. Remember to make your script executable using
chmod a+x script.sh.

Example of the configuration file:

[[alarms]]
name = "example"
pattern = "test.*"
alerts = ["test-alert"]

[alerts.test-alert]
script = "/path/to/script.sh"

The script (/path/to/script.sh) could look like:

#!/bin/bash

echo "Hello World"
env

The output would then be (among other environment variables):

2016/01/26 18:10:56 INFO ALARM 'example', 11: state ok -> error
2016/01/26 18:10:56 INFO Running alert script /path/to/script.sh
Hello World
LOVEBEAT_ALARM=example
LOVEBEAT_STATE=ERROR
LOVEBEAT_PREVIOUS_STATE=OK
LOVEBEAT_INCIDENT=11

Advanced Topics

Automatic Setting of Timeouts

While you can set the timeout manually, they can also be automatically
calculated based on the frequency and regularity of the heartbeats.

A regular heartbeat results in a low threshold (compared to the median frequency
of the heartbeats) and an irregular heartbeat sets the threshold higher so that
it doesn’t expire during normal operations.

The algorithm is rather well performing in theory and modeled (and tested) using
the bundled Jupyter [http://jupyter.org/] Notebook.

Monitoring

Lovebeat is designed to be resistant to environmental disturbances but it can
still fail if e.g. the machine it’s running on is degraded or if the network is
experiencing problems. It’s a very good idea to monitor Lovebeat so that you
are confident that it’s monitoring your services correctly.

External Monitoring

It is easy to have an external monitoring system find out if lovebeat and the
services reporting to it are healthy. There are two API endpoint,
/api/status and /api/alarms/<alarm_name>/status for that purpose.

Calling it will result in the following response:

$ curl http://localhost:8080/api/status
num_ok 4
num_error 2
has_error true
good false

If you call it with the Accept HTTP header set to application/json, the
following will be the response instead:

$ curl -H "Accept: application/json" http://localhost:8080/api/status
{
 "num_ok": 4,
 "num_error": 2,
 "has_error": true,
 "good": false
}

good will be true only if there are no services in ERROR state.

You can let e.g. nagios [https://www.nagios.org/] monitor it. There is a provided nagios plugin in the
contrib/ directory.

Lovebeat Monitoring

For more detailed monitoring, you can have two (or more) instances of Lovebeat
monitor each other. By having one or several notify sections in the
configuration file, you can specify a URL to which Lovebeat will post its
heartbeats.

[[notify]]
lovebeat = "http://some-other-host:8080"

Logging

Lovebeat prints its logs to stderr. If you want the logs to be sent to the local
syslog service, add the command line switch -syslog.

You can also increase the verbosity of the logs by adding -debug.

Metrics reporting

Lovebeat can send metrics to a statsd [https://github.com/etsy/statsd] proxy using the UDP protocol, to allow
them to be shown in e.g. graphite [http://graphite.wikidot.com/], influxdb [https://influxdata.com/] or similar.

You will get some health information about Lovebeat itself, such as the time
it takes to save its database, and also status information (as gauges) of
all services and alarms. This allows you to correlate service status with other
metrics you collect.

Simply specify a server and the prefix that Lovebeat will use for all metrics
in the lovebeat configuration file:

[metrics]
server = "localhost:8125"
prefix = "lovebeat"

Behind a reverse proxy

Lovebeat can be located behind a reverse proxy and properly handle that it’s
served from a different path than the root path. Please keep in mind that the
websocket functionality requires a proxy server with proper support for them.

In nginx [https://www.nginx.com/], this would be a working configuration:

location /monitoring/lovebeat/ {
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_pass http://localhost:8080/;
}

Database on S3

When designing Lovebeat, a key decision was to build a solution with as few
dependencies to other systems as possible since those systems can fail as well.
Having the database on a separate SQL server is then something we have opted out
from, but instead having a local file based database.

That works well as long as the host Lovebeat is running on is healthy and the
disk where the database is located on isn’t corrupted or disappears. When
deploying Lovebeat on a transient host, such as on an auto-scaling instance on
Amazon Web Services, this will cause problems as the disk isn’t persistent if
the service is restarted.

To support this common use-case, Lovebeat supports downloading and uploading its
database to an Amazon S3 bucket. On startup, Lovebeat will download the file
from the S3 storage, and every time the database is saved (defaults to once
per minute and when Lovebeat exits), the database will be uploaded to the same
S3 bucket.

To enable this, configure the database as follows:

[database]
filename = "lovebeat.db"
interval = 60
remote_s3_url = "s3://bucket-name/path/to/lovebeat.db"
remote_s3_region = "eu-west-1"

API

statsd API

Using UDP or TCP.

We use the graphite [http://graphite.wikidot.com/] protocol to trigger heartbeats and to set timeouts.
UDP is great for generating heartbeats from within your application
since the performance cost is very small and your application will not be affected
if the lovebeat server isn’t running for any reason.

	To trigger a heartbeat, send a counter value >= 0 to “<service>.beat”

	To set a timeout (in seconds), set the gauge value of “<service>.timeout”

	To clear a value, set the timeout to -1.

	To set the timeout to be automatically calculated, set the timeout to -2.

	A shortcut for setting the timeout to -2 and issuing a beat (since this is a
fairly common pattern), send a counter to <service>.autobeat.

Examples:

UDP
$ echo "invoice.mailer.beat:1|c" | nc -4u -w0 localhost 8127

TCP
$ echo "invoice.mailer.timeout:3600|g" | nc -c localhost 8127

TCP, setting timeout to 'auto'
$ echo -e "invoice.mailer.timeout:-2|g\ninvoice.mailer.beat:1|c" | nc -c localhost 8127

UDP, same as above
$ echo "invoice.mailer.autobeat:1|c" | nc -4u -w0 localhost 8127

You can even put a statsd proxy in front of lovebeat if you don’t want to send
UDP packets outside your localhost.

HTTP API

The HTTP API is the easy way to send heartbeats from e.g. curl.

This API is also used by the web UI and is fairly complete.

POST /api/services/<service_id>

Generates a heartbeat.

	To set a timeout, add the form field “timeout” and specify the
time in seconds or “auto” to calculate one.

	You can also set the timeout value using a query parameter, e.g.
?timeout=3600.

	Last, but not least, you can also post a JSON payload to this endpoint
and let the JSON object’s timeout field be set to the timeout value. Note
that the Content-Type must be set to application/json.

This endpoint returns an empty JSON object as response.

Examples:

Only trigger a beat - don't set any value
$ curl -X POST http://localhost:8080/api/services/invoice.mailer

Set the timeout using a form field value
$ curl -d timeout=3600 http://localhost:8080/api/services/invoice.mailer

Set the timeout using a query parameter
$ curl -X POST http://localhost:8080/api/services/invoice.mailer?timeout=3600

Setting the timeout as a JSON object.
$ curl -H "Content-Type: application/json" -d '{"timeout":3600}' http://localhost:8080/api/services/invoice.mailer

GET /api/services

Returns the list of services.

GET /api/services/<service_name>

Returns information about a specific service.

	By setting the ?details=1 query parameter, additional information may
be returned.

POST /api/services/<service_id>/mute

Mutes the service and puts it into MUTED state.

POST /api/services/<service_id>/unmute

Unmutes the service and puts it into OK or ERROR depending on when it
received its last heartbeat.

DELETE /api/services/<service_name>

Deletes a service.

GET /api/alarms

Returns a list of alarms.

GET /api/alarms/<alarm_name>

Returns details of a specific alarm and the services included in it.

DELETE /api/alarms/<alarm_name>

Removes the alarm. The alarm must be empty and it will appear again when a
service is created that match this alarm config’s patterns.

Configuration

You don’t need to write a configuration file to get started (just launch the
executable), but some settings need to be specified if you want to configure alarms
and use advanced features such as SMTP mail notifications.

Note that lovebeat by default reads /etc/lovebeat.cfg but you can override
this by specifying the -config <file> argument when starting lovebeat. If
no configuration file is specified, sensible defaults are used.

Please see the provided lovebeat.cfg file where all the settings are
documented as well.

Every section and key is documented, and the default values are
provided here (commented out).

##
General settings
##
By specifying a 'public_url', which should be the full URL to
reach lovebeat, we can insert full links in mail and slack alerts,
for example.
#
#public_url = "http://lovebeat.example.com/"

##
The database stores information about all services and alarms. It's
in one single file and it's safely rewritten on save, which it does
when exiting the program as well as every minute while running. This
can be changed by the 'interval' setting.
##
You can specify an Amazon S3 URL as 'remote_s3_url' from where it
should download the database on start, and upload when it's saved.
#
#[database]
#filename = "lovebeat.db"
#interval = 60
#remote_s3_url = ""
#remote_s3_region = ""

##
UDP listener, in statsd format
#
#[udp]
#listen = ":8127"

##
TCP listener, in statsd format
#
#[tcp]
#listen = ":8127"

##
TCP listener, for the dashboard and the HTTP API
#
#[http]
#listen = ":8080"

##
SMTP settings, for the mail alerter.
#
#[mail]
#server = "localhost:25"
#from = "lovebeat@example.com"

##
Mailgun settings, which takes priority over the SMTP settings
if specified
##
The API Key can be found in Mailgun's Account Settings.
#
#[mailgun]
#domain = ""
#from = ""
#api_key = ""

##
Metrics reporting to a statsd proxy, using the UDP protocol.
Note that this one is by default disabled, but can be enabled
by specifying a server address and port, e.g. "localhost:8125"
#
#[metrics]
#server = ""
#prefix = "lovebeat"

##
Configuration of the logfile where events are logged. An empty
or unset path disables the logging.
#
#[eventlog]
#path = "/var/log/lovebeat/events.json"
#mode = 644

License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Index

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Introducing Lovebeat

 		Installation

 		Prebuilt executable

 		Using docker

 		Building from source

 		Getting started

 		Concepts

 		Services

 		States

 		Alarms

 		Alerts

 		Web UI

 		Alerters

 		Send Mail

 		Outgoing Webhooks

 		Slack

 		Script

 		Advanced Topics

 		Automatic Setting of Timeouts

 		Monitoring

 		External Monitoring

 		Lovebeat Monitoring

 		Logging

 		Metrics reporting

 		Behind a reverse proxy

 		Database on S3

 		API

 		statsd API

 		HTTP API

 		POST /api/services/<service_id>

 		GET /api/services

 		GET /api/services/<service_name>

 		POST /api/services/<service_id>/mute

 		POST /api/services/<service_id>/unmute

 		DELETE /api/services/<service_name>

 		GET /api/alarms

 		GET /api/alarms/<alarm_name>

 		DELETE /api/alarms/<alarm_name>

 		Configuration

 		License

_static/up.png

_static/up-pressed.png

