

 Navigation

 	
 index

 	
 next |

 	logstash-metlog extensions 0.1 documentation

Welcome to logstash-metlog extensions’s documentation!

logstash-metlog

logstash-metlog is a set of extensions for logstash to provide statsd,
CEF over syslog, Sentry and JSON to HDFS capabilities.

Full documentation can be found here [http://logstash-metlog.rtfd.org/].

Contents:

	Plugin Configuration
	Input plugins
	udp

	Filter plugins
	tagger configuration

	catchall configuration

	Output plugins
	metlog_statsd configuration

	metlog_cef configuration

	metlog_file configuration

	metlog_sentry_dsn

	A complete configuration

	HDFS Configuration

	Deprecated Input Plugins
	zeromq_hs configuration

	metlog_sentry

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	logstash-metlog extensions 0.1 documentation

Plugin Configuration

Metlog provides some plugins to ease integration with logstash.

Input plugins provided:

	logstash.inputs.udp

	logstash.inputs.zeromq_hs (deprecated)

Filter plugins provided:

	logstash.filters.tagger

	logstash.filters.catchall

Output plugins provided:

	logstash.outputs.metlog_cef

	logstash.outputs.metlog_file

	logstash.outputs.metlog_sentry_dsn

	logstash.outputs.metlog_statsd

	logstash.outputs.metlog_sentry (deprecated)

Input plugins

udp

The udp input plugin provides a basic UDP listener service for
logstash.

Messages may be lost using this input listener, and messages greater
than 64kb may be truncated.

For typical configuration, you need to only care about the host and
port that the listener will operate on. A typical configuration block
will look like this

udp {
 type => "metlog"
 mode => "server"
 format => "json"

 host => "0.0.0.0"
 port => 5565
}

The above configuration will let logstash listen on all network
interfaces on port 5565.

The type, mode and format should always be set to “metlog”, “server”
and “json” as per the example.

In the above example, the type is required by logstash.inputs.base.
It is not used by the zeromq_hs plugin.

mode must always be set as ‘server’ for the socket to bind properly.
address is any valid URL recognized by 0mq.

Filter plugins

tagger configuration

The tagger filter lets you define a pattern keypath into an event.
Each keypath is applied in order. On the first match - all tags will
be applied to the event.

Keypaths are defined using a ‘/’ notation.

One common case is to match the type of an event so that events are
routed to a final destination. In the following example, we want to
route all timer type events to the statsd output plugin by adding
the tag ‘output_statsd’ to the event.

filter {
 tagger {
 # all timer messages are tagged with 'output_statsd'
 type => "metlog"
 pattern => ["type", "timer"]
 add_tag => ["output_statsd"]
 }
}

If a keypath does not exist within an event, it is ignored.

Multiple keypaths can be defined using a flattened key/value mapping
as shown in the following example.

If the file type is either a ‘timer’ or ‘counter’, the ‘output_statsd’
tag will be applied.

filter {
 tagger {
 # all timer and counter messages are tagged with 'output_statsd'
 type => "metlog"
 pattern => ["type", "timer", "type", "counter"]
 add_tag => ["output_statsd"]
 }
}

catchall configuration

The catchall filter is used to select messages which have not been
previously tagged by another filter. This only works properly because
the Logstash FilterWorker pool processes messages serially through
each of the filters defined in logstash.conf

Unfortunately, filters cannot see configuration from other filters so
you must specify the set of tags which indicate that the message has
been successfully filtered.

The catchall should specify the superset of all tags
which logstash should care about. A logstash event must match none
of the tags in this superset for the catchall filter to add the
‘filter-catchall’ tag to the event.

A typical configuration block is shown below

catchall {
 # anything that isn't tagged already gets tagged here
 tags => ["output_text", "output_statsd", "output_sentry", "output_cef"]
 add_tag => ['filter-catchall']
}

Output plugins

metlog_statsd configuration

The standard statsd output plugin provided by logstash is designed to
repeatedly create the same kind of statsd message.

This plugin provides a basic interface to talk to a statsd server.

The plugin will map event attributes into statsd using

namespace = event.fields['fields']['logger']
key = event.fields['fields']['name']
value = event.fields['payload'].to_f
rate = event.fields['fields']['rate'].to_f

The default sampling rate is 1.

The value of event.fields[‘type’] must be one of ‘counter’ or ‘timer’.

For counter messages, the final statsd message is constructed using

`namespace`.`key`:`value`|c|`rate`

For timer messages, the final statsd message is constructed using

`namespace`.`key`:`value`|ms|`rate`

Configuration of the plugin requires setting a host, port and a list
of tags which the output plugin should watch for. At least one tag
must match for the output plugin to be triggered.

The following configuration monitors only the ‘output_statsd’ tag and
sends statsd messages to localhost at port 8125.

output {
 metlog_statsd {
 # Route any message tagged with 'output_statsd'
 # to the statsd server
 tags => ["output_statsd"]
 host => '127.0.0.1'
 port => 8125
 }
}

metlog_cef configuration

CEF messages are routed to the syslog daemon running on the local
machine. The only configuration you need is the tag that a logstash
event must have to route to this output.

A typical configuration block is below

metlog_cef {
 # CEF gets routed over syslog
 tags => ["output_cef"]
}

metlog_file configuration

This output plugin is able to output either JSON blobs or plain text.

In general, JSON file outputs are used for

For plain text, the plugin will extract a single field in the JSON
blob and will write that out. Typically, this is the payload key so
your configuration will look like this

metlog_file {
 # The plaintext logfile
 tags => ["output_text"]
 format => "preformatted_field"
 prefix_timestamps => true
 formatted_field => "payload"
 path => "/var/log/metlog/metlog_classic.log"
}

If you need to address a different part of the logstash event, simply
use ‘/’ notation.

metlog_file {
 tags => ["output_some_random_text"]
 format => "preformatted_field"
 formatted_field => "fields/logtext"
 path => "/var/log/metlog/metlog_some_random_text.log"
}

metlog_sentry_dsn

The metlog_sentry_dsn output plugin relies on metlog using
metlog-raven >= 0.3. The metlog client will embed the sentry DSN which
we want to use for final routing. The only configuration you need
is the tag that a logstash event must have to route to this output.

A typical configuration block is below

metlog_sentry_dsn {
 # This is a new Sentry output plugin which requires the
 # metlog-raven client to embed the DSN in the metlog message
 tags => ["output_sentry"]
}

A complete configuration

Tying all these parts together is sometimes not entirely obvious, so
we’ve assembled a working vagrant image for you. You can go use our
vagrant backend [https://github.com/mozilla-services/vagrant-metlog-backend/] to get
a working enviroment.

The logstash configuration [https://github.com/mozilla-services/vagrant-metlog-backend/blob/master/files/logstash.conf] for that instance can always be used as a
reference point for a working configuration.

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	logstash-metlog extensions 0.1 documentation

HDFS Configuration

Deployment notes for setting up metlog-json logs so that they get pushed into HDFS

You’ll need a couple pieces in play:

	logstash

	logrotate

	Metlog enabled application

Instructions:

	Ensure that JSON logs are rotated properly and being written out to:

	/var/log/<your_app>/metrics_hdfs.log=%Y-%m-%d

Example:

	/var/log/sync_web/metrics_hdfs.log=2012-03-20

	Make sure you’ve got the filename correct - specifically that the
logrotation is not compressing with gzip.

	Put a copy of metrics_hdfs.ini file into /etc/mozilla-services/metlog/metrics_hdfs.ini

A sample INI file is below

This configuration file is used by the scheduled job to push
JSON logs to HDFS
[metlog]
logger = metlog_hadoop_transport
sender_class = metlog.senders.StdOutSender
[metlog_metrics_hdfs]
HADOOP_USER = sync_dev
HADOOP_HOST = 10.1.1.10 # Put your Hadoop SSH host here
SRC_LOGFILE = /var/log/syncweb/metrics_hdfs.log=%%Y-%%m-%%d.gz
DST_FNAME = hadoop_logs/metrics_hdfs.log
TMP_DIR = /opt/logstash/hdfs_logs

	Ensure that the HADOOP_USER has been provisioned within the Hadoop cluster and that the SSH public keys have been installed into LDAP.

	Ensure that upload_log.py is installed into /opt/logstash/bin/upload_log.py
This should have been installed when you installed the
logstash-metlog RPM.

	Install private SSH keys for HADOOP_USER into /opt/logstash/ssh-keys

	Make sure that the identify file (the private key) is named “id_private_<HADOOP_USER>” For the previous metrics_hdfs.ini file,
that means your identify file is

/opt/logstash/ssh-keys/id_private_sync_dev

#. Setup the logrotate daily job. A sample configuration is shown
below.

Managed by puppet
/var/log/syncweb/application.log /var/log/syncweb/metrics_hdfs.log {
 daily
 compress
 copytruncate
 dateext
 dateformat=%Y-%m-%d
 rotate 7
 postrotate
 /opt/logstash/bin/upload_log.py \
 --ssh-keys=/opt/logstash/ssh-keys \
 --config /etc/mozilla-services/metlog/metrics_hdfs.ini \
 && /usr/bin/pkill -HUP logstash
 endscript
}

You’ll also need to have 2 directories setup for HDFS pushes to work
correctly :

DST_FNAME:

The DST_FNAME in metrics_hdfs.ini refers to a relative path from the home directory of the HADOOP_USER.
In the metrics_hdfs.ini file in this example, the ‘hadoop_logs/metrics_hdfs.log’ value will be mapped to:
/home/sync_dev/hadoop_logs/metrics_hdfs.log.<TIMESTAMP>

The <TIMESTAMP> will be replaced with the timestamp that the logfile was moved.

TMP_DIR:

TMP_DIR is a path on the local filesystem from the machine pushing logs to HDFS.
This directory will get a copy of the log file that will be pushed to HDFS. On successful push to HDFS, the log file will be removed from TMP_DIR, but unsuccessful pushes will leave the log file in the TMP_DIR.

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	logstash-metlog extensions 0.1 documentation

Deprecated Input Plugins

zeromq_hs configuration

The zeromq_hs input plugin is provides a simple handshake service
which exposes a ZMQ::REP socket that is used to synchronize the
PUB/SUB 0mq input plugin. This plugin is only required if Metlog has
declared a sender type of ZmqHandshakePubSender.

Using the zeromq_hs plugin requires setting a 0mq address so to bind a
socket. All other required keys are inherited from the base input
plugin from logstash.

input {
 zeromq_hs {
 # Setup a ZMQ::REP socket that listens on port 5180
 type => "metlog"
 mode => "server"
 address => "tcp://*:5180"
 }
}

metlog_sentry

This output plugin is deprecated and no longer supported

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	logstash-metlog extensions 0.1 documentation

Index

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		logstash-metlog extensions 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Victor Ng.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

