

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

LombScargle.jl

DocTestSetup = quote
 using LombScargle
end

Introduction

LombScargle.jl [https://github.com/giordano/LombScargle.jl] is a package for
a fast multi-threaded estimation of the frequency
spectrum [https://en.wikipedia.org/wiki/Frequency_spectrum] of a periodic signal
with the Lomb–Scargle
periodogram [https://en.wikipedia.org/wiki/The_Lomb–Scargle_periodogram]. This
is written in Julia [http://julialang.org/], a modern high-level,
high-performance dynamic programming language designed for technical computing.

Another Julia package that provides tools to perform spectral analysis of
signals is DSP.jl [https://github.com/JuliaDSP/DSP.jl], but its methods require
that the signal has been sampled at equally spaced times. Instead, the
Lomb–Scargle periodogram enables you to analyze unevenly sampled data as well,
which is a fairly common case in astronomy, a field where this periodogram is
widely used.

The algorithms used in this package are reported in the following papers:

	[PR89] Press, W. H., Rybicki, G. B. 1989, ApJ, 338, 277 (URL:
http://dx.doi.org/10.1086/167197, Bibcode:
http://adsabs.harvard.edu/abs/1989ApJ…338..277P [http://adsabs.harvard.edu/abs/1989ApJ...338..277P])

	[TOW10] Townsend, R. H. D. 2010, ApJS, 191, 247 (URL:
http://dx.doi.org/10.1088/0067-0049/191/2/247, Bibcode:
http://adsabs.harvard.edu/abs/2010ApJS..191..247T)

	[ZK09] Zechmeister, M., Kürster, M. 2009, A&A, 496, 577 (URL:
http://dx.doi.org/10.1051/0004-6361:200811296, Bibcode:
http://adsabs.harvard.edu/abs/2009A%26A…496..577Z [http://adsabs.harvard.edu/abs/2009A%26A...496..577Z])

Other relevant papers are:

	[CMB99] Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890 (URL:
http://dx.doi.org/10.1086/308020, Bibcode:
http://adsabs.harvard.edu/abs/1999ApJ…526..890C [http://adsabs.harvard.edu/abs/1999ApJ...526..890C])

	[CUM04] Cumming, A. 2004, MNRAS, 354, 1165 (URL:
http://dx.doi.org/10.1111/j.1365-2966.2004.08275.x, Bibcode:
http://adsabs.harvard.edu/abs/2004MNRAS.354.1165C)

	[HB86] Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757 (URL:
http://dx.doi.org/10.1086/164037, Bibcode:
http://adsabs.harvard.edu/abs/1986ApJ…302..757H [http://adsabs.harvard.edu/abs/1986ApJ...302..757H])

	[LOM76] Lomb, N. R. 1976, Ap&SS, 39, 447 (URL:
http://dx.doi.org/10.1007/BF00648343, Bibcode:
http://adsabs.harvard.edu/abs/1976Ap%26SS..39..447L)

	[MHC93] Murdoch, K. A., Hearnshaw, J. B., & Clark, M. 1993, ApJ, 413, 349
(URL: http://dx.doi.org/10.1086/173003, Bibcode:
http://adsabs.harvard.edu/abs/1993ApJ…413..349M [http://adsabs.harvard.edu/abs/1993ApJ...413..349M])

	[SCA82] Scargle, J. D. 1982, ApJ, 263, 835 (URL:
http://dx.doi.org/10.1086/160554, Bibcode:
http://adsabs.harvard.edu/abs/1982ApJ…263..835S [http://adsabs.harvard.edu/abs/1982ApJ...263..835S])

	[SS10] Sturrock, P. A., & Scargle, J. D. 2010, ApJ, 718, 527 (URL:
http://dx.doi.org/10.1088/0004-637X/718/1/527, Bibcode:
http://adsabs.harvard.edu/abs/2010ApJ…718..527S [http://adsabs.harvard.edu/abs/2010ApJ...718..527S])

The package provides facilities to:

	compute the periodogram using different methods (with different
speeds) and different normalizations. This is one of the fastest
implementations of these methods available as free software. If
Julia is run with more than one
thread [http://docs.julialang.org/en/stable/manual/parallel-computing/#multi-threading-experimental],
computation is automatically multi-threaded, further speeding up
calculations;

	access the frequency and period grid of the resulting periodogram,
together with the power spectrum;

	find the maximum power in the periodogram and the frequency and
period corresponding to the peak. All these queries can be
restricted to a specified region, in order to search a local
maximum, instead of the global one;

	calculate the probability that a peak arises from noise only
(false-alarm probability) using analytic formulas, in order to
assess the significance of the peak;

	perform bootstrap resamplings in order to compute the false-alarm
probability with a statistical method;

	determine the best-fitting Lomb–Scargle model for the given data
set at the given frequency.

Installation

LombScargle.jl is available for Julia 0.6 and later versions, and can
be installed with Julia built-in package
manager [http://docs.julialang.org/en/stable/manual/packages/]. In a
Julia session run the commands

julia> Pkg.update()
julia> Pkg.add("LombScargle")

Older versions are also available for Julia 0.4 and 0.5.

Usage

After installing the package, you can start using it with

using LombScargle

The module defines a new LombScargle.Periodogram data type, which,
however, is not exported because you will most probably not need to
directly manipulate such objects. This data type holds both the
frequency and the power vectors of the periodogram.

The main function provided by the package is lombscargle:

lombscargle(::AbstractVector{<:Real}, rest...)

lombscargle returns a LombScargle.Periodogram. The only two mandatory
arguments are:

	times: the vector of observation times

	signal: the vector of observations associated with times

The optional argument is:

	errors: the uncertainties associated to each signal point.

All these vectors must have the same length.

!!! tip

You can pre-plan a periodogram with [`LombScargle.plan`](@ref)
function, which has the same syntax as [`lombscargle`](@ref)
described in this section. In this way the actual computation of the
periodogram is faster and you will save memory. See the [Planning the
Periodogram](#planning-the-periodogram) section below.

!!! tip

`LombScargle.jl` exploits Julia's native
[multi-threading](http://docs.julialang.org/en/stable/manual/parallel-computing/#multi-threading-experimental)
for the non-fast methods (the methods used when you set the keyword
`fast=false`). Run Julia with ``n`` threads (e.g., `JULIA_NUM_THREADS=4 julia` for
4 threads, if your machine has 4 physical cores) in order to automatically gain
an ``n`` -fold scaling.

Please note that multi-threading is still an experimental feature in Julia, so
you may encounter issues when running it with more than one thread. For example,
bug [#17395](https://github.com/JuliaLang/julia/issues/17395) (if still open)
may prevent the function, on some systems, from effectively scaling.

If the signal has uncertainties, the signal vector can also be a vector of
Measurement objects (from
Measurements.jl [https://github.com/giordano/Measurements.jl] package), in
which case you need not to pass a separate errors vector for the uncertainties
of the signal. You can create arrays of Measurement objects with the
measurement function, see Measurements.jl manual at
https://juliaphysics.github.io/Measurements.jl/stable for more details. The
generalised Lomb–Scargle periodogram by [ZK09] is always used when the signal
has uncertainties, because the original Lomb–Scargle algorithm cannot handle
them.

!!! tip

The uncertainties are only used in the generalised Lomb--Scargle algorithm to
build an
[inverse-variance](https://en.wikipedia.org/wiki/Inverse-variance_weighting)
weights vector (see [ZK09]), that gives more importance to
datapoints with lower uncertainties. The case where all measurements have the
same uncertainty (a condition known as
[homoskedasticity](https://en.wikipedia.org/wiki/Homoscedasticity)) results in a
costant weights vector, like if there are no uncertainties at all. If you have
homoskedastic errors, you do not need to provide them to
[`lombscargle`](@ref).

Planning the Periodogram

In a manner similar to planning Fourier transforms with FFTW, it is possible to
speed-up computation of the Lomb–Scargle periodogram by pre-planning it with
LombScargle.plan function. It has the same syntax as
lombscargle, which in the base case is:

LombScargle.plan
LombScargle.autofrequency

LombScargle.plan takes all the same argument as lombscargle shown
above and returns a LombScargle.PeriodogramPlan object after having
pre-computed certain quantities needed afterwards, and pre-allocated the memory
for the periodogram. It is highly suggested to plan a periodogram before
actually computing it, especially for the fast method. Once you plan a
periodogram, you can pass the LombScargle.PeriodogramPlan to
lombscargle as the only argument.

lombscargle(::LombScargle.PeriodogramPlan)

Planning the periodogram has a twofold advantage. First of all, the planning
stage is
type-unstable [https://docs.julialang.org/en/latest/manual/performance-tips.html],
because the type of the plan depends on the value of input parameters, and not
on their types. Thus, separating the planning (inherently inefficient) from the
actual computation of the periodogram (completely type-stable) makes overall
computation faster than directly calling lombscargle. Secondly, the
LombScargle.PeriodogramPlan bears the time vector, but the quantities that are
pre-computed in planning stage do not actually depend on it. This is
particularly useful if you want to calculate the false-alarm probability via
bootstrapping with LombScargle.bootstrap function: the vector time is
randomly shuffled, but pre-computed quantities will remain the same, saving both
time and memory in each iteration. In addition, you ensure that you will use the
same options you used to compute the periodogram.

Fast Algorithm

When the frequency grid is evenly spaced, you can compute an approximate
generalised Lomb–Scargle periodogram using a fast algorithm proposed by [PR89]
that greatly speeds up calculations, as it scales as O[N \log(M)] for N
data points and M frequencies. For comparison, the true Lomb–Scargle
periodogram has complexity O[NM]. The larger the number of datapoints, the
more accurate the approximation.

!!! note

This method internally performs a [Fast Fourier
Transform](https://en.wikipedia.org/wiki/Fast_Fourier_transform) (FFT) to
compute some quantities, but it is in no way equivalento to conventional Fourier
periodogram analysis.

`LombScargle.jl` uses [FFTW](http://fftw.org/) functions to compute the FFT. You
can speed-up this task by using multi-threading: call `FFTW.set_num_threads(n)`
to use ``n`` threads. However, please note that the running time will not scale as
``n`` because computation of the FFT is only a part of the algorithm.

The only prerequisite in order to be able to employ this fast method is to
provide a frequencies vector as a Range object, which ensures that the
frequency grid is perfectly evenly spaced. This is the default, since
LombScargle.autofrequency returns a Range object.

!!! tip

In Julia, a `Range` object can be constructed for example with the
[linspace](http://docs.julialang.org/en/stable/stdlib/arrays/#Base.linspace)
function (you specify the start and the end of the range, and optionally the
length of the vector) or with the syntax
[start:stop](http://docs.julialang.org/en/stable/stdlib/math/#Base.:) (you
specify the start and the end of the range, and optionally the linear step; a
related function is
[colon](http://docs.julialang.org/en/stable/stdlib/math/#Base.colon)).
Somewhere in the middle is the
[range](http://docs.julialang.org/en/stable/stdlib/math/#Base.range) function:
you specify the start of the range and the length of the vector, and optionally
the linear step.

Since this fast method is accurate only for large datasets, it is enabled by
default only if the number of output frequencies is larger than 200. You can
override the default choice of using this method by setting the fast keyword
to true or false. We recall that in any case, the frequencies vector must
be a Range in order to use this method.

To summarize, provided that frequencies vector is a Range object, you can
use the fast method:

	by default if the length of the output frequency grid is larger than
200 points

	in any case with the fast=true keyword

Setting fast=false always ensures you that this method will not be used,
instead fast=true actually enables it only if frequencies is a Range.

Normalization

By default, the periodogram p(f) is normalized so that it has values in the
range 0 \leq p(f) \leq 1, with p = 0 indicating no improvement of the
fit and p = 1 a “perfect” fit (100% reduction of \chi^2 or
\chi^2 = 0). This is the normalization suggested by [LOM76] and [ZK09], and
corresponds to the :standard normalization in lombscargle
function. [ZK09] wrote the formula for the power of the periodogram at frequency
f as

p(f) = \frac{1}{YY}\left[\frac{YC^2_{\tau}}{CC_{\tau}} +
\frac{YS^2_{\tau}}{SS_{\tau}}\right]

See the paper for details. The other normalizations for periodograms
P(f) are calculated from this one. In what follows, N is the number
of observations.

	:model:

P(f) = \frac{p(f)}{1 - p(f)}

	:log:

P(f) = -\log(1 - p(f))

	:psd:

P(f) = \frac{1}{2}\left[\frac{YC^2_{\tau}}{CC_{\tau}} +
\frac{YS^2_{\tau}}{SS_{\tau}}\right] = p(f) \frac{YY}{2}

	:Scargle:

P(f) = \frac{p(f)}{\text{noise level}}

This normalization can be used when you know the noise level (expected from
the a priori known noise variance or population variance), but this isn’t
usually the case. See [SCA82]

	:HorneBaliunas:

P(f) = \frac{N - 1}{2} p(f)

This is like the :Scargle normalization, where the noise has been estimated
for Gaussian noise to be (N - 1)/2. See [HB86]

	If the data contains a signal or if errors are under- or overestimated or if
intrinsic variability is present, then (N-1)/2 may not be a good
uncorrelated estimator for the noise level. [CMB99] suggested to estimate the
noise level a posteriori with the residuals of the best fit and normalised the
periodogram as:

P(f) = \frac{N - 3}{2} \frac{p(f)}{1 - p(f_{\text{best}})}

This is the :Cumming normalization option

Access Frequency Grid and Power Spectrum of the Periodogram

power
freq
freqpower

lombscargle function returns a LombScargle.Periodogram object, but
you most probably want to use the frequency grid and the power spectrum. You can
access these vectors with freq and power functions, just like in DSP.jl
package. If you want to get the 2-tuple (freq(p), power(p)) use the
freqpower function.

Access Periods and their and Power in the Periodogram

period
periodpower

These utilities are the analogs of freq and freqpower, but
relative to the periods instead of the frequencies. Thus period(p) returns the
vector of periods in the periodogram, that is 1./freq(p), and periodpower(p)
gives you the 2-tuple (period(p), power(p)).

findmaxpower, findmaxfreq, and findmaxperiod Functions

findmaxpower
findmaxfreq
findmaxperiod

Once you compute the periodogram, you usually want to know which are the
frequencies or periods with highest power. To do this, you can use the
findmaxfreq and findmaxperiod functions. They return the
vector of frequencies and periods, respectively, with the highest power in the
periodogram p. If a scalar real argument threshold is provided, return the
frequencies with power larger than or equal to threshold. If you want to limit
the search to a narrower frequency or period range, pass as second argument a
vector with the extrema of the interval.

The value of the highest power of a periodogram can be calculated with the
findmaxpower function.

False-Alarm Probability

prob(::LombScargle.Periodogram, ::Real)
probinv(::LombScargle.Periodogram, ::Real)
LombScargle.M
fap(::LombScargle.Periodogram, ::Real)
fapinv(::LombScargle.Periodogram, ::Real)

Noise in the data produce fluctuations in the periodogram that will present
several local peaks, but not all of them related to real periodicities. The
significance of the peaks can be tested by calculating the probability that its
power can arise purely from noise. The higher the value of the power, the lower
will be this probability.

!!! note

[CMB99] showed that the different normalizations result
in different probability functions. `LombScargle.jl` can calculate the
probability (and the false-alarm probability) only for the normalizations
reported by [ZK09], that are `:standard`, `:Scargle`,
`:HorneBaliunas`, and `:Cumming`.

The probability \text{Prob}(p > p_{0}) that the periodogram power p can
exceed the value p_{0} can be calculated with the prob function,
whose first argument is the periodogram and the second one is the p_{0}
value. The function probinv is its inverse: it takes the probability
as second argument and returns the corresponding p_{0} value.

Here are the probability functions for each normalization supported by
LombScargle.jl:

	:standard (p \in [0, 1]):

\text{Prob}(p > p_{0}) = (1 - p_{0})^{(N - 3)/2}

	:Scargle (p \in [0, \infty)):

\text{Prob}(p > p_{0}) = \exp(-p_{0})

	:HorneBaliunas (p \in [0, (N - 1)/2]):

\text{Prob}(p > p_{0}) = \left(1 - \frac{2p_{0}}{N - 1}\right)^{(N - 3)/2}

	:Cumming (p \in [0, \infty)):

\text{Prob}(p > p_{0}) = \left(1 + \frac{2p_{0}}{N - 3}\right)^{-(N - 3)/2}

As explained by [SS10], «the term “false-alarm probability denotes the
probability that at least one out of M independent power values in a
prescribed search band of a power spectrum computed from a white-noise time
series is expected to be as large as or larger than a given
value». LombScargle.jl provides the fap function to calculate the
false-alarm probability (FAP) of a given power in a periodogram. Its first
argument is the periodogram, the second one is the value p_{0} of the power
of which you want to calculate the FAP. The function fap uses the
formula

\text{FAP} = 1 - (1 - \text{Prob}(p > p_{0}))^M

where M is the number of independent frequencies estimated with M = T \cdot \Delta f, being T the duration of the observations and \Delta f
the width of the frequency range in which the periodogram has been calculated
(see [CUM04]). The function fapinv is the inverse of fap: it
takes as second argument the value of the FAP and returns the corresponding
value p_{0} of the power.

The detection threshold p_{0} is the periodogram power corresponding to some
(small) value of \text{FAP}, i.e. the value of p exceeded due to noise
alone in only a small fraction \text{FAP} of trials. An observed power
larger than p_{0} indicates that a signal is likely present (see [CUM04]).

!!! warning

Some authors stressed that this method to calculate the false-alarm probability
is not completely reliable. A different approach to calculate the false-alarm
probability is to perform Monte Carlo or bootstrap simulations in order to
determine how often a certain power level ``p_{0}`` is exceeded just by chance
(see [CMB99], [CUM04], and [ZK09]). See next section.

Bootstrapping

LombScargle.bootstrap
fap(::LombScargle.Bootstrap{<:AbstractFloat}, ::Real)
fapinv(::LombScargle.Bootstrap{<:AbstractFloat}, ::Real)

One of the possible and most simple statistical methods that you can use to
measure the false-alarm probability and its inverse is
bootstrapping [https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29]
(see section 4.2.2 of [MHC93]).

!!! note

We emphasize that you can use this method only if you know your data points are
[independent and identically
distributed](https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables),
and they have [white uncorrelated
noise](https://en.wikipedia.org/wiki/White_noise).

The recipe of the bootstrap method is very simple to implement:

	repeat the Lomb–Scargle analysis a large number N of times on the original
data, but with the signal (and errors, if present) vector randomly
shuffled. As an alternative, shuffle only the time vector;

	out of all these simulations, store the powers of the highest peaks;

	in order to estimate the false-alarm probability of a given power, count how
many times the highest peak of the simulations exceeds that power, as a
fraction of N. If you instead want to find the inverse of the false-alarm
probability \text{prob}, looks for the N\cdot\text{prob}-th element of the
highest peaks vector sorted in descending order.

Remember to pass to lombscargle function the same options, if any, you
used to compute the Lomb–Scargle periodogram before.

LombScargle.jl provides simple methods to perform such analysis. The
LombScargle.bootstrap function allows you to create a bootstrap sample
with N permutations of the original data. All the arguments after the first
one are passed around to lombscargle. The output is a
LombScargle.Bootstrap object.

You can also pass to LombScargle.bootstrap a pre-computed
LombScargle.PeriodogramPlan as second argument (this method takes no other
argument nor keyword). In this way you will be sure to use exactly the same
options you used before for computing the periodogram with the same periodogram
plan.

The false-alarm probability and its inverse can be calculated with fap
and fapinv functions respectively. Their syntax is the same as the
methods introduced above, but with a LombScargle.Bootstrap object as first
argument, instead of the LombScargle.Periodogram one.

LombScargle.model Function

LombScargle.model

For each frequency f (and hence for the corresponding angular frequency
\omega = 2\pi f) the Lomb–Scargle algorithm looks for the sinusoidal function
of the type

a_f\cos(\omega t) + b_f\sin(\omega t) + c_f

that best fits the data. In the original Lomb–Scargle algorithm the offset
c is null (see [LOM76]). In order to find the best-fitting coefficients
a_f, b_f, and c_f for the given frequency f, without actually
performing the periodogram, you can solve the linear system \mathbf{A}x = \mathbf{y}, where \mathbf{A} is the matrix

\begin{aligned}
\begin{bmatrix}
 \cos(\omega t) & \sin(\omega t) & 1
\end{bmatrix} =
\begin{bmatrix}
 \cos(\omega t_{1}) & \sin(\omega t_{1}) & 1 \\
 \vdots & \vdots & \vdots \\
 \cos(\omega t_{n}) & \sin(\omega t_{n}) & 1
\end{bmatrix}
\end{aligned}

t = [t_1, \dots, t_n]^\text{T} is the column vector of observation
times, x is the column vector with the unknown coefficients

\begin{aligned}
\begin{bmatrix}
 a_f \\
 b_f \\
 c_f
\end{bmatrix}
\end{aligned}

and \textbf{y} is the column vector of the signal. The solution of the matrix
gives the wanted coefficients.

This is what the LombScargle.model function does in order to return
the best fitting Lomb–Scargle model for the given signal at the given
frequency.

Mandatory arguments are:

	times: the observation times

	signal: the signal, sampled at times (must have the same length
as times)

	frequency: the frequency at which to calculate the model

The optional arguments are:

	errors: the vector of uncertainties of the signal. If provided, it must have
the same length as signal and times, and be the third argument. Like for
lombscargle, if the signal has uncertainties, the signal vector
can also be a vector of Measurement objects, and this argument should be
omitted

	times_fit: the vector of times at which the model will be calculated. It
defaults to times. If provided, it must come after frequency

Optional boolean keywords center_data and fit_mean have the same meaning as
in lombscargle function:

	fit_mean: whether to fit for the mean. If this is false, like in the
original Lomb–Scargle periodogram, \mathbf{A} does not have the third
column of ones, c_f is set to 0 and the unknown vector to be determined
becomes x = [a_f, b_f]^\text{T}

	center_data: whether the data should be pre-centered before solving the
linear system. This is particularly important if fit_mean=false

Examples

Here is an example of a noisy periodic signal (\sin(\pi t) + 1.5\cos(2\pi t))
sampled at unevenly spaced times.

julia> using LombScargle

julia> ntimes = 1001
1001

julia> t = linspace(0.01, 10pi, ntimes) # Observation times
0.01:0.03140592653589793:31.41592653589793

julia> t += step(t)*rand(ntimes) # Randomize times

julia> s = sinpi.(t) .+ 1.5cospi.(2t) .+ rand(ntimes) # The signal

julia> plan = LombScargle.plan(t, s); # Pre-plan the periodogram

julia> pgram = lombscargle(plan) # Compute the periodogram
LombScargle.Periodogram{Float64,StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}},Array{Float64,1}}([0.000472346, 0.000461633, 0.000440906, 0.000412717, 0.000383552, 0.000355828, 0.000289723, 0.000154585, 3.44734e-5, 5.94437e-7 … 3.15125e-5, 0.000487391, 0.0018939, 0.00367003, 0.00484181, 0.00495189, 0.00453233, 0.00480968, 0.00619657, 0.0074052], 0.003185690706734265:0.00637138141346853:79.72190993602499, [0.0295785, 0.0540516, 0.0780093, 0.122759, 0.15685, 0.192366, 0.206601, 0.252829, 0.265771, 0.315443 … 31.1512, 31.1758, 31.2195, 31.2342, 31.2752, 31.293, 31.3517, 31.3761, 31.4148, 31.4199], :standard)

You can plot the result, for example with
Plots [https://github.com/tbreloff/Plots.jl] package. Use freqpower
function to get the frequency grid and the power of the periodogram as a
2-tuple.

using Plots
plot(freqpower(pgram)...)

[image: image]

You can also plot the power vs the period, instead of the frequency, with
periodpower:

using Plots
plot(periodpower(pgram)...)

[image: image]

!!! warning
If you do not fit for the mean of the signal (fit_mean=false keyword to
lombscargle function) without centering the data (center_data=false)
you can get inaccurate results. For example, spurious peaks at low frequencies
can appear and the real peaks lose power:

```julia
plot(freqpower(lombscargle(t, s, fit_mean=false, center_data=false))...)
```

![image](figure_2.png)

!!! tip

You can tune the frequency grid with appropriate keywords to
[`lombscargle`](@ref) function. For example, in order to increase the sampling
increase `samples_per_peak`, and set `maximum_frequency` to lower values in
order to narrow the frequency range:

```julia
plot(freqpower(lombscargle(t, s, samples_per_peak=20, maximum_frequency=1.5))...)
```

![image](figure_3.png)

If you simply want to use your own frequency grid, directly set the
`frequencies` keyword:

```julia
plot(freqpower(lombscargle(t, s, frequencies=0.001:1e-3:1.5))...)
```

![image](figure_4.png)

Signal with Uncertainties

The generalised Lomb–Scargle periodogram is able to handle a signal with
uncertainties, and they will be used as weights in the algorithm. The
uncertainties can be passed either as the third optional argument errors to
lombscargle or by providing this function with a signal vector of
type Measurement (from
Measurements.jl [https://github.com/JuliaPhysics/Measurements.jl] package).

using Measurements, Plots
ntimes = 1001
t = linspace(0.01, 10pi, ntimes)
s = sinpi.(2t)
errors = rand(0.1:1e-3:4.0, ntimes)
Run one of the two following equivalent commands
plot(freqpower(lombscargle(t, s, errors, maximum_frequency=1.5))...)
plot(freqpower(lombscargle(t, measurement(s, errors), maximum_frequency=1.5))...)

[image: image]

This is the plot of the power versus the period:

Run one of the two following equivalent commands
plot(periodpower(lombscargle(t, s, errors, maximum_frequency=1.5))...)
plot(periodpower(lombscargle(t, measurement(s, errors), maximum_frequency=1.5))...)

[image: image]

We recall that the generalised Lomb–Scargle algorithm is used when the
fit_mean optional keyword to lombscargle is true if no error is
provided, instead it is always used if the signal has uncertainties.

Find Highest Power and Associated Frequencies and Periods

findmaxfreq function tells you the frequencies with the highest power
in the periodogram (and you can get the period by taking its inverse):

julia> t = linspace(0, 10, 1001);

julia> s = sinpi.(t);

julia> plan = LombScargle.plan(t, s); # Plan the periodogram

julia> p = lombscargle(plan);

julia> findmaxperiod(p) # Period with highest power
1-element Array{Float64,1}:
 0.00498778

julia> findmaxfreq(p) # Frequency with the highest power
1-element Array{Float64,1}:
 200.49

This peak is at high frequencies, very far from the expected value of the period
of 2. In order to find the real peak, you can either narrow the ranges in order
to exclude higher armonics

julia> findmaxperiod(p, [1, 10]) # Limit the search to periods in [1, 10]
1-element Array{Float64,1}:
 2.04082

julia> findmaxfreq(p, [0.1, 1]) # Limit the search to frequencies in [0.1, 1]
1-element Array{Float64,1}:
 0.49

or pass the threshold argument to findmaxfreq or
findmaxperiod. You can use findmaxpower to discover the
highest power in the periodogram:

julia> findmaxpower(p)
0.9958310178312316

julia> findmaxperiod(p, 0.95)
10-element Array{Float64,1}:
 2.04082
 1.96078
 0.0100513
 0.0100492
 0.00995124
 0.00994926
 0.00501278
 0.00501228
 0.00498778
 0.00498728

julia> findmaxfreq(p, 0.95)
10-element Array{Float64,1}:
 0.49
 0.51
 99.49
 99.51
 100.49
 100.51
 199.49
 199.51
 200.49
 200.51

The first peak is the real one, the other double peaks appear at higher
armonics.

!!! tip

Usually, plotting the periodogram can give you a clue of what's going on.

Significance of the Peaks

The significance of the peaks in the Lomb–Scargle periodogram can be assessed
by measuring the False-Alarm Probability. Analytic
expressions of this quantity and its inverse can be obtained with the
fap and fapinv functions, respectively.

julia> t = linspace(0.01, 20, samples_per_peak = 10)

julia> s = sinpi.(e.*t).^2 .- cos.(5t).^4

julia> plan = LombScargle.plan(t, s);

julia> p = lombscargle(plan)

Find the false-alarm probability for the highest peak.
julia> fap(p, 0.3)
0.028198095962262748

Thus, a peak with power 0.3 has a probability of 0.028 that it is due to
noise only. A quantity that is often used is the inverse of the false-alarm
probability as well: what is the minimum power whose false-alarm probability is
lower than the given probability? For example, if you want to know the minimum
power for which the false-alarm probability is at most 0.01 you can use:

julia> fapinv(p, 0.01)
0.3304696923786712

As we already noted, analytic expressions of the false-alarm probability and its
inverse may not be reliable if your data does not satisfy specific
assumptions. A better way to calculate this quantity is to use statistical
methods. One of this is bootstrapping. In LombScargle.jl, you can use the
function LombScargle.bootstrap to create a bootstrap sample and then
you can calculate the false-alarm probability and its inverse using this sample.

!!! tip

When applying the bootstrap method you should use the same options you used to
perform the periodogram on your data. Using the same periodogram plan you used
to compute the periodogram will ensure that you use the same options. However,
note that the fast method gives approximate results that for some frequencies
may not be reliable (they can go outside the range ``[0, 1]`` for the standard
normalization). More robust results can be obtained with the `fast = false`
option.

Create a bootstrap sample with 10000
resamplings of the original data, re-using the
same periodogram plan. The larger the better.
This may take some minutes.
julia> b = LombScargle.bootstrap(10000, plan)

Calculate the false-alarm probability of a peak
with power 0.3 using this bootstrap sample.
julia> fap(b, 0.3)
0.0209

Calculate the lowest power that has probability
less than 0.01 in this bootstrap sample.
julia> fapinv(b, 0.01)
0.3268290388848437

If you query fapinv with a too low probability, the corresponding
power cannot be determined and you will get NaN as result.

julia> fapinv(b, 1e-5)
NaN

If you want to find the power corresponding to a false-alarm probability of
\text{prob} = 10^{-5}, you have to create a new bootstrap sample with N
resamplings so that N\cdot\text{prob} can be rounded to an integer larger than
or equal to one (for example N = 10^{5}).

Find the Best-Fitting Model

The LombScargle.model function can help you to test whether a certain
frequency fits well your data.

using Plots
t = linspace(0.01, 10pi, 1000) # Observation times
s = sinpi.(t) .+ 1.2cospi.(t) .+ 0.3rand(length(t)) # The noisy signal
Pick-up the best frequency
f = findmaxfreq(lombscargle(t, s, maximum_frequency=10, samples_per_peak=20))[1]
t_fit = linspace(0, 1)
s_fit = LombScargle.model(t, s, f, t_fit/f) # Determine the model
scatter(mod.(t.*f, 1), s, lab="Phased data", title="Best Lomb-Scargle frequency: $f")
plot!(t_fit, s_fit, lab="Best-fitting model", linewidth=4)

[image: image]

!!! tip
If there are more than one dominant frequency you may need to consider more
models. This task may require some work and patience. Plot the periodogram in
order to find the best frequencies.

```julia
using Plots
t = linspace(0.01, 5, 1000) # Observation times
s = sinpi.(2t) .+ 1.2cospi.(4t) .+ 0.3rand(length(t)) # Noisy signal
plan = LombScargle.plan(t, s, samples_per_peak=50)
p = lombscargle(plan)
# After plotting the periodogram, you discover
# that it has two prominent peaks around 1 and 2.
f1 = findmaxfreq(p, [0.8, 1.2])[1] # Get peak frequency around 1
f2 = findmaxfreq(p, [1.8, 2.2])[1] # Get peak frequency around 2
fit1 = LombScargle.model(t, s, f1) # Determine the first model
fit2 = LombScargle.model(t, s, f2) # Determine the second model
scatter(t, s, lab="Data", title="Best-fitting Lomb-Scargle model")
plot!(t, fit1 + fit2, lab="Best-fitting model", linewidth=4)
```

![image](figure_7.png)

Performance

A pre-planned periodogram in LombScargle.jl computed in single thread mode
with the fast method is more than 2.9 times faster than the implementation of
the same algorithm provided by AstroPy, and more than 4.5 times faster if 4 FFTW
threads are used (on machines with at least 4 physical CPUs).

The following plot shows a comparison between the times needed to compute a
periodogram for a signal with N datapoints using LombScargle.jl, with 1 or 4
threads (with flags = FFTW.MEASURE for better performance), and the
single-threaded AstroPy implementation. (Julia version: 0.7.0-DEV.2309, commit
7ae9955c93; LombScargle.jl version: 0.3.1; Python version: 3.5.4; Astropy
version: 2.0.2. CPU: Intel(R) Core(TM) i7-4700MQ.)

[image: image]

Note that this comparison is unfair, as AstroPy doesn’t support pre-planning a
periodogram nor exploiting multi-threading. A non-planned periodogram in single
thread mode in LombScargle.jl is still twice faster than AstroPy.

Development

The package is developed at https://github.com/giordano/LombScargle.jl. There
you can submit bug reports, make suggestions, and propose pull requests.

History

The ChangeLog of the package is available in
NEWS.md [https://github.com/giordano/LombScargle.jl/blob/master/NEWS.md] file
in top directory.

License

The LombScargle.jl package is licensed under the BSD 3-clause “New” or
“Revised” License. The original author is Mosè Giordano.

Acknowledgements

This package adapts the implementation in Astropy of the the fast Lomb–Scargle
method by [PR89]. We claim no endorsement nor promotion by the Astropy Team.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/period-uncertainties.png
200

175

Ts0

Period

125

100

o075t

Jamod 3|61e35-quioT

025t

75

_static/ajax-loader.gif

_images/freq-uncertainties.png
1s0

125

100

075

050

5

2

o7st

Jamod 3|61e35-quioT

025t

Frequency

_images/period-periodogram.png
sl

10

15
Period

25

20

Jamod 3|61e35-quIoT

02

05

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/figure_6.png
Y

Best Lomb-Scargle frequency: 0.5007016743169748

© Phased data
| == Best-fitting model

00

10

_images/freq-periodogram.png
-~ 20

16
Frequency

00

o6l

Jamod 3)61ed5-quio]

02l

_static/up.png

_images/benchmarks.png
Time (seconds)

10

@ LombScargie ji-single thread
@ LombScargle i - 4 threads
—#— Astropy

10t

102

10°
Datapoints

10¢

109

