

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

LICENSE

using Markdown
Markdown.parse_file(joinpath(@__DIR__, "..", "..", "LICENSE.md"))

Acknowledgements

The basic design of this package is heavily modelled after the
loss-related definitions in [^STEINWART2008].

We would also like to mention that some early inspiration was
drawn from EmpiricalRisks.jl [https://github.com/lindahua/EmpiricalRisks.jl]

References

[^STEINWART2008]:

Steinwart, Ingo, and Andreas Christmann. ["Support vector machines"](https://www.springer.com/us/book/9780387772417). Springer Science & Business Media, 2008.

LossFunctions.jl’s documentation

This package represents a community effort to centralize the
definition and implementation of loss functions in Julia.
As such, it is a part of the JuliaML [https://github.com/JuliaML]
ecosystem.

The sole purpose of this package is to provide an efficient and
extensible implementation of various loss functions used
throughout Machine Learning (ML). It is thus intended to serve as
a special purpose back-end for other ML libraries that require
losses to accomplish their tasks. To that end we provide a
considerable amount of carefully implemented loss functions, as
well as an API to query their properties (e.g. convexity).
Furthermore, we expose methods to compute their values,
derivatives, and second derivatives for single observations as
well as arbitrarily sized arrays of observations. In the case of
arrays a user additionally has the ability to define if and how
element-wise results are averaged or summed over.

From an end-user’s perspective one normally does not need to
import this package directly. That said, it should provide a
decent starting point for any student that is interested in
investigating the properties or behaviour of loss functions.

Introduction and Motivation

If this is the first time you consider using LossFunctions for
your machine learning related experiments or packages, make sure
to check out the “Getting Started” section.

Pages = ["introduction/gettingstarted.md"]
Depth = 2

If you are new to Machine Learning in Julia, or are simply
interested in how and why this package works the way it works,
feel free to take a look at the following sections. There we
discuss the concepts involved and outline the most important
terms and definitions.

Pages = ["introduction/motivation.md"]
Depth = 2

User’s Guide

This section gives a more detailed treatment of the exposed
functions and their available methods. We will start by
describing how to instantiate a loss, as well as the basic
interface that all loss functions share.

Pages = ["user/interface.md"]
Depth = 2

Next we will consider how to average or sum the results of the
loss functions more efficiently. The methods described here are
implemented in such a way as to avoid allocating a temporary
array.

Pages = ["user/aggregate.md"]
Depth = 2

Available Losses

Aside from the interface, this package also provides a number of
popular (and not so popular) loss functions out-of-the-box. Great
effort has been put into ensuring a correct, efficient, and
type-stable implementation for those. Most of them either belong
to the family of distance-based or margin-based losses. These two
categories are also indicative for if a loss is intended for
regression or classification problems

Loss Functions for Regression

Loss functions that belong to the category “distance-based” are
primarily used in regression problems. They utilize the numeric
difference between the predicted output and the true target as a
proxy variable to quantify the quality of individual predictions.

<table><tbody><tr><td style="text-align: left;">

Pages = ["losses/distance.md"]
Depth = 2

</td><td>

[image: distance-based losses]

</td></tr></tbody></table>

Loss Functions for Classification

Margin-based loss functions are particularly useful for binary
classification. In contrast to the distance-based losses, these
do not care about the difference between true target and
prediction. Instead they penalize predictions based on how well
they agree with the sign of the target.

<table><tbody><tr><td style="text-align: left;">

Pages = ["losses/margin.md"]
Depth = 2

</td><td>

[image: margin-based losses]

</td></tr></tbody></table>

Advanced Topics

In some situations it can be useful to slightly alter an existing
loss function. We provide two general ways to accomplish that.
The first way is to scale a loss by a constant factor. This can
for example be useful to transform the L2DistLoss into
the least squares loss one knows from statistics. The second way
is to reweight the two classes of a binary classification loss.
This is useful for handling inbalanced class distributions.

Pages = ["advanced/extend.md"]
Depth = 2

If you are interested in contributing to LossFunctions.jl, or
simply want to understand how and why the package does then take
a look at our developer documentation (although it is a bit
sparse at the moment).

Pages = ["advanced/developer.md"]
Depth = 2

Index

Pages = ["indices.md"]

Functions

Order = [:function]

Types

Order = [:type]

Developer Documentation

In this part of the documentation we will discuss some of the
internal design aspects of this library. Consequently, the target
audience of this section and its sub-sections is primarily people
interested in contributing to this package. As such, the
information provided here should be of little to no relevance for
users interested in simply applying the package.

Abstract Types

We have seen in previous sections, that many families of loss
functions are implemented as immutable types with free
parameters. An example for such a family is the
L1EpsilonInsLoss, which represents all the
\epsilon-insensitive loss-functions for each possible
value of \epsilon.

Aside from these special families, there a handful of more
generic families that between them contain almost all of the loss
functions this package implements. These families are defined as
abstract types in the type tree. Their main purpose is two-fold:

	From an end-user’s perspective, they are most useful for
dispatching on the particular kind of prediction problem that
they are intended for (regression vs classification).

	Form an implementation perspective, these abstract types allow
us to implement shared functionality and fall-back methods,
or even allow for a simpler implementation.

Most of the implemented loss functions fall under the umbrella of
supervised losses. As such, we barely mention other types of
losses anywhere in this documentation.

SupervisedLoss

There are two interesting sub-families of supervised loss
functions. One of these families is called distance-based. All
losses that belong to this family are implemented as subtype of
the abstract type DistanceLoss, which itself is subtype
of SupervisedLoss.

DistanceLoss

The second core sub-family of supervised losses is called
margin-based. All loss functions that belong to this family are
implemented as subtype of the abstract type MarginLoss,
which itself is subtype of SupervisedLoss.

MarginLoss

Shared Interface

Each of the three abstract types listed above serves a purpose
other than dispatch. All losses that belong to the same family
share functionality to some degree. For example all subtypes of
SupervisedLoss share the same implementations for the
vectorized versions of value and deriv.

More interestingly, the abstract types DistanceLoss and
MarginLoss, serve an additional purpose aside from
shared functionality. We have seen in the background section what
it is that makes a loss margin-based or distance-based. Without
repeating the definition let us state that it boils down to the
existence of a representing function \psi, which allows to
compute a loss using a unary function instead of a binary one.
Indeed, all the subtypes of DistanceLoss and
MarginLoss are implemented in the unary form of their
representing function.

Distance-based Losses

Supervised losses that can be expressed as a univariate function
of output - target are referred to as distance-based losses.
Distance-based losses are typically utilized for regression
problems. That said, there are also other losses that are useful
for regression problems that don’t fall into this category, such
as the PeriodicLoss.

Margin-based Losses

Margin-based losses are supervised losses where the values of the
targets are restricted to be in \{1,-1\}, and which can
be expressed as a univariate function output * target.

 DocTestSetup = quote
 using LossFunctions
end

Altering existing Losses

There are situations in which one wants to work with slightly
altered versions of specific loss functions. This package
provides two generic ways to create such meta losses for specific
families of loss functions.

	Scaling a supervised loss by a constant real number. This is
done at compile time and can in some situations even lead to
simpler code (e.g. in the case of the derivative for a
L2DistLoss)

	Weighting the classes of a margin-based loss differently in
order to better deal with unbalanced binary classification
problems.

Scaling a Supervised Loss

It is quite common in machine learning courses to define the
least squares loss as \frac{1}{2} (\hat{y} - y)^2, while this
package implements that type of loss as an L_2 distance loss
using (\hat{y} - y)^2, i.e. without the constant scale
factor.

For situations in which one wants a scaled version of an existing
loss type, we provide the concept of a scaled loss. The
difference is literally only a constant real number that gets
multiplied to the existing implementation of the loss function
(and derivatives).

scaled

julia> lsloss = 1/2 * L2DistLoss()
ScaledDistanceLoss{LPDistLoss{2},0.5}(LPDistLoss{2}())

julia> value(L2DistLoss(), 0.0, 4.0)
16.0

julia> value(lsloss, 0.0, 4.0)
8.0

While the resulting loss is of the same basic family as the
original loss (i.e. margin-based or distance-based), it is not a
sub-type of it.

julia> typeof(lsloss) <: DistanceLoss
true

julia> typeof(lsloss) <: L2DistLoss
false

As you have probably noticed, the constant scale factor gets
promoted to a type-parameter. This can be quite an overhead when
done on the fly every time the loss value is computed. To avoid
this one can make use of Val to specify the scale factor in a
type-stable manner.

julia> lsloss = scaled(L2DistLoss(), Val(0.5))
ScaledDistanceLoss{LPDistLoss{2},0.5}(LPDistLoss{2}())

Storing the scale factor as a type-parameter instead of a member
variable has some nice advantages. For one it makes it possible
to define new types of losses using simple type-aliases.

julia> const LeastSquaresLoss = LossFunctions.ScaledDistanceLoss{L2DistLoss,0.5}
ScaledDistanceLoss{LPDistLoss{2},0.5}

julia> value(LeastSquaresLoss(), 0.0, 4.0)
8.0

Furthermore, it allows the compiler to do some quite convenient
optimizations if possible. For example the compiler is able to
figure out that the derivative simplifies for our newly defined
LeastSquaresLoss, because 1/2 * 2 cancels each other.
This is accomplished using the power of @fastmath.

julia> @code_llvm deriv(L2DistLoss(), 0.0, 4.0)
define double @julia_deriv_71652(double, double) #0 {
top:
 %2 = fsub double %1, %0
 %3 = fmul double %2, 2.000000e+00
 ret double %3
}

julia> @code_llvm deriv(LeastSquaresLoss(), 0.0, 4.0)
define double @julia_deriv_71659(double, double) #0 {
top:
 %2 = fsub double %1, %0
 ret double %2
}

Reweighting a Margin Loss

It is not uncommon in classification scenarios to find yourself
working with in-balanced data sets, where one class has much more
observations than the other one. There are different strategies
to deal with this kind of problem. The approach that this package
provides is to weight the loss for the classes differently. This
basically means that we penalize mistakes in one class more than
mistakes in the other class. More specifically we scale the loss
of the positive class by the weight-factor w and the loss
of the negative class with 1-w.

if target > 0
 w * loss(target, output)
else
 (1-w) * loss(target, output)
end

Instead of providing special functions to compute a
class-weighted loss, we instead expose a generic way to create
new weighted versions of already existing unweighted losses. This
way, every existing subtype of MarginLoss can be
re-weighted arbitrarily. Furthermore, it allows every algorithm
that expects a binary loss to work with weighted binary losses as
well.

weightedloss

julia> myloss = weightedloss(HingeLoss(), 0.8)
WeightedBinaryLoss{L1HingeLoss,0.8}(L1HingeLoss())

julia> value(myloss, 1.0, -4.0) # positive class
4.0

julia> value(HingeLoss(), 1.0, -4.0)
5.0

julia> value(myloss, -1.0, 4.0) # negative class
0.9999999999999998

julia> value(HingeLoss(), -1.0, 4.0)
5.0

Note that the scaled version of a margin-based loss does not
anymore belong to the family of margin-based losses itself. In
other words the resulting loss is neither a subtype of
MarginLoss, nor of the original type of loss.

julia> typeof(myloss) <: MarginLoss
false

julia> typeof(myloss) <: HingeLoss
false

Similar to scaled losses, the constant weight factor gets
promoted to a type-parameter. This can be quite an overhead when
done on the fly every time the loss value is computed. To avoid
this one can make use of Val to specify the scale factor in a
type-stable manner.

julia> myloss = weightedloss(HingeLoss(), Val(0.8))
WeightedBinaryLoss{L1HingeLoss,0.8}(L1HingeLoss())

Storing the scale factor as a type-parameter instead of a member
variable has a nice advantage. It makes it possible to define new
types of losses using simple type-aliases.

julia> const MyWeightedHingeLoss = LossFunctions.WeightedBinaryLoss{HingeLoss,0.8}
WeightedBinaryLoss{L1HingeLoss,0.8}

julia> value(MyWeightedHingeLoss(), 1.0, -4.0)
4.0

Getting Started

LossFunctions.jl is the result of a collaborative effort to
design and implement an efficient but also convenient-to-use
Julia [https://julialang.org] library for, well, loss functions.
As such, this package implements the functionality needed to
query various properties about a loss function (such as
convexity), as well as a number of methods to compute its value,
derivative, and second derivative for single observations or
arrays of observations.

In this section we will provide a condensed overview of the
package. In order to keep this overview concise, we will not
discuss any background information or theory on the losses here
in detail.

Installation

To install
LossFunctions.jl [https://github.com/JuliaML/LossFunctions.jl],
start up Julia and type the following code-snipped into the REPL.
It makes use of the native Julia package manger.

using Pkg
Pkg.add("LossFunctions")

Overview

Let us take a look at a few examples to get a feeling of how one
can use this library. This package is registered in the Julia
package ecosystem. Once installed the package can be imported
as usual.

using LossFunctions

Typically, the losses we work with in Machine Learning are
multivariate functions of two variables, the true target
y, which represents the “ground truth” (i.e. correct
answer), and the predicted output \hat{y}, which is
what our model thinks the truth is. All losses that can be
expressed in this way will be referred to as supervised losses.
The true targets are often expected to be of a specific set (e.g.
\{1,-1\} in classification), which we will refer to as
Y, while the predicted outputs may be any real number.
So for our purposes we can define a supervised loss as follows

L : Y \times \mathbb{R} \rightarrow [0,\infty)

Such a loss function takes these two variables as input and
returns a value that quantifies how “bad” our prediction is
in comparison to the truth. In other words: the lower the
loss, the better the prediction.

From an implementation perspective, we should point out that all
the concrete loss “functions” that this package provides are
actually defined as immutable types, instead of native Julia
functions. We can compute the value of some type of loss using
the function value. Let us start with an example of how
to compute the loss of a single observation (i.e. two numbers).

loss y ŷ
julia> value(L2DistLoss(), 1.0, 0.5)
0.25

Calling the same function using arrays instead of numbers will
return the element-wise results, and thus basically just serve as
a wrapper for broadcast (which by the way is also supported).

julia> true_targets = [1, 0, -2];

julia> pred_outputs = [0.5, 2, -1];

julia> value(L2DistLoss(), true_targets, pred_outputs)
3-element Array{Float64,1}:
 0.25
 4.0
 1.0

Alternatively, one can also use an instance of a loss just like
one would use any other Julia function. This can make the code
significantly more readable while not impacting performance, as
it is a zero-cost abstraction (i.e. it compiles down to the same
code).

julia> loss = L2DistLoss()
LossFunctions.LPDistLoss{2}()

julia> loss(true_targets, pred_outputs) # same result as above
3-element Array{Float64,1}:
 0.25
 4.0
 1.0

julia> loss(1, 0.5f0) # single observation
0.25f0

If you are not actually interested in the element-wise results
individually, but some accumulation of those (such as mean or
sum), you can additionally specify an average mode. This will
avoid allocating a temporary array and directly compute the
result.

julia> value(L2DistLoss(), true_targets, pred_outputs, AvgMode.Sum())
5.25

julia> value(L2DistLoss(), true_targets, pred_outputs, AvgMode.Mean())
1.75

Aside from these standard unweighted average modes, we also
provide weighted alternatives. These expect a weight-factor for
each observation in the predicted outputs and so allow to give
certain observations a stronger influence over the result.

julia> value(L2DistLoss(), true_targets, pred_outputs, AvgMode.WeightedSum([2,1,1]))
5.5

julia> value(L2DistLoss(), true_targets, pred_outputs, AvgMode.WeightedMean([2,1,1]))
1.375

We do not restrict the targets and outputs to be vectors, but
instead allow them to be arrays of any arbitrary shape. The shape
of an array may or may not have an interpretation that is
relevant for computing the loss. Consequently, those methods that
don’t require this information can be invoked using the same
method signature as before, because the results are simply
computed element-wise or accumulated.

julia> A = rand(2,3)
2×3 Array{Float64,2}:
 0.0939946 0.97639 0.568107
 0.183244 0.854832 0.962534

julia> B = rand(2,3)
2×3 Array{Float64,2}:
 0.0538206 0.77055 0.996922
 0.598317 0.72043 0.912274

julia> value(L2DistLoss(), A, B)
2×3 Array{Float64,2}:
 0.00161395 0.0423701 0.183882
 0.172286 0.0180639 0.00252607

julia> value(L2DistLoss(), A, B, AvgMode.Sum())
0.420741920634

These methods even allow arrays of different dimensionality, in
which case broadcast is performed. This also applies to computing
the sum and mean, in which case we use custom broadcast
implementations that avoid allocating a temporary array.

julia> value(L2DistLoss(), rand(2), rand(2,2))
2×2 Array{Float64,2}:
 0.228077 0.597212
 0.789808 0.311914

julia> value(L2DistLoss(), rand(2), rand(2,2), AvgMode.Sum())
0.0860658081865589

That said, it is possible to explicitly specify which dimension
denotes the observations. This is particularly useful for
multivariate regression where one could want to accumulate the
loss per individual observation.

julia> value(L2DistLoss(), A, B, AvgMode.Sum(), ObsDim.First())
2-element Array{Float64,1}:
 0.227866
 0.192876

julia> value(L2DistLoss(), A, B, AvgMode.Sum(), ObsDim.Last())
3-element Array{Float64,1}:
 0.1739
 0.060434
 0.186408

julia> value(L2DistLoss(), A, B, AvgMode.WeightedSum([2,1]), ObsDim.First())
0.648608280735

All these function signatures of value also apply for
computing the derivatives using deriv and the second
derivatives using deriv2.

julia> true_targets = [1, 0, -2];

julia> pred_outputs = [0.5, 2, -1];

julia> deriv(L2DistLoss(), true_targets, pred_outputs)
3-element Array{Float64,1}:
 -1.0
 4.0
 2.0

julia> deriv2(L2DistLoss(), true_targets, pred_outputs)
3-element Array{Float64,1}:
 2.0
 2.0
 2.0

Additionally, we provide mutating versions for the subset of
methods that return an array. These have the same function
signatures with the only difference of requiring an additional
parameter as the first argument. This variable should always be
the preallocated array that is to be used as storage.

julia> buffer = zeros(3)
3-element Array{Float64,1}:
 0.0
 0.0
 0.0

julia> deriv!(buffer, L2DistLoss(), true_targets, pred_outputs)
3-element Array{Float64,1}:
 -1.0
 4.0
 2.0

Getting Help

To get help on specific functionality you can either look up the
information here, or if you prefer you can make use of Julia’s
native doc-system.
The following example shows how to get additional information
on L1HingeLoss within Julia’s REPL:

?L1HingeLoss

search: L1HingeLoss SmoothedL1HingeLoss

 L1HingeLoss <: MarginLoss

 The hinge loss linearly penalizes every predicition where the resulting
 agreement < 1 . It is Lipschitz continuous and convex, but not strictly
 convex.

 L(y, ŷ) = max(0, 1 - y⋅ŷ)

 Lossfunction Derivative
 ┌────────────┬────────────┐ ┌────────────┬────────────┐
 3 │'\. │ 0 │ ┌------│
 │ ''_ │ │ | │
 │ \. │ │ | │
 │ '. │ │ | │
 L │ ''_ │ L' │ | │
 │ \. │ │ | │
 │ '. │ │ | │
 0 │ ''_______│ -1 │------------------┘ │
 └────────────┴────────────┘ └────────────┴────────────┘
 -2 2 -2 2
 y ⋅ ŷ y ⋅ ŷ

If you find yourself stuck or have other questions concerning the
package you can find us on the julialang slack or the Machine
Learning domain on discourse.julialang.org

	Machine Learning on Julialang [https://discourse.julialang.org/c/domain/ML]

If you encounter a bug or would like to participate in the
further development of this package come find us on Github.

	JuliaML/LossFunctions.jl [https://github.com/JuliaML/LossFunctions.jl]

Background and Motivation

In this section we will discuss the concept “loss function” in
more detail. We will start by introducing some terminology and
definitions. However, please note that we won’t attempt to give a
complete treatment of loss functions and the math involved
(unlike a book or a lecture could do). So this section won’t be a
substitution for proper literature on the topic. While we will
try to cover all the basics necessary to get a decent intuition
of the ideas involved, we do assume basic knowledge about Machine
Learning.

!!! warning

This section and its sub-sections serve soley as to explain
the underyling theory and concepts and further to motivate
the solution provided by this package. As such, this section
is **not** intended as a guide on how to apply this package.

Terminology

To start off, let us go over some basic terminology. In Machine
Learning (ML) we are primarily interested in automatically
learning meaningful patterns from data. For our purposes it
suffices to say that in ML we try to teach the computer to solve
a task by induction rather than by definition. This package is
primarily concerned with the subset of Machine Learning that
falls under the umbrella of Supervised Learning. There we are
interested in teaching the computer to predict a specific output
for some given input. In contrast to unsupervised learning the
teaching process here involves showing the computer what the
predicted output is supposed to be; i.e. the “true answer” if you
will.

How is this relevant for this package? Well, it implies that we
require some meaningful way to show the true answers to the
computer so that it can learn from “seeing” them. More
importantly, we have to somehow put the true answer into relation
to what the computer currently predicts the answer should be.
This would provide the basic information needed for the computer
to be able to improve; that is what loss functions are for.

When we say we want our computer to learn something that is able
to make predictions, we are talking about a prediction
function, denoted as h and sometimes called “fitted
hypothesis”, or “fitted model”. Note that we will avoid the term
hypothesis for the simple reason that it is widely used in
statistics for something completely different. We don’t consider
a prediction function as the same thing as a prediction
model, because we think of a prediction model as a family
of prediction functions. What that boils down to is that the
prediction model represents the set of possible prediction
functions, while the final prediction function is the chosen
function that best solves the prediction problem. So in a way a
prediction model can be thought of as the manifestation of our
assumptions about the problem, because it restricts the solution
to a specific family of functions. For example a linear
prediction model for two features represents all possible linear
functions that have two coefficients. A prediction function would
in that scenario be a concrete linear function with a particular
fixed set of coefficients.

The purpose of a prediction function is to take some input and
produce a corresponding output. That output should be as faithful
as possible to the true answer. In the context of this package we
will refer to the “true answer” as the true target, or short
“target”. During training, and only during training, inputs and
targets can both be considered as part of our data set. We say
“only during training” because in a production setting we don’t
actually have the targets available to us (otherwise there would
be no prediction problem to solve in the first place). In essence
we can think of our data as two entities with a 1-to-1 connection
in each observation, the inputs, which we call features, and
the corresponding desired outputs, which we call true targets.

Let us be a little more concrete with the two terms we really
care about in this package.

	True Targets:

A true target (singular) represents the “desired” output for
the input features of a single observation. The targets are
often referred to as “ground truth” and we will denote a single
target as y \in Y. While y can be a scalar or some
array, the key is that it represents the target of a single
observation. When we talk about an array (e.g. a vector) of
multiple targets, we will print it in bold as
\mathbf{y}. What the set Y is will depend on the
subdomain of supervised learning that you are working in.

	Real-valued Regression: Y \subseteq \mathbb{R}.

	Multioutput Regression: Y \subseteq \mathbb{R}^k.

	Margin-based Classification: Y = \{1,-1\}.

	Probabilistic Classification: Y = \{1,0\}.

	Multiclass Classification: Y = \{1,2,\dots,k\}.

See
MLLabelUtils [https://mllabelutilsjl.readthedocs.io/en/latest/api/targets.html]
for more information on classification targets.

	Predicted Outputs:

A predicted output (singular) is the result of our prediction
function given the features of some observation. We will denote
a single output as \hat{y} \in \mathbb{R} (pronounced as
“why hat”). When we talk about an array of outputs for multiple
observations, we will print it in bold as \mathbf{\hat{y}}.
Note something unintuitive but important: The variables y
and \hat{y} don’t have to be of the same set. Even in a
classification setting where y \in \{1,-1\}, it is typical
that \hat{y} \in \mathbb{R}.

The fact that in classification the predictions can be
fundamentally different than the targets is important to know.
The reason for restricting the targets to specific numbers when
doing classification is mathematical convenience for loss
functions. So loss functions have this knowledge build in.

In a classification setting, the predicted outputs and the true
targets are usually of different form and type. For example, in
margin-based classification it could be the case that the target
y=-1 and the predicted output \hat{y} = -1000. It
would seem that the prediction is not really reflecting the
target properly, but in this case we would actually have a
perfectly correct prediction. This is because in margin-based
classification the main thing that matters about the predicted
output is that the sign agrees with the true target.

Even though we talked about prediction functions and features,
we will see that for computing loss functions all we really care
about are the true targets and the predicted outputs, regardless
of how the outputs were produced.

Definitions

We base most of our definitions on the work presented in
[^STEINWART2008]. Note, however, that we will adapt or simplify
in places at our discretion. We do this in situations where it
makes sense to us considering the scope of this package or
because of implementation details.

Let us again consider the term prediction function. More
formally, a prediction function h is a function that maps an
input from the feature space X to the real numbers
\mathbb{R}. So invoking h with some features x \in X
will produce the prediction \hat{y} \in \mathbb{R}.

h : X \rightarrow \mathbb{R}

This resulting prediction \hat{y} is what we want to compare
to the target y in order to asses how bad the prediction is.
The function we use for such an assessment will be of a family of
functions we refer to as supervised losses. We think of a
supervised loss as a function of two parameters, the true
target y \in Y and the predicted output \hat{y} \in \mathbb{R}. The result of computing such a loss will be a
non-negative real number. The larger the value of the loss, the
worse the prediction.

L : Y \times \mathbb{R} \rightarrow [0,\infty)

Note a few interesting things about supervised loss functions.

	The absolute value of a loss is often (but not always)
meaningless and doesn’t offer itself to a useful
interpretation. What we usually care about is that the loss is
as small as it can be.

	In general the loss function we use is not the function we are
actually interested in minimizing. Instead we are minimizing
what is referred to as a “surrogate”. For binary classification
for example we are really interested in minimizing the ZeroOne
loss (which simply counts the number of misclassified
predictions). However, that loss is difficult to minimize given
that it is not convex nor continuous. That is why we use other
loss functions, such as the hinge loss or logistic loss. Those
losses are “classification calibrated”, which basically means
they are good enough surrogates to solve the same problem.
Additionally, surrogate losses tend to have other nice
properties.

	For classification it does not need to be the case that a
“correct” prediction has a loss of zero. In fact some
classification calibrated losses are never truly zero.

There are two sub-families of supervised loss-functions that are
of particular interest, namely margin-based losses and
distance-based losses. These two categories of loss functions
are especially useful for the two basic sub-domains of supervised
learning: Classification and Regression.

Margin-based Losses for Classification

Margin-based losses are mainly utilized for binary classification
problems where the goal is to predict a categorical value. They
assume that the set of targets Y is restricted to
Y = \{1,-1\}. These two possible values for the target
denote the positive class in the case of y = 1, and the
negative class in the case of y = -1. In contrast to
other formalism, they do not natively provide probabilities as
output.

More formally, we call a supervised loss function
L : Y \times \mathbb{R} \rightarrow [0, \infty)
margin-based if there exists a representing function
\psi : \mathbb{R} \rightarrow [0, \infty) such that

L(y, \hat{y}) = \psi (y \cdot \hat{y}), \qquad y \in Y, \hat{y} \in \mathbb{R}

!!! note

Throughout the codebase we refer to the result of
``y \cdot \hat{y}`` as *agreement*. The discussion that lead
to this convention can be found
[issue #9](https://github.com/JuliaML/LossFunctions.jl/issues/9#issuecomment-190321549)

Distance-based Losses for Regression

Distance-based losses are usually used in regression settings
where the goal is to predict some real valued variable. The goal
there is that the prediction is as close as possible to the true
target. In such a scenario it is quite sensible to penalize the
distance between the prediction and the target in some way.

More formally, a supervised loss function
L : Y \times \mathbb{R} \rightarrow [0, \infty) is said to be
distance-based, if there exists a representing function
\psi : \mathbb{R} \rightarrow [0, \infty) satisfying
\psi (0) = 0 and

L(y, \hat{y}) = \psi (\hat{y} - y), \qquad y \in Y, \hat{y} \in \mathbb{R}

!!! note

In the literature that this package is partially based on,
the convention for the distance-based losses is that
``r = y - \hat{y}`` (see [^STEINWART2008] p. 38). We chose to
diverge from this definition because it would force a
difference of the sign between the results for the unary and
the binary version of the derivative. That difference would
be a introduced by the chain rule, since the inner derivative
would result in
``\frac{\partial}{\partial \hat{y}} (y - \hat{y}) = -1``.

Alternative Viewpoints

While the term “loss function” is usually used in the same
context throughout the literature, the specifics differ from one
textbook to another. For that reason we would like to mention
alternative definitions of what a “loss function” is. Note that
we will only give a partial and thus very simplified description
of these. Please refer to the listed sources for more specifics.

In [^SHALEV2014] the authors consider a loss function as a
higher-order function of two parameters, a prediction model and
an observation tuple. So in that definition a loss function and
the prediction function are tightly coupled. This way of thinking
about it makes a lot of sense, considering the process of how a
prediction model is usually fit to the data. For gradient descent
to do its job it needs the, well, gradient of the empirical risk.
This gradient is computed using the chain rule for the inner loss
and the prediction model. If one views the loss and the
prediction model as one entity, then the gradient can sometimes
be simplified immensely. That said, we chose to not follow this
school of thought, because from a software-engineering standpoint
it made more sense to us to have small modular pieces. So in our
implementation the loss functions don’t need to know that
prediction functions even exist. This makes the package easier to
maintain, test, and reason with. Given Julia’s ability for
multiple dispatch we don’t even lose the ability to simplify the
gradient if need be.

References

[^STEINWART2008]:

Steinwart, Ingo, and Andreas Christmann. ["Support vector machines"](https://www.springer.com/us/book/9780387772417). Springer Science & Business Media, 2008.

[^SHALEV2014]:

Shalev-Shwartz, Shai, and Shai Ben-David. ["Understanding machine learning: From theory to algorithms"](http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/). Cambridge University Press, 2014.

 DocTestSetup = quote
 using LossFunctions
end

<div class="loss-docs">

Distance-based Losses

Loss functions that belong to the category “distance-based” are
primarily used in regression problems. They utilize the numeric
difference between the predicted output and the true target as a
proxy variable to quantify the quality of individual predictions.

This section lists all the subtypes of DistanceLoss
that are implemented in this package.

LPDistLoss

LPDistLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \mid r \mid ^p | L'(r) = p \cdot r \cdot \mid r \mid ^{p-2}

L1DistLoss

L1DistLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \mid r \mid | L'(r) = \textrm{sign}(r)

L2DistLoss

L2DistLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \mid r \mid ^2 | L'(r) = 2 r

LogitDistLoss

LogitDistLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = - \ln \frac{4 e^r}{(1 + e^r)^2} | L'(r) = \tanh \left(\frac{r}{2} \right)

HuberLoss

HuberLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \begin{cases} \frac{r^2}{2} & \quad \text{if } \mid r \mid \le \alpha \\ \alpha \mid r \mid - \frac{\alpha^2}{2} & \quad \text{otherwise}\\ \end{cases} | L'(r) = \begin{cases} r & \quad \text{if } \mid r \mid \le \alpha \\ \alpha \cdot \textrm{sign}(r) & \quad \text{otherwise}\\ \end{cases}

L1EpsilonInsLoss

L1EpsilonInsLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \max \{ 0, \mid r \mid - \epsilon \} | L'(r) = \begin{cases} \frac{r}{ \mid r \mid } & \quad \text{if } \epsilon \le \mid r \mid \\ 0 & \quad \text{otherwise}\\ \end{cases}

L2EpsilonInsLoss

L2EpsilonInsLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \max \{ 0, \mid r \mid - \epsilon \}^2 | L'(r) = \begin{cases} 2 \cdot \textrm{sign}(r) \cdot \left(\mid r \mid - \epsilon \right) & \quad \text{if } \epsilon \le \mid r \mid \\ 0 & \quad \text{otherwise}\\ \end{cases}

PeriodicLoss

PeriodicLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = 1 - \cos \left (\frac{2 r \pi}{c} \right) | L'(r) = \frac{2 \pi}{c} \cdot \sin \left(\frac{2r \pi}{c} \right)

QuantileLoss

QuantileLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(r) = \begin{cases} \left(1 - \tau \right) r & \quad \text{if } r \ge 0 \\ - \tau r & \quad \text{otherwise} \\ \end{cases} | L(r) = \begin{cases} 1 - \tau & \quad \text{if } r \ge 0 \\ - \tau & \quad \text{otherwise} \\ \end{cases}

!!! note

You may note that our definition of the QuantileLoss looks
different to what one usually sees in other literature. The
reason is that we have to correct for the fact that in our
case ``r = \hat{y} - y`` instead of
``r_{\textrm{usual}} = y - \hat{y}``, which means that
our definition relates to that in the manner of
``r = -1 * r_{\textrm{usual}}``.

</div>

 DocTestSetup = quote
 using LossFunctions
end

<div class="loss-docs">

Margin-based Losses

Margin-based loss functions are particularly useful for binary
classification. In contrast to the distance-based losses, these
do not care about the difference between true target and
prediction. Instead they penalize predictions based on how well
they agree with the sign of the target.

This section lists all the subtypes of MarginLoss
that are implemented in this package.

ZeroOneLoss

ZeroOneLoss

Lossfunction | Derivative
————-|——————
[image: loss] | [image: deriv]
L(a) = \begin{cases} 1 & \quad \text{if } a < 0 \\ 0 & \quad \text{otherwise}\\ \end{cases} | L'(a) = 0

PerceptronLoss

PerceptronLoss

Lossfunction | Derivative
————-|——————
[image: loss] | [image: deriv]
L(a) = \max \{ 0, - a \} | L'(a) = \begin{cases} -1 & \quad \text{if } a < 0 \\ 0 & \quad \text{otherwise}\\ \end{cases}

L1HingeLoss

L1HingeLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = \max \{ 0, 1 - a \} | L'(a) = \begin{cases} -1 & \quad \text{if } a < 1 \\ 0 & \quad \text{otherwise}\\ \end{cases}

SmoothedL1HingeLoss

SmoothedL1HingeLoss

Lossfunction | Derivative
————-|——————
[image: loss] | [image: deriv]
L(a) = \begin{cases} \frac{1}{2 \gamma} \cdot \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge 1 - \gamma \\ 1 - \frac{\gamma}{2} - a & \quad \text{otherwise}\\ \end{cases} | L'(a) = \begin{cases} - \frac{1}{\gamma} \cdot \max \{ 0, 1 - a \} & \quad \text{if } a \ge 1 - \gamma \\ - 1 & \quad \text{otherwise}\\ \end{cases}

ModifiedHuberLoss

ModifiedHuberLoss

Lossfunction | Derivative
————-|——————
[image: loss] | [image: deriv]
L(a) = \begin{cases} \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge -1 \\ - 4 a & \quad \text{otherwise}\\ \end{cases} | L'(a) = \begin{cases} - 2 \cdot \max \{ 0, 1 - a \} & \quad \text{if } a \ge -1 \\ - 4 & \quad \text{otherwise}\\ \end{cases}

DWDMarginLoss

DWDMarginLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = \begin{cases} 1 - a & \quad \text{if } a \le \frac{q}{q+1} \\ \frac{1}{a^q} \frac{q^q}{(q+1)^{q+1}} & \quad \text{otherwise}\\ \end{cases} | L'(a) = \begin{cases} - 1 & \quad \text{if } a \le \frac{q}{q+1} \\ - \frac{1}{a^{q+1}} \left(\frac{q}{q+1} \right)^{q+1} & \quad \text{otherwise}\\ \end{cases}

L2MarginLoss

L2MarginLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = {\left(1 - a \right)}^2 | L'(a) = 2 \left(a - 1 \right)

L2HingeLoss

L2HingeLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = \max \{ 0, 1 - a \} ^2 | L'(a) = \begin{cases} 2 \left(a - 1 \right) & \quad \text{if } a < 1 \\ 0 & \quad \text{otherwise}\\ \end{cases}

LogitMarginLoss

LogitMarginLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = \ln (1 + e^{-a}) | L'(a) = - \frac{1}{1 + e^a}

ExpLoss

ExpLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = e^{-a} | L'(a) = - e^{-a}

SigmoidLoss

SigmoidLoss

Lossfunction | Derivative
————-|————
[image: loss] | [image: deriv]
L(a) = 1 - \tanh(a) | L'(a) = - \textrm{sech}^2 (a)

</div>

 DocTestSetup = quote
 using LossFunctions
end

Efficient Sum and Mean

In many situations we are not really that interested in the
individual loss values (or derivatives) of each observation, but
the sum or mean of them; be it weighted or unweighted. For
example, by computing the unweighted mean of the loss for our
training set, we would effectively compute what is known as the
empirical risk. This is usually the quantity (or an important
part of it) that we are interesting in minimizing.

When we say “weighted” or “unweighted”, we are referring to
whether we are explicitly specifying the influence of individual
observations on the result. “Weighing” an observation is achieved
by multiplying its value with some number (i.e. the “weight” of
that observation). As a consequence that weighted observation
will have a stronger or weaker influence on the result. In order
to weigh an observation we have to know which array dimension (if
there are more than one) denotes the observations. On the other
hand, for computing an unweighted result we don’t actually need
to know anything about the meaning of the array dimensions, as
long as the targets and the outputs are of compatible
shape and size.

The naive way to compute such an unweighted reduction, would be
to call mean or sum on the result of the element-wise
operation. The following code snipped show an example of that. We
say “naive”, because it will not give us an acceptable
performance.

julia> value(L1DistLoss(), [1.,2,3], [2,5,-2])
3-element Array{Float64,1}:
 1.0
 3.0
 5.0

julia> sum(value(L1DistLoss(), [1.,2,3], [2,5,-2])) # WARNING: Bad code
9.0

This works as expected, but there is a price for it. Before the
sum can be computed, value will allocate a temporary
array and fill it with the element-wise results. After that,
sum will iterate over this temporary array and accumulate the
values accordingly. Bottom line: we allocate temporary memory
that we don’t need in the end and could avoid.

For that reason we provide special methods that compute the
common accumulations efficiently without allocating temporary
arrays. These methods can be invoked using an additional
parameter which specifies how the values should be accumulated /
averaged. The type of this parameter has to be a subtype of
AverageMode.

Average Modes

Before we discuss these memory-efficient methods, let us briefly
introduce the available average mode types. We provide a number
of different averages modes, all of which are contained within
the namespace AvgMode. An instance of such type can then be
used as additional parameter to value, deriv,
and deriv2, as we will see further down.

It follows a list of available average modes. Each of which with
a short description of what their effect would be when used as an
additional parameter to the functions mentioned above.

AvgMode.None
AvgMode.Sum
AvgMode.Mean
AvgMode.WeightedSum
AvgMode.WeightedMean

Unweighted Sum and Mean

As hinted before, we provide special memory efficient methods for
computing the sum or the mean of the element-wise (or
broadcasted) results of value, deriv, and
deriv2. These methods avoid the allocation of a
temporary array and instead compute the result directly.

value(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode)

The exact same method signature is also implemented for
deriv and deriv2 respectively.

deriv(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode)
deriv2(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode)

Sum and Mean per Observation

When the targets and predicted outputs are multi-dimensional
arrays instead of vectors, we may be interested in accumulating
the values over all but one dimension. This is typically the case
when we work in a multi-variable regression setting, where each
observation has multiple outputs and thus multiple targets. In
those scenarios we may be more interested in the average loss for
each observation, rather than the total average over all the
data.

To be able to accumulate the values for each observation
separately, we have to know and explicitly specify the dimension
that denotes the observations. For that purpose we provide the
types contained in the namespace ObsDim.

value(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)

Consider the following two matrices, targets and outputs.
We will fill them with some generated example values in order to
better understand the effects of later operations.

julia> targets = reshape(1:8, (2, 4)) ./ 8
2×4 Array{Float64,2}:
 0.125 0.375 0.625 0.875
 0.25 0.5 0.75 1.0

julia> outputs = reshape(1:2:16, (2, 4)) ./ 8
2×4 Array{Float64,2}:
 0.125 0.625 1.125 1.625
 0.375 0.875 1.375 1.875

There are two ways to interpret the shape of these arrays if one
dimension is supposed to denote the observations. The first
interpretation would be to say that the first dimension denotes
the observations. Thus this data would consist of two
observations with four variables each.

julia> value(L1DistLoss(), targets, outputs, AvgMode.Sum(), ObsDim.First())
2-element Array{Float64,1}:
 1.5
 2.0

julia> value(L1DistLoss(), targets, outputs, AvgMode.Mean(), ObsDim.First())
2-element Array{Float64,1}:
 0.375
 0.5

The second possible interpretation would be to say that the
second/last dimension denotes the observations. In that case our
data consists of four observations with two variables each.

julia> value(L1DistLoss(), targets, outputs, AvgMode.Sum(), ObsDim.Last())
4-element Array{Float64,1}:
 0.125
 0.625
 1.125
 1.625

julia> value(L1DistLoss(), targets, outputs, AvgMode.Mean(), ObsDim.Last())
4-element Array{Float64,1}:
 0.0625
 0.3125
 0.5625
 0.8125

Because this method returns a vector of values, we also provide a
mutating version that can make use a preallocated vector to write
the results into.

value!(::AbstractArray, ::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)

Naturally we also provide both of these methods for
deriv and deriv2 respectively.

deriv(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)
deriv!(::AbstractArray, ::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)
deriv2(::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)
deriv2!(::AbstractArray, ::Loss, ::AbstractArray, ::AbstractArray, ::LossFunctions.AverageMode, ::LearnBase.ObsDimension)

Weighted Sum and Mean

Up to this point, all the averaging was performed in an
unweighted manner. That means that each observation was treated
as equal and had thus the same potential influence on the result.
In this sub-section we will consider the situations in which we
do want to explicitly specify the influence of each observation
(i.e. we want to weigh them). When we say we “weigh” an
observation, what it effectively boils down to is multiplying the
result for that observation (i.e. the computed loss or
derivative) with some number. This is done for every observation
individually.

To get a better understand of what we are talking about, let us
consider performing a weighting scheme manually. The following
code will compute the loss for three observations, and then
multiply the result of the second observation with the number
2, while the other two remains as they are. If we then sum up
the results, we will see that the loss of the second observation
was effectively counted twice.

julia> result = value.(L1DistLoss(), [1.,2,3], [2,5,-2]) .* [1,2,1]
3-element Array{Float64,1}:
 1.0
 6.0
 5.0

julia> sum(result)
12.0

The point of weighing observations is to inform the learning
algorithm we are working with, that it is more important to us to
predict some observations correctly than it is for others. So
really, the concrete weight-factor matters less than the ratio
between the different weights. In the example above the second
observation was thus considered twice as important as any of the
other two observations.

In the case of multi-dimensional arrays the process isn’t that
simple anymore. In such a scenario, computing the weighted sum
(or weighted mean) can be thought of as having an additional
step. First we either compute the sum or (unweighted) average for
each observation (which results in a vector), and then we compute
the weighted sum of all observations.

The following code snipped demonstrates how to compute the
AvgMode.WeightedSum([2,1]) manually. This is not meant as
an example of how to do it, but simply to show what is happening
qualitatively. In this example we assume that we are working in a
multi-variable regression setting, in which our data set has four
observations with two target-variables each.

julia> targets = reshape(1:8, (2, 4)) ./ 8
2×4 Array{Float64,2}:
 0.125 0.375 0.625 0.875
 0.25 0.5 0.75 1.0

julia> outputs = reshape(1:2:16, (2, 4)) ./ 8
2×4 Array{Float64,2}:
 0.125 0.625 1.125 1.625
 0.375 0.875 1.375 1.875

julia> # WARNING: BAD CODE - ONLY FOR ILLUSTRATION

julia> tmp = sum(value.(L1DistLoss(), targets, outputs), dims=2) # assuming ObsDim.First()
2×1 Array{Float64,2}:
 1.5
 2.0

julia> sum(tmp .* [2, 1]) # weigh 1st observation twice as high
5.0

To manually compute the result for AvgMode.WeightedMean([2,1])
we follow a similar approach, but use the normalized weight
vector in the last step.

julia> using Statistics # for access to "mean"

julia> # WARNING: BAD CODE - ONLY FOR ILLUSTRATION

julia> tmp = mean(value.(L1DistLoss(), targets, outputs), dims=2) # ObsDim.First()
2×1 Array{Float64,2}:
 0.375
 0.5

julia> sum(tmp .* [0.6666, 0.3333]) # weigh 1st observation twice as high
0.416625

Note that you can specify explicitly if you want to normalize the
weight vector. That option is supported for computing the
weighted sum, as well as for computing the weighted mean. See the
documentation for AvgMode.WeightedSum and
AvgMode.WeightedMean for more information.

The code-snippets above are of course very inefficient, because
they allocate (multiple) temporary arrays. We only included them
to demonstrate what is happening in terms of desired result /
effect. For doing those computations efficiently we provide
special methods for value, deriv,
deriv2 and their mutating counterparts.

julia> value(L1DistLoss(), [1.,2,3], [2,5,-2], AvgMode.WeightedSum([1,2,1]))
12.0

julia> value(L1DistLoss(), [1.,2,3], [2,5,-2], AvgMode.WeightedMean([1,2,1]))
3.0

julia> value(L1DistLoss(), targets, outputs, AvgMode.WeightedSum([2,1]), ObsDim.First())
5.0

julia> value(L1DistLoss(), targets, outputs, AvgMode.WeightedMean([2,1]), ObsDim.First())
0.4166666666666667

We also provide this functionality for deriv and
deriv2 respectively.

julia> deriv(L2DistLoss(), [1.,2,3], [2,5,-2], AvgMode.WeightedSum([1,2,1]))
4.0

julia> deriv(L2DistLoss(), [1.,2,3], [2,5,-2], AvgMode.WeightedMean([1,2,1]))
1.0

julia> deriv(L2DistLoss(), targets, outputs, AvgMode.WeightedSum([2,1]), ObsDim.First())
10.0

julia> deriv(L2DistLoss(), targets, outputs, AvgMode.WeightedMean([2,1]), ObsDim.First())
0.8333333333333334

 DocTestSetup = quote
 using LossFunctions
end

Working with Losses

Even though they are called loss “functions”, this package
implements them as immutable types instead of true Julia
functions. There are good reasons for that. For example it allows
us to specify the properties of losse functions explicitly (e.g.
isconvex(myloss)). It also makes for a more consistent API when
it comes to computing the value or the derivative. Some loss
functions even have additional parameters that need to be
specified, such as the \epsilon in the case of the
\epsilon-insensitive loss. Here, types allow for member
variables to hide that information away from the method
signatures.

In order to avoid potential confusions with true Julia functions,
we will refer to “loss functions” as “losses” instead. The
available losses share a common interface for the most part. This
section will provide an overview of the basic functionality that
is available for all the different types of losses. We will
discuss how to create a loss, how to compute its value and
derivative, and how to query its properties.

Instantiating a Loss

Losses are immutable types. As such, one has to instantiate one
in order to work with it. For most losses, the constructors do
not expect any parameters.

julia> L2DistLoss()
LPDistLoss{2}()

julia> HingeLoss()
L1HingeLoss()

We just said that we need to instantiate a loss in order to work
with it. One could be inclined to belief, that it would be more
memory-efficient to “pre-allocate” a loss when using it in more
than one place.

julia> loss = L2DistLoss()
LPDistLoss{2}()

julia> value(loss, 2, 3)
1

However, that is a common oversimplification. Because all losses
are immutable types, they can live on the stack and thus do not
come with a heap-allocation overhead.

Even more interesting in the example above, is that for such
losses as L2DistLoss, which do not have any constructor
parameters or member variables, there is no additional code
executed at all. Such singletons are only used for dispatch and
don’t even produce any additional code, which you can observe for
yourself in the code below. As such they are zero-cost
abstractions.

julia> v1(loss,t,y) = value(loss,t,y)

julia> v2(t,y) = value(L2DistLoss(),t,y)

julia> @code_llvm v1(loss, 2, 3)
define i64 @julia_v1_70944(i64, i64) #0 {
top:
 %2 = sub i64 %1, %0
 %3 = mul i64 %2, %2
 ret i64 %3
}

julia> @code_llvm v2(2, 3)
define i64 @julia_v2_70949(i64, i64) #0 {
top:
 %2 = sub i64 %1, %0
 %3 = mul i64 %2, %2
 ret i64 %3
}

On the other hand, some types of losses are actually more
comparable to whole families of losses instead of just a single
one. For example, the immutable type L1EpsilonInsLoss
has a free parameter \epsilon. Each concrete \epsilon
results in a different concrete loss of the same family of
epsilon-insensitive losses.

julia> L1EpsilonInsLoss(0.5)
L1EpsilonInsLoss{Float64}(0.5)

julia> L1EpsilonInsLoss(1)
L1EpsilonInsLoss{Float64}(1.0)

For such losses that do have parameters, it can make a slight
difference to pre-instantiate a loss. While they will live on the
stack, the constructor usually performs some assertions and
conversion for the given parameter. This can come at a slight
overhead. At the very least it will not produce the same exact
code when pre-instantiated. Still, the fact that they are immutable
makes them very efficient abstractions with little to no
performance overhead, and zero memory allocations on the heap.

Computing the Values

The first thing we may want to do is compute the loss for some
observation (singular). In fact, all losses are implemented on
single observations under the hood. The core function to compute
the value of a loss is value. We will see throughout the
documentation that this function allows for a lot of different
method signatures to accomplish a variety of tasks.

value(::SupervisedLoss, ::Number, ::Number)

It may be interesting to note, that this function also supports
broadcasting and all the syntax benefits that come with it. Thus,
it is quite simple to make use of preallocated memory for storing
the element-wise results.

julia> value.(L1DistLoss(), [1,2,3], [2,5,-2])
3-element Array{Int64,1}:
 1
 3
 5

julia> buffer = zeros(3); # preallocate a buffer

julia> buffer .= value.(L1DistLoss(), [1.,2,3], [2,5,-2])
3-element Array{Float64,1}:
 1.0
 3.0
 5.0

Furthermore, with the loop fusion changes that were introduced in
Julia 0.6, one can also easily weight the influence of each
observation without allocating a temporary array.

julia> buffer .= value.(L1DistLoss(), [1.,2,3], [2,5,-2]) .* [2,1,0.5]
3-element Array{Float64,1}:
 2.0
 3.0
 2.5

Even though broadcasting is supported, we do expose a vectorized
method natively. This is done mainly for API consistency reasons.
Internally it even uses broadcast itself, but it does provide the
additional benefit of a more reliable type-inference.

value(::SupervisedLoss, ::AbstractArray, ::AbstractArray)

We also provide a mutating version for the same reasons. It
even utilizes broadcast! underneath.

value!(::AbstractArray, ::SupervisedLoss, ::AbstractArray, ::AbstractArray)

Computing the 1st Derivatives

Maybe the more interesting aspect of loss functions are their
derivatives. In fact, most of the popular learning algorithm in
Supervised Learning, such as gradient descent, utilize the
derivatives of the loss in one way or the other during the
training process.

To compute the derivative of some loss we expose the function
deriv. It supports the same exact method signatures as
value. It may be interesting to note explicitly, that
we always compute the derivative in respect to the predicted
output, since we are interested in deducing in which direction
the output should change.

deriv(::SupervisedLoss, ::Number, ::Number)

Similar to value, this function also supports
broadcasting and all the syntax benefits that come with it. Thus,
one can make use of preallocated memory for storing the
element-wise derivatives.

julia> deriv.(L2DistLoss(), [1,2,3], [2,5,-2])
3-element Array{Int64,1}:
 2
 6
 -10

julia> buffer = zeros(3); # preallocate a buffer

julia> buffer .= deriv.(L2DistLoss(), [1.,2,3], [2,5,-2])
3-element Array{Float64,1}:
 2.0
 6.0
 -10.0

Furthermore, with the loop fusion changes that were introduced in
Julia 0.6, one can also easily weight the influence of each
observation without allocating a temporary array.

julia> buffer .= deriv.(L2DistLoss(), [1.,2,3], [2,5,-2]) .* [2,1,0.5]
3-element Array{Float64,1}:
 4.0
 6.0
 -5.0

While broadcast is supported, we do expose a vectorized method
natively. This is done mainly for API consistency reasons.
Internally it even uses broadcast itself, but it does provide the
additional benefit of a more reliable type-inference.

deriv(::SupervisedLoss, ::AbstractArray, ::AbstractArray)

We also provide a mutating version for the same reasons. It
even utilizes broadcast! underneath.

deriv!(::AbstractArray, ::SupervisedLoss, ::AbstractArray, ::AbstractArray)

It is also possible to compute the value and derivative at the
same time. For some losses that means less computation overhead.

value_deriv(::SupervisedLoss, ::Number, ::Number)

Computing the 2nd Derivatives

Additionally to the first derivative, we also provide the
corresponding methods for the second derivative through the
function deriv2. Note again, that we always compute the
derivative in respect to the predicted output.

deriv2(::SupervisedLoss, ::Number, ::Number)

Just like deriv and value, this function also
supports broadcasting and all the syntax benefits that come with
it. Thus, one can make use of preallocated memory for storing the
element-wise derivatives.

julia> deriv2.(LogitDistLoss(), [-0.5, 1.2, 3], [0.3, 2.3, -2])
3-element Array{Float64,1}:
 0.42781939304058886
 0.3747397590950412
 0.013296113341580313

julia> buffer = zeros(3); # preallocate a buffer

julia> buffer .= deriv2.(LogitDistLoss(), [-0.5, 1.2, 3], [0.3, 2.3, -2])
3-element Array{Float64,1}:
 0.42781939304058886
 0.3747397590950412
 0.013296113341580313

Furthermore deriv2 supports all the same method
signatures as deriv does.

deriv2(::SupervisedLoss, ::AbstractArray, ::AbstractArray)
deriv2!(::AbstractArray, ::SupervisedLoss, ::AbstractArray, ::AbstractArray)

Function Closures

In some circumstances it may be convenient to have the loss
function or its derivative as a proper Julia function. Instead of
exporting special function names for every implemented loss (like
l2distloss(...)), we provide the ability to generate a true
function on the fly for any given loss.

value_fun(::SupervisedLoss)
deriv_fun(::SupervisedLoss)
deriv2_fun(::SupervisedLoss)
value_deriv_fun(::SupervisedLoss)

Properties of a Loss

In some situations it can be quite useful to assert certain
properties about a loss-function. One such scenario could be when
implementing an algorithm that requires the loss to be strictly
convex or Lipschitz continuous.
Note that we will only skim over the defintions in most cases. A
good treatment of all of the concepts involved can be found in
either [^BOYD2004] or [^STEINWART2008].

[^BOYD2004]:

Stephen Boyd and Lieven Vandenberghe. ["Convex Optimization"](https://stanford.edu/~boyd/cvxbook/). Cambridge University Press, 2004.

[^STEINWART2008]:

Steinwart, Ingo, and Andreas Christmann. ["Support vector machines"](https://www.springer.com/us/book/9780387772417). Springer Science & Business Media, 2008.

This package uses functions to represent individual properties of
a loss. It follows a list of implemented property-functions
defined in LearnBase.jl [https://github.com/JuliaML/LearnBase.jl].

isconvex
isstrictlyconvex
isstronglyconvex
isdifferentiable
istwicedifferentiable
islocallylipschitzcont
islipschitzcont
isnemitski
isclipable
ismarginbased
isclasscalibrated
isdistancebased
issymmetric

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

