

Welcome to Lookit’s documentation!

The Lookit codebase [https://github.com/lookit/] contains two main repositories:

	lookit-api [https://github.com/lookit/lookit-api], a Django application that houses what were previously separate Experimenter and Lookit applications. Experimenter is a platform for designing and administering research studies, meant for researchers. The Lookit platform is participant-facing, where users can signup and take part in studies.

	ember-lookit-frameplayer [https://github.com/lookit/ember-lookit-frameplayer], an Ember app that runs studies in the web browser

The documentation you are reading now lives in lookit-docs [https://github.com/lookit/lookit-docs].

It has been jointly developed by MIT and the Center for Open Science [https://cos.io/].

Contents:

	Using Lookit: for researchers
	Getting started guide

	Other helpful resources

	Using the experimenter interface
	Logging in

	Managing Studies
	Viewing study list

	Creating a study

	Study detail page

	Study status

	Adding researchers to your study

	Editing researcher permissions on a study

	Deleting researcher permissions

	Study edit page

	Editing study structure

	Editing study type

	Viewing individual study responses

	Viewing all study responses

	Viewing demographics of study participants

	Viewing all study videos

	Managing your Organization
	Adding researchers to your organization

	Editing a researcher’s organization permissions

	Deleting a researcher’s organization permissions

	Setting study fields
	Name

	Image

	Short description

	Purpose

	Compensation

	Exit URL

	Participant eligibility description

	Criteria expression
	Query fields

	Criteria expression examples

	Characteristics and conditions

	Language codes

	Minimum and maximum age cutoffs

	Duration

	Researcher contact information

	Discoverable

	Build study

	Study type

	Building your experiment
	Preliminaries: JSON format

	Experiment structure

	Developing your study: how to try it out as you go

	Finding and using specific frames

	A Lookit study schema: general principles and instructions

	Randomizer frames
	Nested randomizers

	Conditional logic
	Example: eligibility survey

	Example: waiting for successful training

	Example: personalized story

	Example: debriefing text that depends on experimental condition

	Preparing your stimuli
	Audio and video files

	File formats

	Making dummy stimuli

	Directory structure

	Experiment data (non-video)
	What data can I access?

	Accessing experiment data

	Structure of session data

	Interpreting exp_data

	Consent manager
	Overview

	Managing consent rulings
	Making consent rulings

	Response statistics

	Withdrawn responses

	Using the API
	What is the API for?

	API Tips
	General

	API Formatting

	Content-Type

	Authentication

	Pagination

	Available Endpoints
	Children

	Demographic Data

	Feedback

	Organizations

	Responses

	Studies

	Users

	Developing new frames
	Setup for custom frame development
	Overview

	Django App steps

	Ember App steps

	Starting up once initial setup is completed

	Previewing a study

	Participating in a study

	Where does my video go?

	Using https

	Further Reading / Useful Links

	Creating custom frames
	Overview

	Getting Started
	A Simple Example

	Building out the Example

	Adding CSS styling

	Using mixins
	FullScreen

	MediaReload

	VideoRecord

	Documenting your frame

	Ember debugging

	When should I use actions vs functions?

	How to capture video in your frame
	Limitations

	How it works

	Custom randomizer frames
	Overview of ‘choice’ structure

	Making your own

	Installation: lookit-api (Django project)
	Prerequisites

	Installation

	Authentication

	Handling video

	Common Issues

	Continued Installation for developers
	Install Docker

	Install Postgres

	Install RabbitMQ

	Install Ngrok

	How Do These Programs Work Together?

	Installation: ember-lookit-frameplayer (Ember app)
	Prerequisites

	Installation

	Running / Development
	Code Generators

	Running Tests

	Building

	Writing documentation of frames

	Django app implementation notes
	Permissions
	Generic best practices

	Guardian, how does it work?

	Workflow: managing study states
	Why Transitions

	How

	Make a diagram

	Logging

	Celery tasks
	build_experiment task

	What happens

	build_zipfile_of_videos

	cleanup_builds

	cleanup_docker_images

	cleanup_checkouts

	Guidelines for contributors
	Prerequisites

	Getting started

	Ignoring some files

	Add your own feature and submit a Pull Request

	Writing your tests

	Editing the Lookit documentation

	Definitions
	Children

	Demographic Data

	Experimenter

	Feedback

	Groups

	Organization

	Organization Site

	Participants

	Researchers

	Responses

	Study

	Technical Glossary
	Internal Resources
	Docker

	Postgres

	RabbitMQ

	Ngrok

	External Resources
	Google Cloud

	Amazon Web Services

	Celery

	Authenticator

	Lookit Ember Frameplayer

	PIPE

	Footnotes

	Endnotes

Using Lookit: for researchers

	Getting started guide

	Other helpful resources

	Using the experimenter interface
	Logging in

	Managing Studies

	Managing your Organization

	Setting study fields
	Name

	Image

	Short description

	Purpose

	Compensation

	Exit URL

	Participant eligibility description

	Criteria expression

	Minimum and maximum age cutoffs

	Duration

	Researcher contact information

	Discoverable

	Build study

	Study type

	Building your experiment
	Preliminaries: JSON format

	Experiment structure

	Developing your study: how to try it out as you go

	Finding and using specific frames

	A Lookit study schema: general principles and instructions

	Randomizer frames

	Conditional logic

	Preparing your stimuli
	Audio and video files

	File formats

	Making dummy stimuli

	Directory structure

	Experiment data (non-video)
	What data can I access?

	Accessing experiment data

	Structure of session data

	Interpreting exp_data

	Consent manager
	Overview

	Managing consent rulings

	Using the API
	What is the API for?

	API Tips

	Available Endpoints

Getting started guide

We are unfortunately not yet able to accommodate most requests to run studies on Lookit! We are focusing on development with the aim of making the platform as easily and broadly usable as possible. However, a limited number of collaborative studies from beta testers are taking place. Here’s how to get started if you’re working on one of those studies:

	If you are preparing a new study to run on Lookit, you will first need to get an access agreement signed and start an IRB proposal as described in the wiki [https://github.com/lookit/research-resources/wiki/IRB-and-legal-information].

	Try out studies at https://staging-lookit.cos.io first as a participant to get a feel for what it’s like to participate and what some of the standard/existing frames look like. That’s the staging server; you won’t be confusing anyone who’s trying to collect real data.

	Some background reading:

	Please make sure you have actually read the Terms of Use [https://lookit.mit.edu/termsofuse/]. There’s a bit of legal boilerplate in there, but the bulk is meaningful content about precautions you need to take to protect participant privacy, restrictions on protocols that can be run on Lookit, and what data you (and Lookit) can use and publish. It’s important that as the researcher using the platform you actually understand and agree to these terms.

	Skim through this portion of the documentation (‘Using Lookit: for researchers’).

	Skim through the wiki [https://github.com/lookit/research-resources/wiki] just so you know what information is available there.

	Create an outline of how you’d like your study to work, so that we can check the necessary technical functionality exists (or implement things for you) and possibly make you a little mockup to start from (we’ll discuss which!). The simplest way to do this is to provide a list of experiment frames, starting from the sample list [https://lookit.readthedocs.io/en/develop/researchers-create-experiment.html#a-lookit-study-schema-general-principles-and-instructions]. Some pieces are fairly standard, like video configuration, consent, or surveys. Most studies, though, will have some sort of “test trials” or experimental procedures where you’ll want to carefully think through and write out how things should work.

You can check the existing frames [https://lookit.github.io/ember-lookit-frameplayer/modules/frames.html] to see if you think you can just use those. If you’re not sure, essentially you’ll want to provide enough detail that someone could program your experiment. You may be surprised at how many details you need to think about when you don’t have a human running the experiment! If you want to show images or video on the page, please make a diagram specifying how they are positioned and describing how they are scaled (or not!) depending on screen resolution. Remember that monitors come in different sizes and shapes. If you want to play audio or videos, note what triggers them to stop and start, whether they have to complete before something else can happen, etc.

Describe any condition assignment and counterbalancing structure in enough detail that you would be happy to replicate the study if it were someone else’s. If what should happen next in the experiment depends on participant responses, make sure you cover all the possible responses.

	Prepare the content of your study - this is the relatively non-technical (but surprisingly time-consuming) side!

	Create all of the stimuli you’ll need!

	Write the text of your study description, prepare a thumbnail image, etc. following the descriptions of each item you’ll need to prepare here.

	Write the text of any study overview, instructions, and debriefing as described here.

	Implement your study on the staging server: Once a mockup of your study is ready or we’ve verified that you should be able to implement it yourself, you’ll set it up or fine-tune it on the Lookit staging server.

	Follow these instructions to get access and log on. Also ask us to get on the Lookit Slack channel for updates!

	We’ll give you access to a study called ‘Example study’ that you can play around with. Try participating in the original ‘Example study’ as a participant on the staging server, and check that you can see and approve your consent video in the Consent Manager.

	Clone the example study so you have your own copy you can edit. Change its title to something like ‘Smith getting started study.’ Build preview dependencies for your study.

	Try previewing your study to see what it’s like. Make a minor change to the study JSON and preview again to see that you see it.

	Edit the study to enter your own study’s description, thumbnail image, etc. following these descriptions.

	Now that you have a rough idea of how this all works, read Building your experiment in more detail (skim the section on randomizers until you’re ready to get into that). Add each frame of your planned study, following the instructions here to try it out as you go.

	When everything is ready to go, we’ll go over day-to-day operation of the study, transfer your study over to the production server, and you’ll hit start!

Other helpful resources

	For higher-level info about the Lookit project and running studies on Lookit (e.g., recruitment, state of funding, etc.) please check out (and add to!) the wiki [https://github.com/lookit/research-resources/wiki].

	The documentation for individual experiment ‘frames’ lives here: https://lookit.github.io/ember-lookit-frameplayer/

	Running into a problem and want to check if it’s a known issue, or have an idea for a handy new feature? Check out and/or add to the issues listed for the Lookit platform [https://github.com/lookit/lookit-api/issues] and for the experiment components/player [https://github.com/lookit/ember-lookit-frameplayer/issues]. Or click on ‘Milestones’ in either repo to take a look at what’s coming up in terms of development!

Using the experimenter interface

Logging in

Researchers should log into Experimenter via oauth through the Open Science Framework. Visit https://lookit.mit.edu/exp/ to log in to the production server, or https://staging-lookit.cos.io/exp/ to log in to the staging server, and click on ‘Open Science Framework’. (Note: if running Lookit locally, you will instead need to authenticate as described in Setup for custom frame development.)

[image: Login to experimenter image]
We use regular OSF accounts (you already have one if you have used OSF) for the production server, and staging OSF accounts (you probably don’t have one yet) for the staging server. A staging OSF account is just an account on OSF’s own staging server, where they try out changes ahead of deploying to production.

If you don’t have the appropriate type of OSF account yet, you can register to create one (use the ‘Create Account’ link on the screen shown below). Once you have an account, return to the Lookit experimenter login screen at https://lookit.mit.edu/exp/ or https://staging-lookit.cos.io/exp/, click ‘Open Science Framework’ again, and enter your credentials.

[image: Enter your osf credentials]
If you have not previously logged in to Lookit (or Lookit staging), you should now see a message that ‘Your request to join Experimenter has been submitted. You will receive a notification by email when this is completed.’ Please tell us once you have requested access so we can approve you promptly! New researchers require approval to access Lookit, which is easy (one of us clicking a button) but not automatic.

[image: Login to experimenter image]
Otherwise, you will be now be logged into Experimenter.

Researcher accounts can also have children and demographic data, just like participants. If you would like to have a separate participant account on Lookit for testing and/or actual participation, use a different email address and sign up for an account using the ‘Sign up’ link on the home page.

Managing Studies

Viewing study list

To view all studies, navigate to /exp/studies/. (We will use this short format to indicate relative paths starting with the Lookit site you are using - e.g., https://lookit.mit.edu/exp/studies/ or https://staging-lookit.cos.io/exp/studies/). A researcher must have been added to an organization to view this page. From there, the researcher can only see studies they have permission to view. Org admins and org reads can see all studies that belong to their organization. If the user is a basic researcher, they can only view studies which they have created or to which they have been explicitly added.

You can filter studies by name or by keywords in the description. Additionally, you can sort on various study states like “Created” or “Submitted”, or filter on your own studies by selecting “My Studies”. You can also sort on study name, study end date, and study begin date.

[image: Viewing studies]

Creating a study

To create a study, navigate to /exp/studies/create/. You’ll need to provide values for the fields as described in Setting study fields.

[image: Creating a study]

Study detail page

To view a single study, click on it from the study list. A researcher must have permission to view this study specifically. Org admins and org reads can view all studies in their organization. A basic researcher can only view this study if they have been
explicitly added as a study admin or study read. At the top, you see many of the study details that you entered when you created the study. The UUID is also displayed; this is your study’s unique identifier and is used in the direct link to the study.

At the top right, you have options to edit the study, view responses, email participants, or clone the study. Cloning will create a copy of the study but add the logged in user as the creator. The clone will be moved back into “Created” status (e.g., if the current study is actively collecting data, the cloned study will not be - it will need to be approved before it can be started). Study logs of when the study changed state are at the bottom of the page.

The only things that can be edited from this page are the study status and researcher list. The current study status is displayed, as well as a dropdown with the available states. Only users that have permission to edit the study state can make these changes, meaning organization admins, or study admins. The available states where you can move the study depend on what state is next in the sequence, as well as your current level of permissions. For example, if a study’s current state is “Created”, that study
can only be “Submitted” for review, or “Archived”, which removes the study from display. Comments can only be left on the study if it is being rejected. Only organization admins can approve or reject a study.

[image: Viewing studies]

Study status

New studies must be submitted and approved by Lookit before they can be started. Once approved, researchers with study admin permissions can independently start/pause data collection at will; however, if any changes are made to the study it will be automatically rejected and will require re-approval. The study approval process is intended to give Lookit staff an opportunity to check that studies comply with the Terms of Use and to provide support if necessary. Researchers will receive email notifications when their study is approved or rejected.

The possible study states are:

	created: Study has been initially created, but has not been submitted for approval

	submitted: Study is submitted and awaiting approval by an organization admin

	approved: Study has been approved by an organization admin to run on Lookit, but is not yet active

	rejected: The study has been rejected by an organization admin. The study should be edited before resubmitting.

	active: Study is active and can be collecting data. If the study is also marked “Discoverable”, the study will show up on Lookit’s study list.

	paused: Study is not actively collecting data or visible on Lookit

	deactivated: Study is done collecting data

	archived: Study has been archived and removed from search

Adding researchers to your study

Halfway down the study detail page, you can see the researchers that have study admin or study read permissions to your study. In the search box, you can look for an existing Lookit researcher (this must be someone who has already been added to your organization).

[image: Adding researcher to study]
Click the green plus to add them to your study. They are given study read permissions by default; this allows them to see all study details and participant data and to approve consent videos, but not to change study details, change study status (e.g. start/stop data collection), or add other researchers.

If the researcher you are adding happens to also be an organization admin, they will have admin permissions on your study. These researchers that are also org admins are denoted by an asterisk, followed by the <name of your organization>-Admin.

[image: Adding researcher to study]

Editing researcher permissions on a study

To edit a researcher, select read or admin permissions in the dropdown beside the researcher name and click the checkmark. This will automatically give the researcher read or admin permissions. There must be at least one study admin at all times.

[image: Editing researcher permissions]

Deleting researcher permissions

To remove a researcher from a study, click the red minus button beside the researcher’s name. This will automatically remove the user’s study admin or study read permissions. There must be at least one study admin at all times, so it’s possible that you won’t be able to remove a researcher.

[image: Deleting researcher permissions]

Study edit page

On the study edit page, you can update much of the metadata about the study. You can only view this page if you have permission to edit this particular study, meaning org admins or study admins. At the top of the page, you can edit fields like Name, and Description. See Creating a Study for more details.

To edit fields, change the information and click Save Changes in the middle of the page. If your study has already been approved, then the save button will be red. Otherwise it will be green. If your study has already been approved, then editing key details will automatically put the study in a rejected state. You must resubmit your
study and get it approved again by an organization admin to run the study on the Lookit platform.

At the bottom of the edit study page, you can make edits to your study’s structure (the frames, or pages, in your experiment), and the sequence of those frames. You can also make advanced edits to the commits we are using to build your study.

[image: Editing studies]

Editing study structure

For more information about how to specify what happens during your study, see Building an Experiment.

To edit a study’s structure, click ‘Edit study’ from the study detail page. You must be a study admin or org admin to view this page. From this ‘study edit’ page, you can edit the study’s structure and the study type. The study structure specifies the frames (or pages) of your experiment, and also specifies the sequence.

[image: Built study]
To edit the structure, click on the JSON block. A JSON editor will appear. Click on “Beautify” in the top right corner for better readability. Note that any invalid JSON will be shown via a little red X at the left of the relevant line! Once you are happy with your changes click ‘Close’. Then hit “Save” in the bottom right corner.
If your study has already been approved, then clicking “Save” will automatically reject the study. You will have to resubmit it for an organization admin to reapprove.

[image: Edit JSON]
To preview your study, click “Try Experiment”. (You will need to build preview dependencies first if you haven’t yet, or if you’ve changed the study type or which code to use.)

Editing study type

To edit a study’s type, click ‘Edit study’ from the study detail page.

The study type is the application you’re using to enable participants to take a study. Right now, we just have one option, the Ember Frame Player [https://github.com/lookit/ember-lookit-frameplayer]. It’s an ember app that can talk to our API. All the frames in the experiment are defined in ember-lookit-frameplayer, and the exp-player component can cycle through these frames.

If you don’t want any customization and want to use the existing player and frames, just select the defaults. These are advanced options!

What does each field mean?

	The player_repo_url is the repo where the frames and the player are stored. This is the default player_repo_url: https://github.com/lookit/ember-lookit-frameplayer. Advanced users may want to define their own custom frames for use with Lookit studies beyond those provided in the core library. (For more information about how to do this, see https://lookit.readthedocs.io/en/develop/developing-frames.html.) To use your own frame definitions, set the addons_repo_url to your own fork of the ember-lookit-frameplayer repo (e.g., https://github.com/yourname/ember-lookit-frameplayer instead of https://github.com/lookit/ember-lookit-frameplayer). You can then choose any commit SHA from your own repo.

	The last_known_player_sha is the commit of the player repo to use. If you don’t add this, it will point to the latest commit in the default branch. To browse commits available for the experiment player ember-lookit-frameplayer and see what might have changed, you can look through https://github.com/lookit/ember-lookit-frameplayer/commits/. (Previously, ember-lookit-frameplayer contained just the frame player, with frames defined separately in an exp-addons repo. Do not use a frameplayer SHA from before these two repos were merged together, in March 2019)

Leave the field last_known_player_sha blank to use the default - the latest versions of the experiment player and frames that Lookit provides. When you build dependencies, the commit SHAs (unique IDs) of the latest versions will be fetched and filled in, so that you will continue to use this version for your experiment unless you deliberately update.

Important: Whenever you update the code versions you are using, you will need to build dependencies again to preview and to activate your study. This build process creates a special environment just for your study using exactly the code you selected, so that your study will continue to run as you designed it. By storing builds on Google Cloud Storage,
pointing to specific commits, we can keep edits to frames from unintentionally breaking another study. You only need to build dependencies when you have changed the commit SHAs here - not when you update your study JSON or other data like the age range.

Viewing individual study responses

For information about interpreting study responses, see Experiment data.

To view a study’s response, navigate to your study and click ‘View Responses,’ then ‘Individual responses’. You must have permission to view this study’s responses, which means you must be an Organization Admin, Organization Read, or belong to the Study Admin or Study Read groups.

Responses only show up in this view once you have confirmed that the participant provided informed consent to participate using the Consent Manager.

On the left, you have a list of participants that have responded to your study, with the response id, the study’s completion status, and the date it was modified. When you click on a participant, the JSON of that participant’s response is shown on the right. You can
download the individual participant’s JSON response by clicking “Download Individual Response JSON”. Alternatively, you can select CSV in the dropdown, and click “Download Individual Response CSV”.

Beneath the CSV/JSON response data are any individual video attachments that are linked to that participant’s response. Exception: if the participant selected the ‘withdraw video’ option in an exit-survey frame at the end of the study, all video except for the consent video is unavailable (and will be deleted from Lookit servers as well in 7 days). There is a potential rare edge case where you access video while the participant is still doing the study, and then they withdraw, so you should still verify that none of your participants have withdrawn video.

[image: View responses]

Viewing all study responses

To view all of the responses to a study with confirmed consent, click ‘View Responses’ from the study detail page and then click ‘All Responses.’ You must have permission to view this study’s responses, which means you must be an Organization Admin, Organization Read, or belong to the Study Admin or Study Read groups.

By default, all study responses are displayed in JSON format. To download as CSV, select CSV in the dropdown and download. The study response data is supplemented with the study id, participant ids and nickname, and the associated child info.

[image: View all responses]

Viewing demographics of study participants

To view the demographics of participants that have responded to your study and have confirmed consent, click ‘View Responses’ from the study detail page and then click ‘Demographic Snapshots.’ You must have permission to view this study’s responses, which means you must be an Organization Admin, Organization Read, or belong to the Study Admin or Study Read groups.

This list is generated by looping through all the responses to your study, and displaying the demographics of the associated participant. If a participant has responded multiple times, the demographics will appear multiple times. Demographic data was versioned, so the demographics associated with each
response will be the demographics that were current at the time the participant responded to the study. You can download the demographics in JSON or CSV format.

[image: View all study demographics]

Viewing all study videos

To view all video responses to your study from sessions with confirmed consent,click ‘View Responses’ from the study detail page and then click ‘Attachments.’.
You can filter on video attachment name. The format of the video names is videoStream_{study_uuid}_{order-frame_name}_{response_uuid}_{timestamp}_{randomDigits}.mp4

Video attachments can be downloaded individually. You also have the option of bulk downloading all consent videos for your study, or bulk downloading all responses.
The bulk download will take place asynchronously, so once the videos have been downloaded and put in a zip file, you will get an email telling you this is done.

Managing your Organization

Currently all researchers using Lookit are part of a single ‘MIT’ organization. The organization construct will eventually allow labs to manage access for their own students and RAs. For now, though, these instructions just apply to Lookit admins.

Adding researchers to your organization

Navigate to Manage Organization https://lookit.mit.edu/exp/researchers/. Only users with organization admin and organization read permissions can view other researchers in the org.
The researchers displayed are researchers that currently belong to your organization, or researchers still needing approval. Researchers awaiting approval have “No organization groups” listed as the permission.
Navigate to a researcher awaiting approval (only organization admins are permitted to do this).

[image: Researcher list image]
Under permissions at the bottom of the researcher detail page, select Researcher, Organization Read, or Organization Admin from the dropdown, and click the check mark. This will give
that researcher the associated permissions and add them to your organization. They will receive an email notification.

[image: Researcher detail image]

Editing a researcher’s organization permissions

Navigate to a particular researcher’s detail page https://lookit.mit.edu/exp/researchers/<researcher_id>. Only organization admins can view this page. Under permissions at the bottom of the researcher detail page, select Researcher, Organization Read, or Organization Admin from the dropdown, and click the check mark. This will modify
the researcher’s permissions.

[image: Researcher detail image]

Deleting a researcher’s organization permissions

Navigate to Manage Organization https://lookit.mit.edu/exp/researchers/. Only users with organization admin and organization read permissions can view other researchers in the org. Click “Remove” beside the
researcher you wish to delete, and then click “Remove” again in the confirmation modal. The researcher will be marked as inactive and will no longer be permitted to login to Experimenter.

[image: Deleting a researcher]
[image: View all study attachments]

Setting study fields

When creating or editing a study, you can set the value of the following fields. Below is more information about each:

Name

Participant-facing title of your study; must be <255 characters. Shoot for a short, catchy title; depending on how you advertise your study, you may want participants to be able to recognize and select it from the studies page. If you plan on running similar follow-up studies and want them to be easily distinguishable, avoid titles that encompass your entire research program like “Infant Language Study.”

Image

Thumbnail image that will be displayed to participants on Lookit’s studies page. File must be an image-type, and please keep the file size reasonable (<1 MB). Sometimes your stimuli are a good basis for creating this image, or it can be something that conceptually represents your study or shows what it looks like to participate.

Short description

Describe what happens during your study here (1-3 sentences). This should give families a concrete idea of what they will be doing - e.g., reading a story together and answering questions, watching a short video, playing a game about numbers.

Purpose

Explain the purpose of your study here (1-3 sentences). This should address what question this study answers AND why that is an interesting or important question, in layperson-friendly terms. Note: this tends to be harder than you’d think - it’s not just you! Imagine all the time you spend getting comfortable explaining the point of a study in the lab (or training RAs on the same), distilled into this task. Plus you don’t get to interact with the parent to gauge their interest level or familiarity first. Take your time and read this out loud as you work. Some things to check: Is it too specific - is a reasonable response “okay, you will find out whether X is true, but why does that matter?” Is it too general - could you write the same thing about a follow-up study you’re planning or another study going on in your lab?

Compensation

Provide a description of any compensation for participation, including when and how participants will receive it and any limitations or eligibility criteria (e.g., only one gift card per participant, being in age range for study, child being visible in consent video). Please see the Terms of Use [https://lookit.mit.edu/termsofuse/] for details on allowable compensation and restrictions. If this field is left blank (which is okay if you’re not providing compensation beyond the joy of participation) it will not be displayed to participants.

Exit URL

Must enter a URL. After the participant has completed the study, they will be automatically redirected to the exit URL. Typically this is just https://lookit.mit.edu/

Participant eligibility description

Freeform participant-facing eligibility string, of the form ‘For…’ (e.g., ‘For babies under 1 year old’). Make this readable so participants understand if their child can take part in the study.

This is not directly used to automatically check eligibility, so you can include criteria that may not yet be possible to check for automatically - e.g., this study is for girls whose favorite color is orange.

Age limits specified here should be carefully considered with respect to the minimum and maximum age cutoffs which are used for automatic verification of eligibility.

Criteria expression

Providing this expression allows you to specify more detailed eligibility criteria for your study than a single age range. When a parent selects a child to participate in a study, he or she will see a warning under any of the following conditions:

	The child is under the minimum age specified (see minimum and maximum age cutoffs)

	The child is over the maximum age specified (see minimum and maximum age cutoffs)

	The child is within the specified age range, but doesn’t meet the eligibility criteria defined in this expression

Note that while a warning is displayed, ineligible participants are not actually prevented from participating; this is deliberate, to remove any motivation for a curious parent to fudge the details to see what the study is like.

You may want to use the criteria expression to specify additional eligibility criteria beyond an age range - for instance, if your study is for a special population like kids with ASD or bilingual kids. You do not need to specify your age range here in general; participant eligibility checks will require the child meet the minimum and maximum age cutoffs AND these critera.

Every child in the Lookit database has a number of fields associated with it, ranging from gestational age to languages spoken in the home, which can be used in determining eligibility. In the study edit and create views, you can formulate your criteria expression as a boolean expression with embedded relational expressions, using a domain specific query language.

You can put together your expressions using the query fields below; the operators AND, OR, NOT, <, <=, =, >, and >=; and parentheses. If your expression is invalid you will see an error when you try to save your study.

Query fields

	Query Handle

	Value Type

	Examples

	Notes

	[CONDITIONS]

	N/A

	deaf, hearing_impairment, NOT multiple_birth

	See below for full list of available options.

	speaks_[LANGCODE]

	N/A

	speaks_en, NOT speaks_ja, speaks_ru

	See below for full list of available options.

	gestational_age_in_weeks

	integer or string

	gestational_age_in_weeks <= 40, gestational_age_in_weeks = na

	Values are 23 through 40 and na

	gender

	string

	gender = f, gender !=o

	Male (m), Female (f), Other (o), or Not Available (na).

	age_in_days

	integer

	age_in_days <= 1095, age_in_days > 365

	

Criteria expression examples

	Deaf children only

	deaf

	Multiple-birth children who are either under 1 year old or over 3 years old

	multiple_birth AND (age_in_days >= 1095 OR age_in_days <= 365)

	Girls who are exposed to both English and Spanish

	gender = f AND speaks_en AND speaks_es

	Children born late preterm whose adjusted age is about 6 weeks

	(gestational_age_in_weeks = 34 AND (age_in_days >= 72 AND age_in_days < 102)) OR (gestational_age_in_weeks = 35 AND (age_in_days >= 65 AND age_in_days < 95)) OR (gestational_age_in_weeks = 36 AND (age_in_days >= 58 AND age_in_days < 88))

Characteristics and conditions

	Query Handle

	Condition/Characteristic

	autism_spectrum_disorder

	Autism Spectrum Disorder

	deaf

	Deaf

	hearing_impairment

	Hearing Impairment

	dyslexia

	Dyslexia

	multiple_birth

	Multiple Birth (twin, triplet, or higher order)

Language codes

	Code

	Language

	en

	English

	am

	Amharic

	bn

	Bengali

	bho

	Bhojpuri

	my

	Burmese

	ceb

	Cebuano

	hne

	Chhattisgarhi

	nl

	Dutch

	egy

	Egyptian Spoken Arabic

	fr

	French

	gan

	Gan

	de

	German

	gu

	Gujarati

	hak

	Hakka

	ha

	Hausa

	hi

	Hindi

	ig

	Igbo

	id

	Indonesian

	pes

	Iranian Persian

	it

	Italian

	ja

	Japanese

	jv

	Javanese

	cjy

	Jinyu

	kn

	Kannada

	km

	Khmer

	ko

	Korean

	mag

	Magahi

	mai

	Maithili

	ms

	Malay

	ml

	Malayalam

	cmn

	Mandarin

	mr

	Marathi

	nan

	Min Nan

	mor

	Moroccan Spoken Arabic

	pbu

	Northern Pashto

	uzn

	Northern Uzbek

	or

	Odia

	pl

	Polish

	pt

	Portuguese

	ro

	Romanian

	ru

	Russian

	skr

	Saraiki

	sd

	Sindhi

	so

	Somali

	es

	Spanish

	su

	Sunda

	tl

	Tagalog

	ta

	Tamil

	te

	Telugu

	th

	Thai

	tr

	Turkish

	uk

	Ukrainian

	ur

	Urdu

	vi

	Vietnamese

	lah

	Western Punjabi

	wuu

	Wu

	hsn

	Xiang Chinese

	yo

	Yoruba

	yue

	Yue

Minimum and maximum age cutoffs

Integer fields specifying minimum/maximum ages of participants (inclusive). Eligibility is calculated based on the child’s current age in days; this is compared to the minimum/maximum ages in days, calculated as 365*years + 30*months + days. Participants under the age range see a warning indicating that their data may not be used, and suggesting that they wait until they’re in the age range. Participants over the age range just see a warning indicating that their data may not be used. Participants are never actually prevented from starting the study, to remove motivation for a curious parent to fudge the child’s age.

Note that these ages do not in all cases correspond exactly to the child’s age in ‘calendar months’ or ‘calendar years’ (e.g., ‘one month’ if that month is February). In general, you want to avoid a situation where the parent thinks their child should be eligible based on the participant eligibility string (e.g., “my child is one month old, she was born February 3rd and it’s March 4th!”) but sees a warning when trying to participate. You can do this by narrowing the eligibility criteria in the freeform string and/or by expanding them in the cutoffs here. If one has to align better with your actual inclusion criteria, in general you want that to be the minimum/maximum age cutoffs.

Duration

Approximately how long does it take to do your study, start to finish? (Try it if you’re not sure; include time to read the instructions.) You can give an estimate or range.

Researcher contact information

This should give the name of the PI for your study, and an email address where the PI or study staff can be reached with questions. Format: PIs Name (contact: youremail@lab.edu). This is displayed to participants on the study detail page before they choose to participate, as well as substituted into your consent form and exit survey, so in general the name needs to be the person who’s listed as PI on your IRB protocol (although it may not need to be their personal email address).

Discoverable

Do you want this study to be listed on the Lookit studies page when it’s active? Check this box to list the study there. If the box is unchecked, the study will be ‘non-discoverable’ and participants will only be able to get to it by following a direct link with your study ID. This may be helpful if, for instance, you want to run a follow-up study (with in-lab on online participants) and want to send the link to a limited number of people, or if your inclusion criteria are very limited (e.g., a rare genetic disorder) and you want to recruit specifically without getting any random curious families stopping by. You may also occasionally set a study to non-discoverable temporarily so you can try it out as a participant without actually recruiting!

Build study

This needs to be a valid JSON block describing the different frames (pages) of your study, and the sequence. You can add these later under /exp/studies/<study_id>/edit/build/. For detailed information about specifying your study protocol, see Building an Experiment.

Study type

The study type is the application you’re using to enable participants to take a study. Right now, we just have one option, the Ember Frame Player [https://github.com/lookit/ember-lookit-frameplayer]. It’s an ember app that can talk to our API. All the frames in the experiment are defined in Ember and there is an exp-player component that can cycle through these frames. For details, see Editing study type

[image: View all study attachments]

Building your experiment

Preliminaries: JSON format

Researchers specify the protocol for a Lookit study by providing a JSON
(JavaScript Object Notation) object on the Experimenter interface, which
is interpreted according to a JSON Schema (http://json-schema.org/)
designed for Lookit studies. A JSON
schema [http://json-schema.org/examples.html] describes a class of
JSON objects, indicating what type of data to expect and require.

If you are unfamiliar with the JSON format, you may want to spend a
couple minutes reading the introduction here: http://www.json.org/.

No programming is required to design a study: JSON is a simple,
human-readable text format for describing data (see
http://www.json.org/). A JSON object is an unordered set of key – value
pairs, with the following rules

	The object itself is enclosed in curly braces.

	Keys are unique strings enclosed in double quotes.

	A key and value are separated by a colon.

	Key-value pairs are separated by commas.

A JSON value can be any of the following: a string (enclosed in double
quotes), a number, a JSON object (as described above), an array (an
ordered list of JSON values, separated by commas and enclosed by square
brackets), true, false, or null. There are no requirements for specific
formatting of a JSON document (any whitespace not part of a string is
ignored). Here is an example JSON object to illustrate these principles:

{
 "name": "Jane",
 "age": 43,
 "favoritefoods": [
 "eggplant",
 "apple",
 "lima beans"
],
 "allergies": {
 "peanut": "mild",
 "shellfish": "severe"
 }
}

The keys are the strings name, age, favoritefoods, and
allergies. Favorite foods are stored as an array, or ordered list;
allergies are stored as a JSON object mapping food names to severity of
reaction. The same object could also be written as follows, in a
different order and with none of the formatting:
`{"age": 43, "allergies": {"peanut": "mild", "shellfish": "severe"}, "name": "Jane", "favoritefoods": ["eggplant", "apple", lima beans"]}

A helpful resource to check your JSON Schema for simple errors like
missing or extra commas, unmatched braces, etc. is
jsonlint [http://jsonlint.com/].

Experiment structure

To define what actually happens in your study, click ‘Edit study’ from your study detail
page, and scroll down to the ‘Build study - add JSON’ field:

[image: Build study field on study edit page]
Click on this field to bring up the experiment editor view. Here is where you
define the structure of your experiment using a JSON document.

Studies on Lookit are broken into a set of fundamental units called
frames, which can also be thought of as “pages” of the study. A
single experimental trial (e.g. looking time measurement) would
generally be one frame, as are the video consent procedure and exit survey.
Your JSON must have two keys: frames and
sequence. The frames value defines the frames used in this
study: it must be a JSON object mapping frame nicknames (any unique
strings chosen by the researcher) to frame objects (defined next). The
sequence value must be an ordered list of the frames to use in this
study; values in this list must be frame nicknames from the “frames”
value.

Here is the JSON for a very minimal Lookit study:

{
 "frames": {
 "my-consent-frame": {
 "kind": "exp-video-consent",
 "prompt": "I agree to participate",
 "blocks": [
 {
 "title": "About the study",
 "text": "This isn’t a real study."
 }
]
 },
 "my-exit-survey": {
 "kind": "exp-lookit-exit-survey",
 "debriefing": {
 "title": "Thank you!",
 "text": "You participated."
 }
 }
 },
 "sequence": [
 "my-consent-frame",
 "my-exit-survey"
]
}

This JSON specifies a Lookit study with two frames, consent and an exit
survey. Note that the frame nicknames my-consent-frame and
my-exit-survey that are defined in frames are also used in the
sequence. Frames may be specified but not used in sequence.
Here’s the object associated with the my-exit-survey frame:

{
 "kind": "exp-lookit-exit-survey",
 "debriefing": {
 "title": "Thank you!",
 "text": "You participated."
 }
 }

Within each frame object, a kind must be specified. This determines
the frame type that will be used. Additional data may be included in the
frame object to customize the behavior of the frame, for instance to
specify instruction text or the stimuli to use for a test trial. The
keys that may (or must) be included in a frame object are determined by
the frame type; each frame definition includes a JSON Schema describing
the expected data to be passed. Multiple frames of the same kind may be
included in a study – for instance, test trials using different stimuli.

The separation of frame definitions and sequence allows researchers to
easily and flexibly edit and test study protocols – for instance, the
order of frames may be altered or a particular frame removed for testing
purposes without altering any frame definitions.

Developing your study: how to try it out as you go

When you first create your study, you’ll need to click ‘Build preview dependencies’ on the study edit page and wait 5-10 minutes for your own special study environment to be created. This will “freeze” the code used for your study so that continuing development and changes to the experiment frame code won’t affect how your study works. (You can always update if you want to - see Editing study type). You do not need to build preview dependencies again unless you want to update the study type.

Once you’ve built preview dependencies once, you can click ‘See preview’ after saving your study JSON and you will be taken to a preview version of your study so that you can see what it looks like to a participant! As you write the JSON document for your study, you can click ‘See preview’ again or just refresh the preview window to see how the changes look.

If something isn’t working as expected, you can try opening up the Javascript console in your web browser (Chrome: three vertical dots -> More tools -> Developer tools; Firefox: hamburger menu -> Web Developer -> Web Console) to see if there is an error message that makes sense - e.g., a frame type that isn’t defined, or an attempt to load an image that doesn’t exist.

As you work on a particular frame like a survey, you probably don’t want to click through every bit of your study to get to it each time you make a change! You can put the frame of interest at the very start of your study by inserting it at the very start of the ‘sequence’ you’ve defined in your JSON. Then when you’re satisfied with that frame, just put it back in order.

Finding and using specific frames

For the most current documentation of individual frames available to
use, please see the frame documentation [https://lookit.github.io/ember-lookit-frameplayer/].

For each frame, you will find an example of using it in a JSON
schema; documentation of the properties which can be defined in the
schema; and, under Methods / serializeContent, a description of the
data this frame records. Any frame-specific events that are
recorded and may be included in the eventTimings object sent with the
data are also described.

A Lookit study schema: general principles and instructions

A typical Lookit study might contain the following frame types:

	exp-video-config [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpVideoConfig.html] - This is a standard frame type that almost everyone should just stick at the very start of their study. It requires no customization; we’ll maintain troubleshooting directions everyone can share.

	exp-lookit-video-consent [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitVideoConsent.html] - A video consent frame. Your study needs to use this frame and it should come right after video configuration, before getting into the rest of the study. You need to specify some text fields to use this, regarding study-specific procedures, compensation, etc. These will be inserted into the consent document. If you need to show your IRB exactly what your consent document will look like, enter your text snippets, preview your study, and copy the document (or use the download button to get a PDF).

	exp-lookit-text [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitText.html] Now we’re into optional frames that will vary by study. Most existing studies have started off with a text ‘overview’ of the study using a frame like this. The shorter this can be, the better - it’s the equivalent of “okay, we’re ready to get started, we’re going to do X, Y, Z!” in the lab. Writing this text, and any instructions, tends to be more time-consuming than researchers expect: in contrast to an in-lab study, you can’t easily tune what you say to the individual parent and answer just the questions they bring up. And you don’t want to overwhelm them with a wall of text while they try to hold a squirmy baby! We strongly recommend treating this as a serious writing/design exercise, and going through a few rounds of ‘play-testing’ with colleagues/family to make sure everything is as clear and concise as possible.

	exp-lookit-preview-explanation [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitPreviewExplanation.html] If you are showing children images/videos and you are going to ask the parents not to look at those stimuli, we strongly advise that you provide parents an opportunity to preview all of the stimuli that might be shown so they can decide if they’re okay with that. This is both a reasonable courtesy (who knows what unusual phobia a child has, or what image you think is totally innocuous but turns out to offend a particular family for an unanticipated reason) and practical for data quality (parents will be less inclined to peek if they know roughly what’s going on). If you want to show a preview, you’ll use an “explanation” frame like this offering the parent an option to preview stimuli, followed immediately by…

	exp-video-preview [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpVideoPreview.html] - the actual video preview frame where you specify a list of videos/images and their captions.

	exp-lookit-survey [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitSurvey.html] Perhaps you want to collect some information (here or later on) from the parent that isn’t included in the child or demographic data you’ll have automatic access to - how much of which languages they speak in the home, motor milestones, whether their child likes Kermit or Oscar better, etc. You can use a survey frame to do that!

	exp-video-config-quality [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpVideoConfigQuality.html] Once you’re almost ready to start your actual ‘test’ procedures, you may want to guide the parent through webcam setup optimization, especially if you need the parent and child in a particular position. We provide some default instructions intended for preferential looking but would recommend making your own images/instructions if you can - ours aren’t great.

	exp-lookit-instructions [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitInstructions.html] Instead or in addition, you may want a frame like this to give some final instructions to the parent before your ‘test’ procedures start! You can show text, videos, audio, show the user’s webcam, etc. Make sure you have indicated here or earlier that the family is free to leave at any point and how they can do that. (Ctrl-X, F1, or closing the tab/window but then staying on the page will all bring up a “really exit?” dialog - you don’t need to note all methods.)

	[Study-specific frames, e.g.
exp-lookit-story-page, exp-lookit-preferential-looking,
exp-lookit-dialogue-page; generally, a sequence of these frames
would be put together with a randomizer]

	exp-lookit-exit-survey [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitExitSurvey.html] This is a required frame and should be the last thing in your study. This is where participants will select a privacy level for their video and indicate whether data can be shared on Databrary. (If you don’t have IRB/institutional approval to share on Databrary yet, it’s still fine to ask this; worst case you don’t share data you had permission to share. Best case it’ll smooth the process of asking your IRB retroactively if you want to!) Your participants will also have the option to withdraw video beyond the consent video entirely - this is rare (<1 percent of responses). These video settings are provided at the end, rather than the start, of the study so that parents already know roughly what happened and can better judge how comfortable they are with the video being shared. (E.g., “did my child pick his nose the whole time?”)

The ‘debriefing’ field of this frame is very important! This is a chance to explain the purpose of your study and how the family helped; at this point it’s more obvious to the participant that skimming the info is fine if they’re not super-interested, so you can elaborate in ways you might have avoided ahead of time in the interest of keeping instructions short. You may want to mention the various conditions kids were assigned to if you didn’t before, and try to head off any concerns parents might have about how their child ‘did’ on the study, especially if there are ‘correct’ answers that will have been obvious to a parent. It’s great if you can link people to a layperson-accessible article on a related topic - e.g., media coverage of one of your previous studies in this research program, a talk on Youtube, a parenting resource.

If you are compensating participants, restate what the compensation is (and any conditions), and let them know when to expect their payment! E.g.: “To thank you for your participation, we’ll be emailing you a $4 Amazon gift card - this should arrive in your inbox within the next week after we confirm your consent video and check that your child is in the age range for this study. (If you don’t hear from us by then, feel free to reach out!) If you participate again with another child in the age range, you’ll receive one gift card per child.”

Randomizer frames

Generally, you’ll want to show slightly different versions of the study
to different participants: perhaps you have a few different conditions,
and/or need to counterbalance the order of trials or left/right position
of stimuli. To do this, you’ll use a special frame called a
randomizer to select an appropriate sequence of frames for a
particular trial. A randomizer frame is automatically expanded to a list
of frames, so that for instance you can specify your 12 looking-time
trials all at once.

See here [https://lookit.github.io/ember-lookit-frameplayer/modules/randomizers.html] for complete documentation of available randomizers.

To use a randomizer frame, set the frame "kind" to "choice" and
"sampler" to the appropriate type of randomizer. We will focus here
on the most commonly-used and general randomizer type, called
random-parameter-set [https://lookit.github.io/ember-lookit-frameplayer/classes/randomParameterSet.html].

To select this randomizer, you need to define a frame that has the
appropriate "kind" and "sampler":

{
 ...
 "frames": {
 ...
 "test-trials": {
 "sampler": "random-parameter-set",
 "kind": "choice",
 ...
 }
 }
}

In addition, there are three special properties you need to define to
use random-parameter-set: frameList, commonFrameProperties,
and parameterSets.

``frameList`` is just what it sounds like: a list of all the frames
that should be generated by this randomizer. Each frame is a JSON object
just like you would use in the overall schema, with two differences:

	You can define default properties, to share across all of the frames
generated by this randomizer, in the JSON object
commonFrameProperties instead, as a convenience.

You can use placeholder strings for any of the properties in the frame;
they will be replaced based on the values in the selected
parameterSet.

``parameterSets`` is a list of mappings from placeholder strings to
actual values. When a participant starts your study, one of these sets
will be randomly selected, and any parameter values in the frameList
(including commonFrameProperties) that match any of the keys in this
parameter set will be replaced.

Let’s walk through an example of using this randomizer. Suppose we start
with the following JSON document describing a study that includes
instructions, an experimental manipulation asking participants to think
about how delicious broccoli is, and an exit survey:

{
 "frames": {
 "instructions": {
 "id": "text-1",
 "blocks": [
 {
 "text": "Some introductory text about this study."
 },
 {
 "text": "Here's what's going to happen! You're going to think about how tasty broccoli is."
 }
],
 "showPreviousButton": false,
 "kind": "exp-lookit-text"
 },
 "manipulation": {
 "id": "text-2",
 "blocks": [
 {
 "text": "Think about how delicious broccoli is."
 },
 {
 "text": "It is so tasty!"
 }
],
 "showPreviousButton": true,
 "kind": "exp-lookit-text"
 },
 "exit-survey": {
 "debriefing": {
 "text": "Thank you for participating in this study! ",
 "title": "Thank you!"
 },
 "id": "exit-survey",
 "kind": "exp-lookit-exit-survey"
 }
 },
 "sequence": [
 "instructions",
 "manipulation",
 "exit-survey"
]
}

But what we really want to do is have some kids think about how tasty
broccoli is, and others think about how yucky it is! We can use a
random-parameter-set frame to replace both text frames:

{
 "frames": {
 "instruct-and-manip": {
 "sampler": "random-parameter-set",
 "kind": "choice",
 "id": "instruct-and-manip",
 "frameList": [
 {
 "blocks": [
 {
 "text": "Some introductory text about this study."
 },
 {
 "text": "INTROTEXT"
 }
],
 "showPreviousButton": false
 },
 {
 "blocks": [
 {
 "text": "MANIP-TEXT-1"
 },
 {
 "text": "MANIP-TEXT-2"
 }
],
 "showPreviousButton": true
 }
],
 "commonFrameProperties": {
 "kind": "exp-lookit-text"
 },
 "parameterSets": [
 {
 "INTROTEXT": "Here's what's going to happen! You're going to think about how tasty broccoli is.",
 "MANIP-TEXT-1": "Think about how delicious broccoli is.",
 "MANIP-TEXT-2": "It is so tasty!"
 },
 {
 "INTROTEXT": "Here's what's going to happen! You're going to think about how disgusting broccoli is.",
 "MANIP-TEXT-1": "Think about how disgusting broccoli is.",
 "MANIP-TEXT-2": "It is so yucky!"
 }
]
 },
 "exit-survey": {
 "debriefing": {
 "text": "Thank you for participating in this study! ",
 "title": "Thank you!"
 },
 "id": "exit-survey",
 "kind": "exp-lookit-exit-survey"
 }
 },
 "sequence": [
 "instruct-and-manip",
 "exit-survey"
]
}

Notice that since both of the frames in the frameList were of the
same kind, we could define the kind in commonFrameProperties. We no
longer define id values for the frames, as they will be
automatically identified as instruct-and-manip-1 and
instruct-and-manip-2.

When the “instruct-and-manip” randomizer is evaluated, the Lookit
experiment player will start with the frameList and add the key-value
pairs in commonFrameProperties to each frame (not overwriting existing
pairs):

[
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "text": "Some introductory text about this study."
 },
 {
 "text": "INTROTEXT"
 }
],
 "showPreviousButton": false
 },
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "text": "MANIP-TEXT-1"
 },
 {
 "text": "MANIP-TEXT-2"
 }
],
 "showPreviousButton": true
 }
]

Next, one of the two objects in parameterSets is selected randomly.
(By default, parameter sets are weighted equally, but
parameterSetWeights can be provided as an optional key in the
random-parameter-set frame. If provided, parameterSetWeights
should be an array of relative weights for the parameter sets,
corresponding to the order they are listed. For instance, if we wanted
75% of participants to think about how tasty broccoli is, we could set
parameterSetWeights to [3, 1]. This allows uneven condition
assignment where needed to optimize power, as well as allowing
researchers to stop testing conditions that already have enough
participants as data collection proceeds.)

Suppose that in this case the second parameter set is selected:

{
"INTROTEXT": "Here's what's going to happen! You're going to think about how disgusting broccoli is.",
"MANIP-TEXT-1": "Think about how disgusting broccoli is.",
"MANIP-TEXT-2": "It is so yucky!"
}

Now we return to the list of frames, and wherever any value matches one
of the keys in the parameterSet (even if that value is nested in
another object), it is replaced by the corresponding value from the
parameterSet, yielding the following final list of frames:

[
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "text": "Some introductory text about this study."
 },
 {
 "text": "Here's what's going to happen! You're going to think about how disgusting broccoli is."
 }
],
 "showPreviousButton": false
 },
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "text": "Think about how disgusting broccoli is."
 },
 {
 "text": "It is so yucky!"
 }
],
 "showPreviousButton": true
 }
]

Nested randomizers

In more complex experimental designs, the frames created by a randomizer
may themselves be randomizers! This nesting allows more modular
specification: for instance, a study might have ten test trials, each of
which consists of three phases. The “outer” randomizer could then
generate a frameList of ten randomizer frames, each of which would be
resolved in turn into three frames. Below is a simplified example with
only two test trials, each of which has three phases:

Here’s an example. Notice that "kind": "choice",
"sampler": "random-parameter-set", "frameList": ..., and
commonFrameProperties are commonFrameProperties of the outer
frame nested-trials. That means that every “frame” we’ll create as
part of nested-trials will itself be a random-parameter-set
generated list with the same frame sequence, although we’ll be
substituting in different parameter values. (This doesn’t have to be the
case - we could show different types of frames in the list - but in the
simplest case where you’re using randomParameterSet just to group
similar repeated frame sequences, this is probably what you’d do.) The
only thing that differs across the two (outer-level) trials is the
parameterSet used, and we list only one parameter set for each
trial, to describe (deterministically) how the outer-level
parameterSet values should be applied to each particular frame.

{
 "sampler": "random-parameter-set",
 "frameList": [
 {
 "parameterSets": [
 {
 "NTRIAL": 1,
 "PHASE1STIM": "T1P1",
 "PHASE2STIM": "T1P2",
 "PHASE3STIM": "T1P3"
 }
]
 },
 {
 "parameterSets": [
 {
 "NTRIAL": 2,
 "PHASE1STIM": "T2P1",
 "PHASE2STIM": "T2P2",
 "PHASE3STIM": "T2P3"
 }
]
 }
],
 "parameterSets": [
 {
 "T1P1": "mouse",
 "T1P2": "rat",
 "T1P3": "chipmunk",
 "T2P1": "horse",
 "T2P2": "goat",
 "T2P3": "cow"
 },
 {
 "T1P1": "guppy",
 "T1P2": "tadpole",
 "T1P3": "goldfish",
 "T2P1": "whale",
 "T2P2": "manatee",
 "T2P3": "shark"
 }

],
 "commonFrameProperties": {
 "sampler": "random-parameter-set",
 "frameList": [
 {
 "nPhase": 1,
 "animal": "PHASE1STIM"
 },
 {
 "nPhase": 2,
 "animal": "PHASE2STIM"
 },
 {
 "nPhase": 3,
 "animal": "PHASE3STIM"
 }
],
 "commonFrameProperties": {
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 }
 }
}

To evaluate this experiment frame, the Lookit experiment player starts
with the list of frames in the outer frameList, adding the key:value
pairs in the outer commonFrameProperties to each frame, which yields
the following list of frames:

[
 {
 "parameterSets": [
 {
 "NTRIAL": 1,
 "PHASE1STIM": "T1P1",
 "PHASE2STIM": "T1P2",
 "PHASE3STIM": "T1P3"
 }
],
 "sampler": "random-parameter-set",
 "frameList": [
 {
 "nPhase": 1,
 "animal": "PHASE1STIM"
 },
 {
 "nPhase": 2,
 "animal": "PHASE2STIM"
 },
 {
 "nPhase": 3,
 "animal": "PHASE3STIM"
 }
],
 "commonFrameProperties": {
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 }
 },
 {
 "parameterSets": [
 {
 "NTRIAL": 2,
 "PHASE1STIM": "T2P1",
 "PHASE2STIM": "T2P2",
 "PHASE3STIM": "T2P3"
 }
],
 "sampler": "random-parameter-set",
 "frameList": [
 {
 "nPhase": 1,
 "animal": "PHASE1STIM"
 },
 {
 "nPhase": 2,
 "animal": "PHASE2STIM"
 },
 {
 "nPhase": 3,
 "animal": "PHASE3STIM"
 }
],
 "commonFrameProperties": {
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 }
 }
]

One of the two (outer) parameterSets is then selected randomly;
suppose the second one (aquatic instead of land animals) is selected.
Now any substitutions are made based on the keys in this parameterSet.
The first frame in the sequence is now:

{
 "parameterSets": [
 {
 "NTRIAL": 1,
 "PHASE1STIM": "guppy",
 "PHASE2STIM": "tadpole",
 "PHASE3STIM": "goldfish"
 }
],
 "sampler": "random-parameter-set",
 "frameList": [
 {
 "nPhase": 1,
 "animal": "PHASE1STIM"
 },
 {
 "nPhase": 2,
 "animal": "PHASE2STIM"
 },
 {
 "nPhase": 3,
 "animal": "PHASE3STIM"
 }
],
 "commonFrameProperties": {
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 }
}

Next, each frame is expanded since it is in turn another randomizer (due
to "sampler": "random-parameter-set"). The frame above, representing
Trial 1, will be turned into three frames. First, again, we start with
the frameList, and merge the commonFrameProperties into each
frame:

 [
 {
 "nPhase": 1,
 "animal": "PHASE1STIM",
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 },
 {
 "nPhase": 2,
 "animal": "PHASE2STIM",
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 },
 {
 "nPhase": 3,
 "animal": "PHASE3STIM",
 "nTrial": "NTRIAL",
 "kind": "question-about-animals-frame"
 }
]

Finally, a parameter set is selected from parameterSets. Only one
parameter set is defined for this trial, which is deliberate; it simply
selects the correct stimuli for this trial. Substituting in the values
from the parameter set yields the following list of frames:

[
 {
 "nPhase": 1,
 "animal": "guppy",
 "nTrial": 1,
 "kind": "question-about-animals-frame"
 },
 {
 "nPhase": 2,
 "animal": "tadpole",
 "nTrial": 1,
 "kind": "question-about-animals-frame"
 },
 {
 "nPhase": 3,
 "animal": "goldfish",
 "nTrial": 1,
 "kind": "question-about-animals-frame"
 }
]

The random-parameter-set randomizer is expected to be general enough
to capture most experimental designs that researchers put on Lookit, but
additional more specific randomizers will also be designed to provide
simpler syntax for common use cases.

Conditional logic

In some cases, what happens next in your study will need to depend on what has happened so far, what happened during previous sessions of the study, and/or information about the participant. For instance, perhaps you want to move on from a training segment after the participant answers three questions in a row correctly, or you want to start with an eligibility survey and only route people to the rest of the study if they meet detailed criteria. Or maybe you just want to personalize instructions or stimuli with the child’s name and gender! All Lookit frames allow you to provide either or both of the following properties to flexibly specify conditional behavior:

	generateProperties [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpFrameBase.html#property_generateProperties]: Provide a function that takes expData, sequence, child, pastSessions, and conditions objects, and returns an object representing any additional properties that should be used by this frame - e.g., the frame type, text blocks, whether to do recording, etc. (In principle a generateProperties function could conditionally assign selectNextFrame, although we do not know of a use case where this is necessary.)

	selectNextFrame [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpFrameBase.html#property_selectNextFrame]: Provide a function that takes frames, frameIndex, expData, sequence, child, and pastSessions and returns that frame index to go to when using the ‘next’ action on this frame. For instance, this allows you to skip to the end of the study (or a frame of a particular type) if the child has gotten several questions correct.

Each of these properties is specified as a string, which must define a Javascript function of the specified arguments. generateProperties is called when the frame is initialized, and selectNextFrame is called upon proceeding to the next frame.

Formal documentation for these properties is linked above. However, in practice, if you want to add some conditional behavior and are wondering e.g. how to get the child’s first name or birthday, or how to determine what condition the child is in, it may be easiest to get started by adding a dummy function like the following to the frame in question:

"generateProperties": "function(expData, sequence, child, pastSessions, conditions) {console.log(expData); console.log(sequence); console.log(child); console.log(pastSessions); console.log(conditions); return {};}"

"selectNextFrame": "function(frames, frameIndex, frameData, expData, sequence, child, pastSessions) {console.log(frames); console.log(frameIndex); console.log(frameData); console.log(expData); console.log(sequence); console.log(child); console.log(pastSessions); return (frameIndex + 1);}"

These functions just log each of the arguments they’re given the Javascript console; there you can take a look and play around with how you’d access and manipulate the properties you need. The generateProperties function above just return an empty object, not assigning any properties. The selectNextFrame function just returns frameIndex + 1, i.e. says the next frame should be the one after this one, not changing the frame’s regular behavior.

Although you’ll need to enter these properties as single-line strings in the Lookit study editor, they are obviously not very readable that way! You can go from a single-line string back to something readable using a Javascript ‘beautifier’ like this [https://beautifier.io/] - you may want to do that to better understand the examples below. When you are writing your own functions, you can write them on multiple lines in your text editor and then either strip out the line breaks using your text editor or one of many online tools like this [https://lingojam.com/TexttoOneLine].

Example: eligibility survey

Here is an example of a situation where you might want to determine the sequence of frames in a study and/or behavior of those frames based on data collected earlier in the study. Suppose you want to start off with a survey to determine eligibility, using criteria that go beyond what is available in Lookit child/demographic surveys and usable for automatic eligibility detection. (Perhaps your study is very involved or won’t make sense to people who don’t meet criteria, so you don’t want to just have everyone participate and filter the data afterwards.)

A similar approach would be appropriate if you wanted to customize the behavior of the study based on user input - e.g., using the child’s favorite color for stimuli, let the family choose which game they want to play this time, or let the family choose whether to ‘actually’ participate (and have video recorded) or just see a demo.

This example has three top-level frames: an eligibility survey, a study procedure (which depends on eligibility as determined from the survey), and an exit survey (with debriefing text that depends on eligibility too).

{
 "frames": {
 "exit-survey": {
 "kind": "exp-lookit-exit-survey",
 "generateProperties": "function(expData, sequence, child, pastSessions) {var eligible = expData['1-study-procedure']['generatedProperties']['ELIGIBLE']; if (eligible) { return { 'debriefing': { 'text': 'In this study, we were looking at why babies love cats. Your child actually participated. A real debriefing would be more detailed.', 'title': 'Thank you!' } }; } else { return { 'debriefing': { 'text': 'In this study, we would have looked at why your child loved cats. Your child did not actually participate though. A real debriefing would make more sense.', 'title': 'Thank you!' } }; }}"
 },
 "eligibility-survey": {
 "kind": "exp-lookit-survey",
 "formSchema": {
 "schema": {
 "type": "object",
 "title": "Eligibility survey",
 "properties": {
 "nCats": {
 "type": "integer",
 "title": "How many cats do you have?",
 "maximum": 200,
 "minimum": 0,
 "required": true
 },
 "loveCats": {
 "enum": [
 "yes",
 "no"
],
 "type": "string",
 "title": "Does your baby love cats?",
 "required": true
 }
 }
 },
 "options": {
 "fields": {
 "nCats": {
 "numericEntry": true
 },
 "loveCats": {
 "type": "radio",
 "message": "Please answer this question.",
 "validator": "required-field"
 }
 }
 }
 },
 "nextButtonText": "Continue"
 },
 "study-procedure": {
 "kind": "exp-frame-select",
 "frameOptions": [
 {
 "kind": "exp-frame-select",
 "frameOptions": [
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "emph": true,
 "text": "Let's start the study!"
 },
 {
 "text": "Some info about cats..."
 }
]
 },
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "emph": true,
 "text": "Cats are great"
 },
 {
 "text": "We are measuring how much your child loves cats now. Beep boop!"
 }
]
 }
]
 },
 {
 "kind": "exp-lookit-text",
 "blocks": [{
 "emph": true,
 "text": "Your child is not eligible for this study"
 },
 {
 "text": "Either you do not have any cats or your child does not love cats."
 }
]
 }
],
 "generateProperties": "function(expData, sequence, child, pastSessions) {var formData = expData['0-eligibility-survey'].formData; if (formData.nCats >= 1 && formData.loveCats == 'yes') { console.log('eligible'); return { 'whichFrames': 0, 'ELIGIBLE': true } } else { console.log('ineligible'); return { 'whichFrames': 1, 'ELIGIBLE': false } } }"
 }
 },
 "sequence": [
 "eligibility-survey",
 "study-procedure",
 "exit-survey"
]
}

Here’s how it works:

	The study procedure is set up as an exp-frame-select frame [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpFrameSelect.html], and we decide on-the-spot which of the two frameOptions to use based on the data in the survey by providing a generateProperties function that returns a value for whichFrames. The function generateProperties is called when we get to the study-procedure frame, and the key-value pairs it returns get added to the other parameters for this frame (like kind and frameOptions). In this case, it checks to see whether the survey says the family has at least one cat and the child loves cats; in that case, the child is eligible to participate.

Additionally, the object generateProperties returns is stored under the key generatedProperties in expData for this frame, so that we can use the output later. That’s why we also include either 'ELIGIBLE': true or 'ELIGIBLE': false - that way we can reuse this determination later on in another generateProperties function.

	If the child isn’t eligible, the study-procedure frame just resolves to a single exp-lookit-text frame, at index 1 of frameOptions. If the child is eligible, the study-procedure frame resolves to a second exp-frame-select frame, which just serves to bundle up a few text frames. We don’t provide whichFrames, so all of the frameOptions listed will be shown in order. (We could also have set this up without a nested exp-frame-select frame, e.g. by putting all three exp-lookit-text frames in the outer frameOptions and saying that if the child is eligible, use whichFrames = [0, 1], and if not, whichFrames = 2.)

	After the study procedure is done, everyone goes to an exit survey. The generateProperties function of the exit survey returns different debriefing text based on the stored ELIGIBLE value we defined earlier.

Note that the data stored in expData` will include frame data for the exp-frame-select frames, even though these are not actually displayed as frames separate from the contents they resolve to. For a child who is eligible, the keys in expData will be:

	0-eligibility-survey

	1-study-procedure (the outer exp-frame-select frame)

	1-study-procedure-0 (the inner exp-frame-select frame)

	1-study-procedure-0-0 (the first exp-lookit-text frame)

	1-study-procedure-0-1 (the second exp-lookit-text frame)

Example: waiting for successful training

Sometimes, you might want to skip ahead to the next section of an experiment once certain
criteria are met. For instance:

	you might have a study where questions get harder and harder over time, and you just want to keep asking until the child gets N wrong in a row

	you might want to have a “training” section that allows the family to practice until they’re ready

	you might want to make one section of a study optional, and skip over it if the parent opts to (or if it’s not applicable to them)

Here’s an example study where we wait for the child to get two “training” questions right, then proceed to a “test” question:

{
 "frames": {
 "exit-survey": {
 "kind": "exp-lookit-exit-survey",
 "debriefing": {
 "title": "Thank you!",
 "text": "Thank you for participating in this study"
 }
 },
 "training-question-block": {
 "kind": "exp-frame-select",
 "frameOptions": [
 {}, {}, {}, {}, {}, {}, {}, {}, {}, {}
],
 "commonFrameProperties": {
 "kind": "exp-lookit-survey",
 "generateProperties": " function(expData, sequence, child, pastSessions) { var n = Math.floor(Math.random() * Math.floor(20)); var m = Math.floor(Math.random() * Math.floor(20)); return { 'formSchema': { 'schema': { 'type': 'object', 'title': 'Math practice question', 'properties': { 'add': { 'enum': ['low', 'correct', 'high'], 'title': 'What is ' + n + ' plus ' + m + '?', 'required': true } } }, 'options': { 'fields': { 'add': { 'type': 'radio', 'optionLabels': [n + m - 1, n + m, n + m + 1], 'message': 'Please answer this question.', 'validator': 'required-field'}}}}}}",
 "selectNextFrame": "function(frames, frameIndex, frameData, expData, sequence, child, pastSessions) { var testFrame = 0; for (var iFrame = 0; iFrame < frames.length; iFrame++) {if (frames[iFrame]['id'].indexOf('test-question') != -1) {testFrame = iFrame; break;}} if ((sequence.length >= 3) && (expData[sequence[sequence.length - 2]]['formData']['add'] == 'correct') && (expData[sequence[sequence.length - 1]]['formData']['add'] == 'correct')){ return testFrame; } else { return frameIndex + 1; }}"
 }
 },
 "test-question": {
 "kind": "exp-lookit-survey",
 "generateProperties": " function(expData, sequence, child, pastSessions) { var n = Math.floor(Math.random() * Math.floor(20)); var m = Math.floor(Math.random() * Math.floor(20)); return { 'formSchema': { 'schema': { 'type': 'object', 'title': 'Math test question', 'properties': { 'subtract': { 'enum': ['low', 'correct', 'high'], 'title': 'What is ' + n + ' minus ' + m + '?', 'required': true } } }, 'options': { 'fields': { 'subtract': { 'type': 'radio', 'optionLabels': [n - m - 1, n - m, n - m + 1], 'message': 'Please answer this question.', 'validator': 'required-field'}}}}}}"
 }
 },
 "sequence": [
 "training-question-block",
 "test-question",
 "exit-survey"
]
}

There are three sections in the study: a block of up to 10 training questions, a single test question, and an exit survey. We use an exp-frame-select frame to quickly create ten identical training question frames, by putting all of the frame properties into commonFrameProperties. We use generateProperties not to do anything contingent on the child or study data, but just to programmatically generate the questions - this way we can choose random numbers for each question. Finally, we add a selectNextFrame function to the training questions. Let’s take a closer look at that function:

function(frames, frameIndex, frameData, expData, sequence, child, pastSessions) {
 // First, find the index of the test frame in case we need to go there
 var testFrame = 0;
 for (var iFrame = 0; iFrame < frames.length; iFrame++) {
 if (frames[iFrame]['id'].indexOf('test-question') != -1) {
 testFrame = iFrame;
 break;
 }
 }
 // If the last two questions were answered correctly, go to test
 if ((sequence.length >= 3) && (expData[sequence[sequence.length - 2]]['formData']['add'] == 'correct') && (expData[sequence[sequence.length - 1]]['formData']['add'] == 'correct')) {
 return testFrame;
 } else {
 // Otherwise, just go to the next frame
 return frameIndex + 1;
 }
}

We first use the list of frames to identify the index of the test question. (In this case we could safely assume it’s the second-to-last frame, too. But in a more complex experiment, we might want to find it like this.)

Then we check whether (a) there are already at least 3 frames including this one in the sequence (two practice questions plus the initial exp-frame-select frame) and (b) the last two questions including this one were answered correctly. If so, we skip right to the test question!

Example: personalized story

One of the objects you have access to in your generateProperties function is the child. This allows you to use child data in selecting stimuli, instructions, or procedures. A simple use case would be personalizing a story (or instructions) using the child’s name and gender. Here’s an example:

{
 "frames": {
 "personalized-story": {
 "kind": "exp-lookit-text",
 "generateProperties": "function(expData, sequence, child, pastSessions, conditions) {var childName = child.get('givenName'); var genderedChild; if (child.get('gender') == 'f') { genderedChild = 'girl';} else if (child.get('gender') == 'm') { genderedChild = 'boy';} else {genderedChild = 'kiddo';} var line1 = 'Once upon a time, there was a little ' + genderedChild + ' named ' + childName + '.'; var line2 = childName + ' loved to draw.'; return {'blocks': [{'text': line1}, {'text': line2}]};}"
 }
 },
 "sequence": [
 "personalized-story"
]
}

Example: debriefing text that depends on experimental condition

One fairly common and straightforward use case for customizing frames based on data from the experiment is that you might like to debrief parents at the end of the study based on the experimental condition their child was in, just like you would in the lab.

Here’s an example where we have an experimental “procedure” that depends on condition assignment in a random-parameter-set frame, and mention the condition in the debriefing text:

{
 "frames": {
 "exit-survey": {
 "kind": "exp-lookit-exit-survey",
 "debriefing": {
 "title": "Thank you!",
 "text": "Thank you for participating in this study. Your child was in the "
 },
 "generateProperties": "function(expData, sequence, child, pastSessions, conditions) {if (conditions['1-study-procedure']['conditionNum'] == 0) {return {'debriefing': {'title': 'Thank you!', 'text': 'Your child was in the cats condition.'}};} else {return {'debriefing': {'title': 'Thank you!', 'text': 'Your child was in the dogs condition.'}};} }"
 },
 "study-procedure": {
 "sampler": "random-parameter-set",
 "kind": "choice",
 "frameList": [
 {
 "kind": "exp-lookit-text",
 "blocks": [
 {
 "text": "PROCEDURE_TEXT",
 "title": "PROCEDURE_TITLE"
 }
]
 }
],
 "parameterSets": [
 {
 "PROCEDURE_TEXT": "All about cats",
 "PROCEDURE_TITLE": "Cats say meow!"
 },
 {
 "PROCEDURE_TEXT": "All about dogs",
 "PROCEDURE_TITLE": "Dogs say woof!"
 }
]
 }
 },
 "sequence": [
 "study-procedure",
 "exit-survey"
]
}

Your debriefing information could also take into account other factors - for instance, if you were conducting a give-N task, you could actually give an automatic estimate of the child’s knower-level or show a chart of their responses! As an exercise, try personalizing the debriefing text to use the child’s name.

Preparing your stimuli

Audio and video files

Most experiments will involve using audio and/or video files! You are
responsible for creating these and hosting them somewhere (contact MIT if you need help
finding a place to put them).

You may find that there are more ‘stimuli’ to create than you’d have in the lab, because
in the lab you have the luxury of being present to explain what’s going on. When you design
an online study, you may need to record many of the things you’d say in the lab, or create
pictures or demos to show how things work. This includes not just storybook audio, but
little clips like “We’re almost done!” or “Okay, go ahead and turn around now.”

For basic editing of audio files, if you don’t already have a system in
place, we highly recommend Audacity [http://www.audacityteam.org/].
You can create many “tracks” or select portions of a longer recording
using labels, and export them all at once; you can easily adjust volume
so it’s similar across your stimuli; and the simple “noise reduction”
filter works well. At a minimum, even if these are not ‘stimuli’ per se (e.g., verbal instructions),
we recommend

	Using noise reduction to make speech clearer and remove any background ‘buzz’ during pauses. First select a segment of silence to analyze, then apply noise reduction across the whole audio recording; you may need to play around with the defaults to get excellent noise reduction without distortion, but it does a pretty good job out of the box.

	Using the ‘amplify’ filter to make all stimuli and instructions approximately equally loud (by default, it makes a segment of audio as loud as possible without clipping).

	Trimming ALL of the silence from the beginning and end of the audio clip. This silence may not be especially noticable when you simply play the file, but it translates into an unnecessary delay between whenever you trigger the audio file to play in your study and when the relevant sound actually starts.

For editing of video files, we recommend getting comfortable with the command-line tool
ffmpeg [https://ffmpeg.org/]. It’s a bit of a pain to get used to,
but then you’ll be able to do almost anything you can imagine with audio and video files.

File formats

To have your media play properly across various web browsers, you will
generally need to provide multiple file formats. For a comprehensive
overview of this topic, see
MDN [https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats].

MIT’s standard practice is to provide mp3 and ogg formats for audio, and
webm and mp4 (H.264 video codec + AAC audio codec) for video, to cover
modern browsers. The easiest way to create the appropriate files,
especially if you have a lot to convert, is to use ffmpeg.

Here’s an example command to convert a video file INPUTPATH to mp4 with
reasonable quality/filesize and using H.264 & AAC codecs:

ffmpeg -i INPUTPATH -c:v libx264 -preset slow -b:v 1000k -maxrate 1000k -bufsize 2000k -c:a libfdk_aac -b:a 128k

And to make a webm file:

ffmpeg -i INPUTPATH -c:v libvpx -b:v 1000k -maxrate 1000k -bufsize 2000k -c:a libvorbis -b:a 128k -speed 2

Converting all your audio and video files can be easily automated in
Python. Here’s an example script that uses ffmpeg to convert all the m4a
and wav files in a directory to mp3 and ogg files:

import os
import subprocess as sp
import sys

audioPath = '/Users/kms/Dropbox (MIT)/round 2/ingroupobligations/lookit stimuli/audio clips/'

audioFiles = os.listdir(audioPath)

for audio in audioFiles:
 (shortname, ext) = os.path.splitext(audio)
 print shortname
 if not(os.path.isdir(os.path.join(audioPath, audio))) and ext in ['.m4a', '.wav']:
 sp.call(['ffmpeg', '-i', os.path.join(audioPath, audio), \
 os.path.join(audioPath, 'mp3', shortname + '.mp3')])
 sp.call(['ffmpeg', '-i', os.path.join(audioPath, audio), \
 os.path.join(audioPath, 'ogg', shortname + '.ogg')])

Making dummy stimuli

Sometimes you may not have your stimuli actually ready yet, but you want to make sure your
experiment will work as intended once they’re ready. Here’s an example of using ffmpeg to
make some “dummy” images of text to represent distinct exemplars of various categories.
You could also create videos by setting the duration in seconds (here d=0.01) to something
longer and using an mp4 or webm extension for output instead of jpg.

import os
import subprocess as sp
import sys

baseDir = '/Users/kms/Desktop/labelsconcepts/img/'

for catDir in ['nov1', 'nov2', 'nov3', 'cats', 'dogs', 'iguanas', 'manatees', 'squirrels']:
 os.mkdir(os.path.join(baseDir, catDir));
 for iIm in range(1, 12):
 text = catDir + '.' + str(iIm)
 output = os.path.join(baseDir, catDir, str(iIm) + '.jpg')
 sp.call(['ffmpeg', '-f', 'lavfi', '-i', 'color=c=gray:s=640x480:d=0.01', '-vf',
 "drawtext=fontfile=drawtext='fontfile=/Library/Fonts/Arial Black.ttf':text='" + text + "':fontsize=64:fontcolor=black:x=10:y=10",
 output])

Directory structure

For convenience, many Lookit experiment frames use an expand-assets mixin [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpandAssets.html] that allows you to define a base
directory (baseDir) as part of the frame definition, so that instead
of providing full paths to your stimuli (including multiple file
formats) you can give relative paths and specify the audio and/or video
formats to expect (audioTypes and videoTypes).

For instance, the exp-lookit-story-page frame [https://lookit.github.io/ember-lookit-frameplayer/classes/ExpLookitStoryPage.html] allows this - you can see at the very top of the docs that it uses ExpandAssets, and under ‘Properties’ you can see the baseDir, audioTypes`, and videoTypes arguments.

Images: Anything without :// in the string will be assumed to be a
relative image source.

Audio/video sources: If you want to provide full paths to stimuli, you will be providing a list of sources, like this:

[
 {
 "src": "http://stimuli.org/myAudioFile.mp3",
 "type": "audio/mp3"
 },
 {
 "src": "http://stimuli.org/myAudioFile.ogg",
 "type": "audio/ogg"
 }
]

Instead of listing multiple sources, which are generally the same file
in different formats, you can alternately list a single string like "myAudioFile".

If you use this option, your stimuli will be expected to be organized
into directories based on type.

	baseDir/img/: all images (any file format; include the file
format when specifying the image path)

	baseDir/ext/: all audio/video media files with extension ext

Example: Suppose you set "baseDir": "http://stimuli.org/mystudy/"
and then specified an image source as "train.jpg". That image location
would be expanded to http://stimuli.org/mystudy/img/train.jpg. If
you specified that the audio types you were using were mp3 and
ogg (the default) by setting "audioTypes": ["mp3", "ogg"], and
specified an audio source as "honk", then audio files
would be expected to be located at
http://stimuli.org/mystudy/mp3/honk.mp3 and
http://stimuli.org/mystudy/ogg/honk.ogg.

Experiment data (non-video)

What data can I access?

You can access:
- response data from responses for which you have confirmed consent in the Consent Manager
- account, demographic, and child data from those responses: you will see these accounts under ‘Manage Participants’; if some siblings but not others have participated in one of your studies and you have confirmed consent, you will only see those siblings.

Accessing experiment data

You can see and download collected responses either via the Lookit
experimenter interface or using the API.

A researcher with edit permissions for a particular study can download
session data in JSON or CSV format via the Experimenter interface. A
session record in a Postgres database is created each time a participant
starts the study, and includes a timestamp, account information,
condition assignment, the sequence of frames the participant actually
saw, and frame-specific information for each frame (included in an
‘expData’ structure which is a JSON object with keys corresponding to
frame nicknames as defined in the study definition JSON). Each frame
type may save different data, e.g. form responses; frames that record
webcam video include the video filename(s). The data captured by a
particular frame are listed in the frame documentation at
http://lookit.github.io/ember-lookit-frameplayer, under ‘Methods’ >
‘serializeContent’. Additionally, event data is captured for each frame
and included under an eventTimings key within the frame data JSON,
minimally including a timestamped event when the user proceeds to the
next frame. These events are listed under ‘Events’ in the documentation.

Structure of session data

The data saved when a subject participates in a study varies based on
how that experiment is defined. For concreteness, let’s start by looking
at an example of the data you can download about a single session. (The
eventTimings objects have been shortened to show just a single
event.)

{
 "response": {
 "id": 1190,
 "uuid": "d96b3ba5-6806-4c09-86e2-77456163eb5a",
 "sequence": [
 "0-video-config",
 "1-video-consent",
 "2-instructions",
 "3-mood-survey",
 "4-pref-phys-videos",
 "5-exit-survey"
],
 "conditions": {
 "4-pref-phys-videos": {
 "showStay": 18,
 "startType": 21
 }
 },
 "exp_data": {
 "3-mood-survey": {
 "active": "4",
 "rested": "1",
 "healthy": "2",
 "eventTimings": [
 {
 "eventType": "exp-mood-questionnaire:nextFrame",
 "timestamp": "2018-07-06T23:56:06.459Z"
 }
]
 },
 "0-video-config": {
 "eventTimings": [
 {
 "pipeId": "",
 "videoId": "videoStream_0f620873-2847-4eeb-9854-df7898934c17_0-video-config_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921299537_405",
 "eventType": "exp-video-config:recorderReady",
 "timestamp": "2018-07-06T23:54:59.548Z",
 "streamTime": null
 }
]
 },
 "2-instructions": {
 "eventTimings": [
 {
 "eventType": "exp-physics-intro:nextFrame",
 "timestamp": "2018-07-06T23:55:53.530Z"
 }
]
 },
 "1-video-consent": {
 "videoId": "videoStream_0f620873-2847-4eeb-9854-df7898934c17_1-video-consent_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921346557_292",
 "videoList": [
 "videoStream_0f620873-2847-4eeb-9854-df7898934c17_1-video-consent_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921346557_292"
],
 "eventTimings": [
 {
 "pipeId": "",
 "videoId": "videoStream_0f620873-2847-4eeb-9854-df7898934c17_1-video-consent_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921346557_292",
 "eventType": "exp-video-consent:recorderReady",
 "timestamp": "2018-07-06T23:55:46.558Z",
 "streamTime": 0
 }
]
 },
 "5-exit-survey": {
 "feedback": "",
 "birthDate": "2018-07-03T04:00:00.000Z",
 "useOfMedia": "private",
 "withdrawal": false,
 "eventTimings": [
 {
 "eventType": "exp-exit-survey:nextFrame",
 "timestamp": "2018-07-06T23:57:02.201Z"
 }
],
 "databraryShare": "no"
 },
 "4-pref-phys-videos": {
 "videoId": "videoStream_0f620873-2847-4eeb-9854-df7898934c17_4-pref-phys-videos_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921371545_923",
 "videoList": [
 "videoStream_0f620873-2847-4eeb-9854-df7898934c17_4-pref-phys-videos_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921371545_923"
],
 "videosShown": [
 "https://s3.amazonaws.com/lookitcontents/exp-physics-final/stimuli/stay/webm/sbs_stay_near_mostly-on_book_c2_green_NN.webm",
 "https://s3.amazonaws.com/lookitcontents/exp-physics-final/stimuli/stay/webm/sbs_stay_mostly-on_near_book_c2_green_NN.webm"
],
 "eventTimings": [
 {
 "pipeId": "",
 "videoId": "videoStream_0f620873-2847-4eeb-9854-df7898934c17_4-pref-phys-videos_d96b3ba5-6806-4c09-86e2-77456163eb5a_1530921371545_923",
 "eventType": "exp-video-physics:recorderReady",
 "timestamp": "2018-07-06T23:56:11.549Z",
 "streamTime": 0
 }
]
 }
 },
 "global_event_timings": [],
 "completed": true
 },
 "study": {
 "id": 12,
 "uuid": "0f620873-2847-4eeb-9854-df7898934c17"
 },
 "participant": {
 "id": 3047,
 "uuid": "31692a6c-df1e-47e1-8ad0-e2780d095c05",
 "nickname": "Kim"
 },
 "child": {
 "id": 3749,
 "uuid": "470a0d33-77ee-4dd5-a64e-ec7231f23913",
 "name": "ExperimenterChild",
 "birthday": "2018-02-05",
 "gender": "f",
 "age_at_birth": "30",
 "additional_information": "Test child"
 }
}

There are four top-level keys in this data: response, study,
participant, and child. Study, participant, and child
information should be fairly self-explanatory: which study does this
response pertain to, which family account created the response, and
which child was participating. (The child key age_at_birth refers to
gestational age in weeks at birth.) The response data contains
information concerning this particular session: when it happened, what
condition the child was assigned to, events that happened as the family
proceeded through the study, etc. The response properties are described
below:

	id: short unique ID for the response

	uuid: long unique ID for the response (should be used as primary
identifier)

	sequence: The sequence of frames the subject actually saw
(after running randomization, etc.). Does not include frames skipped
if they left early. The frame names follow the pattern
<order>-<frame.id>, where <order> is the order in the
overall sequence where this frame appeared, and <frame.id> is
the identifier of the frame as defined in the ‘frames’ property of
the experiment structure.

	conditions: An object containing information about conditions to
which the subject was assigned in any frames that do randomization
(choice frames). Keys are in the format <order>-<frame.id>
corresponds with the <order> from the ‘sequence’ of the
original experiment structure, and the <frame.id> again
corresponds with the identifier of the frame as defined in the
‘frames’ property of the experiment structure. Data will be stored in
conditions for the first frame created by a randomizer (top-level
only for now, i.e. not from nested randomizers). Values are objects
containing mappings from condition names to their values for this
session. The data stored by a particular randomizer can be found
under methods: conditions in the randomizer
documentation [http://lookit.github.io/ember-lookit-frameplayer/modules/randomizers.html]

	global_event_timings: A list of events recorded during the study,
not tied to a particular frame. Currently used for recording early
exit from the study; an example value is:

[
 {
 "exitType": "manualInterrupt",
 "eventType": "exitEarly",
 "timestamp": "2018-07-06T23:56:55.282Z",
 "lastPageSeen": 10
 }
]

	completed: A true/false flag indicating whether or not the
participant submitted the last frame of the study. Note that this may
not line up with your notion of whether the participant completed the
study, in two ways: first, completed will be true even if the
participant leaves early, as long as they submit the exit survey
which they skip to when pressing F1. Second, completed will be
false if they don’t submit that exit survey, even if they completed
all of the important experimental parts of the study.

	exp_data: A JSON object containing the data collected by each
frame in the study. More on this to follow.

Interpreting exp_data

Here’s an example of data collected during a session (note: not all
fields are shown):

{
 "sequence": [
 "0-intro-video",
 "1-survey",
 "2-exit-survey"
],
 "conditions": {
 "1-survey": {
 "parameterSet": {
 "QUESTION1": "What is your favorite color?",
 "QUESTION2": "What is your favorite number?"
 },
 "conditionNum": 0
 }
 },
 "exp_data": {
 "0-intro-video": {
 "eventTimings": [{
 "eventType": "nextFrame",
 "timestamp": "2016-03-23T16:28:20.753Z"
 }]
 },
 "1-survey": {
 "formData": {
 "name": "Sam",
 "favPie": "pecan"
 },
 "eventTimings": [{
 "eventType": "nextFrame",
 "timestamp": "2016-03-23T16:28:26.925Z"
 }]
 },
 "2-exit-survey": {
 "formData": {
 "thoughts": "Great!",
 "wouldParticipateAgain": "Yes"
 },
 "eventTimings": [{
 "eventType": "nextFrame",
 "timestamp": "2016-03-23T16:28:32.339Z"
 }]
 }
 }
}

exp_data is an object with three keys that correspond with the frame
names from ‘sequence’. Each of the associated values has an
eventTimings property. This is a place to collect user-interaction
events during an experiment, and by default contains the ‘nextFrame’
event which records when the user progressed to the next frame in
the ‘sequence’. You can see which events a particular frame records by
looking at the ‘Events’ tab in its frame
documentation [http://lookit.github.io/ember-lookit-frameplayer/modules/frames.html].
Events recorded by a frame that does video recording will include
additional information, for instance to indicate when relative to the
video stream this event happened.

The other properties besides ‘eventTimings’ are dependent on the
frame type. You can see which other properties a particular frame
type records by looking at the parameters of the serializeContent
method under the ‘Methods’ tab in its frame
documentation [http://lookit.github.io/ember-lookit-frameplayer/modules/frames.html].

Consent manager

Overview

At the start of a Lookit study, the parent is asked to provide a verbal statement of informed consent. Unlike in the lab (or to a greater extent), it is technically possible for you to end up collecting data from a parent who did NOT consent to participate - e.g., someone idly clicking through who may not understand that this is a research study to do with a child.

For this reason it is critical that you confirm informed consent before using any data from a response! This is baked into the Lookit experimenter interface: you actually do not receive access to responses, or to the associated child, account, or demographic data, until you confirm consent using the consent manager.

Responses submitted on Lookit start out with a consent status of ‘Pending.’ Then a researcher working on this study can either ‘approve’ or ‘reject’ the consent video.

Managing consent rulings

From your study detail page, click ‘View Responses’ and you will be taken to the ‘Consent manager’ view.

[image: Consent manager image]
At the left, you will see a list of responses. By default the responses with ‘Pending’ consent status are displayed; you can use the dropdown menu to show ‘Accepted’ or ‘Rejected’ consent videos instead.

Making consent rulings

When you click on a response, any consent videos from that response are shown to the right. (It is possible, although rare, for there to be multiple consent videos associated with a single response; this will become more common when some researchers are collecting both parental consent and child assent, which would be judged together.) A minimal summary of the data is shown below so that you can see whether the child is in the age range for the study and how far the family got. Unless this response already has already been accepted, you will NOT see ‘Full Session Data’ shown, because this could include more sensitive information.

Watch the video, and decide whether it shows informed consent. You can choose to ‘Accept’ or ‘Reject’ a response, and can enter a comment if desired to keep track of any additional information. You can enter a comment without changing the consent ruling (e.g., to say “Emailed this family to confirm consent”). In general, you should ‘accept’ consent only when the consent video shows an adult reading the consent statement audibly (or signing in ASL), but see the Terms of Use [https://lookit.mit.edu/termsofuse/] for details (for instance, you may be able to contact a family to confirm consent by email in some cases).

Repeat for each consent video. When you are done for now, click ‘Submit Rulings and Comments’ to save your judgments. These changes will immediately be reflected in the number of responses available in the ‘individual responses’ and ‘all responses’ views, as well as with respect to demographic and participant data you have access to.

Consent rulings can be changed after an initial ruling is made; for instance, you can use the dropdown menu to display ‘Accepted’ responses and either ‘Reject’ or ‘Revert to pending.’

The most recent consent ruling, the time of that ruling, any comment, and the name of the researcher who made the ruling, will be included in the JSON/CSV data for this response.

Response statistics

A summary of responses is shown to the right of the consent manager, providing some very basic information about the non-consented responses that may be useful for publication of results. You can see how many responses are still pending consent confirmation; how many accepted responses there are (from how many unique children); and how many responses were rejected (from how many unique children who did not also have some response accepted).

Withdrawn responses

If a parent chooses to withdraw video data at the end of the study, that will be noted in the list item for the response (before the comment it will say ‘Withdrawn’ and the response will be crossed out). All video data beyond consent will be inaccessible to researchers, and it will be deleted automatically from Lookit servers after seven days.

However, you are still able to make a consent ruling about the consent video; this will still impact access to the remaining non-video response data as well as associated child, demographic, and account data.

Using the API

What is the API for?

Using the Lookit API allows you to programatically retrieve or update data (other than video data), rather than manually downloading JSON or CSV files from the Experimenter site. It is also currently the only way to update feedback to participants, although a way to do that via the experimenter interface is coming soon!

Researchers do not in general need to use the API in order to use Lookit to run their studies, but it is available if needed.

API Tips

General

Most endpoints in this API are just meant for retrieving data. Typically, you can retrieve data associated with studies you have permission to view, or view any data that belongs to you. You can only create responses and feedback through the API. You can only update responses and feedback through the API. There is nothing that is permitted to be deleted through the API. For a set of sample functions using the API from Python, please see https://github.com/kimberscott/lookit-data-processing/blob/coding-workflow-multilab/scripts/experimenter.py

API Formatting

This API generally conforms to the JSON-API 1.0 spec [http://jsonapi.org/format/1.0/] . Top-level keys are underscored, while nested key formatting will be the casing that is stored in the db. For example, in the study response below, top-level attributes like exp_data and global_event_timings are underscored. However, nested keys like 5-5-mood-survey and napWakeUp retain the casing given to them by the exp-player.

{
 "type": "responses",
 "id": "bdebd15b-adc7-4377-b2f6-e9f3de70dd19",
 "attributes": {
 "conditions": {
 "8-pref-phys-videos": {
 "showStay": 8,
 "startType": 5,
 "whichObjects": [
 8,
 5,
 6,
 8
]
 }
 },
 "global_event_timings": [
 {
 "exitType": "browserNavigationAttempt",
 "eventType": "exitEarly",
 "timestamp": "2017-10-31T20:30:38.514Z",
 "lastPageSeen": 6
 }
],
 "exp_data": {
 "5-5-mood-survey": {
 "active": "1",
 "rested": "1",
 "healthy": "1",
 "lastEat": "6:00",
 "energetic": "1",
 "napWakeUp": "11:00",
 "childHappy": "1",
 "doingBefore": "s",
 "parentHappy": "1",
 "eventTimings": [
 {
 "eventType": "nextFrame",
 "timestamp": "2017-10-31T20:10:17.269Z"
 }
],
 "ontopofstuff": "1",
 "usualNapSchedule": "no"
 }
 },
 "sequence": [
 "5-5-mood-survey"
],
 "completed": false
 },
 "relationships": {
 "child": {
 "links": {
 "related": "http://localhost:8000/api/v1/children/da27faf2-c3d2-4701-b3bb-dd865f89c1a1/"
 }
 },
 "study": {
 "links": {
 "related": "http://localhost:8000/api/v1/studies/e729321f-418f-4728-992c-9364623dbe9b/"
 }
 },
 "demographic_snapshot": {
 "links": {
 "related": "http://localhost:8000/api/v1/demographics/341ea7c7-f657-4ab2-a530-21ac293e7d6f/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/responses/bdebd15b-adc7-4377-b2f6-e9f3de70dd19/"
 }
}

Content-Type

The following Content-Type must be in the header of the request: application/vnd.api+json.

Authentication

We are using a token-based HTTP Authentication scheme.

	Go to Experimenter’s admin app to create a token /admin/authtoken/token/add/ (Only users marked as “Staff” can access the admin app; for now please ask Kim to provide you with a token.)

[image: Add token image]

	Select your user from the dropdown and hit ‘Save’. Copy the token.

[image: Copy token image]

	Include this token in your Authorization HTTP header. The word “Token” should come before it.

curl -X GET <API_URL_HERE> -H 'Authorization: Token <paste_token_here>'

	For example, here’s how you would access users using curl:

curl -X GET https://localhost:8000/api/v1/users/ -H 'Authorization: Token 123456789abcdefghijklmnopqrstuvwxyz'

	Here is an example of a POST request using curl, note the presence of the content-type header as well as the authorization header:

curl -X POST http://localhost:8000/api/v1/feedback/ -H "Content-Type: application/vnd.api+json" -H 'Authorization: Token abcdefghijklmnopqrstuvwxyzyour-token-here' -d '{"data": {"attributes": {"comment": "Test comment"}, "relationships": {"response": {"data": {"type": "responses","id": "91c15b81-bb25-437a-8299-13cf4c83fed6"}}},"type": "feedback"}}'

Pagination

	This API is paginated, so results are returned in batches of 10. Follow the pagination links in the API response to fetch the subsequent pages of data. In the example below, the “links” section of the API response has the first, last, next, and previous links.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/responses/?page=1",
 "last": "http://localhost:8000/api/v1/responses/?page=5",
 "next": "http://localhost:8000/api/v1/responses/?page=2",
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 5,
 "count": 50
 }
 }
}

Available Endpoints

Children

Viewing the list of children

GET /api/v1/children/

Permissions: Must be authenticated. You can only view children that have responded to studies you have permission to view, or your own children. Users with can_read_all_user_data permissions can view all children of active users in the database via this endpoint.

Ordering: Children can be sorted by birthday using the ordering query parameter. For example, to sort oldest to youngest:

GET http://localhost:8000/api/v1/children/?ordering=birthday

Add a ‘-‘ before birthday to sort youngest to oldest:

GET http://localhost:8000/api/v1/children/?ordering=-birthday

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/children/?page=1",
 "last": "http://localhost:8000/api/v1/children/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "children",
 "id": "0b380366-31b9-45c1-86ef-0fd9ea238ff4",
 "attributes": {
 "given_name": "Ashley",
 "birthday": "2015-01-01",
 "gender": "f",
 "age_at_birth": "36",
 "additional_information": "",
 "deleted": false
 },
 "relationships": {
 "user": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/children/0b380366-31b9-45c1-86ef-0fd9ea238ff4/"
 }
 }
]
}

Retrieving a single child

GET /api/v1/children/<child_id>/

Permissions: Must be authenticated. You can only view a child if he or she has responded to a study you have permission to view. You can additionally view your own child via the API.

Sample Response:

{
 "data": {
 "type": "children",
 "id": "0b380366-31b9-45c1-86ef-0fd9ea238ff4",
 "attributes": {
 "given_name": "Ashley",
 "birthday": "2015-01-01",
 "gender": "f",
 "age_at_birth": "36",
 "additional_information": "",
 "deleted": false
 },
 "relationships": {
 "user": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/children/0b380366-31b9-45c1-86ef-0fd9ea238ff4/"
 }
 }
}

Creating a Child

POST /api/v1/children/

METHOD NOT ALLOWED. Not permitted via the API.

Updating a Child.

PUT /api/v1/children/<child_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Deleting a Child

DELETE /api/v1/children/<child_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Demographic Data

Viewing the list of demographic data

GET /api/v1/demographics/

Permissions: Must be authenticated. You can only view demographics of participants whose children have responded to studies you can view. You can additionally view your own demographic data via the API. Users with can_read_all_user_data permissions can view all demographics of active users in the database via this endpoint.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/demographics/?page=1",
 "last": "http://localhost:8000/api/v1/demographics/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "demographics",
 "id": "f5fa60ca-d428-46cd-9820-846492dd9900",
 "attributes": {
 "number_of_children": "1",
 "child_birthdays": [
 "2015-01-01"
],
 "languages_spoken_at_home": "English and French",
 "number_of_guardians": "2",
 "number_of_guardians_explanation": "",
 "race_identification": [
 "white"
],
 "age": "30-34",
 "gender": "f",
 "education_level": "grad",
 "spouse_education_level": "bach",
 "annual_income": "30000",
 "number_of_books": 100,
 "additional_comments": "",
 "country": "US",
 "state": "AZ",
 "density": "urban",
 "extra": {
 "no": "extra"
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/demographics/f5fa60ca-d428-46cd-9820-846492dd9900/"
 }
 }
]
}

Retrieving a single piece of demographic data

GET /api/v1/demographics/<demographic_data_id>/

Permissions: Must be authenticated. You can only view demographics of participants whose children have responded to studies you can view. You can additionally view your own demographic data via the API.

Sample Response:

{
 "data": {
 "type": "demographics",
 "id": "f5fa60ca-d428-46cd-9820-846492dd9900",
 "attributes": {
 "number_of_children": "1",
 "child_birthdays": [
 "2015-01-01"
],
 "languages_spoken_at_home": "English and French",
 "number_of_guardians": "2",
 "number_of_guardians_explanation": "",
 "race_identification": [
 "white"
],
 "age": "30-34",
 "gender": "f",
 "education_level": "grad",
 "spouse_education_level": "bach",
 "annual_income": "30000",
 "number_of_books": 100,
 "additional_comments": "",
 "country": "US",
 "state": "AZ",
 "density": "urban",
 "extra": {
 "no": "extra"
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/demographics/f5fa60ca-d428-46cd-9820-846492dd9900/"
 }
 }
}

Creating Demographics

POST /api/v1/demographics/

METHOD NOT ALLOWED. Not permitted via the API.

Updating Demographics

PUT /api/v1/demographics/<demographic_data_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Deleting Demographics

DELETE /api/v1/demographics/<demographic_data_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Feedback

Viewing the list of feedback

GET /api/v1/feedback/

Permissions: Must be authenticated. You can only view feedback on study responses you have permission to view. Additionally, you can view feedback left on your own responses.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/feedback/?page=1",
 "last": "http://localhost:8000/api/v1/feedback/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "feedback",
 "id": "cbfc64ee-30a3-491e-bd0e-1bef81540ea5",
 "attributes": {
 "comment": "Thanks for participating! Next time, please center the webcam; you were off-center in many of the video clips."
 },
 "relationships": {
 "response": {
 "links": {
 "related": "http://localhost:8000/api/v1/responses/841c8a77-b322-4e25-8e03-47a83fa326ff/"
 }
 },
 "researcher": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/feedback/cbfc64ee-30a3-491e-bd0e-1bef81540ea5/"
 }
 }
]
}

Retrieving a single piece of feedback

GET /api/v1/feedback/<feedback_id>/

Permissions: Must be authenticated. You can only retrieve feedback attached to a study response you have permission to view. Additionally, you can retrieve feedback attached to one of your own responses.

Sample Response:

{
 "data": {
 "type": "feedback",
 "id": "cbfc64ee-30a3-491e-bd0e-1bef81540ea5",
 "attributes": {
 "comment": "Thanks for participating! Next time, please center the webcam; you were off-center in many of the video clips."
 },
 "relationships": {
 "response": {
 "links": {
 "related": "http://localhost:8000/api/v1/responses/841c8a77-b322-4e25-8e03-47a83fa326ff/"
 }
 },
 "researcher": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/feedback/cbfc64ee-30a3-491e-bd0e-1bef81540ea5/"
 }
 }
}

Creating Feedback

POST /api/v1/feedback/

Permissions: Must be authenticated. Must have permission to edit the study response where you are leaving feedback (which only admins have).

Sample Request body:

{
 "data": {
 "attributes": {
 "comment": "Thank you so much for participating in round one! Please try to respond to the second round some time in the next three weeks!"
 },
 "relationships": {
 "response": {
 "data": {
 "type": "responses",
 "id": "841c8a77-b322-4e25-8e03-47a83fa326ff"
 }
 }
 },
 "type": "feedback"
 }
}

Sample Response

{
 "data": {
 "type": "feedback",
 "id": "aabf86c7-3dc0-4284-844c-89e04a1f154f",
 "attributes": {
 "comment": "Thank you so much for participating in round one! Please try to respond to the second round some time in the next three weeks!"
 },
 "relationships": {
 "response": {
 "links": {
 "related": "http://localhost:8000/api/v1/responses/841c8a77-b322-4e25-8e03-47a83fa326ff/"
 }
 },
 "researcher": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/feedback/aabf86c7-3dc0-4284-844c-89e04a1f154f/"
 }
 }
}

Updating Feedback

PATCH /api/v1/feedback/<feedback_id>/

Permissions: Must be authenticated. Must have permission to edit the study response where you are changing feedback (which only admins have).

Sample Request body:

{
 "data": {
 "attributes": {
 "comment": "Changed comment"
 },
 "type": "feedback",
 "id": "ebf41029-02d7-49f5-8adb-1e32d4ac22a5"
 }
}

Deleting Feedback

DELETE /api/v1/feedback/<feedback_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Organizations

Viewing the list of organizations

GET /api/v1/organizations/

Permissions: Must be authenticated.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/organizations/?page=1",
 "last": "http://localhost:8000/api/v1/organizations/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "organizations",
 "id": "665c4457-a02e-4842-bd72-7043de3d66d0",
 "attributes": {
 "name": "MIT"
 },
 "links": {
 "self": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 }
]
}

Retrieving a single organization

GET /api/v1/organizations/<organization_id>/

Permissions: Must be authenticated.

Sample Response:

{
 "data": {
 "type": "organizations",
 "id": "665c4457-a02e-4842-bd72-7043de3d66d0",
 "attributes": {
 "name": "MIT"
 },
 "links": {
 "self": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 }
}

Creating an Organization

POST /api/v1/organizations/

METHOD NOT ALLOWED. Not permitted via the API.

Updating an Organization

PUT /api/v1/organizations/<organization_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Deleting an Organization

DELETE /api/v1/organizations/<organization_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Responses

Viewing the list of responses

GET /api/v1/responses/

Permissions: Must be authenticated. You can only view responses to studies you have permission to view. Additionally, you can view your own responses through the API.

Sort Order: By default, responses are sorted reverse date_modified, meaning the most recently modified responses appear first.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/feedback/?page=1",
 "last": "http://localhost:8000/api/v1/feedback/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type":"responses",
 "id":"8260ca67-6ec0-4749-ba11-fa35612ea030",
 "attributes":{
 "conditions":{

 },
 "global_event_timings":[
 {
 "exit_type":"browserNavigationAttempt",
 "timestamp":"2017-09-05T14:33:41.322Z",
 "event_type":"exitEarly",
 "last_page_seen":0
 }
],
 "exp_data":{

 },
 "sequence":[

],
 "completed":false
 },
 "relationships":{
 "child":{
 "links":{
 "related":"http://localhost:8000/api/v1/children/0b380366-31b9-45c1-86ef-0fd9ea238ff4/"
 }
 },
 "study":{
 "links":{
 "related":"http://localhost:8000/api/v1/studies/a8a80880-5539-4650-9387-c62afa202d43/"
 }
 },
 "demographic_snapshot":{
 "links":{
 "related":"http://localhost:8000/api/v1/demographics/f5fa60ca-d428-46cd-9820-846492dd9900/"
 }
 }
 },
 "links":{
 "self":"http://localhost:8000/api/v1/responses/8260ca67-6ec0-4749-ba11-fa35612ea030/"
 }
 }
]
}

Retrieving a single response

GET /api/v1/responses/<response_id>/

Permissions: Must be authenticated. You can only view responses to studies you have permission to view as well as your own responses.

Sample Response:

{
 "data": {
 "type": "responses",
 "id": "8260ca67-6ec0-4749-ba11-fa35612ea030",
 "attributes": {
 "conditions": {},
 "global_event_timings": [
 {
 "exit_type": "browserNavigationAttempt",
 "timestamp": "2017-09-05T14:33:41.322Z",
 "event_type": "exitEarly",
 "last_page_seen": 0
 }
],
 "exp_data": {},
 "sequence": [],
 "completed": false
 },
 "relationships": {
 "child": {
 "links": {
 "related": "http://localhost:8000/api/v1/children/0b380366-31b9-45c1-86ef-0fd9ea238ff4/"
 }
 },
 "study": {
 "links": {
 "related": "http://localhost:8000/api/v1/studies/a8a80880-5539-4650-9387-c62afa202d43/"
 }
 },
 "demographic_snapshot": {
 "links": {
 "related": "http://localhost:8000/api/v1/demographics/f5fa60ca-d428-46cd-9820-846492dd9900/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/responses/8260ca67-6ec0-4749-ba11-fa35612ea030/"
 }
 }
}

Creating a Response

POST /api/v1/responses/. Possible to do programmatically, but really intended to be used by ember-lookit-frameplayer app.

Permissions: Must be authenticated. Child in response must be your child.

Sample Request body:

{
 "data": {
 "attributes": {},
 "relationships": {
 "child": {
 "data": {
 "type": "children",
 "id": "0b380366-31b9-45c1-86ef-0fd9ea238ff4"
 }
 },
 "study": {
 "data": {
 "type": "studies",
 "id": "a8a80880-5539-4650-9387-c62afa202d43"
 }
 }
 },
 "type": "responses"
 }
}

Updating a Response

PATCH /api/v1/responses/<response_id>/ Possible to do programmatically, but really intended for the ember-lookit-frameplayer to update
as it moves through each frame of the study.

Sample Request body:

{
 "data": {
 "attributes": {
 "conditions": {"cloudy": "skies"}
 },
 "type": "responses",
 "id": "51c0a355-375d-481f-a3d0-6471db8f9f14"
 }
}

Deleting a Response

DELETE /api/v1/responses/<response_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Studies

Viewing the list of studies

GET /api/v1/studies/

Permissions: Must be authenticated. You can view studies that are active/public as well as studies you have permission to edit.

Sort Order: By default, studies are sorted reverse date_modified, meaning the most recently modified studies appear first.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/studies/?page=1",
 "last": "http://localhost:8000/api/v1/studies/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "studies",
 "id": "65680ade-510c-4437-a58a-e41d4b94d8ed",
 "attributes": {
 "name": "Sample Study",
 "date_modified": "2017-09-06T19:33:24.826892Z",
 "short_description": "A short description of your study would go here.",
 "long_description": "A longer purpose of your study would be here.",
 "criteria": "Children should be around five.",
 "duration": "20 minutes",
 "contact_info": "Contact Sally",
 "image": "http://localhost:8000/media/study_images/download.jpeg",
 "structure": {
 "frames": {},
 "sequence": []
 },
 "display_full_screen": true,
 "exit_url": "http://www.cos.io",
 "state": "created",
 "public": true
 },
 "relationships": {
 "organization": {
 "links": {
 "related": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 },
 "creator": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 },
 "responses": {
 "links": {
 "related": "http://localhost:8000/api/v1/studies/65680ade-510c-4437-a58a-e41d4b94d8ed/responses/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/studies/65680ade-510c-4437-a58a-e41d4b94d8ed/"
 }
 }
]
}

Retrieving a single study

GET /api/v1/studies/<study_id>/

Permissions: Must be authenticated. You can fetch an active study or a study you have permission to edit.

Sample Response:

{
 "data": {
 "type": "studies",
 "id": "65680ade-510c-4437-a58a-e41d4b94d8ed",
 "attributes": {
 "name": "Sample Study",
 "date_modified": "2017-09-06T19:33:24.826892Z",
 "short_description": "A short description of your study would go here.",
 "long_description": "A longer purpose of your study would be here.",
 "criteria": "Children should be around five.",
 "duration": "20 minutes",
 "contact_info": "Contact Sally",
 "image": "http://localhost:8000/media/study_images/download.jpeg",
 "structure": {
 "frames": {},
 "sequence": []
 },
 "display_full_screen": true,
 "exit_url": "http://www.cos.io",
 "state": "created",
 "public": true
 },
 "relationships": {
 "organization": {
 "links": {
 "related": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 },
 "creator": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 },
 "responses": {
 "links": {
 "related": "http://localhost:8000/api/v1/studies/65680ade-510c-4437-a58a-e41d4b94d8ed/responses/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/studies/65680ade-510c-4437-a58a-e41d4b94d8ed/"
 }
 }
}

Retrieving a Study’s responses

GET /api/v1/studies/<study_id>/responses/

Permissions: Must be authenticated. Must have permission to view the responses to the particular study.

Creating a Study

POST /api/v1/studies/

METHOD NOT ALLOWED. Not permitted via the API.

Updating a Study

PUT /api/v1/studies/<study_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Deleting a Study

DELETE /api/v1/studies/<study_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Users

Viewing the list of users

GET /api/v1/users/

Permissions: Must be authenticated. You can view participants that have responded to studies you have permission to view, as well as own user information.
Endpoint can return both participants and researchers, if you have permission to view them. Users with can_read_all_user_data permissions can view all active users in the database via this endpoint. Usernames are only shown if user has can_read_usernames permissions.

Sample Response:

{
 "links": {
 "first": "http://localhost:8000/api/v1/users/?page=1",
 "last": "http://localhost:8000/api/v1/users/?page=1",
 "next": null,
 "prev": null,
 "meta": {
 "page": 1,
 "pages": 1,
 "count": 1
 }
 },
 "data": [
 {
 "type": "users",
 "id": "834bbf33-b249-4737-a041-43574cd137a7",
 "attributes": {
 "given_name": "Test",
 "middle_name": "",
 "family_name": "User",
 "identicon": "",
 "is_active": true,
 "is_staff": true
 },
 "relationships": {
 "demographics": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/demographics/"
 }
 },
 "organization": {
 "links": {
 "related": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 },
 "children": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/children/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
]
}

Retrieving a single user

GET /api/v1/users/<user_id>/

Permissions: Must be authenticated. You can view participants that have responded to studies you have permission to view, as well as own user information.

Sample Response:

{
 "data": {
 "type": "users",
 "id": "834bbf33-b249-4737-a041-43574cd137a7",
 "attributes": {
 "given_name": "Test",
 "middle_name": "",
 "family_name": "User",
 "identicon": "",
 "is_active": true,
 "is_staff": true
 },
 "relationships": {
 "demographics": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/demographics/"
 }
 },
 "organization": {
 "links": {
 "related": "http://localhost:8000/api/v1/organizations/665c4457-a02e-4842-bd72-7043de3d66d0/"
 }
 },
 "children": {
 "links": {
 "related": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/children/"
 }
 }
 },
 "links": {
 "self": "http://localhost:8000/api/v1/users/834bbf33-b249-4737-a041-43574cd137a7/"
 }
 }
}

Creating a User

POST /api/v1/users/

METHOD NOT ALLOWED. Not permitted via the API.

Updating a User

PUT /api/v1/users/<user_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Deleting a User

DELETE /api/v1/users/<user_id>/

METHOD NOT ALLOWED. Not permitted via the API.

Developing new frames

	Setup for custom frame development
	Overview

	Django App steps

	Ember App steps

	Starting up once initial setup is completed

	Previewing a study

	Participating in a study

	Where does my video go?

	Using https

	Further Reading / Useful Links

	Creating custom frames
	Overview

	Getting Started

	Adding CSS styling

	Using mixins

	Documenting your frame

	Ember debugging

	When should I use actions vs functions?

	How to capture video in your frame
	Limitations

	How it works

	Custom randomizer frames
	Overview of ‘choice’ structure

	Making your own

Setup for custom frame development

Suppose that for your study, you need a frame that’s not part of the
standard ember-lookit-frameplayer library. Maybe you want to use a particular game
you’ve already implemented in Javascript, or you want to slightly change
how one of the existing frames works, or you want to hard-code a
particular complicated counterbalancing scheme. That’s okay! You can add
a new frame to your own version of the ember-lookit-frameplayer repository, and tell
Experimenter to use your Github fork ofember-lookit-frameplayer when building your
study. But for efficiency, you will probably want to run Lookit on your
own computer as you implement your new frame, so that you can test out
changes immediately rather than repeatedly pushing your changes to
Github and re-building your study on Experimenter. These instructions
will walk you through setting up to run Lookit locally.

Overview

Even though we will probably just be changing the frame definitions in
ember-lookit-frameplayer, we will need to install both the the Django app
(lookit-api) and the Ember app (ember-lookit-frameplayer), tell
them how to talk to each other, and run both of those servers locally.
In Experimenter, we need to add an organization to our superuser, and
then add a child and demographic data. We then create a study locally.
The exp-player needs to be linked for local development, and a token
added to the headers of the API requests the
ember-lookit-frameplayer is sending. We can then navigate directly
to the study from the ember app to bypass the build process locally.
This will enable you to make changes to frames locally and rapidly see
the results of those changes, participating in a study just as if you
were a participant on the Lookit website.

Django App steps

	Follow the instructions to install the django
app locally. Run the server.

	Navigate to http://localhost:8000/admin/ to login to Experimenter’s
admin app. You should be redirected to login. Use the superuser
credentials created in the django installation steps.

	Once you are in the Admin App, navigate to users, and then select
your superuser. If you just created your django app, there should be
two users to pick from, your superuser, and an anonymous user. In
that case, your superuser information is here
http://localhost:8000/admin/accounts/user/2/change/.

	Update your superuser information through the admin app. We primarily
need to add an organization to the user, but have to fill out the
bold fields additionally in order to save the user information.

	Family Name: Your last name

	Organization: Select MIT in dropdown. If no organizations are in
the dropdown, create one through the admin app, and come back and
add it here.

	Identicon: If no identicon, just type random text here

	Timezone: America/New_York, as an example

	Locale: en_US, as an example

	Place a check in the checkbox by “Is Researcher”

Click “Save”.

	Create a token to allow the Ember app to access the API by navigating
to http://localhost:8000/admin/authtoken/token/. Click “Add Token”,
find your superuser in the dropdown, and then click “Save”. You will
need this token later.

	Create a study by navigating to
http://localhost:8000/exp/studies/create/. Fill out all the fields.
The most important field is the structure, where you define the
frames and the sequence of the frames. Be sure the frame and the
details for the frame you are testing are listed in the structure.

	Add demographic information to your superuser (just for testing
purposes), so your superuser can participate in studies. Navigate to
http://localhost:8000/account/demographics/. Scroll down to the
bottom and hit “Save”. You’re not required to answer any questions,
but hitting save will save a blank demographic data version for your
superuser.

	Create a child by navigating to
http://localhost:8000/account/children/, and clicking “Add Child”.
Fill out all the information with test data and click “Add child”.

Now we have a superuser with an organization, that has attached
demographic data, and a child. We’ve created a study, as well as a token
for accessing the API. Leave the django server running and switch to a
new tab in your console.

Remember: The OAuth authentication used for access to Experimenter
does not work when running locally. You can access Experimenter by
first logging in as your superuser, or by giving another local user
researcher permissions using the Admin app.

Ember App steps

	Follow the instructions to install the ember
app locally.

	If you
make changes to the frames, you should see notifications that files
have changed in the console where your ember server is running, like
this:

file changed components/exp-video-config/template.hbs

	Add your token and lookit-api local host address
to the ember-lookit-frameplayer/.env file. This will allow your Ember app to talk
to your local API. Your .env file will now look like this:

PIPE_ACCOUNT_HASH='<account hash here>'
PIPE_ENVIRONMENT=<environment here>
LOOKIT_API_KEY='Token <token here>'
LOOKIT_API_HOST='http://localhost:8000'

	If you want to use the HTML5 video recorder, you’ll need to set up to
use https locally. Open ember-lookit-frameplayer/.ember-cli and
make sure it includes ssl: true:

"disableAnalytics": false,
"ssl": true

Create server.key and server.crt files in the root
ember-lookit-frameplayer directory as follows:

openssl genrsa -des3 -passout pass:x -out server.pass.key 2048
openssl rsa -passin pass:x -in server.pass.key -out server.key
rm server.pass.key
openssl req -new -key server.key -out server.csr
openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.key -out server.crt

Leave the challenge password blank and enter localhost as the
Common Name.

	Run the ember server: ember serve

Starting up once initial setup is completed

This is much quicker! Once you have gotten through the initial setup
steps, you don’t need to go through them every time you want to work on
something.

	Start the Django app:

$ cd lookit-api
$ source VENVNAME/bin/activate
$ python manage.py runserver

	Start the Ember app:

$ cd ember-lookit-frameplayer
$ ember serve

	Log in as your local superuser at http://localhost:8000/admin/

Previewing a study

When you are previewing a study, the responses to the study will not be
saved. You will get an error at the end of the study about this - that’s
expected and not something to worry about. Video attachments will be
saved, however, with an id of “PREVIEW_DATA_DISREGARD”. You do not need
to create demographic data, or a child, since this is just a preview.
You just need a study to navigate to. The URL for previewing is
/exp/studies/study_uuid/preview/.

To fetch the identifier of the study, you can use the API. To fetch
studies, navigate to http://localhost:8000/api/v1/studies. Copy the id
of the study you created earlier.

Now, you can navigate to
https://localhost:4200/exp/studies/study_id/preview, replacing study_id
with the id you obtained from the API. (For simplicity, bookmark this
link while you’re working!)

Participating in a study

To participate in a study locally, you need demographic data and a child
attached to the logged in user, as well as a study.

Responses are saved to your local server. The URL for participating is
studies/study_uuid/child_uuid. To fetch studies, navigate to
http://localhost:8000/api/v1/studies/. Copy the id of the study you
created earlier. To fetch children, navigate to
http://localhost:8000/api/v1/children/. Copy the id of your child.

Finally, to participate in a study, navigate to
https://localhost:4200/studies/study_id/child_id, replacing study_id and
child_id with the ids you obtained from the API. (For simplicity,
bookmark this link while you’re working!)

Where does my video go?

If you have set up the Pipe recorder environment variables as described
in the installation instructions,
video recorded during your local testing will go to Pipe and then to an
S3 bucket for Lookit development video. Contact us for directions about
accessing this bucket. [TODO: documentation on setting up access.]

Using https

You may need to adjust browser settings to allow using https with the
self-signed certificate. For instance, in Chrome, set Camera and
Microphone permissions at
chrome://settings/content/siteDetails?site=https://localhost:4200.

If not using https locally, replace the https://localhost:4200 addresses
with http://localhost:4200.

Further Reading / Useful Links

	http://emberjs.com/

	http://ember-cli.com/

	Development Browser Extensions
- https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi
- https://addons.mozilla.org/en-US/firefox/addon/ember-inspector/

Creating custom frames

Overview

You may find you have a need for some experimental component not already
included in Lookit. The goal of this section is to walk through
extending the base functionality with your own code.

We use the term ‘frame’ to describe the combination of JavaScript file
and Handlebars HTML template that compose a block of an experiment
(see “Building your experiment”).

Experimenter is composed of two main modules:

	lookit-api [https://github.com/lookit/lookit-api]:
The repo containing the Experimenter Django app. The Lookit Django
app is also in this repo.

	ember-lookit-frameplayer [https://github.com/lookit/ember-lookit-frameplayer]:
A small Ember app that allows the API in lookit-api to talk to the
exp-player and provides the rendering engine and experiment frames for Lookit studies

Generally, all ‘frame’ development will happen in ember-lookit-frameplayer.

To start developing your own frames, you will want to first follow the
“Setup for local frame development” steps. To use the frame definitions
you have created when posting a study on Lookit, you can specify your
own ember-lookit-frameplayer repo to use (see “Using the experimenter interface”).

Getting Started

One of the features of Ember CLI [http://www.ember-cli.com/] is the
ability to provide ‘blueprints’ for code. These are basically just
templates of all of the basic boilerplate needed to create a certain
piece of code. To begin developing your own frame:

cd ember-lookit-frameplayer/lib/exp-player
ember generate exp-frame exp-<your_name>

Where <your_name> corresponds with the frame name of your choice.

A Simple Example

Let’s walk though a basic example of ‘exp-consent-form’:

$ ember generate exp-frame
installing exp-frame
 create addon/components/exp-consent-form/component.js
 create addon/components/exp-consent-form/template.hbs
 create app/components/exp-consent-form.js

Notice this created three new files: -
addon/components/exp-consent-form/component.js: the JS file for your
‘frame’ - addon/components/exp-consent-form/template.hbs: the
Handlebars template for your ‘frame’ -
app/components/exp-consent-form.js: a boilerplate file that exposes
the new frame to the Ember app- you will almost never need to modify
this file.

Let’s take a deeper look at the component.js file:

import ExpFrameBaseComponent from 'exp-player/components/exp-frame-base/component';
import layout from './template';

export default ExpFrameBaseComponent.extend({
 type: 'exp-consent-form',
 layout: layout,
 meta: {
 name: 'ExpConsentForm',
 description: 'TODO: a description of this frame goes here.',
 parameters: {
 type: 'object',
 properties: {
 // define configurable parameters here
 }
 },
 data: {
 type: 'object',
 properties: {
 // define data to be sent to the server here
 }
 }
 }
});

The first section:

import ExpFrameBaseComponent from 'exp-player/components/exp-frame-base';
import layout from './template';

export default ExpFrameBaseComponent.extend({
 type: 'exp-consent-form',
 layout: layout,
...
})

does several things: - imports the ExpFrameBaseComponent: this is
the superclass that all ‘frames’ must extend - imports the layout:
this tells Ember what template to use - extends
ExpFrameBaseComponent and specifies layout: layout

Next is the ‘meta’ section:

 ...
 meta: {
 name: 'ExpConsentForm',
 description: 'TODO: a description of this frame goes here.',
 parameters: {
 type: 'object',
 properties: {
 // define configurable parameters here
 }
 },
 data: {
 type: 'object',
 properties: {
 // define data to be sent to the server here
 }
 }
 }
...

which is composed of: - name (optional): A human readable name for this
‘frame’ - description (optional): A human readable description for this
‘frame’. - parameters: JSON Schema defining what configuration
parameters this ‘frame’ accepts. When you define an experiment that uses
the frame, you will be able to specify configuration as part of the
experiment definition. Any parameters in this section will be
automatically added as properties of the component, and directly
accessible as propertyName from templates or component logic. -
data: JSON Schema defining what data this ‘frame’ outputs. Properties
defined in this section represent properties of the component that will
get serialized and sent to the server as part of the payload for this
experiment. You can get these values by binding a value to an input box,
for example, or you can define a custom computed property by that name
to have more control over how a value is sent to the server.

If you want to save the value of a configuration variables, you can
reference it in both parameters and data. For example, this can be
useful if your experiment randomly chooses some frame behavior when it
loads for the user, and you want to save and track what value was
chosen.

It is important that any fields you define in data be named in
camelCase: they can be all lowercase or they can be writtenLikeThis, but
they should not start with capital letters or include underscores. This
is because the fields from the Ember app will be converted to snake_case
for storage in the Postgres database, and may be converted back if
another frame in Ember uses values from past sessions. We are fine if we
go fieldName -> field_name -> fieldName, but anything else
gets dicey! (Note to future developers: some conversations about this
decision are available if this becomes a point of concern.)

Building out the Example

Let’s add some basic functionality to this ‘frame’. First define some of
the expected parameters:

...
 meta: {
 ...,
 parameters: {
 type: 'object',
 properties: {
 title: {
 type: 'string',
 default: 'Notice of Consent'
 },
 body: {
 type: 'string',
 default: 'Do you consent to participate in this study?'
 },
 consentLabel: {
 type: 'string',
 default: 'I agree'
 }
 }
 }
 },
...

And also the output data:

...,
 data: {
 type: 'object',
 properties: {
 consentGranted: {
 type: 'boolean',
 default: false
 }
 }
 }
 }
...

Since we indicated above that this ‘frame’ has a consentGranted
property, let’s add it to the ‘frame’ definition:

export default ExpFrameBaseComponent.extend({
 ...,
 consentGranted: null,
 meta: {
 ...
 }
...

Next let’s update template.hbs to look more like a consent form:

<div class="well">
 <h1>{{ title }}</h1>
 <hr>
 <p> {{ body }}</p>
 <hr >
 <div class="input-group">

 {{ consentLabel }}

 {{input type="checkbox" checked=consentGranted}}
 </div>
</div>
<div class="row exp-controls">
 <!-- Next/Last/Previous controls. Modify as appropriate -->
 <div class="btn-group">
 <button class="btn btn-default" {{ action 'previous' }} > Previous </button>
 <button class="btn btn-default pull-right" {{ action 'next' }} > Next </button>
 </div>
</div>

We don’t want to let the participant navigate backwards or to continue
unless they’ve checked the box, so let’s change the footer to:

<div class="row exp-controls">
 <div class="btn-group">
 <button class="btn btn-default pull-right" disabled={{ consentNotGranted }} {{ action 'next' }} > Next </button>
 </div>
</div>

Notice the new property consentNotGranted; this will require a new
computed field in our JS file:

 meta: {
 ...
 },
 consentNotGranted: Ember.computed.not('consentGranted')
});

Adding CSS styling

You will probably want to add custom styles to your frame, in order to
control the size, placement, and color of elements. Experimenter uses a
common web standard called
CSS [https://developer.mozilla.org/en-US/docs/Web/CSS] for styles.*

To add custom styles for a pre-existing component, you will need to
create a file <component-name.scss> in the
styles/components directory of ember-lookit-frameplayer. Then add a line
to the top of styles/app.scss, telling it to use that style.
For example,

@import "components/exp-video-physics";

Remember that anything in ember-lookit-frameplayer is shared code. Below are a few
good tips to help your new frame stay isolated and distinct, so that it does
not affect other projects.

	To protect other frames from being affected by your new styles, add a
class of the same name as your frame (e.g., exp-myframe) to the
div enclosing your component. Then prefix every rule in your .scss
file with .exp-myframe to ensure that only your own frame is
affected. Until we have a better solution, this practice will be
enforced if you submit a pull request to add your frames to the
common Lookit ember-lookit-frameplayer repo.

	To help protect your own frame’s styling from possible future style
changes (improperly) added by other people, you can give new classes
and IDs in your component a unique prefix, so that they don’t
inadvertently overlap with styles for other things. For example,
instead of video-widget and should-be-centered, use names
like exp-myframe-video-widget and
exp-myframe-should-be-centered.

Researchers using your frame can force it to be shown fullscreen (even if that is not
the typical intended use) by passing the parameter displayFullscreenOverride. If you
have not also set the displayFullscreen property of your frame to true, then the
#experiment-player element will have class player-fullscreen-override but not
player-fullscreen, to allow display to more closely mimic what it would be in
non-fullscreen mode for things like forms and text pages.

If you create an (intentionally) fullscreen frame, then the element you make fullscreen will have class
player-fullscreen while it is fullscreen, which you can use for styling.

* You may notice that style files have a special extension .scss.
That is because styles in experimenter are actually written in
SASS [http://sass-lang.com/]. You can still write normal CSS just
fine, but SASS provides additional syntax on top of that and can be
helpful for power users who want complex things (like variables).

Using mixins

Sometimes, you will wish to add a preset bundle of functionality to any
arbitrary experiment frame. The Experimenter platform provides support
for this via mixins.

To use a mixin for video recording, fullscreen, etc., simply have your
frame “extend” the mixin. For instance, to use the VideoRecord mixin,
your component.js file would define:

import ExpFrameBaseComponent from 'exp-player/components/exp-frame-base/component';
import layout from './template';

export default ExpFrameBaseComponent.extend(VideoRecord, {
 type: 'exp-consent-form',
 layout: layout,
 meta: {
 ...
 }
});

Your frame can extend any number of mixins. For now, be careful to
check, when you use a mixin, that your frame does not defining any
properties or functions that will conflict with the mixin’s properties
or functions. If the mixin has a function doFoo, you can use that
from your frame simply by calling this.doFoo().

Below is a brief introduction to each of the common mixins; for more
detail, see sample usages throughout the ember-lookit-frameplayer codebase and the
mixin-specific docs
here [https://lookit.github.io/ember-lookit-frameplayer/modules/mixins.html]

FullScreen

This mixin is helpful when you want to show something (like a video) in
fullscreen mode without distractions. You will need to specify the part
of the page that will become full screen. By design, most browsers
require that you interact with the page to trigger fullscreen mode.

MediaReload

If your component uses video or audio, you will probably want to use
this mixin. It is very helpful if you ever expect to show two
consecutive frames of the same type (eg two physics videos, or two
things that play an audio clip). It automatically addresses a quirk of
how ember renders the page; see stackoverflow
post [http://stackoverflow.com/a/18454389/1422268] for more
information.

VideoRecord

Functionality related to video capture, in conjunction with the
Pipe [https://addpipe.com] system, for which MIT has a license.

Documenting your frame

We use YUIdoc [http://yui.github.io/yuidoc/] for generating
“automatic” documentation of ember-lookit-frameplayer frames, available
here [https://lookit.github.io/ember-lookit-frameplayer/modules/frames.html]. If
you want to contribute your frames to the main Lookit codebase, please
include YUIdoc-formatted comments following the example of existing
frames, e.g. exp-lookit-exit-survey. Make sure to include:

	A general description of your frame

	An example of using it (the relevant JSON for a study)

	All inputs

	All outputs (data saved)

	Any events recorded

To check how your documentation will appear, run yarn run docs from the ember-lookit-frameplayer
directory, then use yuidoc --server to see the docs served locally.

Include a screenshot in your frame documentation if possible! If your frame kind is
exp-smithlab-monkey-game, name the screenshot
exp-player/screenshots/ExpSmithlabMonkeyGame.png (i.e., go from
dashes to CamelCase). For a simple frame, an actual screenshot is fine. If there are several
“phases” to your frame or different ways it can work, you may want to make a diagram
instead. When you run yarn run docs, this screenshot gets copied over to the YUIdoc theme
for the project and to the docs/assets directory. The former is used locally, the latter
when serving from github pages. Both the copy in exp-player/screenshots and the one in
docs/assets should be committed using git; the one in the theme directory doesn’t have to be.

Ember debugging

Values of variables used in your frame are tricky to access directly
from the Javascript console in your browser during testing.

There’s an Ember Inspector browser
plugin [https://guides.emberjs.com/v2.11.0/ember-inspector/] you can
use to help debug the Lookit components. Once you’ve installed it,
you’ll find it along with other developer tools.

Here’s how to find relevant data for a particular frame. Screenshots
below are for Google Chrome.

[image: Ember debugger tree view]
Ember debugger tree view

This lets you right away change any of the data you sent to the frame in
the JSON document. E.g., on the consent page, try changing the “prompt”
to something else. If something is going wrong, hopefully this
information will be helpful.

You can send the entire component (or anything else) to the console
using the little >$E button:

[image: Ember debugger send to console]
Ember debugger send to console

And then to keep using it, save it as a variable:

[image: Ember debugger save variable]
Ember debugger save variable

Then you can do things like try out actions, e.g. this.send.

When should I use actions vs functions?

Actions should be used when you need to trigger a specific piece of
functionality via user interaction: eg click a button to make something
happen.

Functions (or helper methods on a component/frame) should be used when
the logic is shared, or not intended to be accessed directly via user
interaction. It is usually most convenient for these methods to be
defined as a part of the component, so that they can access data or
properties of the component. Since functions can return a value, they
are particularly helpful for things like sending data to a server, where
you need to act on success or failure in order to display information to
the user. (using promises, etc)

Usually, you should use actions only for things that the user directly
triggers. Actions and functions are not mutually exclusive! For example,
an action called save might call an internal method called
this._save to handle the behavior and message display consistently.

If you find yourself using the same logic over and over, and it does not
depend on properties of a particular component, consider making it a
util [https://ember-cli.com/extending/#detailed-list-of-blueprints-and-their-use]!

If you are building extremely complex nested components, you may also
benefit from reading about closure actions. They can provide a way to
act on success or failure of something, and are useful for : - Ember
closure actions have return
values [https://alisdair.mcdiarmid.org/ember-closure-actions-have-return-values/]
- Ember.js Closure Actions Improve the Former Action
Infrastructure [https://spin.atomicobject.com/2016/06/25/emberjs-closure-actions/]

How to capture video in your frame

Webcam video recording during Lookit frames is currently accomplished
using WebRTC as the interface to the webcam and
Pipe [https://addpipe.com/] for video streaming and processing.

Lookit frames that collect video data make use of an Ember mixin
VideoRecord included in ember-lookit-frameplayer, which makes a
VideoRecorderObject available for use in the code for that frame.
This object includes methods for showing/hiding the webcam view,
starting/pausing/resuming/stopping video recording,
installing/destroying the recorder, and checking the current video
timestamp (see
https://lookit.github.io/ember-lookit-frameplayer/classes/VideoRecorderObject.html).
The programmer designing a new frame can therefore flexibly indicate
when recording should begin and end, as well as recording video
timestamps for any events recorded during this frame (e.g., so that
during later data analysis, researchers know the exact time in the video
where a new stimulus was presented). The name(s) of any videos collected
during a particular frame as included in the session data recorded, to
facilitate matching sessions to videos; video filenames also include the
study ID, session ID, frame ID, and a timestamp.

To begin, you will want to add the VideoRecord mixin to your
experiment frame. This provides, but does not in itself activate, the
capability for your frame to record videos.

import ExpFrameBaseComponent from '../../components/exp-frame-base/component';
import VideoRecord from '../../mixins/video-record';

export default ExpFrameBaseComponent.extend(VideoRecord, {
 // Your code here
});

Limitations

One technical challenge imposed by webcam video streaming is that a
connection to the server must be established before webcam recording can
be quickly turned on and off, and this process may take up to several
seconds. Each experiment frame records a separate video clip and
establishes a separate connection to the server, so frames must be
designed to wait for recording to begin before proceeding to a portion
of the trial where video data is required. This fits well with typical
study designs using looking time or preferential looking, where the
child’s attention is returned to the center of the screen between
trials; the first few seconds of the child watching the “attention
grabber” are not critical and we can simply ensure that the webcam
connection is established before proceeding to the actual experimental
trial. When collecting verbal responses, the study frame can simply
pause until the connection is established or, similarly, proceed with an
initial portion of the trial where video data is not required.

Currently, continuous webcam recording across frames is not possible on
Lookit; any periods of continuous recording must be within a single
frame. This is not a hard technical limitation, though.

How it works

The VideoRecord mixin is how a new frame makes use of video recording
functionality. In turn, this mixin uses the video-recorder service,
which relies on Pipe [https://addpipe.com/]. To set everything up
from scratch, e.g. if you’re creating Mookit, an online experimental
platform for cows, you’ll need to do the following:

	Make a Pipe account, and get the account hash and environment ID
where you want to send videos.

	Create an Amazon S3 bucket (where video will be sent by Pipe, then
renamed). Set up Pipe to send your videos to this bucket; you’ll need
to create an access key that just allows putting videos in this
bucket. Go to IAM credentials, and make a group with the following
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "s3:GetBucketLocation",
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "VisualEditor2",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": [
 "arn:aws:s3:::MYBUCKET/*",
 "arn:aws:s3:::MYBUCKET"
]
 }
]
}

Then make a user, and add it to your new group. Use the keys for this
user in Pipe.

	Create a webhook key in Pipe, and store it in as PIPE_WEBHOOK_KEY
in the lookit-api Django app .env file. This will let Lookit rename
the video files to something sensible upon being uploaded to S3.

	Create a webhook in Pipe for the event video_copied_s3, and send it
to https://YOURAPP/exp/renamevideo/

	Store the PIPE_ACCOUNT_HASH and PIPE_ENVIRONMENT in the
ember-lookit-frameplayer .env file. This is what lets Lookit video go
to the right Pipe account.

Custom randomizer frames

Experimenter supports a special kind of frame called ‘choice’ that
defers determining what sequence of frames a participant will see until
the page loads. This allows for dynamic ordering of frame sequence in
particular to support randomization of experimental conditions or counterbalancing. The goal
of this page is to walk through an example of implementing a custom
‘randomizer’.

Overview of ‘choice’ structure

Generally the structure for a ‘choice’ type frame takes the form:

{
 "kind": "choice",
 "sampler": "random",
 "options": [
 "video1",
 "video2"
]
}

Where: - sampler indicates which ‘randomizer’ to use. This must
correspond with the values defined in
lib/exp-player/addon/randomizers/index.js - options: an array of
options to sample from. These should correspond with values from the
frames object defined in the experiment structure (for more on this,
see the experiments docs)

Making your own

There is some template code included to help you get started. From
within the ember-lookit-frameplayer/lib/exp-player directory, run:

ember generate randomizer <name>

which will create a new file: addon/randomizers/<name>.js. Let’s
walk through an example called ‘next. The ’next’ randomizer simply picks
the next frame in a series. (based on previous times that someone
participated in an experiment)

$ ember generate randomizer next
...
installing randomizer
 create addon/randomizers/next.js

Which looks like:

/*
 NOTE: you will need to manually add an entry for this file in addon/randomizers/index.js, e.g.:
import
import Next from './next';
...
{
 ...
 next: Next
}
 */
var randomizer = function(/*frame, pastSessions, resolveFrame*/) {
 // return [resolvedFrames, conditions]
};
export default randomizer;

The most important thing to note is that this module exports a single
function. This function takes three arguments: - frame: the JSON
entry for the ‘choice’ frame in context - pastSessions: an array of
this participants past sessions of taking this experiment. See the
experiments docs for more explanation of this data
structure - resolveFrame: a copy of the ExperimentParser’s
_resolveFrame method with the this context of the related
ExperimentParser bound into the function.

Additionally, this function should return a two-item array containing: -
a list of resolved frames - the conditions used to determine that
resolved list

Let’s walk through the implementation:

var randomizer = function(frame, pastSessions, resolveFrame) {
 pastSessions = pastSessions.filter(function(session) {
 return session.get('conditions');
 });
 pastSessions.sort(function(a, b) {
 return a.get('createdOn') > b.get('createdOn') ? -1: 1;
 });
 // ...etc
};

First we make sure to filter the pastSessions to only the one with
reported conditions, and make sure the sessions are sorted from most
recent to least recent.

...
var option = null;
if(pastSessions.length) {
 var lastChoice = (pastSessions[0].get(`conditions.${frame.id}`) || frame.options[0]);
 var offset = frame.options.indexOf(lastChoice) + 1;
 option = frame.options.concat(frame.options).slice(offset)[0];
}
else {
 option = frame.options[0];
}

Next we look at the conditions for this frame from the last session
(pastSessions[0].get(conditions.${frame.id})). If that value
is unspecified, we fall back to the first option in frame.options.
We calculate the index of that item in the available frame.options,
and increment that index by one.

This example allows the conditions to “wrap around”, such that the
“next” option after the last one in the series circles back to the
first. To handle this we append the options array to itself, and
slice into the resulting array to grab the “next” item.

If there are not past sessions, then we just grab the first item from
options.

 var [frames,] = resolveFrame(option);
 return [frames, option];
};

export default randomizer;

Finally, we need to resolved the selected sequence using the
resolveFrame argument. This function always returns a two-item array
containing: - an array of resolved frames - the conditions used to
generate that array

In this case we can ignore the second part of the return value, and only
care about the returned frames array.

The export default randomizer tells the module importer that this
file exports a single item (export default), which in this case is
the randomizer function (note: the name of this function is not
important).

Finally, lets make sure to add an entry to the index.js file in the same
directory:

import next from './next';

export default {
 ...,
 next: next
};

This allows consuming code to easily import all of the randomizers at
once and to index into the randomizers object dynamically, e.g.
(from the ExperimentParser):

import randomizers from 'exp-player/randomizers/index';
// ...
return randomizers[randomizer](
 frame,
 this.pastSessions,
 this._resolveFrame.bind(this)
);

Installation: lookit-api (Django project)

lookit-api is the codebase for Experimenter and Lookit, excluding the actual
studies themselves. Any functionality you see as a researcher or a
participant (e.g., signing up, adding a child, editing or deploying a
study, downloading data) is part of the lookit-api repo. The
Experimenter platform is the part of this project for designing and
administering research studies, meant for researchers. The Lookit
platform is participant-facing, where users can signup and take part in
studies. This project is built using Django and PostgreSQL. (The studies
themselves use Ember.js; see Ember portion of codebase,
ember-lookit-frameplayer [https://github.com/lookit/ember-lookit-frameplayer].),
It was initially developed by the Center for Open
Science [https://cos.io/].

If you install only the lookit-api project locally, you will be able
to edit any functionality that does not require actual study
participation. For instance, you could contribute an improvement to how
studies are displayed to participants or create a new CSV format for
downloading data as a researcher.

Note: These instructions are for Mac OS. Installing on another OS?
Please consider documenting the exact steps you take and submitting a
PR to the lookit-api repo to update the documentation!

Prerequisites

	Make sure you have python 3.6: $ python --version will check the
version of your current default python installation. If you don’t
have this, install from https://www.python.org/.

	Make sure you have pip. $ pip --version

	Create a virtual environment using python 3.6

	One way to do this:

	$ pip install virtualenv

	$ virtualenv -p python3 envname, where ``envname`` is the
name of your virtual environment.

	$ source envname/bin/activate Activates your virtual
environment

	Install postgres

	make sure you have brew $ brew

	$ brew install postgresql

	$ brew services start postgres Starts up postgres

	$ createdb lookit Creates lookit database

Installation

	$ git clone https://github.com/lookit/lookit-api.git

	$ cd lookit-api

	$ sh up.sh Installs dependencies and run migrations

	$ python manage.py createsuperuser Creates superuser locally
(has all user permissions)

	$ touch project/settings/local.py Create a local settings file.

	Add DEBUG = True to local.py and save. This is for local
development only.

	$ python manage.py runserver Starts up server

Authentication

OAuth authentication to OSF accounts, used for access to Experimenter,
currently does not work when running locally. You can create a local
participant account and log in using that to view participant-facing
functionality, or log in as your superuser at localhost:8000/admin and
then navigate to Experimenter. As your superuser, you can also use the
Admin app to edit other local users - e.g., to make users researchers vs
participants, in particular organizations, etc.

Handling video

This project includes an incoming webhook handler for an event generated
by the Pipe video recording service when video is transferred to our S3
storage. This requires a webhook key for authentication. It can be
generated via our Pipe account and, for local testing, stored in
project/settings/local.py as PIPE_WEBHOOK_KEY. However, Pipe will
continue to use the handler on the production/staging site unless you
edit the settings to send it somewhere else (e.g., using ngrok to send
to localhost for testing).

Common Issues

During the installation phase, when running sh up.sh, you may see
the following:

psql: FATAL: role "postgres" does not exist

To fix, run something like the following from your home directory:

$../../../usr/local/Cellar/postgresql/9.6.3/bin/createuser -s postgres

If your version of postgres is different than 9.6.3, replace with the
correct version above. Running this command should be a one-time thing.

You might also have issues with the installation of pygraphviz, with
errors like

running install
Trying pkg-config
Package libcgraph was not found in the pkg-config search path.
Perhaps you should add the directory containing `libcgraph.pc'
to the PKG_CONFIG_PATH environment variable
No package 'libcgraph' found

or

pygraphviz/graphviz_wrap.c:2954:10: fatal error: 'graphviz/cgraph.h' file not found
#include "graphviz/cgraph.h"
 ^
1 error generated.
error: command 'clang' failed with exit status 1

To fix, try running something like:

$ brew install graphviz
$ pip install --install-option="--include-path=/usr/local/include" --install-option="--library-path=/usr/local/lib" pygraphviz

Then run sh up.sh again.

 Installation: ember-lookit-frameplayer (Ember app)

Installation: ember-lookit-frameplayer (Ember app)

ember-lookit-frameplayer is a small Ember application that allows both researchers to
preview an experiment and users to participate in an experiment. This is
meant to be used in conjunction with the Lookit API Django
project [https://github.com/lookit/lookit-api], which contains the
Experimenter and Lookit applications. The Django application will proxy
to these Ember routes for previewing/participating in an experiment.

In order to run the frame player as it works on Lookit, you will need to
additionally install the Django app lookit-api and then follow the
local frame development instructions to make sure it communicates with
the Ember app. This way, for instance, an experiment frame will be able
to look up previous sessions a user has completed and use those for
longitudinal designs.

Note: These instructions are for Mac OS. Installing on another OS?
Please consider documenting the exact steps you take and submitting a
PR to the lookit-api repo to update the documentation!

Prerequisites

You will need the following tools properly installed on your computer.

	Git [http://git-scm.com/]

	Node.js [http://nodejs.org/] (with NPM)

	Bower [http://bower.io/]

Installation

Before beginning, you will need to install Yarn, a package manager (like
npm).

git clone https://github.com/lookit/ember-lookit-frameplayer.git
cd ember-lookit-frameplayer
yarn install --pure-lockfile
bower install

Create or open a file named ‘.env’ in the root of the
ember-lookit-frameplayer directory, and add the following entries to use
the Pipe WebRTC-based recorder: PIPE_ACCOUNT_HASH (reference to
account to send video to) and PIPE_ENVIRONMENT (which environment,
e.g. development, staging, or production). These are available upon
request if you need to use the actual Lookit environments. (If you are
doing a very large amount of local testing, we may ask that you set up
your own Pipe account.) Your .env file should look like this:

PIPE_ACCOUNT_HASH='<account hash here>'
PIPE_ENVIRONMENT=<environment here>

Running / Development

	ember serve

	Visit your app at http://localhost:4200.

If you change any dependencies, make sure to update and commit the yarn.lock file in
addition to package.json.

Code Generators

Make use of the many generators for code, try ember help generate
for more details

Running Tests

	ember test

	ember test --server

Building

	ember build (development)

	ember build --environment production (production)

Writing documentation of frames

Documentation of individual exp-player components is automatically
generated using YUIDoc:

	yarn run docs

At the moment, this is a manual process: whatever files are in the top
level /docs/ folder of the master branch will be served via GitHub
pages.

 Django app implementation notes

Django app implementation notes

How various aspects of the Django app work (and why they were set up that way) that may be of interest to developers.

	Permissions
	Generic best practices

	Guardian, how does it work?

	Workflow: managing study states
	Why Transitions

	How

	Make a diagram

	Logging

	Celery tasks
	build_experiment task

	What happens

	build_zipfile_of_videos

	cleanup_builds

	cleanup_docker_images

	cleanup_checkouts

 Permissions

Permissions

Generic best practices

	Groups are an important abstraction between users and permissions.

	If you assign permissions directly to a user it will be difficult
to find out who has the permissions and difficult to remove them.

	Creating a Group just to wrap an individual permission is fine.

	Include the model name when defining model specific permissions.
Permissions are referenced with app_name and permission codename.

	Always check for individual permissions. NEVER CHECK IF SOMEONE
BELONGS TO A GROUP or ``is_superuser``

	is_superuser implicitly grants all permissions to a user. Any
permissions check will return True if a user is_superuser.

Guardian, how does it work?

Django provides model-level permissions. That means that you can allow
users in the Scientist group the ability to read the Report model or
users in the Admin group the ability to create, read, update, and delete
the Report model.

Guardian [https://django-guardian.readthedocs.io/en/stable/]
provides object-level permissions. That means that you can allow users
in the Southern Scientists group the ability to read the a specific
Report instance about Alabama.

Guardian does this by leveraging Django’s generic foreign key field.
This means that Guardian can have a severe performance impact on queries
where you check object-level permissions. It will cause a double join
through Django’s ContentType table. If this becomes non-performant you
can switch to using direct foreign
keys [https://django-guardian.readthedocs.io/en/stable/userguide/performance.html#direct-foreign-keys].

 Workflow: managing study states

Workflow: managing study states

Why Transitions

Transitions [https://github.com/pytransitions/transitions] is an
object-oriented state machine implemented in Python.

It’s both very powerful and very simple. It’s definition is a python
dictionary so it can be easily serialized into JSON and stored in a
database or configured via YAML. It has callback functionality for state
transitions. It can create diagrams of the workflow using pygraphiz. It
also ties into django model classes very easily.

How

The workflow is defined in studies/workflow.py in a dictionary
called transitions. Here is a
gist [https://gist.github.com/cwisecarver/7335d99f04fa412a1004c72e2b979e34]
that explains how the pieces fit together.

Make a diagram

To make a workflow diagram in png format start a shell plus instance
with python manage.py shell_plus and execute the following:

get a study you'd like to diagram
s = Study.objects.first()
draw the whole graph ... in which case the study you choose doesn't matter
s.machine.get_graph().draw('fancy_workflow_diagram.png', prog='dot')
... or just the region of interest (contextual to the study you chose)
(previous state, active state and all reachable states)
s.machine.get_graph(show_roi=True).draw('roi_diagram.png', prog='dot')

Logging

There is a _finalize_state_change method on the Study model. It
fires after every workflow transition. It saves the model with its
updated state field and also creates a StudyLog instance making
record of the transition. This callback would be the optimal place to
add functionality that needs to happen after every workflow transition.

 Celery tasks

Celery tasks

build_experiment task

The business requirements for this project included the ability for
experiments to rely on versioned dependencies without causing conflicts
between experiments.

The experiment application is dependent on the ember-lookit-frameplayer repo.
Researchers have the ability to specify a custom github url for the
ember-lookit-frameplayer repo. They can also specify a SHA for the commit that
they would like to use. These fields are on the Build Study Page.

What happens

The build process uses celery [http://www.celeryproject.org/],
docker [https://www.docker.com/],
ember-cli [https://ember-cli.com/],
yarn [https://yarnpkg.com/en/], and bower [https://bower.io/].

When a build or preview is requested a celery task is put into the build
queue.

Inside the task, the study and requesting user are looked up in the
database. If it’s a preview task it’s current state is copied into a new
variable to be saved for later, then the study is put into the state of
previewing and saved. If it’s a deployment the study is put into the
state of deployment and saved. Since these states don’t actually
exist in the workflow definition this short circuits the workflow engine
so that studies currently undergoing deployment or preview can neither
move through the workflow or be previewed or deployed concurrently.

The SHAs are checked in the study model’s metadata field, if they are
empty or invalid the HEAD of the default branch is used. This
requires HTTPS calls to github for the
ember-lookit-frameplayer repository.

A zip file of each repo is downloaded to a temporary directory and
extracted. The lookit-frame-player archive is extracted in the
checkout directory (ember_build/checkouts/{player_sha}).

A docker image is built based on the node:8.2.1-slim image. It is
rebuilt every time because it doesn’t change very often and docker
rebuilds of unchanged images are very fast.

The container is started passing several environment variables. It
installs python3 and several other dependencies with apt-get. Then
it installs yarn, bower, and ember-cli@2.8 globally with npm. Next it
mounts the ember-build/checkouts directory to /checkouts inside
the container and the ember-build/deployments directory to
/deployments inside the container. It copies
ember-build/build.sh and ember-build/environment into the root
(/) of the container and executes /bin/bash /build.sh.

build.sh copies the contents of the checkout directory into the
container (/checkout-dir/ inside the container) for faster file
access. A couple of sed replacements are done where there are
experiment specific data that needs to be hardcoded prior to
ember-build running. The environment files are copied into the
correct places. Then yarn install --pure-lockfile and
bower install --allow-root are run for
ember-lookit-frameplayer. Once those have completed ember-build -prod
is run to create a distributable copy of the app. The contents of the
dist folder is then copied into the study output directory. The
container is now destroyed.

Once the build process is finished the files in the dist folder are
copied to a folder on Google Cloud Storage. If it’s a preview they go
into a preview_experiments/{study.uuid} folder in the bucket for the
environment (staging or production). If it’s a deployment they go into a
experiments/{study.uuid} folder in the bucket for the environment
(staging or production).

When the task is finished copying the files to Google Cloud Storage an
email is sent to the study admins and organization admins.

If the task was a preview task the state of the study is set back to
it’s previous state. If it was a deployment the study is set to active.
If the study is marked as discoverable, it will now be displayed on the
lookit studies list page.

Finally, regardless of whether the task completed successfully a study
log will be created. The extra field (a JSON field) will contain the
logs of the image build process, the logs of the ember build process
than ran inside the docker container, any raised exception, and the any
logs generated by python during the entire task run. This is very
helpful for debugging. Line endings are encoded for ease of storage so
to read the results easily copy the contents of a study logs extra field
from the admin into an editor and replace the overly escaped linebreaks
(\\\\n|\\n) with actual line breaks \n. You can also use a JSON
beautifier/formatter to aid readability.

build_zipfile_of_videos

This task downloads videos from MIT’s Amazon S3 bucket, zips them up,
uploads them to Google Cloud Storage, generates a signed url good for
30m, and emails the requesting user that URL.

	The zip filename is generated from the study uuid, a sha256 of the
included filenames, and whether it’s consent videos or all videos.

	If a zip file exists on Google Cloud Storage with the same name the
file is not regenerated, an email with a link is immediately sent.

	After the task is completed all video files are immediately removed
from the server. They still exist on s3 and Google Cloud Storage.

cleanup_builds

This finds build directories older than a day and deletes them. It’s
scheduled to run every morning at 2am.

cleanup_docker_images

This finds unused docker images from previous builds and deletes them.
It’s scheduled to run every morning at 3am.

cleanup_checkouts

This finds checkout (extracted archives of github repos) directories
older than a day and deletes them. It’s scheduled to run every morning
at 4am.

 Guidelines for contributors

Guidelines for contributors

Interested in helping write the code behind the Lookit platform? Thanks for supporting open source science! This page
describes the process any would-be contributor should plan to use. We have included some beginner-friendly details in
case you are new to open source projects.

The content of this page applies to all three Lookit repos: lookit-api (Lookit site), ember-lookit-frameplayer
(system for displaying experiments & components to use), and lookit-docs (specific frames, subrepo of ember-lookit-
frameplayer).

>> Where’s the code I need? If you only want to change something about the Lookit site, without touching experiment
functionality (for instance, to add a question to the demographic survey or change how studies are sorted), you will only
need to run lookit-api and can follow the Django project installation steps. If you want to develop experiment frames
or change how the experiment player works, you will need to follow the steps for local frame development, installing
both lookit-api and ember-lookit-frameplayer and telling them how to talk to each other. Your changes, however,
will likely be limited to ember-lookit-frameplayer.

Prerequisites

To contribute to the lookit-api codebase, it will be very helpful to have a (a) a strong grasp of Python and (b) some
familiarity with the Django framework. Learning Python is outside the scope of these docs, but if you want someplace to
start, we highly recommend Think Python [http://greenteapress.com/thinkpython2/html/index.html]. If you’re already
familiar with Python but haven’t used the web framework Django, we highly recommend taking the time to complete
the official tutorial [https://docs.djangoproject.com/en/2.1/intro/tutorial01/].

To contribute to the ember-lookit-frameplayer codebase - e.g., when creating your own experiment frames - it will be
helpful to have (a) a strong grasp of Javascript and (b) some familiarity with Ember.js. However, we’re really not using
that much of the functionality of Ember, and if you’re just making some new frames, we would recommend getting started
by trying out modifications of an existing frame to get your feet wet, rather than trying to learn Ember from scratch.

To contribute to these docs, you’ll just need to be able to edit
ReStructured Text [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] files! You don’t need to
learn anything in advance - just look up syntax when you’re not sure how to make a link, include an image, etc.

Getting started

At a high level, we are roughly following a Forking Workflow version of Gitflow
as described here [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow]. You should plan to
make feature-specific branches off of the develop branch of a local copy of the code running on your own machine.
This will keep the codebase as clean as possible. Before submitting a PR, merge in the most recent changes from the
develop branch.

First create your own fork of lookit-api, ember-lookit-frameplayer, and/or lookit-docs. Follow the directions for
installation of lookit-api or ember-lookit-frameplayer if needed.

Ignoring some files

You may want to configure a global .gitignore on your machine and include your virtualenv(s) along with any files
specific to your system. A sample global .gitignore is available here [https://gist.github.com/octocat/9257657] –
you can tell git to globally ignore files specified in a .gitignore file via:

git config --global core.excludesfile ~/path/to/your/.gitignore_global

Add your own feature and submit a Pull Request

Keep your commit history clean and merge process simple by following these steps before starting on any new feature.

One time only, add the original repo as a remote to your fork, e.g., if you are contributing to lookit-api you would
run a command like this:

SSH:

git remote add upstream git@github.com:lookit/lookit-api.git

HTTPS:

git remote add upstream https://github.com/lookit/lookit-api.git

Anytime a PR is merged or changes are pushed (or you’re starting this process for the first time), you should run:

git checkout develop
git pull upstream develop

in order to make sure you are working with an up-to-date copy of the develop branch.

Once you have the most recent develop code, pick an issue (or create a new one) which your new feature will address
and create a new branch off of develop. Note: our project convention is to prepend feature/ or hotfix/ to the
feature or issue name for a richer annotation of the commit history.

If you want to create a new validation feature, for example, you might name it like this:

git checkout -b feature/my-validation-feature

Now you can run git branch and should see an output like this:

$ git branch
 develop
 master
* feature/my-validation-feature

Proceed with writing code. Commit frequently! Focus on writing very clear, concise commit statements and plentiful
comments. If you have poor comments or zero tests, your PR will not be merged.

If you are aware of changes in the branch you forked from, rebase your branch from that changing branch (in our case
that is develop) by running:

git rebase develop

and then resolving all merge conflicts.

On lookit-api, you should then update dependencies like this:

pip install -r requirements/defaults.txt
python manage.py migrate
python manage.py test

On ember-lookit-frameplayer, you should update dependencies using the package manager yarn.

Next, push all your local changes to your own fork. You should push your code (making sure to replace
feature/my-validation-feature with whatever your branch is actually called):

git push --set-upstream origin feature/my-validation-feature

Prior to finalizing your commit, make sure to clean up your code to comply with PEP8. Since both black and isort are
included in our development dependencies, you should just be able to run isort -rc . --skip venv to fix your imports,
and similarly black . --exclude=venv to “blacken” your changes. With both commands, replace venv with the actual
name of your virtual env directory so that you don’t blacken/isort your dependencies.

When your branch is ready (you’ve tested your changes out, and your code has comments and tests), submit a Pull Request!
To do this, go to GitHub, navigate to your fork (in this case the github extension should be /your-username/lookit-api),
then click new pull request. Change the base to develop and the compare to feature/my-validation-feature. Finally,
click Create pull request and describe the changes you have made. Your pull request will be reviewed by Lookit staff;
changes may be requested before changes are merged into the develop branch. To allow Lookit staff to add changes directly
to your feature branch, follow the directions
here [https://help.github.com/articles/allowing-changes-to-a-pull-request-branch-created-from-a-fork/].

IMPORTANT: WHEN YOUR PR IS ACCEPTED, stop using your branch right away (or delete it altogether). New features
(or enhanced versions of your existing feature) should be created on brand new branches (after pulling in all the fresh
changes from develop).

Writing your tests

In lookit-api, you should generally add to or edit the tests.py file in the appropriate app (e.g., exp/tests.py).
You can run tests like this:

python manage.py test

For more information see https://docs.djangoproject.com/en/2.1/topics/testing/.

In ember-lookit-frameplayer you should generally edit the tests under tests/, but as
you will see there is currently very little coverage. Just try to leave it better than you found it.

In ember-lookit-frameplayer, you should generally add a test file under tests/unit/components/ if you have created a
new frame. As you can see, we do not have a strong convention for this yet except for randomizer frames.

To learn more about how testing is supposed to work for ember-lookit-frameplayer, see https://guides.emberjs.com/v2.11.0/testing/.

If you are editing the documentation, please don’t write tests! Just actually try building it so you’ll notice if
something’s not formatted the way you expected.

Editing the Lookit documentation

Documentation for use of the Lookit platform (what you’re reading now!), including both the Django site lookit-api and
the Ember application ember-lookit-frameplayer used for the actual studies, lives in the
lookit-docs repo [https://github.com/lookit/lookit-docs/] under docs. When you download this repo, there are two
major folders to pay attention to: build and source, both of which are found in the docs folder. All editing
should be done in the source folder, as the files in the build folder are Sphinx generated HTML files.

The file index.rst contains the table of contents (look for toctree). If you wish to add another page to the docs,
you must add a new entry on the toctree. Documentation is written using
ReStructured Text (RST) markup [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]. It is also
possible to add Markdown (.md) files and have them included in the documentation, but for consistency we are trying to
keep all documentation in .rst format. If you are more familiar with Markdown, you can convert between formats using
Pandoc [https://pandoc.org/], e.g.:

pandoc -o outputfile.rst inputfile.md

If you are making substantial changes, you will want to take a look at how those changes look locally by using Sphinx to
build your own local copy of the documentation. To do this, first create another virtual environment and install the
requirements for Sphinx there:

/lookit-docs $ virtualenv -p python3 denv
/lookit-docs $ source denv/bin/activate
(denv) /lookit-docs $ pip install -r docs/requirements.txt

You can then build the docs from within the docs directory:

(denv) /lookit-docs/docs $ make html

Open another terminal and activate denv again, then start a python server:

(denv) /lookit-docs $ python -m http.server

Navigate to your local host in ur browser to see the docs. Edit the docs in rST. In your editor, you will need to run
make html every time you want to see the changes you made, as this command will update the Sphinx generated HTML files
with the edits made in the rST.

To edit the documentation, please submit a PR to the lookit-docs/develop branch; when it’s merged, the docs served
by ReadTheDocs at https://lookit.readthedocs.io will be automatically updated! (Note that it is easy to have ReadTheDocs
serve multiple versions of the documentation, from different branches; we just haven’t reached the point of that being
more useful than confusing yet.)

 Definitions

Definitions

Children

Children belonging to Participants. Many Studies on Organization Sites involve testing the behavior of children. The Participant registering the child must be the child’s parent or legal guardian. A Child can only belong to one Participant.

Demographic Data

When Participants create accounts on an Organization Site, they are asked to fill out a demographic survey. Demographic Data is versioned, so if Participants update their
Demographic Data, a new version is saved. When Participants take part in a study, the latest version of Demographic Data is linked to their study Response.

Experimenter

Application where Researchers develop Studies, request to post Studies to an Organization Site, and access data collected.

Feedback

Researchers can leave Feedback to Participants via the API about a particular Response to a Study. The Participant can view this Feedback on the Past Studies page.

Groups

Each Organization and each Study will have one group for each set of permissions. Groups are an easy way to manage many permissions. These groups will be created automatically when an Organization or Study is created.
For example, if we have an Organization called MIT, then there will be an MIT_ORG_ADMIN, MIT_ORG_READ, and MIT_ORG_RESEARCHER group. A Researcher belonging to any of these groups will
inherit all of the permissions associated. Members of MIT_ORG_ADMIN can edit any Study in MIT, while MIT_ORG_READ members can only view Studies within MIT. Members of MIT_ORG_RESEARCHER
can create Studies but can only view Studies they have specific permission to view.

When a Study is created, two permission groups will also be created for it. If you create a Study called “Apples”, and you belong to the MIT Organization, the groups created will be
MIT_APPLES_<STUDY_ID>_STUDY_ADMIN and MIT_APPLES_<STUDY_ID>_STUDY_READ. The Study’s creator is automatically added to the Study’s admin group. Researchers belonging to a Study’s
admin or Study’s read group will inherit the associated permissions to that Study.

Organization

An institution (e.g., Lookit) or lab that has been registered with Experimenter. Each Organization has its own interface (Organization Site) where Studies are posted.
All Organizations’ data are separate. Each Organization has their own Researchers, admins, Studies, Participants, etc. You can only
view data that you have permission to see (depending on your admin/read/researcher permissions), and only data within your Organization.

Organization Site

One instance of a front-end where studies are posted. (Example: lookit.mit.edu)

Participants

Account holders - registered Lookit users who can take part in studies. ‘Participant’ refers to the account (generally held by a parent) rather than the individual child.

Researchers

Individuals posting Studies, collecting data, or administrating Organization Sites.

Responses

When a Participant takes part in a study, the answers to their questions, as well as other metadata like the time taking the study, are saved in a Response. In addition,
many Responses are associated with video attachments.

Study

An experiment posted to an Organization Site.

 Technical Glossary

Technical Glossary

Internal Resources

Docker

Docker is used as an alternative to virtual machines. Docker Makefiles, or Dockerfiles, are recipes containing all
dependencies and the library needed to build an image. An image is a template that is built and stored and acts as
a model for containers, analogous to the class-object relationship in object-oriented programming. It contains the
application plus the necessary libraries and binaries needed to build a container. Since they are templates, images
are what can be shared when exchanging containerized applications. On the other hand, containers are an ephemeral running
of a process, which makes it impossible to share them. Instances of the class, or objects, are to Class as a container
is to an image. A container runs a program in the context of an image. *

Docker is software that allows you to create isolated, independent environments, much like a virtual machine. To
understand how Docker accomplishes these feats, you must first understand both the PPID/PID hierarchy of the Linux
kernel and union file systems.

When using the Linux OS, every program running on your machine as a process ID (PID) and a parent process ID (PPID).
Some programs (parent programs) have the ability to launch other programs (child programs). The PID of the original
program becomes the PPID of the child process. This system forms a tree of processes branching off of one another.
These ID numbers correspond to which port the programs are running on.

The root node of this “process tree” is called systemd, a.k.a. system daemon. It has PID 1 and PPID 0. In older
distributions of Linux, the init process was used. 1 The job of this process is to launch other processes and adopt
any orphaned processes (child processes whose parent processes have been killed). All of these programs can interact
with each other through shared memory and message passing method.

Shared memory is easily understood via the Producer, Consumer scenario. Imagine you have two people, a producer
and a consumer. When the producer creates a good, it will put it in a store where the consumer can find and consume it.
This store is like shared memory.

The message passing method utilized communication links to connect two processes and allow them to send messages to each
other. After a link is established, processes can send messages that contain a header and a body. The header contains
the metadata, such as the type of message, recipient, length, etc.

These communication methods allow for processes to interact with each other, and, as you can imagine, this creates a
problem when it comes to isolation.

that systemd is a daemon process which creates a global namespace, and child processes create their own nested namespaces within the context of their parent namespace.

Programs can interact with each other when they’re in the same namespace, referred to as a systemd tree. 2 In
other words, the systemd is a daemon process that creates a global namespace, and all programs that share the same
systemd command can interact with each other. Child processes create their own systemd, or nested namespaces,
withing the context of their parent namespace. Docker utilizes this to create a new namespace, a.k.a. a userspace. When
the Docker process is run, it is launched from the real systemd process and given a normal PID. A new feature released
by Linux in 2008 allows Docker to have more than one PID. With this new feature, the nested namespace comes with a table
that can map a relative PID seen by your container in said nested nameapce to the actual PID seen by your machine.
This allows Docker to take on PID 1 in your container.

Now, all programs that stem from the Docker branch will see Docker in the same way they see the systemd process. It is
the root node, and they will not leave the nested namespace, effectively cutting off interaction between those processes and the
ones on the rest of the real systemd tree.

Though this is a step closer to isolation, it is not quite there yet. Even though processes can’t interact with the main
branch, they can still interact with the main filesystem. To combat this, Docker makes use of union filesystems. 3 A union
filesystem uses union mounts to merge two directories into one. This means that if you have two directories that contain
different files, a union mount will create a new directory that contains all of the files from both. If both directories
contain a file of the same, the mount usually has a system in place for which one it will choose.

One big thing that makes this file system important for Docker is its deletion process. When you delete a file in a
union filesystem, it does not actually delete it, rather it adds an extra layer and masks it. This masking process
allows Docker to unionize your machine’s filesystem and your Docker filesystem, masking all files that are specific to
your machine. The necessary directories for Linux set up, such as the /etc, /var, /, usr, and home directories
are still intact, however extra, added files from your machine will be masked from Docker. In addition, when you write
files to this union filesystem, they will not be written to your machine’s file system, effectively isolating your
machine from your containers.

Another big difference between Docker and Virtual Machines is the Hypervisor. 4 When using a VM, a hypervisor is
necessary to supervise, schedule, and control interactions between the host OS and the Guest OS. It acts as a layer of
security between your machine and the virtual one so that yours is not damaged or messed with. Docker eliminates the
need for the hypervisor because there is no longer a Guest OS. The Docker Engine is software downloaded directly onto
your machine, and the containers run on the engine. Using Docker eliminates extra steps needed for the VM, as it doesn’t
have to virtualize an entire computer. This makes Docker faster, more efficient, and less redundant than VMs.

[image: _images/ceb862c03167b5b69b305d6d20b6d30093a30a01.PNG]
image credits: docker.com

For a more in-depth explanation of Docker and how it works, consder looking at this series of articles. [https://www.nschoe.com/articles/2016-05-26-Docker-Taming-the-Beast-Part-1.html]

Postgres

PostgreSQL is a general purpose and object-relational database management system. It allows you to store and query large
amounts of data without having to worry about all of the complicated processes going on under the hood. † PostgreSQL
optimizes data querying for you, making your application faster. All information and metadata is stored in it.

RabbitMQ

RabbitMQ is a message broker. When messages are sent online, they go from the producer to a queue and then to the
consumer. RabbitMQ is that queue. Instead of having to perform all tasks involving sending messages, including generating
PDFs, locating the recipient, etc., the message producer only has to upload their message and instructions to the queue
and RabbitMQ will take care of the rest. Using this service makes messaging through Lookit easier and more efficient, as
it is able to re-queue messages, it is faster and more reliable, and it is scalable for when there are a lot of messages.

source [https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html]

Ngrok

Ngrok is used in the development process to act as a tunnel into your PC. It is not secure to allow access into your PC
or local address through a public channel, as this can open you up to malicious attacks. Ngrok allows you to securely
provide access to your local address through something public, like the internet. When Ngrok is running on your machine,
it gets the port of the network service, which is usually a web server, and then connects to the Ngrok cloud service.
This cloud service takes in traffic and requests from a public address and then relays that traffic directly to the
Ngrok process running on your machine, which then passes it along to the local address you specify. By doing this, you
can minimize the interaction between outside traffic and your personal machine.

When trying to stream videos in the development stage, the ember frameplayer will stream the video to PIPE’s webservers,
which will then write a request to AWS S3. A webhook will then send this video data back to the dummy url generated by ngrok,
which then tunnels it to your local machine.

a dummy link for this purpose and then send the video from this dummy address to your PC.

data to AWS S3 instance. Webhook (allows us to say send a payload to a certain address when u finish doing this) sends request
back to url generated by ngrok which serves as a local tunnel to your computer since u cant point a webhook to local host

then when the trigger finishes storing, it trips the “Finished uploading to S3” webhook that then sends a payload back
to the lookit-API server, which has a handler that renames the file that was just stored in S3, among other things
so that handler receives a payload from Pipe’s “finished uploading to S3 webhook”
i.e., it’s Pipe telling lookit-API “hey, I finished putting some video in S3. Here’s some identifying data about that video.”

External Resources

Google Cloud

The Cloud service is where all the code for the studies and

Amazon Web Services

This is where al web-cam video recorded is stored

Celery

This is what runs the long term tasks

Authenticator

Allows you to log into your account securely

Lookit Ember Frameplayer

The frameplayer that provides the functionality for the experiments themselves. It parses the JSON documents
specifying the study protocol into a sequence of “frames” and runs them. For more information, see Creating custom frames

PIPE

PIPE is a wrapper around the webRTC recorder that handles streaming. It is used to record the video and audio. WebRTC is
what connects to the hardware of your computer and films for you. PIPE converts recorded files to ,mp4. https://addpipe.com/about

Footnotes

	1

	If you’re interested in learning about the difference between init and systemd as well as the reasoning behind the switch, check
out this link [https://www.tecmint.com/systemd-replaces-init-in-linux/](https://www.tecmint.com/systemd-replaces-init-in-linux/].

	2

	The Linux kernal has many built in namespaces that are responisble for different things. If you are interested in
learning more about this topic, check out this article on namespaces [https://medium.com/@teddyking/linux-namespaces-850489d3ccf]

	3

	The union filesystem utilizes set theory. For a more in depth explaination of how they work and the math behind them,
check out this article on union filesystems [https://medium.com/@paccattam/drooling-over-docker-2-understanding-union-file-systems-2e9bf204177c]

	4

	Hypervisors are essential to the functionality of VMs. If you want to know more about them, check out this link on
hypervisors [https://www.networkworld.com/article/3243262/what-is-a-hypervisor.html]

Endnotes

	*

	Docker has many other moving parts behind the scenes. An example of a part is volumes. Volumes serve as a storage
space for your containors. For more in depth information about volumes, check out this link [https://blog.container-solutions.com/understanding-volumes-docker]
In addition, this series of articles [https://www.nschoe.com/articles/2016-05-26-Docker-Taming-the-Beast-Part-1.html]
covers a lot of Docker topics not mentioned in this documentation.

	†

	add foot/endnote on what postgres is doing behind the scenes [https://medium.com/@divya.n/how-postgres-works-733bc5cf61a]

 Index

Index

_static/img/researcher_detail2.png
Manage Organization / Test User 3

Send password reset email Resend confirmation email

Email address
orgread@cos.io

Given name

Permissions

v Researcher
Organization Read
Organization Admin

Terms of Use

_static/img/researcher_list.png
Researchers

Filter by researcher name

Researcher Name A v

Test User 1

Permissions A v

Organization Admin

No organizat@

Test User 3

Test User 4

Organization Read

Researcher

Terms'of Use

Remove

Remove

Remove

Remove

Page 1of 1

_static/img/osf-login.png
oo
© 9
C J\
Open Science Framework

Sign in with your OSF Account to continue

Email:

Password:

Stay Signed In Forgot Your Password?

Login through Your Institution Back to OSF

Create Account

_static/img/researcher_detail.png
Manage Organization / Test User 2
!;!
|

Email address
Nogroups@cos.io

Given name

Permissions
No organization groups

* Assigning permissions to this researcher will add the user to MIT.

Send password reset email

Resend confirmation email

_static/img/responses.png
Manage Studies / Example sudy

Individual Responses

Individual Responses

ConsentMansger

o Av
@

IR IEIE IR

IdiidulResponses | AllResponses
ReponlD St AV Date AV
ED Compiete 40212019,
Ed Compiete 402201
Ed Compiete 012019
Eg Compiete 4012019
ES Compiete 4012019
Ed Compiete 401209
567 Compiete 3212009
Pagetart

Demographicrapshots _ Atachments

Attachments.

VideoSiream 870437c4 ke 49200175
a51ed106505 Lido-conset g5 5ot
052873

bes7eRsesed 1554240735663, 3730t
VideoSiream 870437 OkcB49:0,b175-
351ee156505 9 pret oy idoos, 4863571
56 d052.623¢.

ebs7eRse5ed 1554240825794 T83mpt

Terms of Use Privcy

==

Dormiosd

_static/img/specific_token.png
Select Token to change

Action: | --------- s || Go | 0 of 1 selected
) Key USER CREATED -
1 123456789abcdefghijkimnopgrstuvwxyz <User: Test User> Sept. 6, 2017, 5:20 p.m.

1 Token

_static/img/json_editor.png
25
26~
27
28
29~
30~
31

32
33
34 -
35

36

“frames’: { _

"exit-survey": {
"id": "exit-survey",
"kind": "exp-exit-survey",
"titlel": "Almost done!",
"title2": "Thank you! You're all done.",
"exitMessage": "",
"exitThankYou": "Thank you so much for your help! We appreciate and learn from every video we receive in the lab (even if what we learn is that your
kiddo thinks this study is boring and we need to up our game.)",
"idealSessionsCompleted": 15,
"idealDaysSessionsCompleted": 6@
1,
"mood-survey": {
"id": "mood-survey",
"kind": "exp-mood-questionnaire"
1,
"instructions": {
"id": "instructions",
"kind": "exp-physics-intro"
1,
"video-config": {
"id": "video-config",
"kind": "exp-video-config",
"instructions": "Make sure your camera is working and you can see yourself below! Important: you'll need to check 'Remember' when you allow access, so
that it'll still work on the next screen."
1,
"video-consent": {
"id": "video-consent",
"kind": "exp-video-consent",
"blocks": [
{
"text": "Observing your child's behavior during this experimental session will help us to understand how infants and children use evidence to
learn and make predictions about the world.",
"title": "About the study"
1,
{

"text": "Your and your child's participation in this session are completely voluntary. If you and your child choose to participate, you may stop
the session at any point with no penalty. Please pause or stop the session if your child becomes very fussy or does not want to participate.
If this is a study with multiple sessions, there are no penalties for not completing all sessions.",

"title": "Participation"

_static/img/login_to_exp.png
Experimenter

Login to Experimenter

Please sign in to the Open Science Framework or register for an account and sign in below:

e Open Science Framework

Terms of Use

_static/img/ember_debugger_send.png
-4958-968b-d10ec9469516
01465,

] <ember-Lookit-franeplayer@component: ex
v Own Properties

attrs: { frameIndex: [Object], framePag..

childviews: [1

classNaneBindings: [1

ClassNanes: [ember-view]

element: { }

elementId: enber8s?

eventTinings: [1

experinent: <ember-lookit-frameplayer@n..

extra: { }

frameConfig: { id: 0-video-config, kind..
{ pastsessions: [Array : ..

HAS_BLOCK [id=_ember1513615082419326337620211

0-video-config

INIT_WAS_CALLED [id=__ember1513615082419144765
instructions: Make sure your camera is ..
kind: exp-video-config
TastResult: null

OWNER [id=__ember1513615982419334701273453] :

St

_static/img/ember_debugger_tree.png
[% (] | FElements Gonsole

http:/flocalhost:4200/studic ¥

[# Routes

Data

A\ peprecations @
@ mnfo

ADVANCED

7] promises
@ Container

() Render Performance

‘Submit an Issue

Name.

application

participate

Developer Tools - http://localost:4200/studies/708e3d9e-c173-4e88-b41b-433941869397/1b235718-1dce-4958-968b-d10ec9469516

Neworc_parmace ey sgpicaton secr_ ansCeneer) Ember debugger shows up as part of Chrome dev tools a1l :

omponents | [earch Views

Under “View Treg], af Teft, check the Components box

exp-player

exp

Video-consent

exp-text-block

exp-text-block

exp-text-block

exp-text-block

exp-text-block

ember-lookit-frameplayer templates /application
ember-lookit-frameplayertemplates /participate
modules/exp-player/ components exp-player template
modules exp-player/components/exp-video-consent,template
modules exp-player/components/exp-text-block/template
modules fexp-player/components/exp-text-block/template
modules exp-player/components/exp-text-block/template
modules fexp-player/components/exp-text-block/template

modules exp-player/components exp-text-block/template

Model Controller

- participate

Then click here

>

View / Component

toplevel

exp-player

to see/edit componentex-text-biock

data at the right

exp-text-block

exp-text-block

exp-text-block

exp-text-block

>8

>

>8

>

>8

>

>8

G <ember-lookit-franeplayeraconpo.. >+
¥ Own Properties

attrs: { framelndex: [Object], ..
blocks: [{ text: Observing you.
childviews: [<ember-lookit-fra..
classNaneBindings: [1
ClassNanes: [emver-view 1
elenent: { sizz1e1513613935638:
elenentld: enber9so
eventTinings: [{ eventType: ha..
experinent: <ember-lookit-frane..
extra: { }
frameConfig: { id: 1-video-cons..
frameContext: { pastSessions: L.
frameIndex: 1
franepage: @

HAS_BLOCK [id=_enber1513613935650544¢
id: 1-video-consent

INIT_WAS_CALLED [id=_enber1513613935¢
kind: exp-video-consent
lastResult: null

OWNER [id=_ember15136139356509387308;
ownerView: <enber-1ookit-franep..
parentView: <ember-lookit-frane..
prompt: "I have read and unders..
recorder: <(unknown mixin):enbe..
renderer: { _don: [0bject], _de..
scheduledRevalidation: false
session: <ember-lookit-franepla.
title: Consent to participate i.

» ember-lookit-frameplayer@componentiex.
» (subclass of Ember.Component)
> Unknown mixin
» (subclass of Ember.Component)
> Ember.Component
» Ember.TargetActionSupport
Unknown mixin
(unknown mixin)
Unknown mixin

Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
» (unknown mixin)

nav.xhtml

 Table of Contents

 		
 Welcome to Lookit’s documentation!

 		
 Using Lookit: for researchers

 		
 Getting started guide

 		
 Other helpful resources

 		
 Using the experimenter interface

 		
 Logging in

 		
 Managing Studies

 		
 Managing your Organization

 		
 Setting study fields

 		
 Name

 		
 Image

 		
 Short description

 		
 Purpose

 		
 Compensation

 		
 Exit URL

 		
 Participant eligibility description

 		
 Criteria expression

 		
 Minimum and maximum age cutoffs

 		
 Duration

 		
 Researcher contact information

 		
 Discoverable

 		
 Build study

 		
 Study type

 		
 Building your experiment

 		
 Preliminaries: JSON format

 		
 Experiment structure

 		
 Developing your study: how to try it out as you go

 		
 Finding and using specific frames

 		
 A Lookit study schema: general principles and instructions

 		
 Randomizer frames

 		
 Conditional logic

 		
 Preparing your stimuli

 		
 Audio and video files

 		
 File formats

 		
 Making dummy stimuli

 		
 Directory structure

 		
 Experiment data (non-video)

 		
 What data can I access?

 		
 Accessing experiment data

 		
 Structure of session data

 		
 Interpreting exp_data

 		
 Consent manager

 		
 Overview

 		
 Managing consent rulings

 		
 Using the API

 		
 What is the API for?

 		
 API Tips

 		
 Available Endpoints

 		
 Developing new frames

 		
 Setup for custom frame development

 		
 Overview

 		
 Django App steps

 		
 Ember App steps

 		
 Starting up once initial setup is completed

 		
 Previewing a study

 		
 Participating in a study

 		
 Where does my video go?

 		
 Using https

 		
 Further Reading / Useful Links

 		
 Creating custom frames

 		
 Overview

 		
 Getting Started

 		
 Adding CSS styling

 		
 Using mixins

 		
 Documenting your frame

 		
 Ember debugging

 		
 When should I use actions vs functions?

 		
 How to capture video in your frame

 		
 Limitations

 		
 How it works

 		
 Custom randomizer frames

 		
 Overview of ‘choice’ structure

 		
 Making your own

 		
 Installation: lookit-api (Django project)

 		
 Prerequisites

 		
 Installation

 		
 Authentication

 		
 Handling video

 		
 Common Issues

 		
 Continued Installation for developers

 		
 Install Docker

 		
 Install Postgres

 		
 Install RabbitMQ

 		
 Install Ngrok

 		
 How Do These Programs Work Together?

 		
 Installation: ember-lookit-frameplayer (Ember app)

 		
 Prerequisites

 		
 Installation

 		
 Running / Development

 		
 Code Generators

 		
 Running Tests

 		
 Building

 		
 Writing documentation of frames

 		
 Django app implementation notes

 		
 Permissions

 		
 Generic best practices

 		
 Guardian, how does it work?

 		
 Workflow: managing study states

 		
 Why Transitions

 		
 How

 		
 Make a diagram

 		
 Logging

 		
 Celery tasks

 		
 build_experiment task

 		
 What happens

 		
 build_zipfile_of_videos

 		
 cleanup_builds

 		
 cleanup_docker_images

 		
 cleanup_checkouts

 		
 Guidelines for contributors

 		
 Prerequisites

 		
 Getting started

 		
 Ignoring some files

 		
 Add your own feature and submit a Pull Request

 		
 Writing your tests

 		
 Editing the Lookit documentation

 		
 Definitions

 		
 Children

 		
 Demographic Data

 		
 Experimenter

 		
 Feedback

 		
 Groups

 		
 Organization

 		
 Organization Site

 		
 Participants

 		
 Researchers

 		
 Responses

 		
 Study

 		
 Technical Glossary

 		
 Internal Resources

 		
 Docker

 		
 Postgres

 		
 RabbitMQ

 		
 Ngrok

 		
 External Resources

 		
 Google Cloud

 		
 Amazon Web Services

 		
 Celery

 		
 Authenticator

 		
 Lookit Ember Frameplayer

 		
 PIPE

 		
 Footnotes

 		
 Endnotes

_images/add_token.png
Home > Auth Token > Tokens > Add Token

Add Token

<«
S,
+

User: | ——————

Save and add another Save and continue editing SAVE

_images/adding_researchers.png
Manage Researchers

a Q
Researchers
Re su | tS Researchers belonging to this study's admin and read groups. MIT Admins will automatically

be able to edit this study, regardless of study group.

KimResearcher Name Permissions

i Shikha 66 = Dawn Pattison *MIT Admin Admin ﬂ

i Shikha 67

i Shikha 810

4 Shikha 95

Page 10f5 >

_images/RabbitMQ.png
a

RabbitMq

Celery .

Requests Messages queues

£ Component

Input(Required interfaces)

-O Output(Required interfaces)

Connector

_images/adding_researchers2.png
Manage Researchers

Becca Marlow given Your baby, the physicist Read Permissions.

Search organization

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions
£ Becca Marlow Read ﬂ
= Dawn Pattison *MIT Admin Admin ﬂ

_images/all_responses.png
Mansge Studies | Exame study / Demographic Snapshots

All Responses

ConsentManager Indidua Responses Al Responses | Demographic Sapshots | Attachments

(08 0

Terms of Use Privcy

_images/attachments.png
Manage Studes /| Bxamplestudy | Attachments

Attachments

ConsentManager Indiidusl Responses Al esporses DemograpicSopshots | Atachments

[[—

Fite stachmentrame

Name A M
VideoStream 870437 0cc5 4920 b175 635104164545 1videconsen. 15 cac 70954357 8676-

1456310531 1554236153708 208mpé

Stz ioses, 1554146162467 2245t

VideoStream 87043704 Occs 4920 b175-635 164104545 1 ide consent 34366314 6147 4350 Sce-
1903408533, 1554134035031 501mp4.

e b 3

_images/consent_manager.png
Manage Studes | Examplestudy / Consent Marager

Consent Manager
ConsentMansger | Inividusl Resporses Al Responses DemographicSmgshots _ Atachments
Resporss Processed ¥22/2019,31207°M Resporse statisies
Show Currendy._ Pending 3 R PeningResporses o
Resporses
AecestedResporses)
FiMarch 22,309
o =2 ecrtim @
e ——
[rer—)
[—
RevrtioPendng 0 | o
hoprovs o | Refctions 0
[T — Conmentonsesion These il besoved Toa# Resparses o
woonsibi
ResetCurent Choics O e sCaren L]
Session Data
GeneralInformation
Giobal
Bt
o wo Seauence Condtions Tining Conpleted Witkave
568 76x2b63 9t Oniceo conf Lideoconsent2intrctons Jaideo- (Bpretoysaideos (| e nul
dfdcate. preveneideo reviews oample sy sl CshonStep 12,
587536913639 structiors7deo ity et physideospre. "satTpe',
Sy videos 0ot sy vieos 1 ext sunerth. | “WEhObees 7,78,
extaner 82l
Participant Information
o wo Nkname
77 2sese0mn 6736 dese s 506110
Child Information
o wo Name Brday Gender AgeuBin Addtonsint
81 asemTIeaRT A0 e SuT2eA 222 Ty 215008 m

Termsaf Use| Privacy

_images/create_study.png
Manage Studies / Create Study

Create Study

Name
Name

Image
Choose File NoO file chosen

Please keep your file size less than 1 MB

Short Description

Short Description

Give your study a description here.

Purpose

Purpose

Explain the purpose of your study here.
Exit URL
Exit URL
Specify the page where you want to send your participants after they've completed the study.
Participant Eligibility

Participant Eligibility

Minimum Age Cutoff

Year(s) Month(s)

0 : 0 v
Maximum Age Cutoff
Year(s) Month(s)

0 : 0 v
Duration

Duration

Researcher/Contact Information

Researcher/Contact Information

[Discoverable - Do you want this study to be publicly discoverable on Lookit once activated?

Build Study - Add JSON
{"frames": {}, "sequence": []}

Add the frames of your study as well as the sequence of those frames. This can be added later.

Study Type

<«

Specify the build process as well as the parameters needed by the experiment builder. If you don't know what this is, just select the default.

(e IM =+ Create Study

Terms of Use

_images/build_study.png
Experimenter See Participants Manage Organization Manage Studies H Dawn Pattison ~

Manage Studies / Your baby, the physicist / Edit / Build Study

Study Editor

Build Study - Add JSON

{"frames": {"exit-survey": {"id": "exit-survey", "kind": "exp-exit-survey", "titlel": "Almost done

Add the frames of your study as well as the sequence of those frames.

Try Experiment Discard changes

Change Study Type

Study Type

<«

Ember Frame Player (default)

Specify the build process as well as the parameters needed by the experiment builder.

addons_repo_url

https://github.com/centerforopenscience/exp-addons

last_known_addons_sha

db8c906e7a4d73b3df0db2d23f68cda2bccf7e23

last_known_player_sha

6c6baabfe33784ec067b59e8cd43794ca2383522

Discard changes

Terms of Use

_images/celery.png
<<Actor>>
RabbitMq queue
“build"

Celery

Build study

Celery:7 stages of the build process
get_study()
get_researcher()
build_docker_image()
get_container_directories()
run_docker_container()
deploy_study()
save_study_and_log_results()

<<Actor>>
Docker

<<Actor>>
RabbitMq queue
"email"

<<Actor>>
RabbitMq queue
“clean"

@

Clean the system

Researcher

<<Actor>>
AWS & GCP

Application

Q Activity in application

(Left) Primary User/resourcce

(Right) Secondary User/Resource

i User

Relation

_images/deleting_researchers.png
Manage Researchers

Becca Marlow removed from Your baby, the physicist.

Search organization Q

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions

= Dawn Pattison *MIT Admin Admin ﬂ

_images/demographics.png
Manage Studies / Your baby, the physicist / Demographic Snapshots

All Responses

Individual Responses All Responses Demographic Snapshots Attachments
JSON B Download All Demographic Snapshots as JSON
{

"response": {
vige: 1,
"yuid": "f@04c781-a52d-4b57-b4c0-5c034201028d"

}

"participant": {
"id": 16,
"uuid": "d2f9e23e-f01f-47f4-aae@-5b60795a8b24",
"nickname": "Participantl"

}

"demographic_snapshot": {
"demographic_id": 3,
"uuid": "fc738824-d2bc-4a34-8233-f48042a4d2fc",
"number_of_children": "2",
"child_birthdays": [
"2017-04-11",
'2009-12-25"
1,
""languages_spoken_at_home": "English",
"number_of_guardians": "2",

"number_of_guardians_explanation": "",
"race_identification": [

"white",

"black"

1,
"age": "25-29",
"aander! nen

_images/dashboard.png
Dashboard

You've successfully signed into Experimenter!

Your request to join Experimenter has been submitted. You will receive a notification by email when this is completed.

_images/deleting_a_researcher.png
Are you sure you want to delete this researcher?

Deleting Test User 1 cannot be undone.

Cancel Remove

_images/edit_json.png
Researcher Contact Information
e Trm— p)

“This should give the name of the PI for your study and an emal adress where the Pl o study taff can be reached with questions. Format:
Pls Name (contact: ouremail@lab.edu)

% Discoverable - Do youwant this study to be publicy discoverable on Lookit once activated?

Build Study - Add JSON

Add the frames of your study as well s the sequence of those frames. This can be added later.

_images/editing_researcher_permissions.png
Manage Researchers

Search organization Q

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions

£ Becca Marlow v Read n % ﬂ

= Dawn Pattison *MIT Admin “AQmMInT

_images/docker.png
<<Actor>>
Celery

message

]
O_n—

Celery

build request

Deployeable static files

Study static files

O

a

Docker

>
O

Component

Input(Required interfaces)

Output(Required interfaces)

Connector

Docker

Build image

Run container

This container
runs to produce
static files of the
actual study that
gets deployed.

-
=

Application

Activity in application

(Left) Primary User/Resourcce

(Right) Secondary User/Resource

Relation

_images/ember_debugger_tree.png
[% (] | FElements Gonsole

http:/flocalhost:4200/studic ¥

[# Routes

Data

A\ peprecations @
@ mnfo

ADVANCED

7] promises
@ Container

() Render Performance

‘Submit an Issue

Name.

application

participate

Developer Tools - http://localost:4200/studies/708e3d9e-c173-4e88-b41b-433941869397/1b235718-1dce-4958-968b-d10ec9469516

Neworc_parmace ey sgpicaton secr_ ansCeneer) Ember debugger shows up as part of Chrome dev tools a1l :

omponents | [earch Views

Under “View Treg], af Teft, check the Components box

exp-player

exp

Video-consent

exp-text-block

exp-text-block

exp-text-block

exp-text-block

exp-text-block

ember-lookit-frameplayer templates /application
ember-lookit-frameplayertemplates /participate
modules/exp-player/ components exp-player template
modules exp-player/components/exp-video-consent,template
modules exp-player/components/exp-text-block/template
modules fexp-player/components/exp-text-block/template
modules exp-player/components/exp-text-block/template
modules fexp-player/components/exp-text-block/template

modules exp-player/components exp-text-block/template

Model Controller

- participate

Then click here

>

View / Component

toplevel

exp-player

to see/edit componentex-text-biock

data at the right

exp-text-block

exp-text-block

exp-text-block

exp-text-block

>8

>

>8

>

>8

>

>8

G <ember-lookit-franeplayeraconpo.. >+
¥ Own Properties

attrs: { framelndex: [Object], ..
blocks: [{ text: Observing you.
childviews: [<ember-lookit-fra..
classNaneBindings: [1
ClassNanes: [emver-view 1
elenent: { sizz1e1513613935638:
elenentld: enber9so
eventTinings: [{ eventType: ha..
experinent: <ember-lookit-frane..
extra: { }
frameConfig: { id: 1-video-cons..
frameContext: { pastSessions: L.
frameIndex: 1
franepage: @

HAS_BLOCK [id=_enber1513613935650544¢
id: 1-video-consent

INIT_WAS_CALLED [id=_enber1513613935¢
kind: exp-video-consent
lastResult: null

OWNER [id=_ember15136139356509387308;
ownerView: <enber-1ookit-franep..
parentView: <ember-lookit-frane..
prompt: "I have read and unders..
recorder: <(unknown mixin):enbe..
renderer: { _don: [0bject], _de..
scheduledRevalidation: false
session: <ember-lookit-franepla.
title: Consent to participate i.

» ember-lookit-frameplayer@componentiex.
» (subclass of Ember.Component)
> Unknown mixin
» (subclass of Ember.Component)
> Ember.Component
» Ember.TargetActionSupport
Unknown mixin
(unknown mixin)
Unknown mixin

Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
> Unknown mixin
» (unknown mixin)

_images/json_editor.png
25
26~
27
28
29~
30~
31

32
33
34 -
35

36

“frames’: { _

"exit-survey": {
"id": "exit-survey",
"kind": "exp-exit-survey",
"titlel": "Almost done!",
"title2": "Thank you! You're all done.",
"exitMessage": "",
"exitThankYou": "Thank you so much for your help! We appreciate and learn from every video we receive in the lab (even if what we learn is that your
kiddo thinks this study is boring and we need to up our game.)",
"idealSessionsCompleted": 15,
"idealDaysSessionsCompleted": 6@
1,
"mood-survey": {
"id": "mood-survey",
"kind": "exp-mood-questionnaire"
1,
"instructions": {
"id": "instructions",
"kind": "exp-physics-intro"
1,
"video-config": {
"id": "video-config",
"kind": "exp-video-config",
"instructions": "Make sure your camera is working and you can see yourself below! Important: you'll need to check 'Remember' when you allow access, so
that it'll still work on the next screen."
1,
"video-consent": {
"id": "video-consent",
"kind": "exp-video-consent",
"blocks": [
{
"text": "Observing your child's behavior during this experimental session will help us to understand how infants and children use evidence to
learn and make predictions about the world.",
"title": "About the study"
1,
{

"text": "Your and your child's participation in this session are completely voluntary. If you and your child choose to participate, you may stop
the session at any point with no penalty. Please pause or stop the session if your child becomes very fussy or does not want to participate.
If this is a study with multiple sessions, there are no penalties for not completing all sessions.",

"title": "Participation"

_images/ember_debugger_save.png
ece Developer Tools - http://localhost:4200/studies/708e3d9e-c173-4e88-b41b-433941869397/1b23578-
X (] | Elements Console Sources Network Performance Memory Application Secury Audits Ember

o top v | [Fitter Defauit levels ¥

Ember Inspector (SE): <enber-lookit~f raneplayer@component: exp-video-confio: :erberse7>

¥ Class {_enber1513615982419: "erbersd?", _enber_neta_: Meta, _targetObject: Class, .})
HAS_BLOCK [id=_enber1513615982419326337620211) Store as global variable
INIT_WAS_CALLED [id=_enber151361596241914476567923321 : (——
et s

_images/ember_debugger_send.png
-4958-968b-d10ec9469516
01465,

] <ember-Lookit-franeplayer@component: ex
v Own Properties

attrs: { frameIndex: [Object], framePag..

childviews: [1

classNaneBindings: [1

ClassNanes: [ember-view]

element: { }

elementId: enber8s?

eventTinings: [1

experinent: <ember-lookit-frameplayer@n..

extra: { }

frameConfig: { id: 0-video-config, kind..
{ pastsessions: [Array : ..

HAS_BLOCK [id=_ember1513615082419326337620211

0-video-config

INIT_WAS_CALLED [id=__ember1513615082419144765
instructions: Make sure your camera is ..
kind: exp-video-config
TastResult: null

OWNER [id=__ember1513615982419334701273453] :

St

_images/researcher_detail.png
Manage Organization / Test User 2
!;!
|

Email address
Nogroups@cos.io

Given name

Permissions
No organization groups

* Assigning permissions to this researcher will add the user to MIT.

Send password reset email

Resend confirmation email

_images/login_to_exp.png
Experimenter

Login to Experimenter

Please sign in to the Open Science Framework or register for an account and sign in below:

e Open Science Framework

Terms of Use

_images/osf-login.png
oo
© 9
C J\
Open Science Framework

Sign in with your OSF Account to continue

Email:

Password:

Stay Signed In Forgot Your Password?

Login through Your Institution Back to OSF

Create Account

_images/responses.png
Manage Studies / Example sudy

Individual Responses

Individual Responses

ConsentMansger

o Av
@

IR IEIE IR

IdiidulResponses | AllResponses
ReponlD St AV Date AV
ED Compiete 40212019,
Ed Compiete 402201
Ed Compiete 012019
Eg Compiete 4012019
ES Compiete 4012019
Ed Compiete 401209
567 Compiete 3212009
Pagetart

Demographicrapshots _ Atachments

Attachments.

VideoSiream 870437c4 ke 49200175
a51ed106505 Lido-conset g5 5ot
052873

bes7eRsesed 1554240735663, 3730t
VideoSiream 870437 OkcB49:0,b175-
351ee156505 9 pret oy idoos, 4863571
56 d052.623¢.

ebs7eRse5ed 1554240825794 T83mpt

Terms of Use Privcy

==

Dormiosd

_images/specific_token.png
Select Token to change

Action: | --------- s || Go | 0 of 1 selected
) Key USER CREATED -
1 123456789abcdefghijkimnopgrstuvwxyz <User: Test User> Sept. 6, 2017, 5:20 p.m.

1 Token

_images/researcher_detail2.png
Manage Organization / Test User 3

Send password reset email Resend confirmation email

Email address
orgread@cos.io

Given name

Permissions

v Researcher
Organization Read
Organization Admin

Terms of Use

_images/researcher_list.png
Researchers

Filter by researcher name

Researcher Name A v

Test User 1

Permissions A v

Organization Admin

No organizat@

Test User 3

Test User 4

Organization Read

Researcher

Terms'of Use

Remove

Remove

Remove

Remove

Page 1of 1

_images/study_list.png
See Partic

Manage Studies

Fitername o descipton

Actve Submites Approwes Crested Deacvated MyStudes | Al
Name A BegnDate Av. Enaate v
Baby lughtr games Mar 22,2019 N

Inisstudy you 30 your by il perform asriesof short games, incuding th rowe favourit, Peekaboo'!
‘Sometimesepetions what makes samethingfy sowe il sk htyoupefor e ame e tnes.

Study Cresor KimScott

St Actie LstEdtet M 22,2019 CompetadResponses2 Approved Consent: 1
IcompieeResporses. Pending dgement
None

Bl WebRTC recorcing et sudy Mar 21,2019 N

Thisis 2 study-tochck tht th new WeBRTC recordersworking.

Study Cresor KimScott

St Actie LstEdtet Mar 712019 CompletadResponses1 Approved Consnt: 1
Incompite Resporses 1 Pending udgement

Copyof xamplestudy N N

Heraisanexamplestudy demonstrting asinpl sequence ofexpermert rames.

Sty Cresor Se Woong Prk

St Crestac ListEdtet Mar 21,2019 CompletedResponses: Approved Consent Nore
None Pending hudgement Nore.
Incompite Responses.

None

_images/use-case.png
Researcher

Participant

Log In/sign Up

Create/Edit study

Participate study

Send emails

Manage studies

Lookit-AP|

If Researcher

OSF Log In/
Sign Up

Lookit Log In/
Sign Up

If Participant

Build & deploy
study

_ _ _ <<include>> - - - - (Check eligibirity

N
N

<<extend>>
N

~{ Video Recording

Choose study

Consent
manager

<<Actor>>
OSF Auth API

<<Actor>>
Lookit Ember
FramePlayer

<<Actor>>
GCP

<<Actor>>
ADDPIPE

<<Actor>>
AWS

(Left) Primary User/resourcce

(Right) Secondary User/Resource

2

Relation

_images/study_detail.png
Manage Sudes | Bxamplestidy

Example study

Last et A0r04, 2019

Crangestate -
Sty colectingdata
BuisDeperdences >

Buis Prview Dependancies @

ManageRessachers

Searchorganization

Study Logs:
914,219,338 pm.
914,219,338 pm.
914,219,338 pm.
Apri13,2019, 749 pm.

See Part

sty | mview Responses [T

Her s 3n cxampl study demorsrating simplesequence of agariment ranss.

purpose
i s o newresearchrs o lay Wi You wille givenread” acces o i stdy.so
Jouil b 3l oS (40 e) it nt 13k chages o spove consent i
Voushould gt Tk action-> Clon study 1o make your owncopy, whchyoucan
thameditoyourheaes contet)

urstion: $0minuss Bt URL: hipestaging ook cosiol
Particpant gty Forbbies 3ges 10 months Compensation:

Miimumsgectof. Oyears Imonths 27 ays Maimu sge cutoft. Oyers
months 435
UUID: 6704370 0B 4530 5175 635t 150525

Discovrailty: Pubc Yourstudy s ctv and public Paridpants anscess tatyour
sty ik sndit canbefound sted i thstucy sting pge.

Sty o
tps/aging looki coslstudies/B70A7c6 cc 4930 6175 63516 10d5d |

Examplstdy s currently acthe.

Sty dependencistuit

Prevew dependences it

Researchers

Resarchers elrgin ot tudy's dina read groups. MIT s
il automaticly b o o it s st regardess o s 1o

Name
SlavieBaret

o Cardoaun
Qwmichs
BGleb sovlev
Xeristons.

Esiphantiean

e Woongpark

i Seott "M Acmin imin

@ Coldsmits Teting

Branple study studyactiated by Kimscott.
Example sty stuyapproved by KimSeott.
Exampl sty studysumited oy KimScot.
Exampte study study dependencies buil by Rico Rodriguez.

_images/study_edit.png
Experimenter See Participants Manage Organization Manage Studies H Dawn Pattison ~

Manage Studies / Your baby, the physicist / Edit

Description and Discoverability

Name
Your baby, the physicist

Image

Currently: study_images/baby.png

Change:
Choose File NoO file chosen

Please keep your file size less than 1 MB
Short Description

Your baby watches pairs of short video clips of physical events. In each pair, something pretty normal for our world happens on one side: e.g., a ball
rolls off a table and falls to the round. On the other side, something different happens: e.g., the ball rolls off a table and falls UP!

Give your study a description here.

Purpose

Where your baby chooses to look can tell us about his or her expectations of how the physical world works. Although your baby isn't ready to
study physics, he or she is already learning the basics: Should things fall up or down or not at all? Should they keep going once they start moving?

Explain the purpose of your study here.
Exit URL
https://staging-lookit.cos.io
Specify the page where you want to send your participants after they've completed the study.
Participant Eligibility

For children between 4 and 12 months old at start of study

Minimum Age Cutoff

Year(s) Month(s)

0 3 4 3
Maximum Age Cutoff
Year(s) Month(s)

1 3 3 3
Duration

Fifteen minutes

Researcher/Contact Information

pattison.dawn@cos.io

Discoverable - Do you want this study to be publicly discoverable on Lookit once activated?

Cancel Save Changes

Manage Researchers

Search organization Q
Researchers
Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.
Name Permissions
= Dawn Pattison *MIT Admin Admin ﬂ
= Status: Active @
H—
Build Study
A
Add/Modify study components Changestatus ... M
Comments:

You can only leave comments when you are rejecting this study.

Terms of Use

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/img/study_edit.png
Experimenter See Participants Manage Organization Manage Studies H Dawn Pattison ~

Manage Studies / Your baby, the physicist / Edit

Description and Discoverability

Name
Your baby, the physicist

Image

Currently: study_images/baby.png

Change:
Choose File NoO file chosen

Please keep your file size less than 1 MB
Short Description

Your baby watches pairs of short video clips of physical events. In each pair, something pretty normal for our world happens on one side: e.g., a ball
rolls off a table and falls to the round. On the other side, something different happens: e.g., the ball rolls off a table and falls UP!

Give your study a description here.

Purpose

Where your baby chooses to look can tell us about his or her expectations of how the physical world works. Although your baby isn't ready to
study physics, he or she is already learning the basics: Should things fall up or down or not at all? Should they keep going once they start moving?

Explain the purpose of your study here.
Exit URL
https://staging-lookit.cos.io
Specify the page where you want to send your participants after they've completed the study.
Participant Eligibility

For children between 4 and 12 months old at start of study

Minimum Age Cutoff

Year(s) Month(s)

0 3 4 3
Maximum Age Cutoff
Year(s) Month(s)

1 3 3 3
Duration

Fifteen minutes

Researcher/Contact Information

pattison.dawn@cos.io

Discoverable - Do you want this study to be publicly discoverable on Lookit once activated?

Cancel Save Changes

Manage Researchers

Search organization Q
Researchers
Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.
Name Permissions
= Dawn Pattison *MIT Admin Admin ﬂ
= Status: Active @
H—
Build Study
A
Add/Modify study components Changestatus ... M
Comments:

You can only leave comments when you are rejecting this study.

Terms of Use

_static/img/study_detail.png
Manage Sudes | Bxamplestidy

Example study

Last et A0r04, 2019

Crangestate -
Sty colectingdata
BuisDeperdences >

Buis Prview Dependancies @

ManageRessachers

Searchorganization

Study Logs:
914,219,338 pm.
914,219,338 pm.
914,219,338 pm.
Apri13,2019, 749 pm.

See Part

sty | mview Responses [T

Her s 3n cxampl study demorsrating simplesequence of agariment ranss.

purpose
i s o newresearchrs o lay Wi You wille givenread” acces o i stdy.so
Jouil b 3l oS (40 e) it nt 13k chages o spove consent i
Voushould gt Tk action-> Clon study 1o make your owncopy, whchyoucan
thameditoyourheaes contet)

urstion: $0minuss Bt URL: hipestaging ook cosiol
Particpant gty Forbbies 3ges 10 months Compensation:

Miimumsgectof. Oyears Imonths 27 ays Maimu sge cutoft. Oyers
months 435
UUID: 6704370 0B 4530 5175 635t 150525

Discovrailty: Pubc Yourstudy s ctv and public Paridpants anscess tatyour
sty ik sndit canbefound sted i thstucy sting pge.

Sty o
tps/aging looki coslstudies/B70A7c6 cc 4930 6175 63516 10d5d |

Examplstdy s currently acthe.

Sty dependencistuit

Prevew dependences it

Researchers

Resarchers elrgin ot tudy's dina read groups. MIT s
il automaticly b o o it s st regardess o s 1o

Name
SlavieBaret

o Cardoaun
Qwmichs
BGleb sovlev
Xeristons.

Esiphantiean

e Woongpark

i Seott "M Acmin imin

@ Coldsmits Teting

Branple study studyactiated by Kimscott.
Example sty stuyapproved by KimSeott.
Exampl sty studysumited oy KimScot.
Exampte study study dependencies buil by Rico Rodriguez.

_static/img/use-case.png
Researcher

Participant

Log In/sign Up

Create/Edit study

Participate study

Send emails

Manage studies

Lookit-AP|

If Researcher

OSF Log In/
Sign Up

Lookit Log In/
Sign Up

If Participant

Build & deploy
study

_ _ _ <<include>> - - - - (Check eligibirity

N
N

<<extend>>
N

~{ Video Recording

Choose study

Consent
manager

<<Actor>>
OSF Auth API

<<Actor>>
Lookit Ember
FramePlayer

<<Actor>>
GCP

<<Actor>>
ADDPIPE

<<Actor>>
AWS

(Left) Primary User/resourcce

(Right) Secondary User/Resource

2

Relation

_static/img/study_list.png
See Partic

Manage Studies

Fitername o descipton

Actve Submites Approwes Crested Deacvated MyStudes | Al
Name A BegnDate Av. Enaate v
Baby lughtr games Mar 22,2019 N

Inisstudy you 30 your by il perform asriesof short games, incuding th rowe favourit, Peekaboo'!
‘Sometimesepetions what makes samethingfy sowe il sk htyoupefor e ame e tnes.

Study Cresor KimScott

St Actie LstEdtet M 22,2019 CompetadResponses2 Approved Consent: 1
IcompieeResporses. Pending dgement
None

Bl WebRTC recorcing et sudy Mar 21,2019 N

Thisis 2 study-tochck tht th new WeBRTC recordersworking.

Study Cresor KimScott

St Actie LstEdtet Mar 712019 CompletadResponses1 Approved Consnt: 1
Incompite Resporses 1 Pending udgement

Copyof xamplestudy N N

Heraisanexamplestudy demonstrting asinpl sequence ofexpermert rames.

Sty Cresor Se Woong Prk

St Crestac ListEdtet Mar 21,2019 CompletedResponses: Approved Consent Nore
None Pending hudgement Nore.
Incompite Responses.

None

_static/comment-bright.png

_static/img/adding_researchers.png
Manage Researchers

a Q
Researchers
Re su | tS Researchers belonging to this study's admin and read groups. MIT Admins will automatically

be able to edit this study, regardless of study group.

KimResearcher Name Permissions

i Shikha 66 = Dawn Pattison *MIT Admin Admin ﬂ

i Shikha 67

i Shikha 810

4 Shikha 95

Page 10f5 >

_static/img/adding_researchers2.png
Manage Researchers

Becca Marlow given Your baby, the physicist Read Permissions.

Search organization

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions
£ Becca Marlow Read ﬂ
= Dawn Pattison *MIT Admin Admin ﬂ

_static/img/RabbitMQ.png
a

RabbitMq

Celery .

Requests Messages queues

£ Component

Input(Required interfaces)

-O Output(Required interfaces)

Connector

_static/img/add_token.png
Home > Auth Token > Tokens > Add Token

Add Token

<«
S,
+

User: | ——————

Save and add another Save and continue editing SAVE

_static/img/build_study.png
Experimenter See Participants Manage Organization Manage Studies H Dawn Pattison ~

Manage Studies / Your baby, the physicist / Edit / Build Study

Study Editor

Build Study - Add JSON

{"frames": {"exit-survey": {"id": "exit-survey", "kind": "exp-exit-survey", "titlel": "Almost done

Add the frames of your study as well as the sequence of those frames.

Try Experiment Discard changes

Change Study Type

Study Type

<«

Ember Frame Player (default)

Specify the build process as well as the parameters needed by the experiment builder.

addons_repo_url

https://github.com/centerforopenscience/exp-addons

last_known_addons_sha

db8c906e7a4d73b3df0db2d23f68cda2bccf7e23

last_known_player_sha

6c6baabfe33784ec067b59e8cd43794ca2383522

Discard changes

Terms of Use

_static/img/celery.png
<<Actor>>
RabbitMq queue
“build"

Celery

Build study

Celery:7 stages of the build process
get_study()
get_researcher()
build_docker_image()
get_container_directories()
run_docker_container()
deploy_study()
save_study_and_log_results()

<<Actor>>
Docker

<<Actor>>
RabbitMq queue
"email"

<<Actor>>
RabbitMq queue
“clean"

@

Clean the system

Researcher

<<Actor>>
AWS & GCP

Application

Q Activity in application

(Left) Primary User/resourcce

(Right) Secondary User/Resource

i User

Relation

_static/img/all_responses.png
Mansge Studies | Exame study / Demographic Snapshots

All Responses

ConsentManager Indidua Responses Al Responses | Demographic Sapshots | Attachments

(08 0

Terms of Use Privcy

_static/img/attachments.png
Manage Studes /| Bxamplestudy | Attachments

Attachments

ConsentManager Indiidusl Responses Al esporses DemograpicSopshots | Atachments

[[—

Fite stachmentrame

Name A M
VideoStream 870437 0cc5 4920 b175 635104164545 1videconsen. 15 cac 70954357 8676-

1456310531 1554236153708 208mpé

Stz ioses, 1554146162467 2245t

VideoStream 87043704 Occs 4920 b175-635 164104545 1 ide consent 34366314 6147 4350 Sce-
1903408533, 1554134035031 501mp4.

e b 3

_static/up-pressed.png

_static/up.png

_static/img/demographics.png
Manage Studies / Your baby, the physicist / Demographic Snapshots

All Responses

Individual Responses All Responses Demographic Snapshots Attachments
JSON B Download All Demographic Snapshots as JSON
{

"response": {
vige: 1,
"yuid": "f@04c781-a52d-4b57-b4c0-5c034201028d"

}

"participant": {
"id": 16,
"uuid": "d2f9e23e-f01f-47f4-aae@-5b60795a8b24",
"nickname": "Participantl"

}

"demographic_snapshot": {
"demographic_id": 3,
"uuid": "fc738824-d2bc-4a34-8233-f48042a4d2fc",
"number_of_children": "2",
"child_birthdays": [
"2017-04-11",
'2009-12-25"
1,
""languages_spoken_at_home": "English",
"number_of_guardians": "2",

"number_of_guardians_explanation": "",
"race_identification": [

"white",

"black"

1,
"age": "25-29",
"aander! nen

_static/img/docker.png
<<Actor>>
Celery

message

]
O_n—

Celery

build request

Deployeable static files

Study static files

O

a

Docker

>
O

Component

Input(Required interfaces)

Output(Required interfaces)

Connector

Docker

Build image

Run container

This container
runs to produce
static files of the
actual study that
gets deployed.

-
=

Application

Activity in application

(Left) Primary User/Resourcce

(Right) Secondary User/Resource

Relation

_static/img/deleting_a_researcher.png
Are you sure you want to delete this researcher?

Deleting Test User 1 cannot be undone.

Cancel Remove

_static/img/deleting_researchers.png
Manage Researchers

Becca Marlow removed from Your baby, the physicist.

Search organization Q

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions

= Dawn Pattison *MIT Admin Admin ﬂ

_static/img/ember_debugger_save.png
ece Developer Tools - http://localhost:4200/studies/708e3d9e-c173-4e88-b41b-433941869397/1b23578-
X (] | Elements Console Sources Network Performance Memory Application Secury Audits Ember

o top v | [Fitter Defauit levels ¥

Ember Inspector (SE): <enber-lookit~f raneplayer@component: exp-video-confio: :erberse7>

¥ Class {_enber1513615982419: "erbersd?", _enber_neta_: Meta, _targetObject: Class, .})
HAS_BLOCK [id=_enber1513615982419326337620211) Store as global variable
INIT_WAS_CALLED [id=_enber151361596241914476567923321 : (——
et s

_static/img/edit_json.png
Researcher Contact Information
e Trm— p)

“This should give the name of the PI for your study and an emal adress where the Pl o study taff can be reached with questions. Format:
Pls Name (contact: ouremail@lab.edu)

% Discoverable - Do youwant this study to be publicy discoverable on Lookit once activated?

Build Study - Add JSON

Add the frames of your study as well s the sequence of those frames. This can be added later.

_static/img/editing_researcher_permissions.png
Manage Researchers

Search organization Q

Researchers

Researchers belonging to this study's admin and read groups. MIT Admins will automatically
be able to edit this study, regardless of study group.

Name Permissions

£ Becca Marlow v Read n % ﬂ

= Dawn Pattison *MIT Admin “AQmMInT

_static/img/create_study.png
Manage Studies / Create Study

Create Study

Name
Name

Image
Choose File NoO file chosen

Please keep your file size less than 1 MB

Short Description

Short Description

Give your study a description here.

Purpose

Purpose

Explain the purpose of your study here.
Exit URL
Exit URL
Specify the page where you want to send your participants after they've completed the study.
Participant Eligibility

Participant Eligibility

Minimum Age Cutoff

Year(s) Month(s)

0 : 0 v
Maximum Age Cutoff
Year(s) Month(s)

0 : 0 v
Duration

Duration

Researcher/Contact Information

Researcher/Contact Information

[Discoverable - Do you want this study to be publicly discoverable on Lookit once activated?

Build Study - Add JSON
{"frames": {}, "sequence": []}

Add the frames of your study as well as the sequence of those frames. This can be added later.

Study Type

<«

Specify the build process as