

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Logbook 0.4

Welcome to Logbook

Logbook is a logging sytem for Python that replaces the standard library’s
logging module. It was designed with both complex and simple applications
and mind and the idea to make logging fun:

>>> from logbook import Logger
>>> log = Logger('Logbook')
>>> log.info('Hello, World!')
[2010-07-23 16:34] INFO: Logbook: Hello, World!

What makes it fun? What about getting log messages on your phone or
desktop notification system? Logbook can do that.

This library is still under heavy development and the API is not fully
finalized yet. Feedback is appreciated. The docs here only show a tiny,
tiny feature set and are terribly incomplete. We will have better docs
soon, but until then we hope this gives a sneak peak about how cool
Logbook is. If you want more, have a look at the comprehensive
testsuite [https://github.com/mitsuhiko/logbook/tree/master/logbook/testsuite].

Documentation

	What does it do?
	Core Features

	Advantages over Logging

	Cooperation

	It should be Fun

	Logbook in a Nutshell

	Roadmap

	Quickstart
	Handlers

	Registering Handlers

	Record Processors

	Configuring the Logging Format

	Common Logbook Setups
	Desktop Application Setup

	Web Application Setup

	Deeply Nested Setups

	Distributed Logging

	Redirecting Single Loggers

	Stacks in Logbook
	General Stack Management

	Handlers

	Processor

	Flags

	Performance Tuning
	Debug-Only Logging

	Keep the Fingers Crossed

	Keep the Stack Static

	Disable Introspection

	Logbook in Libraries
	Mocking Logbook

	Best Practices

	Debug Loggers

	Unittesting Support
	Basic Setup

	Test Handler Interface

	Probe Log Records

	Logging to Tickets
	How does it work?

	Why should I use it?

	Common Setups

	Logging Compatibility
	Basic Setup

	Advanced Setup

	Reverse Redirects

	API Documentation
	Core Interface

	Handlers

	Utilities

	Queue Support

	Ticketing Support

	The More Module

	The Notifiers Module

	Compatibility

	Internal API

	The Design Explained
	Dispatchers and Channels

	The Log Record Container

	Design Principles
	No Logger Registry

	Context Sensitive Handler Stack

	No Custom Log Levels

	Injecting Context-Sensitive Information

	Logging Compatibility

	Logbook Changelog
	Version 0.4

	Version 0.3

	Version 0.2.1

	Version 0.2

	Version 0.1

Project Information

	Download from PyPI [http://pypi.python.org/pypi/Logbook]

	Master repository on GitHub [https://github.com/mitsuhiko/logbook]

	Mailing list [http://groups.google.com/group/pocoo-libs]

	IRC: #pocoo on freenode

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

What does it do?

Although the Python standard library provides a logging system, you should
consider having a look at Logbook for your applications. Currently
logbook is an alpha version and should be considered a developer preview.

But give it a try, we think it will work out for you and be fun to use :)

Furthermore because it was prototyped in a couple of days, it leverages
some features of Python that are not available in older Python releases.
Logbook currently requires Python 2.4 or higher including Python 3 (3.1 or
higher, 3.0 is not supported).

Core Features

	Logbook is based on the concept of loggers that are extensible by the
application.

	Each logger and handler, as well as other parts of the system, may inject
additional information into the logging record that improves the usefulness
of log entries.

	Handlers can be set on an application-wide stack as well as a thread-wide
stack. Setting a handler does not replace existing handlers, but gives it
higher priority. Each handler has the ability to prevent records from
propagating to lower-priority handlers.

	Logbook comes with a useful default configuration that spits all the
information to stderr in a useful manner.

	All of the built-in handlers have a useful default configuration applied with
formatters that provide all the available information in a format that
makes the most sense for the given handler. For example, a default stream
handler will try to put all the required information into one line, whereas
an email handler will split it up into nicely formatted ASCII tables that
span multiple lines.

	Logbook has built-in handlers for streams, arbitrary files, files with time
and size based rotation, a handler that delivers mails, a handler for the
syslog daemon as well as the NT log file.

	There is also a special “fingers crossed” handler that, in combination with
the handler stack, has the ability to accumulate all logging messages and
will deliver those in case a severity level was exceeded. For example, it
can withhold all logging messages for a specific request to a web
application until an error record appears, in which case it will also send
all withheld records to the handler it wraps. This way, you can always log
lots of debugging records, but only get see them when they can actually
tell you something of interest.

	It is possible to inject a handler for testing that records messages for
assertions.

	Logbook was designed to be fast and with modern Python features in mind.
For example, it uses context managers to handle the stack of handlers as
well as new-style string formatting for all of the core log calls.

	Builtin support for ZeroMQ and other means to distribute log messages
between heavily distributed systems and multiple processes.

	The Logbook system does not depend on log levels. In fact, custom log
levels are not supported, instead we strongly recommend using logging
subclasses or log processors that inject tagged information into the log
record for this purpose.

	PEP 8 [https://www.python.org/dev/peps/pep-0008] naming and code style.

Advantages over Logging

If properly configured, Logbook’s logging calls will be very cheap and
provide a great performance improvement over an equivalent configuration
of the standard library’s logging module. While for some parts we are not
quite at performance we desire, there will be some further performance
improvements in the upcoming versions.

It also supports the ability to inject additional information for all
logging calls happening in a specific thread or for the whole application.
For example, this makes it possible for a web application to add
request-specific information to each log record such as remote address,
request URL, HTTP method and more.

The logging system is (besides the stack) stateless and makes unit testing
it very simple. If context managers are used, it is impossible to corrupt
the stack, so each test can easily hook in custom log handlers.

Cooperation

Logbook is an addon library to Python and working in an area where there
are already a couple of contestants. First of all there is the standard
library’s logging [http://docs.python.org/library/logging.html#module-logging] module, secondly there is also the
warnings [http://docs.python.org/library/warnings.html#module-warnings] module which is used internally in Python to warn about
invalid uses of APIs and more. We know that there are many situations
where you want to use either of them. Be it that they are integrated into
a legacy system, part of a library outside of your control or just because
they are a better choice.

Because of that, Logbook is two-way compatible with logging [http://docs.python.org/library/logging.html#module-logging] and
one-way compatible with warnings [http://docs.python.org/library/warnings.html#module-warnings]. If you want, you can let all
logging calls redirect to the logbook handlers or the other way round,
depending on what your desired setup looks like. That way you can enjoy
the best of both worlds.

It should be Fun

Logging should be fun. A good log setup makes debugging easier when
things go rough. For good results you really have to start using logging
before things actually break. Logbook comes with a couple of unusual log
handlers to bring the fun back to logging. You can log to your personal
twitter feed, you can log to mobile devices, your desktop notification
system and more.

Logbook in a Nutshell

This is how easy it is to get started with Logbook:

from logbook import warn
warn('This is a warning')

That will use the default logging channel. But you can create as many as
you like:

from logbook import Logger
log = Logger('My Logger')
log.warn('This is a warning')

Roadmap

Here a list of things you can expect in upcoming versions:

	c implementation of the internal stack management and record
dispatching for higher performance.

	a ticketing log handler that creates tickets in trac and redmine.

	a web frontend for the ticketing database handler.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Quickstart

Logbook makes it very easy to get started with logging. Just import the logger
class, create yourself a logger and you are set:

>>> from logbook import Logger
>>> log = Logger('My Awesome Logger')
>>> log.warn('This is too cool for stdlib')
[2010-07-23 16:34] WARNING: My Awesome Logger: This is too cool for stdlib

A logger is a so-called RecordDispatcher, which is
commonly referred to as a “logging channel”. The name you give such a channel
is up to you and need not be unique although it’s a good idea to keep it
unique so that you can filter by it if you want.

The basic interface is similar to what you may already know from the standard
library’s logging [http://docs.python.org/library/logging.html#module-logging] module.

There are several logging levels, available as methods on the logger. The
levels – and their suggested meaning – are:

	critical – for errors that lead to termination

	error – for errors that occur, but are handled

	warning – for exceptional circumstances that might not be errors

	notice – for non-error messages you usually want to see

	info – for messages you usually don’t want to see

	debug – for debug messages

Each of these levels is available as method on the Logger.
Additionally the warning level is aliased as warn().

Alternatively, there is the log() method that takes the logging
level (string or integer) as an argument.

Handlers

Each call to a logging method creates a log record which is then passed to
handlers, which decide how to store or present the logging info. There are a
multitude of available handlers, and of course you can also create your own:

	StreamHandler for logging to arbitrary streams

	StderrHandler for logging to stderr

	FileHandler, MonitoringFileHandler,
RotatingFileHandler and TimedRotatingFileHandler for
logging to files

	MailHandler for logging via e-mail

	SyslogHandler for logging to the syslog daemon

	NTEventLogHandler for logging to the Windows NT event log

On top of those there are a couple of handlers for special use cases:

	logbook.FingersCrossedHandler for logging into memory and
delegating information to another handler when a certain level was
exceeded, otherwise discarding all buffered records.

	logbook.more.TaggingHandler for dispatching log records that
are tagged (used in combination with a
logbook.more.TaggingLogger)

	logbook.queues.ZeroMQHandler for logging to ZeroMQ

	logbook.queues.MultiProcessingHandler for logging from a child
process to a handler from the outer process.

	logbook.queues.ThreadedWrapperHandler for moving the actual
handling of a handler into a background thread and using a queue to
deliver records to that thread.

	logbook.notifiers.GrowlHandler and
logbook.notifiers.LibNotifyHandler for logging to the OS X Growl
or the linux notification daemon.

	logbook.notifiers.BoxcarHandler for logging to boxcar [http://boxcar.io/].

	logbook.more.TwitterHandler for logging to twitter.

	logbook.more.ExternalApplicationHandler for logging to an
external application such as the OS X say command.

	logbook.ticketing.TicketingHandler for creating tickets from
log records in a database or other data store.

Registering Handlers

So how are handlers registered? If you are used to the standard Python logging
system, it works a little bit differently here. Handlers can be registered for
a thread or for a whole process or individually for a logger. However, it is
strongly recommended not to add handlers to loggers unless there is a very good
use case for that.

If you want errors to go to syslog, you can set up logging like this:

from logbook import SyslogHandler

error_handler = SyslogHandler('logbook example', level='ERROR')
with error_handler.applicationbound():
 # whatever is executed here and an error is logged to the
 # error handler
 ...

This will send all errors to the syslog but warnings and lower record
levels still to stderr. This is because the handler is not bubbling by
default which means that if a record is handled by the handler, it will
not bubble up to a higher handler. If you want to display all records on
stderr, even if they went to the syslog you can enable bubbling by setting
bubble to True:

from logbook import SyslogHandler

error_handler = SyslogHandler('logbook example', level='ERROR', bubble=True)
with error_handler.applicationbound():
 # whatever is executed here and an error is logged to the
 # error handler but it will also bubble up to the default
 # stderr handler.
 ...

So what if you want to only log errors to the syslog and nothing to
stderr? Then you can combine this with a NullHandler:

from logbook import SyslogHandler, NullHandler

error_handler = SyslogHandler('logbook example', level='ERROR')
null_handler = NullHandler()

with null_handler.applicationbound():
 with error_handler.applicationbound():
 # errors now go to the error_handler and everything else
 # is swallowed by the null handler so nothing ends up
 # on the default stderr handler
 ...

Record Processors

What makes logbook interesting is the ability to automatically process log
records. This is handy if you want additional information to be logged for
everything you do. A good example use case is recording the IP of the current
request in a web application. Or, in a daemon process you might want to log
the user and working directory of the process.

A context processor can be injected at two places: you can either bind a
processor to a stack like you do with handlers or you can override the
override the RecordDispatcher.process_record() method.

Here an example that injects the current working directory into the
extra dictionary of a log record:

import os
from logbook import Processor

def inject_cwd(record):
 record.extra['cwd'] = os.getcwd()

with my_handler.applicationbound():
 with Processor(inject_cwd).applicationbound():
 # everything logged here will have the current working
 # directory in the log record.
 ...

The alternative is to inject information just for one logger in which case
you might want to subclass it:

import os

class MyLogger(logbook.Logger):

 def process_record(self, record):
 logbook.Logger.process_record(self, record)
 record.extra['cwd'] = os.getcwd()

Configuring the Logging Format

All handlers have a useful default log format you don’t have to change to use
logbook. However if you start injecting custom information into log records,
it makes sense to configure the log formatting so that you can see that
information.

There are two ways to configure formatting: you can either just change the
format string or hook in a custom format function.

All the handlers that come with logbook and that log into a string use the
StringFormatter by default. Their constructors accept a
format string which sets the logbook.Handler.format_string attribute.
You can override this attribute in which case a new string formatter is set:

>>> from logbook import StderrHandler
>>> handler = StderrHandler()
>>> handler.format_string = '{record.channel}: {record.message}'
>>> handler.formatter
<logbook.handlers.StringFormatter object at 0x100641b90>

Alternatively you can also set a custom format function which is invoked
with the record and handler as arguments:

>>> def my_formatter(record, handler):
... return record.message
...
>>> handler.formatter = my_formatter

The format string used for the default string formatter has one variable called
record available which is the log record itself. All attributes can be
looked up using the dotted syntax, and items in the extra dict looked up
using brackets. Note that if you are accessing an item in the extra dict that
does not exist, an empty string is returned.

Here is an example configuration that shows the current working directory from
the example in the previous section:

handler = StderrHandler(format_string=
 '{record.channel}: {record.message) [{record.extra[cwd]}]')

In the more module there is a formatter that uses the Jinja2
template engine to format log records, especially useful for multi-line log
formatting such as mails (JinjaFormatter).

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Common Logbook Setups

This part of the documentation shows how you can configure Logbook for
different kinds of setups.

Desktop Application Setup

If you develop a desktop application (command line or GUI), you probably have a line
like this in your code:

if __name__ == '__main__':
 main()

This is what you should wrap with a with statement that sets up your log
handler:

from logbook import FileHandler
log_handler = FileHandler('application.log')

if __name__ == '__main__':
 with log_handler.applicationbound():
 main()

Alternatively you can also just push a handler in there:

from logbook import FileHandler
log_handler = FileHandler('application.log')
log_handler.push_application()

if __name__ == '__main__':
 main()

Please keep in mind that you will have to pop the handlers in reverse order if
you want to remove them from the stack, so it is recommended to use the context
manager API if you plan on reverting the handlers.

Web Application Setup

Typical modern web applications written in Python have two separate contexts
where code might be executed: when the code is imported, as well as when a
request is handled. The first case is easy to handle, just push a global file
handler that writes everything into a file.

But Logbook also gives you the ability to improve upon the logging. For
example, you can easily create yourself a log handler that is used for
request-bound logging that also injects additional information.

For this you can either subclass the logger or you can bind to the handler with
a function that is invoked before logging. The latter has the advantage that it
will also be triggered for other logger instances which might be used by a
different library.

Here is a simple WSGI example application that showcases sending error mails for
errors happened during a WSGI application:

from logbook import MailHandler

mail_handler = MailHandler('errors@example.com',
 ['admin@example.com'],
 format_string=u'''\
Subject: Application Error at {record.extra[url]}

Message type: {record.level_name}
Location: {record.filename}:{record.lineno}
Module: {record.module}
Function: {record.func_name}
Time: {record.time:%Y-%m-%d %H:%M:%S}
Remote IP: {record.extra[ip]}
Request: {record.extra[url]} [{record.extra[method]}]

Message:

{record.message}
''', bubble=True)

def application(environ, start_response):
 request = Request(environ)

 def inject_info(record, handler):
 record.extra.update(
 ip=request.remote_addr,
 method=request.method,
 url=request.url
)

 with mail_handler.threadbound(processor=inject_info):
 # standard WSGI processing happens here. If an error
 # is logged, a mail will be sent to the admin on
 # example.com
 ...

Deeply Nested Setups

If you want deeply nested logger setups, you can use the
NestedSetup class which simplifies that. This is best
explained using an example:

import os
from logbook import NestedSetup, NullHandler, FileHandler, \
 MailHandler, Processor

def inject_information(record):
 record.extra['cwd'] = os.getcwd()

a nested handler setup can be used to configure more complex setups
setup = NestedSetup([
 # make sure we never bubble up to the stderr handler
 # if we run out of setup handling
 NullHandler(),
 # then write messages that are at least warnings to to a logfile
 FileHandler('application.log', level='WARNING'),
 # errors should then be delivered by mail and also be kept
 # in the application log, so we let them bubble up.
 MailHandler('servererrors@example.com',
 ['admin@example.com'],
 level='ERROR', bubble=True),
 # while we're at it we can push a processor on its own stack to
 # record additional information. Because processors and handlers
 # go to different stacks it does not matter if the processor is
 # added here at the bottom or at the very beginning. Same would
 # be true for flags.
 Processor(inject_information)
])

Once such a complex setup is defined, the nested handler setup can be used as if
it was a single handler:

with setup.threadbound():
 # everything here is handled as specified by the rules above.
 ...

Distributed Logging

For applications that are spread over multiple processes or even machines
logging into a central system can be a pain. Logbook supports ZeroMQ to
deal with that. You can set up a ZeroMQHandler
that acts as ZeroMQ publisher and will send log records encoded as JSON
over the wire:

from logbook.queues import ZeroMQHandler
handler = ZeroMQHandler('tcp://127.0.0.1:5000')

Then you just need a separate process that can receive the log records and
hand it over to another log handler using the
ZeroMQSubscriber. The usual setup is this:

from logbook.queues import ZeroMQSubscriber
subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
with my_handler:
 subscriber.dispatch_forever()

You can also run that loop in a background thread with
dispatch_in_background():

from logbook.queues import ZeroMQSubscriber
subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
subscriber.dispatch_in_background(my_handler)

If you just want to use this in a multiprocessing [http://docs.python.org/library/multiprocessing.html#module-multiprocessing] environment you
can use the MultiProcessingHandler and
MultiProcessingSubscriber instead. They work the
same way as the ZeroMQ equivalents but are connected through a
multiprocessing.Queue [http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue]:

from multiprocessing import Queue
from logbook.queues import MultiProcessingHandler, \
 MultiProcessingSubscriber
queue = Queue(-1)
handler = MultiProcessingHandler(queue)
subscriber = MultiProcessingSubscriber(queue)

Redirecting Single Loggers

If you want to have a single logger go to another logfile you have two
options. First of all you can attach a handler to a specific record
dispatcher. So just import the logger and attach something:

from yourapplication.yourmodule import logger
logger.handlers.append(MyHandler(...))

Handlers attached directly to a record dispatcher will always take
precedence over the stack based handlers. The bubble flag works as
expected, so if you have a non-bubbling handler on your logger and it
always handles, it will never be passed to other handlers.

Secondly you can write a handler that looks at the logging channel and
only accepts loggers of a specific kind. You can also do that with a
filter function:

handler = MyHandler(filter=lambda r: r.channel == 'app.database')

Keep in mind that the channel is intended to be a human readable string
and is not necessarily unique. If you really need to keep loggers apart
on a central point you might want to introduce some more meta information
into the extra dictionary.

You can also compare the dispatcher on the log record:

from yourapplication.yourmodule import logger
handler = MyHandler(filter=lambda r: r.dispatcher is logger)

This however has the disadvantage that the dispatcher entry on the log
record is a weak reference and might go away unexpectedly and will not be
there if log records are sent to a different process.

Last but not least you can check if you can modify the stack around the
execution of the code that triggers that logger For instance if the
logger you are interested in is used by a specific subsystem, you can
modify the stacks before calling into the system.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Stacks in Logbook

Logbook keeps three stacks internally currently:

	one for the Handlers: each handler is handled from
stack top to bottom. When a record was handled it depends on the
bubble flag of the handler if it should still
be processed by the next handler on the stack.

	one for the Processors: each processor in the stack
is applied on a record before the log record is handled by the
handler.

	one for the Flags: this stack manages simple flags
such as how errors during logging should be processed or if stackframe
introspection should be used etc.

General Stack Management

Generally all objects that are management by stacks have a common
interface (StackedObject) and can be used in
combination with the NestedSetup class.

Commonly stacked objects are used with a context manager (with
statement):

with context_object.threadbound():
 # this is managed for this thread only
 ...

with context_object.applicationbound():
 # this is managed for all applications
 ...

Alternatively you can also use try/finally:

context_object.push_thread()
try:
 # this is managed for this thread only
 ...
finally:
 context_object.pop_thread()

context_object.push_application()
try:
 # this is managed for all applications
 ...
finally:
 context_object.pop_application()

It’s very important that you will always pop from the stack again unless
you really want the change to last until the application closes down,
which probably is not the case.

If you want to push and pop multiple stacked objects at the same time, you
can use the NestedSetup:

setup = NestedSetup([stacked_object1, stacked_object2])
with setup.threadbound():
 # both objects are now bound to the thread's stack
 ...

Sometimes a stacked object can be passed to one of the functions or
methods in Logbook. If any stacked object can be passed, this is usually
called the setup. This is for example the case when you specify a
handler or processor for things like the
ZeroMQSubscriber.

Handlers

Handlers use the features of the stack the most because not only do they
stack, but they also specify how stack handling is supposed to work. Each
handler can decide if it wants to process the record, and then it has a
flag (the bubble flag) which specifies if the
next handler in the chain is supposed to get this record passed to.

If a handler is bubbeling it will give the record to the next handler,
even if it was properly handled. If it’s not, it will stop promoting
handlers further down the chain. Additionally there are so-called
“blackhole” handlers (NullHandler) which stop processing
at any case when they are reached. If you push a blackhole handler on top
of an existing infrastructure you can build up a separate one without
performance impact.

Processor

A processor can inject additional information into a log record when the
record is handled. Processors are called once at least one log handler is
interested in handling the record. Before that happens, no processing
takes place.

Here an example processor that injects the current working directory into
the extra attribute of the record:

import os

def inject_cwd(record):
 record.extra['cwd'] = os.getcwd()

with Processor(inject_cwd):
 # all logging calls inside this block in this thread will now
 # have the current working directory information attached.
 ...

Flags

The last pillar of logbook is the flags stack. This stack can be used to
override settings of the logging system. Currently this can be used to
change the behavior of logbook in case an exception during log handling
happens (for instance if a log record is supposed to be delivered to the
filesystem but it ran out of available space). Additionally there is a
flag that disables frame introspection which can result in a speedup on
JIT compiled Python interpreters.

Here an example of a silenced error reporting:

with Flags(errors='silent'):
 # errors are now silent for this block
 ...

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Performance Tuning

The more logging calls you add to your application and libraries, the more
overhead will you introduce. There are a couple things you can do to
remedy this behavior.

Debug-Only Logging

There are debug log calls, and there are debug log calls. Some debug log
calls would sometimes be interesting in a production environment, others
really only if you are on your local machine fiddling around with the
code. Logbook internally makes sure to process as little of your logging
call as necessary, but it will still have to walk the current stack to
figure out if there are any active handlers or not. Depending on the
number of handlers on the stack, the kind of handler etc, there will be
more or less processed.

Generally speaking a not-handled logging call is cheap enough that you
don’t have to care about it. However there is not only your logging call,
there might also be some data you have to process for the record. This
will always be processed, even if the log record ends up being discarded.

This is where the Python __debug__ feature comes in handy. This
variable is a special flag that is evaluated at the time where Python
processes your script. It can elliminate code completely from your script
so that it does not even exist in the compiled bytecode (requires Python
to be run with the -O switch):

if __debug__:
 info = get_wallcalculate_debug_info()
 logger.debug("Call to response() failed. Reason: {0}", info)

Keep the Fingers Crossed

Do you really need the debug info? In case you find yourself only looking
at the logfiles when errors occurred it would be an option to put in the
FingersCrossedHandler. Logging into memory is always
cheaper than logging on a filesystem.

Keep the Stack Static

Whenever you do a push or pop from one of the stacks you will invalidate
an internal cache that is used by logbook. This is an implementation
detail, but this is how it works for the moment. That means that the
first logging call after a push or pop will have a higher impact on the
performance than following calls. That means you should not attempt to
push or pop from a stack for each logging call. Make sure to do the
pushing and popping only as needed. (start/end of application/request)

Disable Introspection

By default Logbook will try to pull in the interpreter frame of the caller
that invoked a logging function. While this is a fast operation that
usually does not slow down the execution of your script it also means that
for certain Python implementations it invalidates assumptions a JIT
compiler might have made of the function body. Currently this for example
is the case for applications running on pypy. If you would be using a
stock logbook setup on pypy, the JIT wouldn’t be able to work properly.

In case you don’t need the frame based information (name of module,
calling function, filename, line number) you can disable the introspection
feature:

from logbook import Flags

with Flags(introspection=False):
 # all logging calls here will not use introspection
 ...

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Logbook in Libraries

Logging becomes more useful the higher the number of components in a
system that are using it. Logbook itself is not a widely supported
library so far, but a handful of libraries are using the logging [http://docs.python.org/library/logging.html#module-logging]
already which can be redirected to Logbook if necessary.

Logbook itself is easier to support for libraries than logging because it
does away with the central logger registry and can easily be mocked in
case the library is not available.

Mocking Logbook

If you want to support Logbook in your library but not depend on it you
can copy/paste the following piece of code. It will attempt to import
logbook and create a Logger and if it fails provide a
class that just swallows all calls:

try:
 from logbook import Logger
except ImportError:
 class Logger(object):
 def __init__(self, name, level=0):
 self.name = name
 self.level = level
 debug = info = warn = warning = notice = error = exception = \
 critical = log = lambda *a, **kw: None

log = Logger('My library')

Best Practices

	A library that wants to log to the Logbook system should generally be
designed to provide an interface to the record dispatchers it is
using. That does not have to be a reference to the record dispatcher
itself, it is perfectly fine if there is a toggle to switch it on or
off.

	The channel name should be readable and descriptive.

	For example, if you are a database library that wants to use the
logging system to log all SQL statements issued in debug mode, you can
enable and disable your record dispatcher based on that debug flag.

	Libraries should never set up log setups except temporarily on a
per-thread basis if it never changes the stack for a longer duration
than a function call in a library. For example, hooking in a null
handler for a call to a noisy function is fine, changing the global
stack in a function and not reverting it at the end of the function is
bad.

Debug Loggers

Sometimes you want to have loggers in place that are only really good for
debugging. For example you might have a library that does a lot of
server/client communication and for debugging purposes it would be nice if
you can enable/disable that log output as necessary.

In that case it makes sense to create a logger and disable that by default
and give people a way to get hold of the logger to flip the flag.
Additionally you can override the disabled flag to
automatically set it based on another value:

class MyLogger(Logger):
 @property
 def disabled(self):
 return not database_connection.debug
database_connection.logger = MyLogger('mylibrary.dbconnection')

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Unittesting Support

Logbook has builtin support for testing logging calls. There is a handler
that can be hooked in and will catch all log records for inspection. Not
only that, it also provides methods to test if certain things were logged.

Basic Setup

The interface to satisfaction is logbook.TestHandler. Create it,
and bind it, and you’re done. If you are using classic unittest [http://docs.python.org/library/unittest.html#module-unittest]
test cases, you might want to set it up in the before and after callback
methods:

import logbook
import unittest

class LoggingTestCase(unittest.TestCase):

 def setUp(self):
 self.log_handler = logbook.TestHandler()
 self.log_handler.push_thread()

 def tearDown(self):
 self.log_handler.pop_thread()

Alternatively you can also use it in a with statement in an individual
test. This is also how this can work in nose and other testing systems:

def my_test():
 with logbook.TestHandler() as log_handler:
 ...

Test Handler Interface

The test handler has a few attributes and methods to gain access to the
logged messages. The most important ones are records
and formatted_records. The first is a list of the
captured LogRecords, the second a list of the formatted records
as unicode strings:

>>> from logbook import TestHandler, Logger
>>> logger = Logger('Testing')
>>> handler = TestHandler()
>>> handler.push_thread()
>>> logger.warn('Hello World')
>>> handler.records
[<logbook.base.LogRecord object at 0x100640cd0>]
>>> handler.formatted_records
[u'[WARNING] Testing: Hello World']

Probe Log Records

The handler also provide some convenience methods to do assertions:

>>> handler.has_warnings
True
>>> handler.has_errors
False
>>> handler.has_warning('Hello World')
True

Methods like has_warning() accept two
arguments:

	message

	If provided and not None it will check if there is at least one log
record where the message matches.

	channel

	If provided and not None it will check if there is at least one log
record where the logger name of the record matches.

Example usage:

>>> handler.has_warning('A different message')
False
>>> handler.has_warning('Hello World', channel='Testing')
True
>>> handler.has_warning(channel='Testing')
True

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Logging to Tickets

Logbook supports the concept of creating unique tickets for log records
and keeping track of the number of times these log records were created.
The default implementation logs into a relational database, but there is a
baseclass that can be subclassed to log into existing ticketing systems
such as trac or other data stores.

The ticketing handlers and store backends are all implemented in the
module logbook.ticketing.

How does it work?

When a ticketing handler is used each call to a logbook logger is assigned
a unique hash that is based on the name of the logger, the location of the
call as well as the level of the message. The message itself is not taken
into account as it might be changing depending on the arguments passed to
it.

Once that unique hash is created the database is checked if there is
already a ticket for that hash. If there is, a new occurrence is logged
with all details available. Otherwise a new ticket is created.

This makes it possible to analyze how often certain log messages are
triggered and over what period of time.

Why should I use it?

The ticketing handlers have the big advantage over a regular log handler
that they will capture the full data of the log record in machine
processable format. Whatever information was attached to the log record
will be send straight to the data store in JSON.

This makes it easier to track down issues that might happen in production
systems. Due to the higher overhead of ticketing logging over a standard
logfile or something comparable it should only be used for higher log
levels (WARNING or higher).

Common Setups

The builtin ticketing handler is called
TicketingHandler. In the default configuration
it will connect to a relational database with the help of SQLAlchemy [http://sqlalchemy.org/]
and log into two tables there: tickets go into ${prefix}tickets and
occurrences go into ${prefix}occurrences. The default table prefix is
'logbook_' but can be overriden. If the tables do not exist already,
the handler will create them.

Here an example setup that logs into a postgres database:

from logbook import ERROR
from logbook.ticketing import TicketingHandler
handler = TicketingHandler('postgres://localhost/database',
 level=ERROR)
with handler:
 # everything in this block and thread will be handled by
 # the ticketing database handler
 ...

Alternative backends can be swapped in by providing the backend
parameter. There is a second implementation of a backend that is using
MongoDB: MongoDBBackend.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Logging Compatibility

Logbook provides backwards compatibility with the logging library. When
activated, the logging library will transparently redirect all the logging calls
to your Logbook logging setup.

Basic Setup

If you import the compat system and call the
redirect_logging() function, all logging calls that happen
after this call will transparently be redirected to Logbook:

from logbook.compat import redirect_logging
redirect_logging()

This also means you don’t have to call logging.basicConfig() [http://docs.python.org/library/logging.html#logging.basicConfig]:

>>> from logbook.compat import redirect_logging
>>> redirect_logging()
>>> from logging import getLogger
>>> log = getLogger('My Logger')
>>> log.warn('This is a warning')
[2010-07-25 00:24] WARNING: My Logger: This is a warning

Advanced Setup

The way this is implemented is with a
RedirectLoggingHandler. This class is a handler for
the old logging system that sends records via an internal logbook logger to the
active logbook handlers. This handler can then be added to specific logging
loggers if you want:

>>> from logging import getLogger
>>> mylog = getLogger('My Log')
>>> from logbook.compat import RedirectLoggingHandler
>>> mylog.addHandler(RedirectLoggingHandler())
>>> otherlog = getLogger('Other Log')
>>> otherlog.warn('logging is deprecated')
No handlers could be found for logger "Other Log"
>>> mylog.warn('but logbook is awesome')
[2010-07-25 00:29] WARNING: My Log: but logbook is awesome

Reverse Redirects

You can also redirect logbook records to logging, so the other way round.
For this you just have to activate the
LoggingHandler for the thread or application:

from logbook import Logger
from logbook.compat import LoggingHandler

log = Logger('My app')
with LoggingHandler():
 log.warn('Going to logging')

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

API Documentation

This part of the documentation documents all the classes and functions
provided by Logbook.

	Core Interface

	Handlers
	Base Interface

	Core Handlers

	Special Handlers

	Mixin Classes

	Utilities

	Queue Support
	ZeroMQ

	MultiProcessing

	Other

	Base Interface

	Ticketing Support

	The More Module
	Tagged Logging

	Special Handlers

	Colorized Handlers

	Other

	The Notifiers Module
	OSX Specific Handlers

	Linux Specific Handlers

	Other Services

	Base Interface

	Compatibility
	Logging Compatibility

	Warnings Compatibility

	Internal API

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Core Interface

This implements the core interface.

	
class logbook.base.Logger(name=None, level=0)[source]

	Instances of the Logger class represent a single logging channel.
A “logging channel” indicates an area of an application. Exactly
how an “area” is defined is up to the application developer.

Names used by logbook should be descriptive and are intended for user
display, not for filtering. Filtering should happen based on the
context information instead.

A logger internally is a subclass of a
RecordDispatcher that implements the actual
logic. If you want to implement a custom logger class, have a look
at the interface of that class as well.

	
call_handlers(record)

	Pass a record to all relevant handlers in the following
order:

	per-dispatcher handlers are handled first

	afterwards all the current context handlers in the
order they were pushed

Before the first handler is invoked, the record is processed
(process_record()).

	
catch_exceptions(*args, **kwargs)

	A context manager that catches exceptions and calls
exception() for exceptions caught that way. Example:

with logger.catch_exceptions():
 execute_code_that_might_fail()

	
critical(*args, **kwargs)

	Logs a LogRecord with the level set
to CRITICAL.

	
debug(*args, **kwargs)

	Logs a LogRecord with the level set
to DEBUG.

	
error(*args, **kwargs)

	Logs a LogRecord with the level set
to ERROR.

	
exception(*args, **kwargs)

	Works exactly like error() just that the message
is optional and exception information is recorded.

	
handle(record)

	Call the handlers for the specified record. This is
invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled
and if the record level is greater than the level of the
record dispatcher. In that case it will call the handlers
(call_handlers()).

	
info(*args, **kwargs)

	Logs a LogRecord with the level set
to INFO.

	
level_name

	The level as unicode string

	
log(level, *args, **kwargs)

	Logs a LogRecord with the level set
to the level parameter. Because custom levels are not
supported by logbook, this method is mainly used to avoid
the use of reflection (e.g.: getattr() [http://docs.python.org/library/functions.html#getattr]) for programmatic
logging.

	
make_record_and_handle(level, msg, args, kwargs, exc_info, extra)

	Creates a record from some given arguments and heads it
over to the handling system.

	
notice(*args, **kwargs)

	Logs a LogRecord with the level set
to NOTICE.

	
process_record(record)

	Processes the record with all context specific processors. This
can be overriden to also inject additional information as necessary
that can be provided by this record dispatcher.

	
warn(*args, **kwargs)

	Logs a LogRecord with the level set
to WARNING. This function has an alias
named warning().

	
warning(*args, **kwargs)

	Alias for warn().

	
class logbook.base.LoggerGroup(loggers=None, level=0, processor=None)[source]

	A LoggerGroup represents a group of loggers. It cannot emit log
messages on its own but it can be used to set the disabled flag and
log level of all loggers in the group.

Furthermore the process_record() method of the group is called
by any logger in the group which by default calls into the
processor callback function.

	
add_logger(logger)[source]

	Adds a logger to this group.

	
disabled = None

	the disabled flag for all loggers in the group, unless
the loggers overrode the setting.

	
level = None

	the level of the group. This is reflected to the loggers
in the group unless they overrode the setting.

	
loggers = None

	a list of all loggers on the logger group. Use the
add_logger() and remove_logger() methods to add
or remove loggers from this list.

	
process_record(record)[source]

	Like Logger.process_record() but for all loggers in
the group. By default this calls into the processor
function is it’s not None.

	
processor = None

	an optional callback function that is executed to process
the log records of all loggers in the group.

	
remove_logger(logger)[source]

	Removes a logger from the group.

	
class logbook.base.LogRecord(channel, level, msg, args=None, kwargs=None, exc_info=None, extra=None, frame=None, dispatcher=None)[source]

	A LogRecord instance represents an event being logged.

LogRecord instances are created every time something is logged. They
contain all the information pertinent to the event being logged. The
main information passed in is in msg and args

	
args = None

	the positional arguments for the format string.

	
calling_frame[source]

	The frame in which the record has been created. This only
exists for as long the log record is not closed.

	
channel = None

	the name of the logger that created it or any other textual
channel description. This is a descriptive name and can be
used for filtering.

	
close()[source]

	Closes the log record. This will set the frame and calling
frame to None and frame-related information will no longer be
available unless it was pulled in first (pull_information()).
This makes a log record safe for pickling and will clean up
memory that might be still referenced by the frames.

	
dispatcher

	The dispatcher that created the log record. Might not exist because
a log record does not have to be created from a logger or other
dispatcher to be handled by logbook. If this is set, it will point to
an object that implements the RecordDispatcher
interface.

	
exc_info = None

	optional exception information. If set, this is a tuple in the
form (exc_type, exc_value, tb) as returned by
sys.exc_info() [http://docs.python.org/library/sys.html#sys.exc_info].

	
exception_message[source]

	The message of the exception.

	
exception_name[source]

	The name of the exception.

	
exception_shortname

	An abbreviated exception name (no import path)

	
extra = None

	optional extra information as dictionary. This is the place
where custom log processors can attach custom context sensitive
data.

	
filename[source]

	The filename of the module in which the record has been created.
Requires a frame or that pull_information() was called before.

	
formatted_exception[source]

	The formatted exception which caused this record to be created
in case there was any.

	
frame = None

	If available, optionally the interpreter frame that pulled the
heavy init. This usually points to somewhere in the dispatcher.
Might not be available for all calls and is removed when the log
record is closed.

	
classmethod from_dict(d)[source]

	Creates a log record from an exported dictionary. This also
supports JSON exported dictionaries.

	
func_name[source]

	The name of the function that triggered the log call if
available. Requires a frame or that pull_information()
was called before.

	
heavy_init()[source]

	Does the heavy initialization that could be expensive. This must
not be called from a higher stack level than when the log record was
created and the later the initialization happens, the more off the
date information will be for example.

This is internally used by the record dispatching system and usually
something not to worry about.

	
heavy_initialized = False

	a flag that is True if the log record is heavy initialized which
is not the case by default.

	
information_pulled = False

	a flag that is True when all the information was pulled from the
information that becomes unavailable on close.

	
keep_open = False

	can be overriden by a handler to not close the record. This could
lead to memory leaks so it should be used carefully.

	
kwargs = None

	the keyword arguments for the format string.

	
late = False

	a flag that is True when heavy initialization is no longer possible

	
level = None

	the level of the log record as integer.

	
level_name

	The level as unicode string

	
lineno[source]

	The line number of the file in which the record has been created.
Requires a frame or that pull_information() was called before.

	
message[source]

	The formatted message.

	
module[source]

	The name of the module that triggered the log call if
available. Requires a frame or that pull_information()
was called before.

	
msg = None

	The message of the log record as new-style format string.

	
process = None

	the PID of the current process

	
process_name[source]

	The name of the process in which the record has been created.

	
pull_information()[source]

	A helper function that pulls all frame-related information into
the object so that this information is available after the log
record was closed.

	
thread[source]

	The ident of the thread. This is evaluated late and means that
if the log record is passed to another thread, pull_information()
was called in the old thread.

	
thread_name[source]

	The name of the thread. This is evaluated late and means that
if the log record is passed to another thread, pull_information()
was called in the old thread.

	
time = None

	the time of the log record creation as datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]
object. This information is unavailable until the record was
heavy initialized.

	
to_dict(json_safe=False)[source]

	Exports the log record into a dictionary without the information
that cannot be safely serialized like interpreter frames and
tracebacks.

	
update_from_dict(d)[source]

	Like the from_dict() classmethod, but will update the
instance in place. Helpful for constructors.

	
class logbook.base.Flags(**flags)[source]

	Allows flags to be pushed on a flag stack. Currently two flags
are available:

	errors

	Can be set to override the current error behaviour. This value is
used when logging calls fail. The default behaviour is spitting
out the stacktrace to stderr but this can be overridden:

	'silent'
	fail silently

	'raise'
	raise a catchable exception

	'print'
	print the stacktrace to stderr (default)

	introspection

	Can be used to disable frame introspection. This can give a
speedup on production systems if you are using a JIT compiled
Python interpreter such as pypy. The default is True.

Note that the default setup of some of the handler (mail for
instance) includes frame dependent information which will
not be available when introspection is disabled.

Example usage:

with Flags(errors='silent'):
 ...

	
applicationbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the application.

	
static get_flag(flag, default=None)[source]

	Looks up the current value of a specific flag.

	
pop_application()

	Pops the context object from the stack.

	
pop_thread()

	Pops the context object from the stack.

	
push_application()

	Pushes the context object to the application stack.

	
push_thread()

	Pushes the context object to the thread stack.

	
threadbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the thread.

	
class logbook.base.Processor(callback=None)[source]

	Can be pushed to a stack to inject additional information into
a log record as necessary:

def inject_ip(record):
 record.extra['ip'] = '127.0.0.1'

with Processor(inject_ip):
 ...

	
applicationbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the application.

	
callback = None

	the callback that was passed to the constructor

	
pop_application()

	Pops the context object from the stack.

	
pop_thread()

	Pops the context object from the stack.

	
process(record)[source]

	Called with the log record that should be overridden. The default
implementation calls callback if it is not None.

	
push_application()

	Pushes the context object to the application stack.

	
push_thread()

	Pushes the context object to the thread stack.

	
threadbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the thread.

	
logbook.base.get_level_name(level)[source]

	Return the textual representation of logging level ‘level’.

	
logbook.base.lookup_level(level)[source]

	Return the integer representation of a logging level.

	
logbook.base.CRITICAL

	
logbook.base.ERROR

	
logbook.base.WARNING

	
logbook.base.INFO

	
logbook.base.DEBUG

	
logbook.base.NOTSET

	The log level constants

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Handlers

This documents the base handler interface as well as the provided core
handlers. There are additional handlers for special purposes in the
logbook.more, logbook.ticketing and logbook.queues
modules.

Base Interface

	
class logbook.handlers.Handler(level=0, filter=None, bubble=False)[source]

	Handler instances dispatch logging events to specific destinations.

The base handler class. Acts as a placeholder which defines the Handler
interface. Handlers can optionally use Formatter instances to format
records as desired. By default, no formatter is specified; in this case,
the ‘raw’ message as determined by record.message is logged.

To bind a handler you can use the push_application() and
push_thread() methods. This will push the handler on a stack of
handlers. To undo this, use the pop_application() and
pop_thread() methods:

handler = MyHandler()
handler.push_application()
all here goes to that handler
handler.pop_application()

By default messages send to that handler will not go to a handler on
an outer level on the stack, if handled. This can be changed by
setting bubbling to True. This setup for example would not have
any effect:

handler = NullHandler(bubble=False)
handler.push_application()

Whereas this setup disables all logging for the application:

handler = NullHandler()
handler.push_application()

There are also context managers to setup the handler for the duration
of a with-block:

with handler.applicationbound():
 ...

with handler.threadbound():
 ...

Because threadbound is a common operation, it is aliased to a with
on the handler itself:

with handler:
 ...

	
applicationbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the application.

	
blackhole = False

	a flag for this handler that can be set to True for handlers that
are consuming log records but are not actually displaying it. This
flag is set for the NullHandler for instance.

	
bubble = None

	the bubble flag of this handler

	
close()[source]

	Tidy up any resources used by the handler. This is automatically
called by the destructor of the class as well, but explicit calls are
encouraged. Make sure that multiple calls to close are possible.

	
emit(record)[source]

	Emit the specified logging record. This should take the
record and deliver it to whereever the handler sends formatted
log records.

	
emit_batch(records, reason)[source]

	Some handlers may internally queue up records and want to forward
them at once to another handler. For example the
FingersCrossedHandler internally buffers
records until a level threshold is reached in which case the buffer
is sent to this method and not emit() for each record.

The default behaviour is to call emit() for each record in
the buffer, but handlers can use this to optimize log handling. For
instance the mail handler will try to batch up items into one mail
and not to emit mails for each record in the buffer.

Note that unlike emit() there is no wrapper method like
handle() that does error handling. The reason is that this
is intended to be used by other handlers which are already protected
against internal breakage.

reason is a string that specifies the rason why emit_batch()
was called, and not emit(). The following are valid values:

	'buffer'

	Records were buffered for performance reasons or because the
records were sent to another process and buffering was the only
possible way. For most handlers this should be equivalent to
calling emit() for each record.

	'escalation'

	Escalation means that records were buffered in case the threshold
was exceeded. In this case, the last record in the iterable is the
record that triggered the call.

	'group'

	All the records in the iterable belong to the same logical
component and happened in the same process. For example there was
a long running computation and the handler is invoked with a bunch
of records that happened there. This is similar to the escalation
reason, just that the first one is the significant one, not the
last.

If a subclass overrides this and does not want to handle a specific
reason it must call into the superclass because more reasons might
appear in future releases.

Example implementation:

def emit_batch(self, records, reason):
 if reason not in ('escalation', 'group'):
 Handler.emit_batch(self, records, reason)
 ...

	
filter = None

	the filter to be used with this handler

	
format(record)[source]

	Formats a record with the given formatter. If no formatter
is set, the record message is returned. Generally speaking the
return value is most likely a unicode string, but nothing in
the handler interface requires a formatter to return a unicode
string.

The combination of a handler and formatter might have the
formatter return an XML element tree for example.

	
formatter = None

	the formatter to be used on records. This is a function
that is passed a log record as first argument and the
handler as second and returns something formatted
(usually a unicode string)

	
handle(record)[source]

	Emits the record and falls back. It tries to emit() the
record and if that fails, it will call into handle_error() with
the record and traceback. This function itself will always emit
when called, even if the logger level is higher than the record’s
level.

If this method returns False it signals to the calling function that
no recording took place in which case it will automatically bubble.
This should not be used to signal error situations. The default
implementation always returns True.

	
handle_error(record, exc_info)[source]

	Handle errors which occur during an emit() call. The behaviour of
this function depends on the current errors setting.

Check Flags for more information.

	
level = None

	the level for the handler. Defaults to NOTSET which
consumes all entries.

	
level_name

	The level as unicode string

	
pop_application()

	Pops the context object from the stack.

	
pop_thread()

	Pops the context object from the stack.

	
push_application()

	Pushes the context object to the application stack.

	
push_thread()

	Pushes the context object to the thread stack.

	
should_handle(record)[source]

	Returns True if this handler wants to handle the record. The
default implementation checks the level.

	
threadbound(_cls=<class 'logbook._fallback._StackBound'>)

	Can be used in combination with the with statement to
execute code while the object is bound to the thread.

	
class logbook.base.NestedSetup(objects=None)[source]

	A nested setup can be used to configure multiple handlers
and processors at once.

	
class logbook.handlers.StringFormatter(format_string)[source]

	Many handlers format the log entries to text format. This is done
by a callable that is passed a log record and returns an unicode
string. The default formatter for this is implemented as a class so
that it becomes possible to hook into every aspect of the formatting
process.

Core Handlers

	
class logbook.handlers.StreamHandler(stream, level=0, format_string=None, encoding=None, filter=None, bubble=False)[source]

	a handler class which writes logging records, appropriately formatted,
to a stream. note that this class does not close the stream, as sys.stdout
or sys.stderr may be used.

If a stream handler is used in a with statement directly it will
close() on exit to support this pattern:

with StreamHandler(my_stream):
 pass

Notes on the encoding

On Python 3, the encoding parameter is only used if a stream was
passed that was opened in binary mode.

	
close()[source]

	The default stream handler implementation is not to close
the wrapped stream but to flush it.

	
flush()[source]

	Flushes the inner stream.

	
format_and_encode(record)[source]

	Formats the record and encodes it to the stream encoding.

	
write(item)[source]

	Writes a bytestring to the stream.

	
class logbook.handlers.FileHandler(filename, mode='a', encoding=None, level=0, format_string=None, delay=False, filter=None, bubble=False)[source]

	A handler that does the task of opening and closing files for you.
By default the file is opened right away, but you can also delay
the open to the point where the first message is written.

This is useful when the handler is used with a
FingersCrossedHandler or something similar.

	
class logbook.handlers.MonitoringFileHandler(filename, mode='a', encoding='utf-8', level=0, format_string=None, delay=False, filter=None, bubble=False)[source]

	A file handler that will check if the file was moved while it was
open. This might happen on POSIX systems if an application like
logrotate moves the logfile over.

Because of different IO concepts on Windows, this handler will not
work on a windows system.

	
class logbook.handlers.StderrHandler(level=0, format_string=None, filter=None, bubble=False)[source]

	A handler that writes to what is currently at stderr. At the first
glace this appears to just be a StreamHandler with the stream
set to sys.stderr [http://docs.python.org/library/sys.html#sys.stderr] but there is a difference: if the handler is
created globally and sys.stderr [http://docs.python.org/library/sys.html#sys.stderr] changes later, this handler will
point to the current stderr, whereas a stream handler would still
point to the old one.

	
class logbook.handlers.RotatingFileHandler(filename, mode='a', encoding='utf-8', level=0, format_string=None, delay=False, max_size=1048576, backup_count=5, filter=None, bubble=False)[source]

	This handler rotates based on file size. Once the maximum size
is reached it will reopen the file and start with an empty file
again. The old file is moved into a backup copy (named like the
file, but with a .backupnumber appended to the file. So if
you are logging to mail the first backup copy is called
mail.1.)

The default number of backups is 5. Unlike a similar logger from
the logging package, the backup count is mandatory because just
reopening the file is dangerous as it deletes the log without
asking on rollover.

	
class logbook.handlers.TimedRotatingFileHandler(filename, mode='a', encoding='utf-8', level=0, format_string=None, date_format='%Y-%m-%d', backup_count=0, filter=None, bubble=False)[source]

	This handler rotates based on dates. It will name the file
after the filename you specify and the date_format pattern.

So for example if you configure your handler like this:

handler = TimedRotatingFileHandler('/var/log/foo.log',
 date_formnat='%Y-%m-%d')

The filenames for the logfiles will look like this:

/var/log/foo-2010-01-10.log
/var/log/foo-2010-01-11.log
...

By default it will keep all these files around, if you want to limit
them, you can specify a backup_count.

	
files_to_delete()[source]

	Returns a list with the files that have to be deleted when
a rollover occours.

	
class logbook.handlers.TestHandler(level=0, format_string=None, filter=None, bubble=False)[source]

	Like a stream handler but keeps the values in memory. This
logger provides some ways to test for the records in memory.

Example usage:

def my_test():
 with logbook.TestHandler() as handler:
 logger.warn('A warning')
 assert logger.has_warning('A warning')
 ...

	
close()[source]

	Close all records down when the handler is closed.

	
formatted_records

	Captures the formatted log records as unicode strings.

	
has_critical(*args, **kwargs)[source]

	True if a specific CRITICAL log record exists.

See Probe Log Records for more information.

	
has_criticals

	True if any CRITICAL records were found.

	
has_debug(*args, **kwargs)[source]

	True if a specific DEBUG log record exists.

See Probe Log Records for more information.

	
has_debugs

	True if any DEBUG records were found.

	
has_error(*args, **kwargs)[source]

	True if a specific ERROR log record exists.

See Probe Log Records for more information.

	
has_errors

	True if any ERROR records were found.

	
has_info(*args, **kwargs)[source]

	True if a specific INFO log record exists.

See Probe Log Records for more information.

	
has_infos

	True if any INFO records were found.

	
has_notice(*args, **kwargs)[source]

	True if a specific NOTICE log record exists.

See Probe Log Records for more information.

	
has_notices

	True if any NOTICE records were found.

	
has_warning(*args, **kwargs)[source]

	True if a specific WARNING log record exists.

See Probe Log Records for more information.

	
has_warnings

	True if any WARNING records were found.

	
records = None

	captures the LogRecords as instances

	
class logbook.handlers.MailHandler(from_addr, recipients, subject=None, server_addr=None, credentials=None, secure=None, record_limit=None, record_delta=None, level=0, format_string=None, related_format_string=None, filter=None, bubble=False)[source]

	A handler that sends error mails. The format string used by this
handler are the contents of the mail plus the headers. This is handy
if you want to use a custom subject or X- header:

handler = MailHandler(format_string=''' Subject: {record.level_name} on My Application

{record.message}
{record.extra[a_custom_injected_record]}
''')

This handler will always emit text-only mails for maximum portability and
best performance.

In the default setting it delivers all log records but it can be set up
to not send more than n mails for the same record each hour to not
overload an inbox and the network in case a message is triggered multiple
times a minute. The following example limits it to 60 mails an hour:

from datetime import timedelta
handler = MailHandler(record_limit=1,
 record_delta=timedelta(minutes=1))

The default timedelta is 60 seconds (one minute).

The mail handler is sending mails in a blocking manner. If you are not
using some centralized system for logging these messages (with the help
of ZeroMQ or others) and the logging system slows you down you can
wrap the handler in a logbook.queues.ThreadedWrapperHandler
that will then send the mails in a background thread.

Changed in version 0.3: The handler supports the batching system now.

	
close_connection(con)[source]

	Closes the connection that was returned by
get_connection().

	
collapse_mails(mail, related, reason)[source]

	When escaling or grouped mails are

	
deliver(msg, recipients)[source]

	Delivers the given message to a list of recpients.

	
format_related_record(record)[source]

	Used for format the records that led up to another record or
records that are related into strings. Used by the batch formatter.

	
generate_mail(record, suppressed=0)[source]

	Generates the final email (email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message])
with headers and date. suppressed is the number of mails
that were not send if the record_limit feature is active.

	
get_connection()[source]

	Returns an SMTP connection. By default it reconnects for
each sent mail.

	
get_recipients(record)[source]

	Returns the recipients for a record. By default the
recipients attribute is returned for all records.

	
max_record_cache = 512

	the maximum number of record hashes in the cache for the limiting
feature. Afterwards, record_cache_prune percent of the oldest
entries are removed

	
message_from_record(record, suppressed)[source]

	Creates a new message for a record as email message object
(email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message]). suppressed is the number
of mails not sent if the record_limit feature is active.

	
record_cache_prune = 0.333

	the number of items to prune on a cache overflow in percent.

	
class logbook.handlers.SyslogHandler(application_name=None, address=None, facility='user', socktype=2, level=0, format_string=None, filter=None, bubble=False)[source]

	A handler class which sends formatted logging records to a
syslog server. By default it will send to it via unix socket.

	
class logbook.handlers.NTEventLogHandler(application_name, log_type='Application', level=0, format_string=None, filter=None, bubble=False)[source]

	A handler that sends to the NT event log system.

	
unregister_logger()[source]

	Removes the application binding from the registry. If you call
this, the log viewer will no longer be able to provide any
information about the message.

	
class logbook.handlers.NullHandler(level=0, filter=None, bubble=False)[source]

	A handler that does nothing, meant to be inserted in a handler chain
with bubble=False to stop further processing.

	
class logbook.handlers.WrapperHandler(handler)[source]

	A class that can wrap another handler and redirect all calls to the
wrapped handler:

handler = WrapperHandler(other_handler)

Subclasses should override the _direct_attrs attribute as
necessary.

	
logbook.handlers.create_syshandler(application_name, level=0)[source]

	Creates the handler the operating system provides. On Unix systems
this creates a SyslogHandler, on Windows sytems it will
create a NTEventLogHandler.

Special Handlers

	
class logbook.handlers.FingersCrossedHandler(handler, action_level=5, buffer_size=0, pull_information=True, reset=False, filter=None, bubble=False)[source]

	This handler wraps another handler and will log everything in
memory until a certain level (action_level, defaults to ERROR)
is exceeded. When that happens the fingers crossed handler will
activate forever and log all buffered records as well as records
yet to come into another handled which was passed to the constructor.

Alternatively it’s also possible to pass a factory function to the
constructor instead of a handler. That factory is then called with
the triggering log entry and the finger crossed handler to create
a handler which is then cached.

The idea of this handler is to enable debugging of live systems. For
example it might happen that code works perfectly fine 99% of the time,
but then some exception happens. But the error that caused the
exception alone might not be the interesting bit, the interesting
information were the warnings that lead to the error.

Here a setup that enables this for a web application:

from logbook import FileHandler
from logbook import FingersCrossedHandler

def issue_logging():
 def factory(record, handler):
 return FileHandler('/var/log/app/issue-%s.log' % record.time)
 return FingersCrossedHandler(factory)

def application(environ, start_response):
 with issue_logging():
 return the_actual_wsgi_application(environ, start_response)

Whenever an error occours, a new file in /var/log/app is created
with all the logging calls that lead up to the error up to the point
where the with block is exited.

Please keep in mind that the FingersCrossedHandler
handler is a one-time handler. Once triggered, it will not reset. Because
of that you will have to re-create it whenever you bind it. In this case
the handler is created when it’s bound to the thread.

Due to how the handler is implemented, the filter, bubble and level
flags of the wrapped handler are ignored.

Changed in version 0.3.

The default behaviour is to buffer up records and then invoke another
handler when a severity theshold was reached with the buffer emitting.
This now enables this logger to be properly used with the
MailHandler. You will now only get one mail for
each bfufered record. However once the threshold was reached you would
still get a mail for each record which is why the reset flag was added.

When set to True, the handler will instantly reset to the untriggered
state and start buffering again:

handler = FingersCrossedHandler(MailHandler(...),
 buffer_size=10,
 reset=True)

New in version 0.3: The reset flag was added.

	
batch_emit_reason = 'escalation'

	the reason to be used for the batch emit. The default is
'escalation'.

New in version 0.3.

	
buffer_size = None

	the maximum number of entries in the buffer. If this is exhausted
the oldest entries will be discarded to make place for new ones

	
buffered_records = None

	the buffered records of the handler. Once the action is triggered
(triggered) this list will be None. This attribute can
be helpful for the handler factory function to select a proper
filename (for example time of first log record)

	
triggered

	This attribute is True when the action was triggered. From
this point onwards the finger crossed handler transparently
forwards all log records to the inner handler. If the handler resets
itself this will always be False.

	
class logbook.handlers.GroupHandler(handler, pull_information=True)[source]

	A handler that buffers all messages until it is popped again and then
forwards all messages to another handler. This is useful if you for
example have an application that does computations and only a result
mail is required. A group handler makes sure that only one mail is sent
and not multiple. Some other handles might support this as well, though
currently none of the builtins do.

Example:

with GroupHandler(MailHandler(...)):
 # everything here ends up in the mail

The GroupHandler is implemented as a WrapperHandler
thus forwarding all attributes of the wrapper handler.

Notice that this handler really only emit the records when the handler
is popped from the stack.

New in version 0.3.

Mixin Classes

	
class logbook.handlers.StringFormatterHandlerMixin(format_string)[source]

	A mixin for handlers that provides a default integration for the
StringFormatter class. This is used for all handlers
by default that log text to a destination.

	
default_format_string = u'[{record.time:%Y-%m-%d %H:%M}] {record.level_name}: {record.channel}: {record.message}'

	a class attribute for the default format string to use if the
constructor was invoked with None.

	
format_string

	the currently attached format string as new-style format
string.

	
formatter_class

	the class to be used for string formatting

alias of StringFormatter

	
class logbook.handlers.HashingHandlerMixin[source]

	Mixin class for handlers that are hashing records.

	
hash_record(record)[source]

	Returns a hash for a record to keep it apart from other records.
This is used for the record_limit feature. By default
The level, channel, filename and location are hashed.

Calls into hash_record_raw().

	
hash_record_raw(record)[source]

	Returns a hashlib object with the hash of the record.

	
class logbook.handlers.LimitingHandlerMixin(record_limit, record_delta)[source]

	Mixin class for handlers that want to limit emitting records.

In the default setting it delivers all log records but it can be set up
to not send more than n mails for the same record each hour to not
overload an inbox and the network in case a message is triggered multiple
times a minute. The following example limits it to 60 mails an hour:

from datetime import timedelta
handler = MailHandler(record_limit=1,
 record_delta=timedelta(minutes=1))

	
check_delivery(record)[source]

	Helper function to check if data should be delivered by this
handler. It returns a tuple in the form (suppression_count,
allow). The first one is the number of items that were not delivered
so far, the second is a boolean flag if a delivery should happen now.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Utilities

This documents general purpose utility functions available in Logbook.

	
logbook.debug(self, *args, **kwargs)

	Logs a LogRecord with the level set
to DEBUG.

	
logbook.info(self, *args, **kwargs)

	Logs a LogRecord with the level set
to INFO.

	
logbook.warn(self, *args, **kwargs)

	Logs a LogRecord with the level set
to WARNING. This function has an alias
named warning().

	
logbook.warning(self, *args, **kwargs)

	Alias for warn().

	
logbook.notice(self, *args, **kwargs)

	Logs a LogRecord with the level set
to NOTICE.

	
logbook.error(self, *args, **kwargs)

	Logs a LogRecord with the level set
to ERROR.

	
logbook.exception(self, *args, **kwargs)

	Works exactly like error() just that the message
is optional and exception information is recorded.

	
logbook.catch_exceptions(self, *args, **kwargs)

	A context manager that catches exceptions and calls
exception() for exceptions caught that way. Example:

with logger.catch_exceptions():
 execute_code_that_might_fail()

	
logbook.critical(self, *args, **kwargs)

	Logs a LogRecord with the level set
to CRITICAL.

	
logbook.log(self, level, *args, **kwargs)

	Logs a LogRecord with the level set
to the level parameter. Because custom levels are not
supported by logbook, this method is mainly used to avoid
the use of reflection (e.g.: getattr() [http://docs.python.org/library/functions.html#getattr]) for programmatic
logging.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Queue Support

The queue support module makes it possible to add log records to a queue
system. This is useful for distributed setups where you want multiple
processes to log to the same backend. Currently supported are ZeroMQ as
well as the multiprocessing [http://docs.python.org/library/multiprocessing.html#module-multiprocessing] Queue [http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue] class.

ZeroMQ

	
class logbook.queues.ZeroMQHandler(uri=None, level=0, filter=None, bubble=False, context=None)[source]

	A handler that acts as a ZeroMQ publisher, which publishes each record
as json dump. Requires the pyzmq library.

The queue will be filled with JSON exported log records. To receive such
log records from a queue you can use the ZeroMQSubscriber.

Example setup:

handler = ZeroMQHandler('tcp://127.0.0.1:5000')

	
context = None

	the zero mq context

	
export_record(record)[source]

	Exports the record into a dictionary ready for JSON dumping.

	
socket = None

	the zero mq socket.

	
class logbook.queues.ZeroMQSubscriber(uri=None, context=None)[source]

	A helper that acts as ZeroMQ subscriber and will dispatch received
log records to the active handler setup. There are multiple ways to
use this class.

It can be used to receive log records from a queue:

subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
record = subscriber.recv()

But it can also be used to receive and dispatch these in one go:

with target_handler:
 subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
 subscriber.dispatch_forever()

This will take all the log records from that queue and dispatch them
over to target_handler. If you want you can also do that in the
background:

subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
controller = subscriber.dispatch_in_background(target_handler)

The controller returned can be used to shut down the background
thread:

controller.stop()

	
close()[source]

	Closes the zero mq socket.

	
context = None

	the zero mq context

	
dispatch_forever()

	Starts a loop that dispatches log records forever.

	
dispatch_in_background(setup=None)

	Starts a new daemonized thread that dispatches in the background.
An optional handler setup can be provided that pushed to the new
thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down
the background thread. The background thread will already be
running when this function returns.

	
dispatch_once(timeout=None)

	Receives one record from the socket, loads it and dispatches it. Returns
True if something was dispatched or False if it timed out.

	
recv(timeout=None)[source]

	Receives a single record from the socket. Timeout of 0 means nonblocking,
None means blocking and otherwise it’s a timeout in seconds after which
the function just returns with None.

	
socket = None

	the zero mq socket.

MultiProcessing

	
class logbook.queues.MultiProcessingHandler(queue, level=0, filter=None, bubble=False)[source]

	Implements a handler that dispatches over a queue to a different
process. It is connected to a subscriber with a
multiprocessing.Queue [http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue]:

from multiprocessing import Queue
from logbook.queues import MultiProcessingHandler
queue = Queue(-1)
handler = MultiProcessingHandler(queue)

	
class logbook.queues.MultiProcessingSubscriber(queue=None)[source]

	Receives log records from the given multiprocessing queue and
dispatches them to the active handler setup. Make sure to use the same
queue for both handler and subscriber. Idaelly the queue is set
up with maximum size (-1):

from multiprocessing import Queue
queue = Queue(-1)

It can be used to receive log records from a queue:

subscriber = MultiProcessingSubscriber(queue)
record = subscriber.recv()

But it can also be used to receive and dispatch these in one go:

with target_handler:
 subscriber = MultiProcessingSubscriber(queue)
 subscriber.dispatch_forever()

This will take all the log records from that queue and dispatch them
over to target_handler. If you want you can also do that in the
background:

subscriber = MultiProcessingSubscriber(queue)
controller = subscriber.dispatch_in_background(target_handler)

The controller returned can be used to shut down the background
thread:

controller.stop()

If no queue is provided the subscriber will create one. This one can the
be used by handlers:

subscriber = MultiProcessingSubscriber()
handler = MultiProcessingHandler(subscriber.queue)

	
dispatch_forever()

	Starts a loop that dispatches log records forever.

	
dispatch_in_background(setup=None)

	Starts a new daemonized thread that dispatches in the background.
An optional handler setup can be provided that pushed to the new
thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down
the background thread. The background thread will already be
running when this function returns.

	
dispatch_once(timeout=None)

	Receives one record from the socket, loads it and dispatches it. Returns
True if something was dispatched or False if it timed out.

Other

	
class logbook.queues.ThreadedWrapperHandler(handler)[source]

	This handled uses a single background thread to dispatch log records
to a specific other handler using an internal queue. The idea is that if
you are using a handler that requires some time to hand off the log records
(such as the mail handler) and would block your request, you can let
Logbook do that in a background thread.

The threaded wrapper handler will automatically adopt the methods and
properties of the wrapped handler. All the values will be reflected:

>>> twh = ThreadedWrapperHandler(TestHandler())
>>> from logbook import WARNING
>>> twh.level_name = 'WARNING'
>>> twh.handler.level_name
'WARNING'

	
class logbook.queues.SubscriberGroup(subscribers=None, queue_limit=10)[source]

	This is a subscriber which represents a group of subscribers.

This is helpful if you are writing a server-like application which has
“slaves”. This way a user is easily able to view every log record which
happened somewhere in the entire system without having to check every
single slave:

subscribers = SubscriberGroup([
 MultiProcessingSubscriber(queue),
 ZeroMQSubscriber('tcp://localhost:5000')
])
with target_handler:
 subscribers.dispatch_forever()

	
add(subscriber)[source]

	Adds the given subscriber to the group.

	
stop()[source]

	Stops the group from internally recieving any more messages, once the
internal queue is exhausted recv() will always return None.

Base Interface

	
class logbook.queues.SubscriberBase[source]

	Baseclass for all subscribers.

	
dispatch_forever()[source]

	Starts a loop that dispatches log records forever.

	
dispatch_in_background(setup=None)[source]

	Starts a new daemonized thread that dispatches in the background.
An optional handler setup can be provided that pushed to the new
thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down
the background thread. The background thread will already be
running when this function returns.

	
dispatch_once(timeout=None)[source]

	Receives one record from the socket, loads it and dispatches it. Returns
True if something was dispatched or False if it timed out.

	
recv(timeout=None)[source]

	Receives a single record from the socket. Timeout of 0 means nonblocking,
None means blocking and otherwise it’s a timeout in seconds after which
the function just returns with None.

Subclasses have to override this.

	
class logbook.queues.ThreadController(subscriber, setup=None)[source]

	A helper class used by queue subscribers to control the background
thread. This is usually created and started in one go by
dispatch_in_background() or
a comparable function.

	
start()[source]

	Starts the task thread.

	
stop()[source]

	Stops the task thread.

	
class logbook.queues.TWHThreadController(wrapper_handler)[source]

	A very basic thread controller that pulls things in from a
queue and sends it to a handler. Both queue and handler are
taken from the passed ThreadedWrapperHandler.

	
start()[source]

	Starts the task thread.

	
stop()[source]

	Stops the task thread.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Ticketing Support

This documents the support classes for ticketing. With ticketing handlers
log records are categorized by location and for every emitted log record a
count is added. That way you know how often certain messages are
triggered, at what times and when the last occurrence was.

	
class logbook.ticketing.TicketingBaseHandler(hash_salt, level=0, filter=None, bubble=False)[source]

	Baseclass for ticketing handlers. This can be used to interface
ticketing systems that do not necessarily provide an interface that
would be compatible with the BackendBase interface.

	
hash_record_raw(record)[source]

	Returns the unique hash of a record.

	
class logbook.ticketing.TicketingHandler(uri, app_id='generic', level=0, filter=None, bubble=False, hash_salt=None, backend=None, **db_options)[source]

	A handler that writes log records into a remote database. This
database can be connected to from different dispatchers which makes
this a nice setup for web applications:

from logbook.ticketing import TicketingHandler
handler = TicketingHandler('sqlite:////tmp/myapp-logs.db')

	Parameters:	
	uri – a backend specific string or object to decide where to log to.

	app_id – a string with an optional ID for an application. Can be
used to keep multiple application setups apart when logging
into the same database.

	hash_salt – an optional salt (binary string) for the hashes.

	backend – A backend class that implements the proper database handling.
Backends available are: SQLAlchemyBackend,
MongoDBBackend.

	
default_backend

	The default backend that is being used when no backend is specified.
Unless overriden by a subclass this will be the
SQLAlchemyBackend.

alias of SQLAlchemyBackend

	
emit(record)[source]

	Emits a single record and writes it to the database.

	
process_record(record, hash)[source]

	Subclasses can override this to tamper with the data dict that
is sent to the database as JSON.

	
record_ticket(record, data, hash)[source]

	Record either a new ticket or a new occurrence for a
ticket based on the hash.

	
class logbook.ticketing.BackendBase(**options)[source]

	Provides an abstract interface to various databases.

	
count_tickets()[source]

	Returns the number of tickets.

	
delete_ticket(ticket_id)[source]

	Deletes a ticket from the database.

	
get_occurrences(ticket, order_by='-time', limit=50, offset=0)[source]

	Selects occurrences from the database for a ticket.

	
get_ticket(ticket_id)[source]

	Return a single ticket with all occurrences.

	
get_tickets(order_by='-last_occurrence_time', limit=50, offset=0)[source]

	Selects tickets from the database.

	
record_ticket(record, data, hash, app_id)[source]

	Records a log record as ticket.

	
setup_backend()[source]

	Setup the database backend.

	
solve_ticket(ticket_id)[source]

	Marks a ticket as solved.

	
class logbook.ticketing.SQLAlchemyBackend(**options)[source]

	Implements a backend that is writing into a database SQLAlchemy can
interface.

This backend takes some additional options:

	table_prefix

	an optional table prefix for all tables created by
the logbook ticketing handler.

	metadata

	an optional SQLAlchemy metadata object for the table creation.

	autocreate_tables

	can be set to False to disable the automatic
creation of the logbook tables.

	
class logbook.ticketing.MongoDBBackend(**options)[source]

	Implements a backend that writes into a MongoDB database.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

The More Module

The more module implements special handlers and other things that are
beyond the scope of Logbook itself or depend on external libraries.
Additionally there are some handlers in logbook.ticketing,
logbook.queues and logbook.notifiers.

Tagged Logging

	
class logbook.more.TaggingLogger(name=None, tags=None)[source]

	A logger that attaches a tag to each record. This is an alternative
record dispatcher that does not use levels but tags to keep log
records apart. It is constructed with a descriptive name and at least
one tag. The tags are up for you to define:

logger = TaggingLogger('My Logger', ['info', 'warning'])

For each tag defined that way, a method appears on the logger with
that name:

logger.info('This is a info message')

To dispatch to different handlers based on tags you can use the
TaggingHandler.

The tags themselves are stored as list named 'tags' in the
extra dictionary.

	
call_handlers(record)

	Pass a record to all relevant handlers in the following
order:

	per-dispatcher handlers are handled first

	afterwards all the current context handlers in the
order they were pushed

Before the first handler is invoked, the record is processed
(process_record()).

	
handle(record)

	Call the handlers for the specified record. This is
invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled
and if the record level is greater than the level of the
record dispatcher. In that case it will call the handlers
(call_handlers()).

	
make_record_and_handle(level, msg, args, kwargs, exc_info, extra)

	Creates a record from some given arguments and heads it
over to the handling system.

	
process_record(record)

	Processes the record with all context specific processors. This
can be overriden to also inject additional information as necessary
that can be provided by this record dispatcher.

	
class logbook.more.TaggingHandler(handlers, filter=None, bubble=False)[source]

	A handler that logs for tags and dispatches based on those.

Example:

import logbook
from logbook.more import TaggingHandler

handler = TaggingHandler(dict(
 info=OneHandler(),
 warning=AnotherHandler()
))

Special Handlers

	
class logbook.more.TwitterHandler(consumer_key, consumer_secret, username, password, level=0, format_string=None, filter=None, bubble=False)[source]

	A handler that logs to twitter. Requires that you sign up an
application on twitter and request xauth support. Furthermore the
oauth2 library has to be installed.

If you don’t want to register your own application and request xauth
credentials, there are a couple of leaked consumer key and secret
pairs from application explicitly whitelisted at Twitter
(leaked secrets [http://bit.ly/leaked-secrets]).

	
formatter_class

	alias of TwitterFormatter

	
get_oauth_token()[source]

	Returns the oauth access token.

	
make_client()[source]

	Creates a new oauth client auth a new access token.

	
tweet(status)[source]

	Tweets a given status. Status must not exceed 140 chars.

	
class logbook.more.ExternalApplicationHandler(arguments, stdin_format=None, encoding='utf-8', level=0, filter=None, bubble=False)[source]

	This handler invokes an external application to send parts of
the log record to. The constructor takes a list of arguments that
are passed to another application where each of the arguments is a
format string, and optionally a format string for data that is
passed to stdin.

For example it can be used to invoke the say command on OS X:

from logbook.more import ExternalApplicationHandler
say_handler = ExternalApplicationHandler(['say', '{record.message}'])

Note that the above example is blocking until say finished, so it’s
recommended to combine this handler with the
logbook.ThreadedWrapperHandler to move the execution into
a background thread.

New in version 0.3.

	
class logbook.more.ExceptionHandler(exc_type, level=0, format_string=None, filter=None, bubble=False)[source]

	An exception handler which raises exceptions of the given exc_type.
This is especially useful if you set a specific error level e.g. to treat
warnings as exceptions:

from logbook.more import ExceptionHandler

class ApplicationWarning(Exception):
 pass

exc_handler = ExceptionHandler(ApplicationWarning, level='WARNING')

New in version 0.3.

Colorized Handlers

New in version 0.3.

	
class logbook.more.ColorizedStderrHandler(level=0, format_string=None, filter=None, bubble=False)[source]

	A colorizing stream handler that writes to stderr. It will only
colorize if a terminal was detected. Note that this handler does
not colorize on Windows systems.

New in version 0.3.

	
class logbook.more.ColorizingStreamHandlerMixin[source]

	A mixin class that does colorizing.

New in version 0.3.

	
get_color(record)[source]

	Returns the color for this record.

	
should_colorize(record)[source]

	Returns True if colorizing should be applied to this
record. The default implementation returns True if the
stream is a tty and we are not executing on windows.

Other

	
class logbook.more.JinjaFormatter(template)[source]

	A formatter object that makes it easy to format using a Jinja 2
template instead of a format string.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

The Notifiers Module

The notifiers module implements special handlers for various platforms
that depend on external libraries.
The more module implements special handlers and other things that are
beyond the scope of Logbook itself or depend on external libraries.

	
logbook.notifiers.create_notification_handler(application_name=None, level=0, icon=None)[source]

	Creates a handler perfectly fit the current platform. On Linux
systems this creates a LibNotifyHandler, on OS X systems it
will create a GrowlHandler.

OSX Specific Handlers

	
class logbook.notifiers.GrowlHandler(application_name=None, icon=None, host=None, password=None, record_limit=None, record_delta=None, level=0, filter=None, bubble=False)[source]

	A handler that dispatches to Growl. Requires that either growl-py or
py-Growl are installed.

	
get_priority(record)[source]

	Returns the priority flag for Growl. Errors and criticals are
get highest priority (2), warnings get higher priority (1) and the
rest gets 0. Growl allows values between -2 and 2.

	
is_sticky(record)[source]

	Returns True if the sticky flag should be set for this record.
The default implementation marks errors and criticals sticky.

Linux Specific Handlers

	
class logbook.notifiers.LibNotifyHandler(application_name=None, icon=None, no_init=False, record_limit=None, record_delta=None, level=0, filter=None, bubble=False)[source]

	A handler that dispatches to libnotify. Requires pynotify installed.
If no_init is set to True the initialization of libnotify is skipped.

	
get_expires(record)[source]

	Returns either EXPIRES_DEFAULT or EXPIRES_NEVER for this record.
The default implementation marks errors and criticals as EXPIRES_NEVER.

	
get_urgency(record)[source]

	Returns the urgency flag for pynotify. Errors and criticals are
get highest urgency (CRITICAL), warnings get higher priority (NORMAL)
and the rest gets LOW.

	
set_notifier_icon(notifier, icon)[source]

	Used to attach an icon on a notifier object.

Other Services

	
class logbook.notifiers.BoxcarHandler(email, password, record_limit=None, record_delta=None, level=0, filter=None, bubble=False)[source]

	Sends notifications to boxcar.io. Can be forwarded to your iPhone or
other compatible device.

	
get_screen_name(record)[source]

	Returns the value of the screen name field.

	
class logbook.notifiers.NotifoHandler(application_name=None, username=None, secret=None, record_limit=None, record_delta=None, level=0, filter=None, bubble=False, hide_level=False)[source]

	Sends notifications to notifo.com. Can be forwarded to your Desktop,
iPhone, or other compatible device.

Base Interface

	
class logbook.notifiers.NotificationBaseHandler(application_name=None, record_limit=None, record_delta=None, level=0, filter=None, bubble=False)[source]

	Baseclass for notification handlers.

	
make_text(record)[source]

	Called to get the text of the record.

	
make_title(record)[source]

	Called to get the title from the record.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Compatibility

This documents compatibility support with existing systems such as
logging [http://docs.python.org/library/logging.html#module-logging] and warnings [http://docs.python.org/library/warnings.html#module-warnings].

Logging Compatibility

	
logbook.compat.redirect_logging()[source]

	Permanently redirects logging to the stdlib. This also
removes all otherwise registered handlers on root logger of
the logging system but leaves the other loggers untouched.

	
logbook.compat.redirected_logging()[source]

	Temporarily redirects logging for all threads and reverts
it later to the old handlers. Mainly used by the internal
unittests:

from logbook.compat import redirected_logging
with redirected_logging():
 ...

	
class logbook.compat.RedirectLoggingHandler[source]

	A handler for the stdlib’s logging system that redirects
transparently to logbook. This is used by the
redirect_logging() and redirected_logging()
functions.

If you want to customize the redirecting you can subclass it.

	
convert_level(level)[source]

	Converts a logging level into a logbook level.

	
convert_record(old_record)[source]

	Converts an old logging record into a logbook log record.

	
convert_time(timestamp)[source]

	Converts the UNIX timestamp of the old record into a
datetime object as used by logbook.

	
find_caller(old_record)[source]

	Tries to find the caller that issued the call.

	
find_extra(old_record)[source]

	Tries to find custom data from the old logging record. The
return value is a dictionary that is merged with the log record
extra dictionaries.

	
class logbook.compat.LoggingHandler(logger=None, level=0, filter=None, bubble=False)[source]

	Does the opposite of the RedirectLoggingHandler, it sends
messages from logbook to logging. Because of that, it’s a very bad
idea to configure both.

This handler is for logbook and will pass stuff over to a logger
from the standard library.

Example usage:

from logbook.compat import LoggingHandler, warn
with LoggingHandler():
 warn('This goes to logging')

	
convert_level(level)[source]

	Converts a logbook level into a logging level.

	
convert_record(old_record)[source]

	Converts a record from logbook to logging.

	
convert_time(dt)[source]

	Converts a datetime object into a timestamp.

	
get_logger(record)[source]

	Returns the logger to use for this record. This implementation
always return logger.

Warnings Compatibility

	
logbook.compat.redirect_warnings()[source]

	Like redirected_warnings() but will redirect all warnings
to the shutdown of the interpreter:

from logbook.compat import redirect_warnings
redirect_warnings()

	
logbook.compat.redirected_warnings()[source]

	A context manager that copies and restores the warnings filter upon
exiting the context, and logs warnings using the logbook system.

The channel attribute of the log record will be
the import name of the warning.

Example usage:

from logbook.compat import redirected_warnings
from warnings import warn

with redirected_warnings():
 warn(DeprecationWarning('logging should be deprecated'))

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

 	API Documentation

Internal API

This documents the internal API that might be useful for more advanced
setups or custom handlers.

	
logbook.base.dispatch_record(record)[source]

	Passes a record on to the handlers on the stack. This is useful when
log records are created programmatically and already have all the
information attached and should be dispatched independent of a logger.

	
class logbook.base.StackedObject[source]

	Baseclass for all objects that provide stack manipulation
operations.

	
applicationbound(_cls=<class 'logbook._fallback._StackBound'>)[source]

	Can be used in combination with the with statement to
execute code while the object is bound to the application.

	
pop_application()[source]

	Pops the stacked object from the application stack.

	
pop_thread()[source]

	Pops the stacked object from the thread stack.

	
push_application()[source]

	Pushes the stacked object to the application stack.

	
push_thread()[source]

	Pushes the stacked object to the thread stack.

	
threadbound(_cls=<class 'logbook._fallback._StackBound'>)[source]

	Can be used in combination with the with statement to
execute code while the object is bound to the thread.

	
class logbook.base.RecordDispatcher(name=None, level=0)[source]

	A record dispatcher is the internal base class that implements
the logic used by the Logger.

	
call_handlers(record)[source]

	Pass a record to all relevant handlers in the following
order:

	per-dispatcher handlers are handled first

	afterwards all the current context handlers in the
order they were pushed

Before the first handler is invoked, the record is processed
(process_record()).

	
group = None

	optionally the name of the group this logger belongs to

	
handle(record)[source]

	Call the handlers for the specified record. This is
invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled
and if the record level is greater than the level of the
record dispatcher. In that case it will call the handlers
(call_handlers()).

	
handlers = None

	list of handlers specific for this record dispatcher

	
level

	the level of the record dispatcher as integer

	
make_record_and_handle(level, msg, args, kwargs, exc_info, extra)[source]

	Creates a record from some given arguments and heads it
over to the handling system.

	
name = None

	the name of the record dispatcher

	
process_record(record)[source]

	Processes the record with all context specific processors. This
can be overriden to also inject additional information as necessary
that can be provided by this record dispatcher.

	
suppress_dispatcher = False

	If this is set to True the dispatcher information will be suppressed
for log records emitted from this logger.

	
class logbook.base.LoggerMixin[source]

	This mixin class defines and implements the “usual” logger
interface (i.e. the descriptive logging functions).

Classes using this mixin have to implement a handle() method which
takes a LogRecord and passes it along.

	
catch_exceptions(*args, **kwargs)[source]

	A context manager that catches exceptions and calls
exception() for exceptions caught that way. Example:

with logger.catch_exceptions():
 execute_code_that_might_fail()

	
critical(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to CRITICAL.

	
debug(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to DEBUG.

	
error(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to ERROR.

	
exception(*args, **kwargs)[source]

	Works exactly like error() just that the message
is optional and exception information is recorded.

	
info(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to INFO.

	
level_name

	The name of the minimium logging level required for records to be
created.

	
log(level, *args, **kwargs)[source]

	Logs a LogRecord with the level set
to the level parameter. Because custom levels are not
supported by logbook, this method is mainly used to avoid
the use of reflection (e.g.: getattr() [http://docs.python.org/library/functions.html#getattr]) for programmatic
logging.

	
notice(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to NOTICE.

	
warn(*args, **kwargs)[source]

	Logs a LogRecord with the level set
to WARNING. This function has an alias
named warning().

	
warning(*args, **kwargs)[source]

	Alias for warn().

	
class logbook.handlers.RotatingFileHandlerBase(*args, **kwargs)[source]

	Baseclass for rotating file handlers.

Changed in version 0.3: This class was deprecated because the interface is not flexible
enough to implement proper file rotations. The former builtin
subclasses no longer use this baseclass.

	
perform_rollover()[source]

	Called if should_rollover() returns True and has
to perform the actual rollover.

	
should_rollover(record, formatted_record)[source]

	Called with the log record and the return value of the
format_and_encode() method. The method has then to
return True if a rollover should happen or False
otherwise.

Changed in version 0.3: Previously this method was called with the number of bytes
returned by format_and_encode()

	
class logbook.handlers.StringFormatterHandlerMixin(format_string)[source]

	A mixin for handlers that provides a default integration for the
StringFormatter class. This is used for all handlers
by default that log text to a destination.

	
default_format_string = u'[{record.time:%Y-%m-%d %H:%M}] {record.level_name}: {record.channel}: {record.message}'

	a class attribute for the default format string to use if the
constructor was invoked with None.

	
format_string

	the currently attached format string as new-style format
string.

	
formatter_class

	the class to be used for string formatting

alias of StringFormatter

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

The Design Explained

This part of the documentation explains the design of Logbook in detail.
This is not strictly necessary to make use of Logbook but might be helpful
when writing custom handlers for Logbook or when using it in a more
complex environment.

Dispatchers and Channels

Logbook does not use traditional loggers, instead a logger is internally
named as RecordDispatcher. While a logger also has
methods to create new log records, the base class for all record
dispatchers itself only has ways to dispatch LogRecords
to the handlers. A log record itself might have an attribute that points
to the dispatcher that was responsible for dispatching, but it does not
have to be.

If a log record was created from the builtin Logger it
will have the channel set to the name of the logger. But that itself is
no requirement. The only requirement for the channel is that it’s a
string with some human readable origin information. It could be
'Database' if the database issued the log record, it could be
'Process-4223' if the process with the pid 4223 issued it etc.

For example if you are logging from the logbook.log() function they
will have a cannel set, but no dispatcher:

>>> from logbook import TestHandler, warn
>>> handler = TestHandler()
>>> handler.push_application()
>>> warn('This is a warning')
>>> handler.records[0].channel
'Generic'
>>> handler.records[0].dispatcher is None
True

If you are logging from a custom logger, the channel attribute points to
the logger for as long this logger class is not garbage collected:

>>> from logbook import Logger, TestHandler
>>> logger = Logger('Console')
>>> handler = TestHandler()
>>> handler.push_application()
>>> logger.warn('A warning')
>>> handler.records[0].dispatcher is logger
True

You don’t need a record dispatcher to dispatch a log record though. The
default dispatching can be triggered from a function
dispatch_record():

>>> from logbook import dispatch_record, LogRecord, INFO
>>> record = LogRecord('My channel', INFO, 'Hello World!')
>>> dispatch_record(record)
[2010-09-04 15:56] INFO: My channel: Hello World!

It is pretty common for log records to be created without a dispatcher.
Here some common use cases for log records without a dispatcher:

	log records that were redirected from a different logging system
such as the standard library’s logging [http://docs.python.org/library/logging.html#module-logging] module or the
warnings [http://docs.python.org/library/warnings.html#module-warnings] module.

	log records that came from different processes and do not have a
dispatcher equivalent in the current process.

	log records that came from over the network.

The Log Record Container

The LogRecord class is a simple container that
holds all the information necessary for a log record. Usually they are
created from a Logger or one of the default log
functions (logbook.warn() etc.) and immediately dispatched to the
handlers. The logger will apply some additional knowledge to figure out
where the record was created from and if a traceback information should be
attached.

Normally if log records are dispatched they will be closed immediately
after all handlers had their chance to write it down. On closing, the
interpreter frame and traceback object will be removed from the log record
to break up circular dependencies.

Sometimes however it might be necessary to keep log records around for a
longer time. Logbook provides three different ways to accomplish that:

	Handlers can set the keep_open attribute of
a log record to True so that the record dispatcher will not close
the object. This is for example used by the
TestHandler so that unittests can still access
interpreter frames and traceback objects if necessary.

	Because some information on the log records depends on the interpreter
frame (such as the location of the log call) it is possible to pull
that related information directly into the log record so that it can
safely be closed without losing that information (see
pull_information()).

	Last but not least, log records can be converted to dictionaries and
recreated from these. It is also possible to make these dictionaries
safe for JSON export which is used by the
TicketingHandler to store information in a
database or the MultiProcessingHandler to send
information between processes.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Logbook 0.4

Design Principles

Logbook is a logging library that breaks many expectations people have in
logging libraries to support paradigms we think are more suitable for
modern applications than the traditional Java inspired logging system that
can also be found in the Python standard library and many more programming
languages.

This section of the documentation should help you understand the design of
Logbook and why it was implemented like this.

No Logger Registry

Logbook is unique in that it has the concept of logging channels but that
it does not keep a global registry of them. In the standard library’s
logging module a logger is attached to a tree of loggers that are stored
in the logging module itself as global state.

In logbook a logger is just an opaque object that might or might not have
a name and attached information such as log level or customizations, but
the lifetime and availability of that object is controlled by the person
creating that logger.

The registry is necessary for the logging library to give the user the
ability to configure these loggers.

Logbook has a completely different concept of dispatching from loggers to
the actual handlers which removes the requirement and usefulness of such a
registry. The advantage of the logbook system is that it’s a cheap
operation to create a logger and that a logger can easily be garbage
collected to remove all traces of it.

Instead Logbook moves the burden of delivering a log record from the log
channel’s attached log to an independent entity that looks at the context
of the execution to figure out where to deliver it.

Context Sensitive Handler Stack

Python has two builtin ways to express implicit context: processes and
threads. What this means is that if you have a function that is passed no
arguments at all, you can figure out what thread called the function and
what process you are sitting in. Logbook supports this context
information and lets you bind a handler (or more!) for such a context.

This is how this works: there are two stacks available at all times in
Logbook. The first stack is the process wide stack. It is manipulated
with Handler.push_application and
Handler.pop_application (and of course the context manager
Handler.applicationbound). Then there is a second stack which is
per thread. The manipulation of that stack happens with
Handler.push_thread, Handler.pop_thread and the
Handler.threadbound contextmanager.

Let’s take a WSGI web application as first example. When a request comes
in your WSGI server will most likely do one of the following two things:
either spawn a new Python process (or reuse a process in a pool), or
create a thread (or again, reuse something that already exists). Either
way, we can now say that the context of process id and thread id is our
playground. For this context we can define a log handler that is active
in this context only for a certain time. In pseudocode this would look
like this:

def my_application(environ, start_response):
 my_handler = FileHandler(...)
 my_handler.push_thread()
 try:
 # whatever happens here in terms of logging is handled
 # by the `my_handler` handler.
 ...
 finally:
 my_handler.pop_thread()

Because this is a lot to type, you can also use the with statement to do
the very same:

def my_application(environ, start_response):
 with FileHandler(...).threadbound() as my_handler:
 # whatever happens here in terms of logging is handled
 # by the `my_handler` handler.
 ...

Additionally there is another place where you can put handlers: directly
onto a logging channel (for example on a Logger).

This stack system might seem like overkill for a traditional system, but
it allows complete decoupling from the log handling system and other
systems that might log messages.

Let’s take a GUI application rather than a web application. You have an
application that starts up, shuts down and at any point in between might
fail or log messages. The typical default behaviour here would be to log
into a logfile. Fair enough, that’s how these applications work.

But what’s the point in logging if not even a single warning happened?
The traditional solution with the logging library from Python is to set
the level high (like ERROR or WARNING) and log into a file. When
things break, you have a look at the file and hope it contains enough
information.

When you are in full control of the context of execution with a stack based
system like Logbook has, there is a lot more you can do.

For example you could immediately after your application boots up
instanciate a FingersCrossedHandler. This handler
buffers all log records in memory and does not emit them at all. What’s
the point? That handler activates when a certain threshold is reached.
For example, when the first warning occurs you can write the buffered
messages as well as the warning that just happened into a logfile and
continue logging from that point. Because there is no point in logging
when you will never look at that file anyways.

But that alone is not the killer feature of a stack. In a GUI application
there is the point where we are still initializing the windowing system.
So a file is the best place to log messages. But once we have the GUI
initialized, it would be very helpful to show error messages to a user in
a console window or a dialog. So what we can do is to initialize at that
point a new handler that logs into a dialog.

When then a long running tasks in the GUI starts we can move that into a
separate thread and intercept all the log calls for that thread into a
separate window until the task succeeded.

Here such a setup in pseudocode:

from logbook import FileHandler, WARNING
from logbook import FingersCrossedHandler

def main():
 # first we set up a handler that logs everything (including debug
 # messages, but only starts doing that when a warning happens
 default_handler = FingersCrossedHandler(FileHandler(filename,
 delay=True),
 WARNING)
 # this handler is now activated as the default handler for the
 # whole process. We do not bubble up to the default handler
 # that logs to stderr.
 with default_handler.applicationbound(bubble=False):
 # now we initialize the GUI of the application
 initialize_gui()
 # at that point we can hook our own logger in that intercepts
 # errors and displays them in a log window
 with gui.log_handler.applicationbound():
 # run the gui mainloop
 gui.mainloop()

This stack can also be used to inject additional information automatically
into log records. This is also used to replace the need for custom log
levels.

No Custom Log Levels

This change over logging was controversial, even under the two original
core developers. There clearly are use cases for custom log levels, but
there is an inherent problem with then: they require a registry. If you
want custom log levels, you will have to register them somewhere or parts
of the system will not know about them. Now we just spent a lot of time
ripping out the registry with a stack based approach to solve delivery
problems, why introduce a global state again just for log levels?

Instead we looked at the cases where custom log levels are useful and
figured that in most situations custom log levels are used to put
additional information into a log entry. For example it’s not uncommon to
have separate log levels to filter user input out of a logfile.

We instead provide powerful tools to inject arbitrary additional data into
log records with the concept of log processors.

So for example if you want to log user input and tag it appropriately you
can override the Logger.process_record() method:

class InputLogger(Logger):
 def process_record(self, record):
 record.extra['kind'] = 'input'

A handler can then use this information to filter out input:

def no_input(record, handler):
 return record.extra.get('kind') != 'input'

with MyHandler().threadbound(filter=no_input):
 ...

Injecting Context-Sensitive Information

For many situations it’s not only necessary to inject information on a
per-channel basis but also for all logging calls from a given context.
This is best explained for web applications again. If you have some
libraries doing logging in code that is triggered from a request you might
want to record the URL of that request for each log record so that you get
an idea where a specific error happened.

This can easily be accomplished by registering a custom processor when
binding a handler to a thread:

def my_application(environ, start_reponse):
 def inject_request_info(record, handler):
 record.extra['path'] = environ['PATH_INFO']
 with Processor(inject_request_info).threadbound():
 with my_handler.threadbound():
 # rest of the request code here
 ...

Logging Compatibility

The last pillar of logbook’s design is the compatibility with the standard
libraries logging system. There are many libraries that exist currently
that log information with the standard libraries logging module. Having
two separate logging systems in the same process is countrproductive and
will cause separate logfiles to appear in the best case or complete chaos
in the worst.

Because of that, logbook provides ways to transparently redirect all
logging records into the logbook stack based record delivery system. That
way you can even continue to use the standard libraries logging system to
emit log messages and can take the full advantage of logbook’s powerful
stack system.

If you are curious, have a look at Logging Compatibility.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Logbook 0.4

Logbook Changelog

Here you can see the full list of changes between each Logbook release.

Version 0.4

Release date to be announced. Codename to be selected.

	Added logbook.notifiers.NotifoHandler

	channel is now documented to be used for filtering purposes if
wanted. Previously this was an opaque string that was not intended
for filtering of any kind.

Version 0.3

Released on October 23rd. Codename “Informant”

	Added logbook.more.ColorizingStreamHandlerMixin and
logbook.more.ColorizedStderrHandler

	Deprecated logbook.RotatingFileHandlerBase because the
interface was not flexible enough.

	Provided basic Python 3 compatibility. This did cause a few smaller
API changes that caused minimal changes on Python 2 as well. The
deprecation of the logbook.RotatingFileHandlerBase was a
result of this.

	Added support for Python 2.4

	Added batch emitting support for handlers which now makes it possible
to use the logbook.more.FingersCrossedHandler with the
logbook.MailHandler.

	Moved the FingersCrossedHandler handler into the
base package. The old location stays importable for a few releases.

	Added logbook.GroupHandler that buffers records until the
handler is popped.

	Added logbook.more.ExternalApplicationHandler that executes
an external application for each log record emitted.

Version 0.2.1

Bugfix release, Released on September 22nd.

	Fixes Python 2.5 compatibility.

Version 0.2

Released on September 21st. Codename “Walls of Text”

	Implemented default with statement for handlers which is an
alias for threadbound.

	applicationbound and threadbound return the handler now.

	Implemented channel recording on the log records.

	The logbook.more.FingersCrossedHandler now is set to
ERROR by default and has the ability to create new loggers
from a factory function.

	Implemented maximum buffer size for the
logbook.more.FingersCrossedHandler as well as a lock
for thread safety.

	Added ability to filter for context.

	Moved bubbling flags and filters to the handler object.

	Moved context processors on their own stack.

	Removed the iter_context_handlers function.

	Renamed NestedHandlerSetup to NestedSetup
because it can now also configure processors.

	Added the logbook.Processor class.

	There is no difference between logger attached handlers and
context specific handlers any more.

	Added a function to redirect warnings to logbook
(logbook.compat.redirected_warnings()).

	Fixed and improved logbook.LoggerGroup.

	The logbook.TestHandler now keeps the record open
for further inspection.

	The traceback is now removed from a log record when the record
is closed. The formatted traceback is a cached property
instead of a function.

	Added ticketing handlers that send logs directly into a database.

	Added MongoDB backend for ticketing handlers

	Added a logbook.base.dispatch_record() function to dispatch
records to handlers independently of a logger (uses the default
record dispatching logic).

	Renamed logger_name to channel.

	Added a multi processing log handler
(logbook.more.MultiProcessingHandler).

	Added a twitter handler.

	Added a ZeroMQ handler.

	Added a Growl handler.

	Added a Libnotify handler.

	Added a monitoring file handler.

	Added a handler wrapper that moves the actual handling into a
background thread.

	The mail handler can now be configured to deliver each log record
not more than n times in m seconds.

	Added support for Python 2.5

	Added a logbook.queues.SubscriberGroup to deal with multiple
subscribers.

	Added a logbook.compat.LoggingHandler for redirecting logbook
log calls to the standard library’s logging [http://docs.python.org/library/logging.html#module-logging] module.

Version 0.1

First public release.

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Logbook 0.4

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 logbook	

 	
 	
 logbook.base	

 	
 	
 logbook.compat	

 	
 	
 logbook.handlers	

 	
 	
 logbook.more	

 	
 	
 logbook.notifiers	

 	
 	
 logbook.queues	

 	
 	
 logbook.ticketing	

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Logbook 0.4

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	

 	add() (logbook.queues.SubscriberGroup method)

 	add_logger() (logbook.base.LoggerGroup method)

 	

 	applicationbound() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	args (logbook.base.LogRecord attribute)

B

 	

 	BackendBase (class in logbook.ticketing)

 	batch_emit_reason (logbook.handlers.FingersCrossedHandler attribute)

 	blackhole (logbook.handlers.Handler attribute)

 	BoxcarHandler (class in logbook.notifiers)

 	

 	bubble (logbook.handlers.Handler attribute)

 	buffer_size (logbook.handlers.FingersCrossedHandler attribute)

 	buffered_records (logbook.handlers.FingersCrossedHandler attribute)

C

 	

 	call_handlers() (logbook.base.Logger method)

 	

 	(logbook.base.RecordDispatcher method)

 	(logbook.more.TaggingLogger method)

 	callback (logbook.base.Processor attribute)

 	calling_frame (logbook.base.LogRecord attribute)

 	catch_exceptions() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	channel (logbook.base.LogRecord attribute)

 	check_delivery() (logbook.handlers.LimitingHandlerMixin method)

 	close() (logbook.base.LogRecord method)

 	

 	(logbook.handlers.Handler method)

 	(logbook.handlers.StreamHandler method)

 	(logbook.handlers.TestHandler method)

 	(logbook.queues.ZeroMQSubscriber method)

 	close_connection() (logbook.handlers.MailHandler method)

 	collapse_mails() (logbook.handlers.MailHandler method)

 	ColorizedStderrHandler (class in logbook.more)

 	

 	ColorizingStreamHandlerMixin (class in logbook.more)

 	context (logbook.queues.ZeroMQHandler attribute)

 	

 	(logbook.queues.ZeroMQSubscriber attribute)

 	convert_level() (logbook.compat.LoggingHandler method)

 	

 	(logbook.compat.RedirectLoggingHandler method)

 	convert_record() (logbook.compat.LoggingHandler method)

 	

 	(logbook.compat.RedirectLoggingHandler method)

 	convert_time() (logbook.compat.LoggingHandler method)

 	

 	(logbook.compat.RedirectLoggingHandler method)

 	count_tickets() (logbook.ticketing.BackendBase method)

 	create_notification_handler() (in module logbook.notifiers)

 	create_syshandler() (in module logbook.handlers)

 	CRITICAL (in module logbook.base)

 	critical() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

D

 	

 	DEBUG (in module logbook.base)

 	debug() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	default_backend (logbook.ticketing.TicketingHandler attribute)

 	default_format_string (logbook.handlers.StringFormatterHandlerMixin attribute), [1]

 	delete_ticket() (logbook.ticketing.BackendBase method)

 	deliver() (logbook.handlers.MailHandler method)

 	

 	disabled (logbook.base.LoggerGroup attribute)

 	dispatch_forever() (logbook.queues.MultiProcessingSubscriber method)

 	

 	(logbook.queues.SubscriberBase method)

 	(logbook.queues.ZeroMQSubscriber method)

 	dispatch_in_background() (logbook.queues.MultiProcessingSubscriber method)

 	

 	(logbook.queues.SubscriberBase method)

 	(logbook.queues.ZeroMQSubscriber method)

 	dispatch_once() (logbook.queues.MultiProcessingSubscriber method)

 	

 	(logbook.queues.SubscriberBase method)

 	(logbook.queues.ZeroMQSubscriber method)

 	dispatch_record() (in module logbook.base)

 	dispatcher (logbook.base.LogRecord attribute)

E

 	

 	emit() (logbook.handlers.Handler method)

 	

 	(logbook.ticketing.TicketingHandler method)

 	emit_batch() (logbook.handlers.Handler method)

 	ERROR (in module logbook.base)

 	error() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	exc_info (logbook.base.LogRecord attribute)

 	exception() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	exception_message (logbook.base.LogRecord attribute)

 	

 	exception_name (logbook.base.LogRecord attribute)

 	exception_shortname (logbook.base.LogRecord attribute)

 	ExceptionHandler (class in logbook.more)

 	export_record() (logbook.queues.ZeroMQHandler method)

 	ExternalApplicationHandler (class in logbook.more)

 	extra (logbook.base.LogRecord attribute)

F

 	

 	FileHandler (class in logbook.handlers)

 	filename (logbook.base.LogRecord attribute)

 	files_to_delete() (logbook.handlers.TimedRotatingFileHandler method)

 	filter (logbook.handlers.Handler attribute)

 	find_caller() (logbook.compat.RedirectLoggingHandler method)

 	find_extra() (logbook.compat.RedirectLoggingHandler method)

 	FingersCrossedHandler (class in logbook.handlers)

 	Flags (class in logbook.base)

 	flush() (logbook.handlers.StreamHandler method)

 	format() (logbook.handlers.Handler method)

 	

 	format_and_encode() (logbook.handlers.StreamHandler method)

 	format_related_record() (logbook.handlers.MailHandler method)

 	format_string (logbook.handlers.StringFormatterHandlerMixin attribute), [1]

 	formatted_exception (logbook.base.LogRecord attribute)

 	formatted_records (logbook.handlers.TestHandler attribute)

 	formatter (logbook.handlers.Handler attribute)

 	formatter_class (logbook.handlers.StringFormatterHandlerMixin attribute), [1]

 	

 	(logbook.more.TwitterHandler attribute)

 	frame (logbook.base.LogRecord attribute)

 	from_dict() (logbook.base.LogRecord class method)

 	func_name (logbook.base.LogRecord attribute)

G

 	

 	generate_mail() (logbook.handlers.MailHandler method)

 	get_color() (logbook.more.ColorizingStreamHandlerMixin method)

 	get_connection() (logbook.handlers.MailHandler method)

 	get_expires() (logbook.notifiers.LibNotifyHandler method)

 	get_flag() (logbook.base.Flags static method)

 	get_level_name() (in module logbook.base)

 	get_logger() (logbook.compat.LoggingHandler method)

 	get_oauth_token() (logbook.more.TwitterHandler method)

 	get_occurrences() (logbook.ticketing.BackendBase method)

 	

 	get_priority() (logbook.notifiers.GrowlHandler method)

 	get_recipients() (logbook.handlers.MailHandler method)

 	get_screen_name() (logbook.notifiers.BoxcarHandler method)

 	get_ticket() (logbook.ticketing.BackendBase method)

 	get_tickets() (logbook.ticketing.BackendBase method)

 	get_urgency() (logbook.notifiers.LibNotifyHandler method)

 	group (logbook.base.RecordDispatcher attribute)

 	GroupHandler (class in logbook.handlers)

 	GrowlHandler (class in logbook.notifiers)

H

 	

 	handle() (logbook.base.Logger method)

 	

 	(logbook.base.RecordDispatcher method)

 	(logbook.handlers.Handler method)

 	(logbook.more.TaggingLogger method)

 	handle_error() (logbook.handlers.Handler method)

 	Handler (class in logbook.handlers)

 	handlers (logbook.base.RecordDispatcher attribute)

 	has_critical() (logbook.handlers.TestHandler method)

 	has_criticals (logbook.handlers.TestHandler attribute)

 	has_debug() (logbook.handlers.TestHandler method)

 	has_debugs (logbook.handlers.TestHandler attribute)

 	has_error() (logbook.handlers.TestHandler method)

 	has_errors (logbook.handlers.TestHandler attribute)

 	has_info() (logbook.handlers.TestHandler method)

 	

 	has_infos (logbook.handlers.TestHandler attribute)

 	has_notice() (logbook.handlers.TestHandler method)

 	has_notices (logbook.handlers.TestHandler attribute)

 	has_warning() (logbook.handlers.TestHandler method)

 	has_warnings (logbook.handlers.TestHandler attribute)

 	hash_record() (logbook.handlers.HashingHandlerMixin method)

 	hash_record_raw() (logbook.handlers.HashingHandlerMixin method)

 	

 	(logbook.ticketing.TicketingBaseHandler method)

 	HashingHandlerMixin (class in logbook.handlers)

 	heavy_init() (logbook.base.LogRecord method)

 	heavy_initialized (logbook.base.LogRecord attribute)

I

 	

 	INFO (in module logbook.base)

 	info() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	

 	information_pulled (logbook.base.LogRecord attribute)

 	is_sticky() (logbook.notifiers.GrowlHandler method)

J

 	

 	JinjaFormatter (class in logbook.more)

K

 	

 	keep_open (logbook.base.LogRecord attribute)

 	

 	kwargs (logbook.base.LogRecord attribute)

L

 	

 	late (logbook.base.LogRecord attribute)

 	level (logbook.base.LoggerGroup attribute)

 	

 	(logbook.base.LogRecord attribute)

 	(logbook.base.RecordDispatcher attribute)

 	(logbook.handlers.Handler attribute)

 	level_name (logbook.base.Logger attribute)

 	

 	(logbook.base.LogRecord attribute)

 	(logbook.base.LoggerMixin attribute)

 	(logbook.handlers.Handler attribute)

 	LibNotifyHandler (class in logbook.notifiers)

 	LimitingHandlerMixin (class in logbook.handlers)

 	lineno (logbook.base.LogRecord attribute)

 	log() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	logbook (module)

 	logbook.base (module), [1]

 	logbook.compat (module)

 	logbook.handlers (module), [1]

 	

 	logbook.more (module)

 	logbook.notifiers (module)

 	logbook.queues (module)

 	logbook.ticketing (module)

 	Logger (class in logbook.base)

 	LoggerGroup (class in logbook.base)

 	LoggerMixin (class in logbook.base)

 	loggers (logbook.base.LoggerGroup attribute)

 	LoggingHandler (class in logbook.compat)

 	LogRecord (class in logbook.base)

 	lookup_level() (in module logbook.base)

M

 	

 	MailHandler (class in logbook.handlers)

 	make_client() (logbook.more.TwitterHandler method)

 	make_record_and_handle() (logbook.base.Logger method)

 	

 	(logbook.base.RecordDispatcher method)

 	(logbook.more.TaggingLogger method)

 	make_text() (logbook.notifiers.NotificationBaseHandler method)

 	make_title() (logbook.notifiers.NotificationBaseHandler method)

 	max_record_cache (logbook.handlers.MailHandler attribute)

 	message (logbook.base.LogRecord attribute)

 	

 	message_from_record() (logbook.handlers.MailHandler method)

 	module (logbook.base.LogRecord attribute)

 	MongoDBBackend (class in logbook.ticketing)

 	MonitoringFileHandler (class in logbook.handlers)

 	msg (logbook.base.LogRecord attribute)

 	MultiProcessingHandler (class in logbook.queues)

 	MultiProcessingSubscriber (class in logbook.queues)

N

 	

 	name (logbook.base.RecordDispatcher attribute)

 	NestedSetup (class in logbook.base)

 	notice() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	NotificationBaseHandler (class in logbook.notifiers)

 	

 	NotifoHandler (class in logbook.notifiers)

 	NOTSET (in module logbook.base)

 	NTEventLogHandler (class in logbook.handlers)

 	NullHandler (class in logbook.handlers)

P

 	

 	perform_rollover() (logbook.handlers.RotatingFileHandlerBase method)

 	pop_application() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	pop_thread() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	process (logbook.base.LogRecord attribute)

 	process() (logbook.base.Processor method)

 	process_name (logbook.base.LogRecord attribute)

 	process_record() (logbook.base.Logger method)

 	

 	(logbook.base.LoggerGroup method)

 	(logbook.base.RecordDispatcher method)

 	(logbook.more.TaggingLogger method)

 	(logbook.ticketing.TicketingHandler method)

 	

 	Processor (class in logbook.base)

 	processor (logbook.base.LoggerGroup attribute)

 	pull_information() (logbook.base.LogRecord method)

 	push_application() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	push_thread() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	
 Python Enhancement Proposals

 	

 	PEP 8

R

 	

 	record_cache_prune (logbook.handlers.MailHandler attribute)

 	record_ticket() (logbook.ticketing.BackendBase method)

 	

 	(logbook.ticketing.TicketingHandler method)

 	RecordDispatcher (class in logbook.base)

 	records (logbook.handlers.TestHandler attribute)

 	recv() (logbook.queues.SubscriberBase method)

 	

 	(logbook.queues.ZeroMQSubscriber method)

 	redirect_logging() (in module logbook.compat)

 	redirect_warnings() (in module logbook.compat)

 	

 	redirected_logging() (in module logbook.compat)

 	redirected_warnings() (in module logbook.compat)

 	RedirectLoggingHandler (class in logbook.compat)

 	remove_logger() (logbook.base.LoggerGroup method)

 	RotatingFileHandler (class in logbook.handlers)

 	RotatingFileHandlerBase (class in logbook.handlers)

S

 	

 	set_notifier_icon() (logbook.notifiers.LibNotifyHandler method)

 	setup_backend() (logbook.ticketing.BackendBase method)

 	should_colorize() (logbook.more.ColorizingStreamHandlerMixin method)

 	should_handle() (logbook.handlers.Handler method)

 	should_rollover() (logbook.handlers.RotatingFileHandlerBase method)

 	socket (logbook.queues.ZeroMQHandler attribute)

 	

 	(logbook.queues.ZeroMQSubscriber attribute)

 	solve_ticket() (logbook.ticketing.BackendBase method)

 	SQLAlchemyBackend (class in logbook.ticketing)

 	StackedObject (class in logbook.base)

 	start() (logbook.queues.ThreadController method)

 	

 	(logbook.queues.TWHThreadController method)

 	

 	StderrHandler (class in logbook.handlers)

 	stop() (logbook.queues.SubscriberGroup method)

 	

 	(logbook.queues.TWHThreadController method)

 	(logbook.queues.ThreadController method)

 	StreamHandler (class in logbook.handlers)

 	StringFormatter (class in logbook.handlers)

 	StringFormatterHandlerMixin (class in logbook.handlers), [1]

 	SubscriberBase (class in logbook.queues)

 	SubscriberGroup (class in logbook.queues)

 	suppress_dispatcher (logbook.base.RecordDispatcher attribute)

 	SyslogHandler (class in logbook.handlers)

T

 	

 	TaggingHandler (class in logbook.more)

 	TaggingLogger (class in logbook.more)

 	TestHandler (class in logbook.handlers)

 	thread (logbook.base.LogRecord attribute)

 	thread_name (logbook.base.LogRecord attribute)

 	threadbound() (logbook.base.Flags method)

 	

 	(logbook.base.Processor method)

 	(logbook.base.StackedObject method)

 	(logbook.handlers.Handler method)

 	ThreadController (class in logbook.queues)

 	ThreadedWrapperHandler (class in logbook.queues)

 	TicketingBaseHandler (class in logbook.ticketing)

 	

 	TicketingHandler (class in logbook.ticketing)

 	time (logbook.base.LogRecord attribute)

 	TimedRotatingFileHandler (class in logbook.handlers)

 	to_dict() (logbook.base.LogRecord method)

 	triggered (logbook.handlers.FingersCrossedHandler attribute)

 	tweet() (logbook.more.TwitterHandler method)

 	TWHThreadController (class in logbook.queues)

 	TwitterHandler (class in logbook.more)

U

 	

 	unregister_logger() (logbook.handlers.NTEventLogHandler method)

 	

 	update_from_dict() (logbook.base.LogRecord method)

W

 	

 	warn() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	WARNING (in module logbook.base)

 	warning() (in module logbook)

 	

 	(logbook.base.Logger method)

 	(logbook.base.LoggerMixin method)

 	

 	WrapperHandler (class in logbook.handlers)

 	write() (logbook.handlers.StreamHandler method)

Z

 	

 	ZeroMQHandler (class in logbook.queues)

 	

 	ZeroMQSubscriber (class in logbook.queues)

 Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_modules/logbook/_fallback.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 		Module code »

 Source code for logbook._fallback

-*- coding: utf-8 -*-
"""
 logbook._fallback
    ~~~~~~~~~~~~~~~~~

    Fallback implementations in case speedups is not around.

    :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
    :license: BSD, see LICENSE for more details.
"""
import threading
from itertools import count
from thread import get_ident as current_thread


_missing = object()
_MAX_CONTEXT_OBJECT_CACHE = 256


def group_reflected_property(name, default, fallback=_missing):
    """Returns a property for a given name that falls back to the
    value of the group if set.  If there is no such group, the
    provided default is used.
    """
    def _get(self):
        rv = getattr(self, '_' + name, _missing)
        if rv is not _missing and rv != fallback:
            return rv
        if self.group is None:
            return default
        return getattr(self.group, name)
    def _set(self, value):
        setattr(self, '_' + name, value)
    def _del(self):
        delattr(self, '_' + name)
    return property(_get, _set, _del)


class _StackBound(object):

    def __init__(self, obj, push, pop):
        self.__obj = obj
        self.__push = push
        self.__pop = pop

    def __enter__(self):
        self.__push()
        return self.__obj

    def __exit__(self, exc_type, exc_value, tb):
        self.__pop()


[docs]class StackedObject(object):
    """Baseclass for all objects that provide stack manipulation
    operations.
    """

[docs]    def push_thread(self):
        """Pushes the stacked object to the thread stack."""
        raise NotImplementedError()


[docs]    def pop_thread(self):
        """Pops the stacked object from the thread stack."""
        raise NotImplementedError()


[docs]    def push_application(self):
        """Pushes the stacked object to the application stack."""
        raise NotImplementedError()


[docs]    def pop_application(self):
        """Pops the stacked object from the application stack."""
        raise NotImplementedError()


    def __enter__(self):
        self.push_thread()
        return self

    def __exit__(self, exc_type, exc_value, tb):
        self.pop_thread()

[docs]    def threadbound(self, _cls=_StackBound):
        """Can be used in combination with the `with` statement to
        execute code while the object is bound to the thread.
        """
        return _cls(self, self.push_thread, self.pop_thread)


[docs]    def applicationbound(self, _cls=_StackBound):
        """Can be used in combination with the `with` statement to
        execute code while the object is bound to the application.
        """
        return _cls(self, self.push_application, self.pop_application)




class ContextStackManager(object):
    """Helper class for context objects that manages a stack of
    objects.
    """

    def __init__(self):
        self._global = []
        self._context_lock = threading.Lock()
        self._context = threading.local()
        self._cache = {}
        self._stackop = count().next

    def iter_context_objects(self):
        """Returns an iterator over all objects for the combined
        application and context cache.
        """
        tid = current_thread()
        objects = self._cache.get(tid)
        if objects is None:
            if len(self._cache) > _MAX_CONTEXT_OBJECT_CACHE:
                self._cache.clear()
            objects = self._global[:]
            objects.extend(getattr(self._context, 'stack', ()))
            objects.sort(reverse=True)
            objects = [x[1] for x in objects]
            self._cache[tid] = objects
        return iter(objects)

    def push_thread(self, obj):
        self._context_lock.acquire()
        try:
            self._cache.pop(current_thread(), None)
            item = (self._stackop(), obj)
            stack = getattr(self._context, 'stack', None)
            if stack is None:
                self._context.stack = [item]
            else:
                stack.append(item)
        finally:
            self._context_lock.release()

    def pop_thread(self):
        self._context_lock.acquire()
        try:
            self._cache.pop(current_thread(), None)
            stack = getattr(self._context, 'stack', None)
            assert stack, 'no objects on stack'
            return stack.pop()[1]
        finally:
            self._context_lock.release()

    def push_application(self, obj):
        self._global.append((self._stackop(), obj))
        self._cache.clear()

    def pop_application(self):
        assert self._global, 'no objects on application stack'
        popped = self._global.pop()[1]
        self._cache.clear()
        return popped





          

      

      

    


    
        © Copyright 2010, Armin Ronacher, Georg Brandl.
      Created using Sphinx 1.3.1.
    

  

_modules/logbook/compat.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Logbook 0.4 »


          		Module code »

 
      


    


    
      
          
            
  Source code for logbook.compat

# -*- coding: utf-8 -*-
"""
    logbook.compat
    ~~~~~~~~~~~~~~

 Backwards compatibility with stdlib's logging package and the
 warnings module.

 :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
 :license: BSD, see LICENSE for more details.
"""
import sys
import logging
import warnings
import logbook
from datetime import date, datetime

_epoch_ord = date(1970, 1, 1).toordinal()

[docs]def redirect_logging():
 """Permanently redirects logging to the stdlib. This also
 removes all otherwise registered handlers on root logger of
 the logging system but leaves the other loggers untouched.
 """
 del logging.root.handlers[:]
 logging.root.addHandler(RedirectLoggingHandler())

[docs]class redirected_logging(object):
 """Temporarily redirects logging for all threads and reverts
 it later to the old handlers. Mainly used by the internal
 unittests::

 from logbook.compat import redirected_logging
 with redirected_logging():
 ...
 """
 def __init__(self):
 self.old_handlers = logging.root.handlers[:]

 def start(self):
 redirect_logging()

 def end(self, etype=None, evalue=None, tb=None):
 logging.root.handlers[:] = self.old_handlers

 __enter__ = start
 __exit__ = end

[docs]class RedirectLoggingHandler(logging.Handler):
 """A handler for the stdlib's logging system that redirects
 transparently to logbook. This is used by the
 :func:`redirect_logging` and :func:`redirected_logging`
 functions.

 If you want to customize the redirecting you can subclass it.
 """

 def __init__(self):
 logging.Handler.__init__(self)

[docs] def convert_level(self, level):
 """Converts a logging level into a logbook level."""
 if level >= logging.CRITICAL:
 return logbook.CRITICAL
 if level >= logging.ERROR:
 return logbook.ERROR
 if level >= logging.WARNING:
 return logbook.WARNING
 if level >= logging.INFO:
 return logbook.INFO
 return logbook.DEBUG

[docs] def find_extra(self, old_record):
 """Tries to find custom data from the old logging record. The
 return value is a dictionary that is merged with the log record
 extra dictionaries.
 """
 rv = vars(old_record).copy()
 for key in ('name', 'msg', 'args', 'levelname', 'levelno',
 'pathname', 'filename', 'module', 'exc_info',
 'exc_text', 'lineno', 'funcName', 'created',
 'msecs', 'relativeCreated', 'thread', 'threadName',
 'processName', 'process'):
 rv.pop(key, None)
 return rv

[docs] def find_caller(self, old_record):
 """Tries to find the caller that issued the call."""
 frm = sys._getframe(2)
 while frm is not None:
 if frm.f_globals is globals() or \
 frm.f_globals is logbook.base.__dict__ or \
 frm.f_globals is logging.__dict__:
 frm = frm.f_back
 else:
 return frm

[docs] def convert_time(self, timestamp):
 """Converts the UNIX timestamp of the old record into a
 datetime object as used by logbook.
 """
 return datetime.utcfromtimestamp(timestamp)

[docs] def convert_record(self, old_record):
 """Converts an old logging record into a logbook log record."""
 record = logbook.LogRecord(old_record.name,
 self.convert_level(old_record.levelno),
 old_record.getMessage(),
 None, None, old_record.exc_info,
 self.find_extra(old_record),
 self.find_caller(old_record))
 record.time = self.convert_time(old_record.created)
 return record

 def emit(self, record):
 logbook.dispatch_record(self.convert_record(record))

[docs]class LoggingHandler(logbook.Handler):
 """Does the opposite of the :class:`RedirectLoggingHandler`, it sends
 messages from logbook to logging. Because of that, it's a very bad
 idea to configure both.

 This handler is for logbook and will pass stuff over to a logger
 from the standard library.

 Example usage::

 from logbook.compat import LoggingHandler, warn
 with LoggingHandler():
 warn('This goes to logging')
 """

 def __init__(self, logger=None, level=logbook.NOTSET, filter=None,
 bubble=False):
 logbook.Handler.__init__(self, level, filter, bubble)
 if logger is None:
 logger = logging.getLogger()
 elif isinstance(logger, basestring):
 logger = logging.getLogger(logger)
 self.logger = logger

[docs] def get_logger(self, record):
 """Returns the logger to use for this record. This implementation
 always return :attr:`logger`.
 """
 return self.logger

[docs] def convert_level(self, level):
 """Converts a logbook level into a logging level."""
 if level >= logbook.CRITICAL:
 return logging.CRITICAL
 if level >= logbook.ERROR:
 return logging.ERROR
 if level >= logbook.WARNING:
 return logging.WARNING
 if level >= logbook.INFO:
 return logging.INFO
 return logging.DEBUG

[docs] def convert_time(self, dt):
 """Converts a datetime object into a timestamp."""
 year, month, day, hour, minute, second = dt.utctimetuple()[:6]
 days = date(year, month, 1).toordinal() - _epoch_ord + day - 1
 hours = days * 24 + hour
 minutes = hours * 60 + minute
 seconds = minutes * 60 + second
 return seconds

[docs] def convert_record(self, old_record):
 """Converts a record from logbook to logging."""
 if sys.version_info >= (2, 5):
 # make sure 2to3 does not screw this up
 optional_kwargs = {'func': getattr(old_record, 'func_name')}
 else:
 optional_kwargs = {}
 record = logging.LogRecord(old_record.channel,
 self.convert_level(old_record.level),
 old_record.filename,
 old_record.lineno,
 old_record.message,
 (), old_record.exc_info,
 **optional_kwargs)
 for key, value in old_record.extra.iteritems():
 record.__dict__.setdefault(key, value)
 record.created = self.convert_time(old_record.time)
 return record

 def emit(self, record):
 self.get_logger(record).handle(self.convert_record(record))

[docs]def redirect_warnings():
 """Like :func:`redirected_warnings` but will redirect all warnings
 to the shutdown of the interpreter::

 from logbook.compat import redirect_warnings
 redirect_warnings()
 """
 redirected_warnings().__enter__()

[docs]class redirected_warnings(object):
 """A context manager that copies and restores the warnings filter upon
 exiting the context, and logs warnings using the logbook system.

 The :attr:`~logbook.LogRecord.channel` attribute of the log record will be
 the import name of the warning.

 Example usage::

 from logbook.compat import redirected_warnings
 from warnings import warn

 with redirected_warnings():
 warn(DeprecationWarning('logging should be deprecated'))
 """

 def __init__(self):
 self._entered = False

 def message_to_unicode(self, message):
 try:
 return unicode(message)
 except UnicodeError:
 return str(message).decode('utf-8', 'replace')

 def make_record(self, message, exception, filename, lineno):
 category = exception.__name__
 if exception.__module__ not in ('exceptions', 'builtins'):
 category = exception.__module__ + '.' + category
 rv = logbook.LogRecord(category, logbook.WARNING, message)
 # we don't know the caller, but we get that information from the
 # warning system. Just attach them.
 rv.filename = filename
 rv.lineno = lineno
 return rv

 def start(self):
 if self._entered: # pragma: no cover
 raise RuntimeError("Cannot enter %r twice" % self)
 self._entered = True
 self._filters = warnings.filters
 warnings.filters = self._filters[:]
 self._showwarning = warnings.showwarning

 def showwarning(message, category, filename, lineno,
 file=None, line=None):
 message = self.message_to_unicode(message)
 record = self.make_record(message, category, filename, lineno)
 logbook.dispatch_record(record)
 warnings.showwarning = showwarning

 def end(self, etype=None, evalue=None, tb=None):
 if not self._entered: # pragma: no cover
 raise RuntimeError("Cannot exit %r without entering first" % self)
 warnings.filters = self._filters
 warnings.showwarning = self._showwarning

 __enter__ = start
 __exit__ = end

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 All modules for which code is available

		logbook._fallback

		logbook.base

		logbook.compat

		logbook.handlers

		logbook.more

		logbook.notifiers

		logbook.queues

		logbook.ticketing

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_modules/logbook/more.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 		Module code »

 Source code for logbook.more

-*- coding: utf-8 -*-
"""
 logbook.more
    ~~~~~~~~~~~~

    Fancy stuff for logbook.

    :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
    :license: BSD, see LICENSE for more details.
"""
import re
import os
from cgi import parse_qsl
from urllib import urlencode

from logbook.base import RecordDispatcher, NOTSET, ERROR, NOTICE
from logbook.handlers import Handler, StringFormatter, \
     StringFormatterHandlerMixin, StderrHandler
from logbook._termcolors import colorize
from logbook.helpers import F


_ws_re = re.compile(r'(\s+)(?u)')
TWITTER_FORMAT_STRING = \
u'[{record.channel}] {record.level_name}: {record.message}'
TWITTER_ACCESS_TOKEN_URL = 'https://twitter.com/oauth/access_token'
NEW_TWEET_URL = 'https://api.twitter.com/1/statuses/update.json'


class TwitterFormatter(StringFormatter):
    """Works like the standard string formatter and is used by the
    :class:`TwitterHandler` unless changed.
    """
    max_length = 140

    def format_exception(self, record):
        return u'%s: %s' % (record.exception_shortname,
                            record.exception_message)

    def __call__(self, record, handler):
        formatted = StringFormatter.__call__(self, record, handler)
        rv = []
        length = 0
        for piece in _ws_re.split(formatted):
            length += len(piece)
            if length > self.max_length:
                if length - len(piece) < self.max_length:
                    rv.append(u'…')
                break
            rv.append(piece)
        return u''.join(rv)


[docs]class TaggingLogger(RecordDispatcher):
    """A logger that attaches a tag to each record.  This is an alternative
    record dispatcher that does not use levels but tags to keep log
    records apart.  It is constructed with a descriptive name and at least
    one tag.  The tags are up for you to define::

        logger = TaggingLogger('My Logger', ['info', 'warning'])

    For each tag defined that way, a method appears on the logger with
    that name::

        logger.info('This is a info message')

    To dispatch to different handlers based on tags you can use the
    :class:`TaggingHandler`.

    The tags themselves are stored as list named ``'tags'`` in the
    :attr:`~logbook.LogRecord.extra` dictionary.
    """

    def __init__(self, name=None, tags=None):
        RecordDispatcher.__init__(self, name)
        # create a method for each tag named
        list(setattr(self, tag, lambda msg, *args, **kwargs:
            self.log(tag, msg, *args, **kwargs)) for tag in (tags or ()))

    def log(self, tags, msg, *args, **kwargs):
        if isinstance(tags, basestring):
            tags = [tags]
        exc_info = kwargs.pop('exc_info', None)
        extra = kwargs.pop('extra', {})
        extra['tags'] = list(tags)
        return self.make_record_and_handle(NOTSET, msg, args, kwargs,
                                           exc_info, extra)



[docs]class TaggingHandler(Handler):
    """A handler that logs for tags and dispatches based on those.

    Example::

        import logbook
        from logbook.more import TaggingHandler

        handler = TaggingHandler(dict(
            info=OneHandler(),
            warning=AnotherHandler()
        ))
    """

    def __init__(self, handlers, filter=None, bubble=False):
        Handler.__init__(self, NOTSET, filter, bubble)
        assert isinstance(handlers, dict)
        self._handlers = dict(
            (tag, isinstance(handler, Handler) and [handler] or handler)
            for (tag, handler) in handlers.iteritems())

    def emit(self, record):
        for tag in record.extra.get('tags', ()):
            for handler in self._handlers.get(tag, ()):
                handler.handle(record)



[docs]class TwitterHandler(Handler, StringFormatterHandlerMixin):
    """A handler that logs to twitter.  Requires that you sign up an
    application on twitter and request xauth support.  Furthermore the
    oauth2 library has to be installed.

    If you don't want to register your own application and request xauth
    credentials, there are a couple of leaked consumer key and secret
    pairs from application explicitly whitelisted at Twitter
    (`leaked secrets <http://bit.ly/leaked-secrets>`_).
    """
    default_format_string = TWITTER_FORMAT_STRING
    formatter_class = TwitterFormatter

    def __init__(self, consumer_key, consumer_secret, username,
                 password, level=NOTSET, format_string=None, filter=None,
                 bubble=False):
        Handler.__init__(self, level, filter, bubble)
        StringFormatterHandlerMixin.__init__(self, format_string)
        self.consumer_key = consumer_key
        self.consumer_secret = consumer_secret
        self.username = username
        self.password = password

        try:
            import oauth2
        except ImportError:
            raise RuntimeError('The python-oauth2 library is required for '
                               'the TwitterHandler.')

        self._oauth = oauth2
        self._oauth_token = None
        self._oauth_token_secret = None
        self._consumer = oauth2.Consumer(consumer_key,
                                         consumer_secret)
        self._client = oauth2.Client(self._consumer)

[docs]    def get_oauth_token(self):
        """Returns the oauth access token."""
        if self._oauth_token is None:
            resp, content = self._client.request(
                TWITTER_ACCESS_TOKEN_URL + '?', 'POST',
                body=urlencode({
                    'x_auth_username':  self.username.encode('utf-8'),
                    'x_auth_password':  self.password.encode('utf-8'),
                    'x_auth_mode':      'client_auth'
                }),
                headers={'Content-Type': 'application/x-www-form-urlencoded'}
            )
            if resp['status'] != '200':
                raise RuntimeError('unable to login to Twitter')
            data = dict(parse_qsl(content))
            self._oauth_token = data['oauth_token']
            self._oauth_token_secret = data['oauth_token_secret']
        return self._oauth.Token(self._oauth_token,
                                 self._oauth_token_secret)


[docs]    def make_client(self):
        """Creates a new oauth client auth a new access token."""
        return self._oauth.Client(self._consumer, self.get_oauth_token())


[docs]    def tweet(self, status):
        """Tweets a given status.  Status must not exceed 140 chars."""
        client = self.make_client()
        resp, content = client.request(NEW_TWEET_URL, 'POST',
            body=urlencode({'status': status.encode('utf-8')}),
            headers={'Content-Type': 'application/x-www-form-urlencoded'})
        return resp['status'] == '200'


    def emit(self, record):
        self.tweet(self.format(record))



[docs]class JinjaFormatter(object):
    """A formatter object that makes it easy to format using a Jinja 2
    template instead of a format string.
    """

    def __init__(self, template):
        try:
            from jinja2 import Template
        except ImportError:
            raise RuntimeError('The jinja2 library is required for '
                               'the JinjaFormatter.')
        self.template = Template(template)

    def __call__(self, record, handler):
        return self.template.render(record=record, handler=handler)



[docs]class ExternalApplicationHandler(Handler):
    """This handler invokes an external application to send parts of
    the log record to.  The constructor takes a list of arguments that
    are passed to another application where each of the arguments is a
    format string, and optionally a format string for data that is
    passed to stdin.

    For example it can be used to invoke the ``say`` command on OS X::

        from logbook.more import ExternalApplicationHandler
        say_handler = ExternalApplicationHandler(['say', '{record.message}'])

    Note that the above example is blocking until ``say`` finished, so it's
    recommended to combine this handler with the
    :class:`logbook.ThreadedWrapperHandler` to move the execution into
    a background thread.

    .. versionadded:: 0.3
    """

    def __init__(self, arguments, stdin_format=None,
                 encoding='utf-8', level=NOTSET, filter=None,
                 bubble=False):
        Handler.__init__(self, level, filter, bubble)
        self.encoding = encoding
        self._arguments = [F(arg) for arg in arguments]
        if stdin_format is not None:
            stdin_format = F(stdin_format)
        self._stdin_format = stdin_format
        import subprocess
        self._subprocess = subprocess

    def emit(self, record):
        args = [arg.format(record=record).encode(self.encoding)
                for arg in self._arguments]
        if self._stdin_format is not None:
            stdin_data = self._stdin_format.format(record=record) \
                                           .encode(self.encoding)
            stdin = self._subprocess.PIPE
        else:
            stdin = None
        c = self._subprocess.Popen(args, stdin=stdin)
        if stdin is not None:
            c.communicate(stdin_data)
        c.wait()



[docs]class ColorizingStreamHandlerMixin(object):
    """A mixin class that does colorizing.

    .. versionadded:: 0.3
    """

[docs]    def should_colorize(self, record):
        """Returns `True` if colorizing should be applied to this
        record.  The default implementation returns `True` if the
        stream is a tty and we are not executing on windows.
        """
        if os.name == 'nt':
            return False
        isatty = getattr(self.stream, 'isatty', None)
        return isatty and isatty()


[docs]    def get_color(self, record):
        """Returns the color for this record."""
        if record.level >= ERROR:
            return 'red'
        elif record.level >= NOTICE:
            return 'yellow'
        return 'lightgray'


    def format_and_encode(self, record):
        rv = super(ColorizingStreamHandlerMixin, self) \
                .format_and_encode(record)
        if self.should_colorize(record):
            color = self.get_color(record)
            if color:
                rv = colorize(color, rv)
        return rv



[docs]class ColorizedStderrHandler(ColorizingStreamHandlerMixin, StderrHandler):
    """A colorizing stream handler that writes to stderr.  It will only
    colorize if a terminal was detected.  Note that this handler does
    not colorize on Windows systems.

    .. versionadded:: 0.3
    """


# backwards compat.  Should go away in some future releases

from logbook.handlers import FingersCrossedHandler as \
     FingersCrossedHandlerBase
class FingersCrossedHandler(FingersCrossedHandlerBase):
    def __init__(self, *args, **kwargs):
        FingersCrossedHandlerBase.__init__(self, *args, **kwargs)
        from warnings import warn
        warn(PendingDeprecationWarning('fingers crossed handler changed '
            'location.  It\'s now a core component of Logbook.'))


[docs]class ExceptionHandler(Handler, StringFormatterHandlerMixin):
    """An exception handler which raises exceptions of the given `exc_type`.
    This is especially useful if you set a specific error `level` e.g. to treat
    warnings as exceptions::

        from logbook.more import ExceptionHandler

        class ApplicationWarning(Exception):
            pass

        exc_handler = ExceptionHandler(ApplicationWarning, level='WARNING')

    .. versionadded:: 0.3
    """
    def __init__(self, exc_type, level=NOTSET, format_string=None,
                 filter=None, bubble=False):
        Handler.__init__(self, level, filter, bubble)
        StringFormatterHandlerMixin.__init__(self, format_string)
        self.exc_type = exc_type

    def handle(self, record):
        if self.should_handle(record):
            raise self.exc_type(self.format(record))
        return False






          

      

      

    


    
        © Copyright 2010, Armin Ronacher, Georg Brandl.
      Created using Sphinx 1.3.1.
    

  

_modules/logbook/ticketing.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Logbook 0.4 »


          		Module code »

 
      


    


    
      
          
            
  Source code for logbook.ticketing

# -*- coding: utf-8 -*-
"""
    logbook.ticketing
    ~~~~~~~~~~~~~~~~~

 Implements long handlers that write to remote data stores and assign
 each logging message a ticket id.

 :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
 :license: BSD, see LICENSE for more details.
"""
from time import time
from logbook.base import NOTSET, level_name_property, LogRecord
from logbook.handlers import Handler, HashingHandlerMixin
from logbook.helpers import json, cached_property, b

class Ticket(object):
 """Represents a ticket from the database."""

 level_name = level_name_property()

 def __init__(self, db, row):
 self.db = db
 self.__dict__.update(row)

 @cached_property
 def last_occurrence(self):
 """The last occurrence."""
 rv = self.get_occurrences(limit=1)
 if rv:
 return rv[0]

 def get_occurrences(self, order_by='-time', limit=50, offset=0):
 """Returns the occurrences for this ticket."""
 return self.db.get_occurrences(self.ticket_id, order_by, limit, offset)

 def solve(self):
 """Marks this ticket as solved."""
 self.db.solve_ticket(self.ticket_id)
 self.solved = True

 def delete(self):
 """Deletes the ticket from the database."""
 self.db.delete_ticket(self.ticket_id)

 # Silence DeprecationWarning
 __hash__ = None

 def __eq__(self, other):
 equal = True
 for key in self.__dict__.keys():
 if getattr(self, key) != getattr(other, key):
 equal = False
 break
 return equal

 def __ne__(self, other):
 return not self.__eq__(other)

class Occurrence(LogRecord):
 """Represents an occurrence of a ticket."""

 def __init__(self, db, row):
 self.update_from_dict(json.loads(row['data']))
 self.db = db
 self.time = row['time']
 self.ticket_id = row['ticket_id']
 self.occurrence_id = row['occurrence_id']

[docs]class BackendBase(object):
 """Provides an abstract interface to various databases."""

 def __init__(self, **options):
 self.options = options
 self.setup_backend()

[docs] def setup_backend(self):
 """Setup the database backend."""
 raise NotImplementedError()

[docs] def record_ticket(self, record, data, hash, app_id):
 """Records a log record as ticket."""
 raise NotImplementedError()

[docs] def count_tickets(self):
 """Returns the number of tickets."""
 raise NotImplementedError()

[docs] def get_tickets(self, order_by='-last_occurrence_time', limit=50, offset=0):
 """Selects tickets from the database."""
 raise NotImplementedError()

[docs] def solve_ticket(self, ticket_id):
 """Marks a ticket as solved."""
 raise NotImplementedError()

[docs] def delete_ticket(self, ticket_id):
 """Deletes a ticket from the database."""
 raise NotImplementedError()

[docs] def get_ticket(self, ticket_id):
 """Return a single ticket with all occurrences."""
 raise NotImplementedError()

[docs] def get_occurrences(self, ticket, order_by='-time', limit=50, offset=0):
 """Selects occurrences from the database for a ticket."""
 raise NotImplementedError()

[docs]class SQLAlchemyBackend(BackendBase):
 """Implements a backend that is writing into a database SQLAlchemy can
 interface.

 This backend takes some additional options:

 `table_prefix`
 an optional table prefix for all tables created by
 the logbook ticketing handler.

 `metadata`
 an optional SQLAlchemy metadata object for the table creation.

 `autocreate_tables`
 can be set to `False` to disable the automatic
 creation of the logbook tables.

 """

 def setup_backend(self):
 from sqlalchemy import create_engine, MetaData
 engine_or_uri = self.options.pop('uri', None)
 metadata = self.options.pop('metadata', None)
 table_prefix = self.options.pop('table_prefix', 'logbook_')

 if hasattr(engine_or_uri, 'execute'):
 self.engine = engine_or_uri
 else:
 self.engine = create_engine(engine_or_uri, convert_unicode=True)
 if metadata is None:
 metadata = MetaData()
 self.table_prefix = table_prefix
 self.metadata = metadata
 self.create_tables()
 if self.options.get('autocreate_tables', True):
 self.metadata.create_all(bind=self.engine)

 def create_tables(self):
 """Creates the tables required for the handler on the class and
 metadata.
 """
 import sqlalchemy as db
 def table(name, *args, **kwargs):
 return db.Table(self.table_prefix + name, self.metadata,
 *args, **kwargs)
 self.tickets = table('tickets',
 db.Column('ticket_id', db.Integer, primary_key=True),
 db.Column('record_hash', db.String(40), unique=True),
 db.Column('level', db.Integer),
 db.Column('channel', db.String(120)),
 db.Column('location', db.String(512)),
 db.Column('module', db.String(256)),
 db.Column('last_occurrence_time', db.DateTime),
 db.Column('occurrence_count', db.Integer),
 db.Column('solved', db.Boolean),
 db.Column('app_id', db.String(80))
)
 self.occurrences = table('occurrences',
 db.Column('occurrence_id', db.Integer, primary_key=True),
 db.Column('ticket_id', db.Integer,
 db.ForeignKey(self.table_prefix + 'tickets.ticket_id')),
 db.Column('time', db.DateTime),
 db.Column('data', db.Text),
 db.Column('app_id', db.String(80))
)

 def _order(self, q, table, order_by):
 if order_by[0] == '-':
 return q.order_by(table.c[order_by[1:]].desc())
 return q.order_by(table.c[order_by])

 def record_ticket(self, record, data, hash, app_id):
 """Records a log record as ticket."""
 cnx = self.engine.connect()
 trans = cnx.begin()
 try:
 q = self.tickets.select(self.tickets.c.record_hash == hash)
 row = cnx.execute(q).fetchone()
 if row is None:
 row = cnx.execute(self.tickets.insert().values(
 record_hash=hash,
 level=record.level,
 channel=record.channel or u'',
 location=u'%s:%d' % (record.filename, record.lineno),
 module=record.module or u'<unknown>',
 occurrence_count=0,
 solved=False,
 app_id=app_id
))
 ticket_id = row.inserted_primary_key[0]
 else:
 ticket_id = row['ticket_id']
 cnx.execute(self.occurrences.insert()
 .values(ticket_id=ticket_id,
 time=record.time,
 app_id=app_id,
 data=json.dumps(data)))
 cnx.execute(self.tickets.update()
 .where(self.tickets.c.ticket_id == ticket_id)
 .values(occurrence_count=self.tickets.c.occurrence_count + 1,
 last_occurrence_time=record.time,
 solved=False))
 trans.commit()
 except Exception:
 trans.rollback()
 raise
 cnx.close()

 def count_tickets(self):
 """Returns the number of tickets."""
 return self.engine.execute(self.tickets.count()).fetchone()[0]

 def get_tickets(self, order_by='-last_occurrence_time', limit=50, offset=0):
 """Selects tickets from the database."""
 return [Ticket(self, row) for row in self.engine.execute(
 self._order(self.tickets.select(), self.tickets, order_by)
 .limit(limit).offset(offset)).fetchall()]

 def solve_ticket(self, ticket_id):
 """Marks a ticket as solved."""
 self.engine.execute(self.tickets.update()
 .where(self.tickets.c.ticket_id == ticket_id)
 .values(solved=True))

 def delete_ticket(self, ticket_id):
 """Deletes a ticket from the database."""
 self.engine.execute(self.occurrences.delete()
 .where(self.occurrences.c.ticket_id == ticket_id))
 self.engine.execute(self.tickets.delete()
 .where(self.tickets.c.ticket_id == ticket_id))

 def get_ticket(self, ticket_id):
 """Return a single ticket with all occurrences."""
 row = self.engine.execute(self.tickets.select().where(
 self.tickets.c.ticket_id == ticket_id)).fetchone()
 if row is not None:
 return Ticket(self, row)

 def get_occurrences(self, ticket, order_by='-time', limit=50, offset=0):
 """Selects occurrences from the database for a ticket."""
 return [Occurrence(self, row) for row in
 self.engine.execute(self._order(self.occurrences.select()
 .where(self.occurrences.c.ticket_id == ticket),
 self.occurrences, order_by)
 .limit(limit).offset(offset)).fetchall()]

[docs]class MongoDBBackend(BackendBase):
 """Implements a backend that writes into a MongoDB database."""

 class _FixedTicketClass(Ticket):
 @property
 def ticket_id(self):
 return self._id

 class _FixedOccurrenceClass(Occurrence):
 def __init__(self, db, row):
 self.update_from_dict(json.loads(row['data']))
 self.db = db
 self.time = row['time']
 self.ticket_id = row['ticket_id']
 self.occurrence_id = row['_id']

 #TODO: Update connection setup once PYTHON-160 is solved.
 def setup_backend(self):
 from pymongo import ASCENDING, DESCENDING
 from pymongo.connection import Connection, _parse_uri
 from pymongo.errors import AutoReconnect

 _connection = None
 uri = self.options.pop('uri', u'')
 _connection_attempts = 0

 hosts, database, user, password = _parse_uri(uri, Connection.PORT)

 # Handle auto reconnect signals properly
 while _connection_attempts < 5:
 try:
 if _connection is None:
 _connection = Connection(uri)
 database = _connection[database]
 break
 except AutoReconnect:
 _connection_attempts += 1
 time.sleep(0.1)

 self.database = database

 # setup correct indexes
 database.tickets.ensure_index([('record_hash', ASCENDING)], unique=True)
 database.tickets.ensure_index([('solved', ASCENDING), ('level', ASCENDING)])
 database.occurrences.ensure_index([('time', DESCENDING)])

 def _order(self, q, order_by):
 from pymongo import ASCENDING, DESCENDING
 col = '%s' % (order_by[0] == '-' and order_by[1:] or order_by)
 if order_by[0] == '-':
 return q.sort(col, DESCENDING)
 return q.sort(col, ASCENDING)

 def _oid(self, ticket_id):
 from pymongo.objectid import ObjectId
 return ObjectId(ticket_id)

 def record_ticket(self, record, data, hash, app_id):
 """Records a log record as ticket."""
 db = self.database
 ticket = db.tickets.find_one({'record_hash': hash})
 if not ticket:
 doc = {
 'record_hash': hash,
 'level': record.level,
 'channel': record.channel or u'',
 'location': u'%s:%d' % (record.filename, record.lineno),
 'module': record.module or u'<unknown>',
 'occurrence_count': 0,
 'solved': False,
 'app_id': app_id,
 }
 ticket_id = db.tickets.insert(doc)
 else:
 ticket_id = ticket['_id']

 db.tickets.update({'_id': ticket_id}, {
 '$inc': {
 'occurrence_count': 1
 },
 '$set': {
 'last_occurrence_time': record.time,
 'solved': False
 }
 })
 # We store occurrences in a seperate collection so that
 # we can make it a capped collection optionally.
 db.occurrences.insert({
 'ticket_id': self._oid(ticket_id),
 'app_id': app_id,
 'time': record.time,
 'data': json.dumps(data),
 })

 def count_tickets(self):
 """Returns the number of tickets."""
 return self.database.tickets.count()

 def get_tickets(self, order_by='-last_occurrence_time', limit=50, offset=0):
 """Selects tickets from the database."""
 query = self._order(self.database.tickets.find(), order_by) \
 .limit(limit).skip(offset)
 return [self._FixedTicketClass(self, obj) for obj in query]

 def solve_ticket(self, ticket_id):
 """Marks a ticket as solved."""
 self.database.tickets.update({'_id': self._oid(ticket_id)},
 {'solved': True})

 def delete_ticket(self, ticket_id):
 """Deletes a ticket from the database."""
 self.database.occurrences.remove({'ticket_id': self._oid(ticket_id)})
 self.database.tickets.remove({'_id': self._oid(ticket_id)})

 def get_ticket(self, ticket_id):
 """Return a single ticket with all occurrences."""
 ticket = self.database.tickets.find_one({'_id': self._oid(ticket_id)})
 if ticket:
 return Ticket(self, ticket)

 def get_occurrences(self, ticket, order_by='-time', limit=50, offset=0):
 """Selects occurrences from the database for a ticket."""
 collection = self.database.occurrences
 occurrences = self._order(collection.find(
 {'ticket_id': self._oid(ticket)}
), order_by).limit(limit).skip(offset)
 return [self._FixedOccurrenceClass(self, obj) for obj in occurrences]

[docs]class TicketingBaseHandler(Handler, HashingHandlerMixin):
 """Baseclass for ticketing handlers. This can be used to interface
 ticketing systems that do not necessarily provide an interface that
 would be compatible with the :class:`BackendBase` interface.
 """

 def __init__(self, hash_salt, level=NOTSET, filter=None, bubble=False):
 Handler.__init__(self, level, filter, bubble)
 self.hash_salt = hash_salt

[docs] def hash_record_raw(self, record):
 """Returns the unique hash of a record."""
 hash = HashingHandlerMixin.hash_record_raw(self, record)
 if self.hash_salt is not None:
 hash_salt = self.hash_salt
 if isinstance(hash_salt, unicode):
 hash_salt = hash_salt.encode('utf-8')
 hash.update(b('\x00') + hash_salt)
 return hash

[docs]class TicketingHandler(TicketingBaseHandler):
 """A handler that writes log records into a remote database. This
 database can be connected to from different dispatchers which makes
 this a nice setup for web applications::

 from logbook.ticketing import TicketingHandler
 handler = TicketingHandler('sqlite:////tmp/myapp-logs.db')

 :param uri: a backend specific string or object to decide where to log to.
 :param app_id: a string with an optional ID for an application. Can be
 used to keep multiple application setups apart when logging
 into the same database.
 :param hash_salt: an optional salt (binary string) for the hashes.
 :param backend: A backend class that implements the proper database handling.
 Backends available are: :class:`SQLAlchemyBackend`,
 :class:`MongoDBBackend`.
 """

 #: The default backend that is being used when no backend is specified.
 #: Unless overriden by a subclass this will be the
 #: :class:`SQLAlchemyBackend`.
 default_backend = SQLAlchemyBackend

 def __init__(self, uri, app_id='generic', level=NOTSET,
 filter=None, bubble=False, hash_salt=None, backend=None,
 **db_options):
 if hash_salt is None:
 hash_salt = u'apphash-' + app_id
 TicketingBaseHandler.__init__(self, hash_salt, level, filter, bubble)
 if backend is None:
 backend = self.default_backend
 db_options['uri'] = uri
 self.set_backend(backend, **db_options)
 self.app_id = app_id

 def set_backend(self, cls, **options):
 self.db = cls(**options)

[docs] def process_record(self, record, hash):
 """Subclasses can override this to tamper with the data dict that
 is sent to the database as JSON.
 """
 return record.to_dict(json_safe=True)

[docs] def record_ticket(self, record, data, hash):
 """Record either a new ticket or a new occurrence for a
 ticket based on the hash.
 """
 self.db.record_ticket(record, data, hash, self.app_id)

[docs] def emit(self, record):
 """Emits a single record and writes it to the database."""
 hash = self.hash_record(record)
 data = self.process_record(record, hash)
 self.record_ticket(record, data, hash)

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_modules/logbook/queues.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 		Module code »

 Source code for logbook.queues

-*- coding: utf-8 -*-
"""
 logbook.queues
    ~~~~~~~~~~~~~~

    This module implements queue backends.

    :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
    :license: BSD, see LICENSE for more details.
"""
from threading import Thread
from Queue import Empty, Queue as ThreadQueue
from logbook.base import NOTSET, LogRecord, dispatch_record
from logbook.handlers import Handler, WrapperHandler
from logbook.helpers import json


[docs]class ZeroMQHandler(Handler):
    """A handler that acts as a ZeroMQ publisher, which publishes each record
    as json dump.  Requires the pyzmq library.

    The queue will be filled with JSON exported log records.  To receive such
    log records from a queue you can use the :class:`ZeroMQSubscriber`.


    Example setup::

        handler = ZeroMQHandler('tcp://127.0.0.1:5000')
    """

    def __init__(self, uri=None, level=NOTSET, filter=None, bubble=False,
                 context=None):
        Handler.__init__(self, level, filter, bubble)
        try:
            import zmq
        except ImportError:
            raise RuntimeError('The pyzmq library is required for '
                               'the ZeroMQHandler.')
        #: the zero mq context
        self.context = context or zmq.Context()
        #: the zero mq socket.
        self.socket = self.context.socket(zmq.PUB)
        if uri is not None:
            self.socket.bind(uri)

[docs]    def export_record(self, record):
        """Exports the record into a dictionary ready for JSON dumping."""
        return record.to_dict(json_safe=True)


    def emit(self, record):
        self.socket.send(json.dumps(self.export_record(record)))

    def close(self):
        self.socket.close()



[docs]class ThreadController(object):
    """A helper class used by queue subscribers to control the background
    thread.  This is usually created and started in one go by
    :meth:`~logbook.queues.ZeroMQSubscriber.dispatch_in_background` or
    a comparable function.
    """

    def __init__(self, subscriber, setup=None):
        self.setup = setup
        self.subscriber = subscriber
        self.running = False
        self._thread = None

[docs]    def start(self):
        """Starts the task thread."""
        self.running = True
        self._thread = Thread(target=self._target)
        self._thread.setDaemon(True)
        self._thread.start()


[docs]    def stop(self):
        """Stops the task thread."""
        if self.running:
            self.running = False
            self._thread.join()
            self._thread = None


    def _target(self):
        if self.setup is not None:
            self.setup.push_thread()
        try:
            while self.running:
                self.subscriber.dispatch_once(timeout=0.05)
        finally:
            if self.setup is not None:
                self.setup.pop_thread()



[docs]class SubscriberBase(object):
    """Baseclass for all subscribers."""

[docs]    def recv(self, timeout=None):
        """Receives a single record from the socket.  Timeout of 0 means nonblocking,
        `None` means blocking and otherwise it's a timeout in seconds after which
        the function just returns with `None`.

        Subclasses have to override this.
        """
        raise NotImplementedError()


[docs]    def dispatch_once(self, timeout=None):
        """Receives one record from the socket, loads it and dispatches it.  Returns
        `True` if something was dispatched or `False` if it timed out.
        """
        rv = self.recv(timeout)
        if rv is not None:
            dispatch_record(rv)
            return True
        return False


[docs]    def dispatch_forever(self):
        """Starts a loop that dispatches log records forever."""
        while 1:
            self.dispatch_once()


[docs]    def dispatch_in_background(self, setup=None):
        """Starts a new daemonized thread that dispatches in the background.
        An optional handler setup can be provided that pushed to the new
        thread (can be any :class:`logbook.base.StackedObject`).

        Returns a :class:`ThreadController` object for shutting down
        the background thread.  The background thread will already be
        running when this function returns.
        """
        controller = ThreadController(self, setup)
        controller.start()
        return controller




[docs]class ZeroMQSubscriber(SubscriberBase):
    """A helper that acts as ZeroMQ subscriber and will dispatch received
    log records to the active handler setup.  There are multiple ways to
    use this class.

    It can be used to receive log records from a queue::

        subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
        record = subscriber.recv()

    But it can also be used to receive and dispatch these in one go::

        with target_handler:
            subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
            subscriber.dispatch_forever()

    This will take all the log records from that queue and dispatch them
    over to `target_handler`.  If you want you can also do that in the
    background::

        subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
        controller = subscriber.dispatch_in_background(target_handler)

    The controller returned can be used to shut down the background
    thread::

        controller.stop()
    """

    def __init__(self, uri=None, context=None):
        try:
            import zmq
        except ImportError:
            raise RuntimeError('The pyzmq library is required for '
                               'the ZeroMQSubscriber.')
        self._zmq = zmq

        #: the zero mq context
        self.context = context or zmq.Context()
        #: the zero mq socket.
        self.socket = self.context.socket(zmq.SUB)
        if uri is not None:
            self.socket.connect(uri)
        self.socket.setsockopt(zmq.SUBSCRIBE, '')

    def __del__(self):
        try:
            self.close()
        except AttributeError:
            # subscriber partially created
            pass

[docs]    def close(self):
        """Closes the zero mq socket."""
        self.socket.close()


[docs]    def recv(self, timeout=None):
        """Receives a single record from the socket.  Timeout of 0 means nonblocking,
        `None` means blocking and otherwise it's a timeout in seconds after which
        the function just returns with `None`.
        """
        if timeout is None:
            rv = self.socket.recv()
        elif not timeout:
            rv = self.socket.recv(self._zmq.NOBLOCK)
            if rv is None:
                return
        else:
            if not self._zmq.select([self.socket], [], [], timeout)[0]:
                return
            rv = self.socket.recv(self._zmq.NOBLOCK)
        return LogRecord.from_dict(json.loads(rv))




def _fix_261_mplog():
    """necessary for older python's to disable a broken monkeypatch
    in the logging module.  See multiprocessing/util.py for the
    hasattr() check.  At least in Python 2.6.1 the multiprocessing
    module is not imported by logging and as such the test in
    the util fails.
    """
    import logging, multiprocessing
    logging.multiprocessing = multiprocessing


[docs]class MultiProcessingHandler(Handler):
    """Implements a handler that dispatches over a queue to a different
    process.  It is connected to a subscriber with a
    :class:`multiprocessing.Queue`::

        from multiprocessing import Queue
        from logbook.queues import MultiProcessingHandler
        queue = Queue(-1)
        handler = MultiProcessingHandler(queue)

    """

    def __init__(self, queue, level=NOTSET, filter=None, bubble=False):
        Handler.__init__(self, level, filter, bubble)
        self.queue = queue
        _fix_261_mplog()

    def emit(self, record):
        self.queue.put_nowait(record.to_dict(json_safe=True))



[docs]class MultiProcessingSubscriber(SubscriberBase):
    """Receives log records from the given multiprocessing queue and
    dispatches them to the active handler setup.  Make sure to use the same
    queue for both handler and subscriber.  Idaelly the queue is set
    up with maximum size (``-1``)::

        from multiprocessing import Queue
        queue = Queue(-1)

    It can be used to receive log records from a queue::

        subscriber = MultiProcessingSubscriber(queue)
        record = subscriber.recv()

    But it can also be used to receive and dispatch these in one go::

        with target_handler:
            subscriber = MultiProcessingSubscriber(queue)
            subscriber.dispatch_forever()

    This will take all the log records from that queue and dispatch them
    over to `target_handler`.  If you want you can also do that in the
    background::

        subscriber = MultiProcessingSubscriber(queue)
        controller = subscriber.dispatch_in_background(target_handler)

    The controller returned can be used to shut down the background
    thread::

        controller.stop()

    If no queue is provided the subscriber will create one.  This one can the
    be used by handlers::

        subscriber = MultiProcessingSubscriber()
        handler = MultiProcessingHandler(subscriber.queue)
    """

    def __init__(self, queue=None):
        if queue is None:
            from multiprocessing import Queue
            queue = Queue(-1)
        self.queue = queue
        _fix_261_mplog()

    def recv(self, timeout=None):
        if timeout is None:
            rv = self.queue.get()
        else:
            try:
                rv = self.queue.get(block=False, timeout=timeout)
            except Empty:
                return None
        return LogRecord.from_dict(rv)



class ExecnetChannelHandler(Handler):
    """Implements a handler that dispatches over a execnet channel
    to a different process.
    """

    def __init__(self, channel, level=NOTSET, filter=None, bubble=False):
        Handler.__init__(self, level, filter, bubble)
        self.channel = channel

    def emit(self, record):
        self.channel.send(record.to_dict(json_safe=True))


class ExecnetChannelSubscriber(SubscriberBase):
    """subscribes to a execnet channel"""

    def __init__(self, channel):
        self.channel = channel

    def recv(self, timeout=-1):
        try:
            rv = self.channel.receive(timeout=timeout)
        except self.channel.RemoteError:
            #XXX: handle
            return None
        except (self.channel.TimeoutError, EOFError):
            return None
        else:
            return LogRecord.from_dict(rv)


[docs]class TWHThreadController(object):
    """A very basic thread controller that pulls things in from a
    queue and sends it to a handler.  Both queue and handler are
    taken from the passed :class:`ThreadedWrapperHandler`.
    """
    _sentinel = object()

    def __init__(self, wrapper_handler):
        self.wrapper_handler = wrapper_handler
        self.running = False
        self._thread = None

[docs]    def start(self):
        """Starts the task thread."""
        self.running = True
        self._thread = Thread(target=self._target)
        self._thread.setDaemon(True)
        self._thread.start()


[docs]    def stop(self):
        """Stops the task thread."""
        if self.running:
            self.wrapper_handler.queue.put_nowait(self._sentinel)
            self._thread.join()
            self._thread = None


    def _target(self):
        while 1:
            record = self.wrapper_handler.queue.get()
            if record is self._sentinel:
                self.running = False
                break
            self.wrapper_handler.handler.emit(record)



[docs]class ThreadedWrapperHandler(WrapperHandler):
    """This handled uses a single background thread to dispatch log records
    to a specific other handler using an internal queue.  The idea is that if
    you are using a handler that requires some time to hand off the log records
    (such as the mail handler) and would block your request, you can let
    Logbook do that in a background thread.

    The threaded wrapper handler will automatically adopt the methods and
    properties of the wrapped handler.  All the values will be reflected:

    >>> twh = ThreadedWrapperHandler(TestHandler())
    >>> from logbook import WARNING
    >>> twh.level_name = 'WARNING'
    >>> twh.handler.level_name
    'WARNING'
    """
    _direct_attrs = frozenset(['handler', 'queue', 'controller'])

    def __init__(self, handler):
        WrapperHandler.__init__(self, handler)
        self.queue = ThreadQueue(-1)
        self.controller = TWHThreadController(self)
        self.controller.start()

    def close(self):
        self.controller.stop()
        self.handler.close()

    def emit(self, record):
        self.queue.put_nowait(record)



class GroupMember(ThreadController):
    def __init__(self, subscriber, queue):
        ThreadController.__init__(self, subscriber, None)
        self.queue = queue

    def _target(self):
        if self.setup is not None:
            self.setup.push_thread()
        try:
            while self.running:
                record = self.subscriber.recv()
                if record:
                    try:
                        self.queue.put(record, timeout=0.05)
                    except Queue.Full:
                        pass
        finally:
            if self.setup is not None:
                self.setup.pop_thread()


[docs]class SubscriberGroup(SubscriberBase):
    """This is a subscriber which represents a group of subscribers.

    This is helpful if you are writing a server-like application which has
    "slaves". This way a user is easily able to view every log record which
    happened somewhere in the entire system without having to check every
    single slave::

        subscribers = SubscriberGroup([
            MultiProcessingSubscriber(queue),
            ZeroMQSubscriber('tcp://localhost:5000')
        ])
        with target_handler:
            subscribers.dispatch_forever()
    """
    def __init__(self, subscribers=None, queue_limit=10):
        self.members = []
        self.queue = ThreadQueue(queue_limit)
        for subscriber in subscribers or []:
            self.add(subscriber)

[docs]    def add(self, subscriber):
        """Adds the given `subscriber` to the group."""
        member = GroupMember(subscriber, self.queue)
        member.start()
        self.members.append(member)


    def recv(self, timeout=None):
        try:
            return self.queue.get(timeout=timeout)
        except Empty:
            return

[docs]    def stop(self):
        """Stops the group from internally recieving any more messages, once the
        internal queue is exhausted :meth:`recv` will always return `None`.
        """
        for member in self.members:
            self.member.stop()







          

      

      

    


    
        © Copyright 2010, Armin Ronacher, Georg Brandl.
      Created using Sphinx 1.3.1.
    

  

_modules/logbook/base.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Logbook 0.4 »


          		Module code »

 
      


    


    
      
          
            
  Source code for logbook.base

# -*- coding: utf-8 -*-
"""
    logbook.base
    ~~~~~~~~~~~~

 Base implementation for logbook.

 :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
 :license: BSD, see LICENSE for more details.
"""
import os
import sys
import thread
import threading
import traceback
from itertools import chain
from weakref import ref as weakref
from datetime import datetime

from logbook.helpers import to_safe_json, parse_iso8601, cached_property, \
 F, _py3
try:
 from logbook._speedups import group_reflected_property, \
 ContextStackManager, StackedObject
except ImportError:
 from logbook._fallback import group_reflected_property, \
 ContextStackManager, StackedObject

make sure to sync these up with _speedups.pyx
CRITICAL = 6
ERROR = 5
WARNING = 4
NOTICE = 3
INFO = 2
DEBUG = 1
NOTSET = 0

_level_names = {
 CRITICAL: 'CRITICAL',
 ERROR: 'ERROR',
 WARNING: 'WARNING',
 NOTICE: 'NOTICE',
 INFO: 'INFO',
 DEBUG: 'DEBUG',
 NOTSET: 'NOTSET'
}
_reverse_level_names = dict((v, k) for (k, v) in _level_names.iteritems())
_missing = object()

on python 3 we can savely assume that frame filenames will be in
unicode, on Python 2 we have to apply a trick.
if _py3:
 def _convert_frame_filename(fn):
 return fn
else:
 def _convert_frame_filename(fn):
 if isinstance(fn, unicode):
 fn = fn.decode(sys.getfilesystemencoding() or 'utf-8',
 'replace')
 return fn

def level_name_property():
 """Returns a property that reflects the level as name from
 the internal level attribute.
 """

 def _get_level_name(self):
 return get_level_name(self.level)

 def _set_level_name(self, level):
 self.level = lookup_level(level)
 return property(_get_level_name, _set_level_name,
 doc='The level as unicode string')

[docs]def lookup_level(level):
 """Return the integer representation of a logging level."""
 if isinstance(level, (int, long)):
 return level
 try:
 return _reverse_level_names[level]
 except KeyError:
 raise LookupError('unknown level name %s' % level)

[docs]def get_level_name(level):
 """Return the textual representation of logging level 'level'."""
 try:
 return _level_names[level]
 except KeyError:
 raise LookupError('unknown level')

class ExtraDict(dict):
 """A dictionary which returns ``u''`` on missing keys."""

 if sys.version_info[:2] < (2, 5):
 def __getitem__(self, key):
 try:
 return dict.__getitem__(self, key)
 except KeyError:
 return u''
 else:
 def __missing__(self, key):
 return u''

 def copy(self):
 return self.__class__(self)

 def __repr__(self):
 return '%s(%s)' % (
 self.__class__.__name__,
 dict.__repr__(self)
)

class _ExceptionCatcher(object):
 """Helper for exception caught blocks."""

 def __init__(self, logger, args, kwargs):
 self.logger = logger
 self.args = args
 self.kwargs = kwargs

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, tb):
 if exc_type is not None:
 kwargs = self.kwargs.copy()
 kwargs['exc_info'] = (exc_type, exc_value, tb)
 self.logger.exception(*self.args, **kwargs)
 return True

class ContextObject(StackedObject):
 """An object that can be bound to a context. It is managed by the
 :class:`ContextStackManager`"""

 #: subclasses have to instanciate a :class:`ContextStackManager`
 #: object on this attribute which is then shared for all the
 #: subclasses of it.
 stack_manager = None

 def push_thread(self):
 """Pushes the context object to the thread stack."""
 self.stack_manager.push_thread(self)

 def pop_thread(self):
 """Pops the context object from the stack."""
 popped = self.stack_manager.pop_thread()
 assert popped is self, 'popped unexpected object'

 def push_application(self):
 """Pushes the context object to the application stack."""
 self.stack_manager.push_application(self)

 def pop_application(self):
 """Pops the context object from the stack."""
 popped = self.stack_manager.pop_application()
 assert popped is self, 'popped unexpected object'

[docs]class NestedSetup(StackedObject):
 """A nested setup can be used to configure multiple handlers
 and processors at once.
 """

 def __init__(self, objects=None):
 self.objects = list(objects or ())

 def push_application(self):
 for obj in self.objects:
 obj.push_application()

 def pop_application(self):
 for obj in reversed(self.objects):
 obj.pop_application()

 def push_thread(self):
 for obj in self.objects:
 obj.push_thread()

 def pop_thread(self):
 for obj in reversed(self.objects):
 obj.pop_thread()

[docs]class Processor(ContextObject):
 """Can be pushed to a stack to inject additional information into
 a log record as necessary::

 def inject_ip(record):
 record.extra['ip'] = '127.0.0.1'

 with Processor(inject_ip):
 ...
 """

 stack_manager = ContextStackManager()

 def __init__(self, callback=None):
 #: the callback that was passed to the constructor
 self.callback = callback

[docs] def process(self, record):
 """Called with the log record that should be overridden. The default
 implementation calls :attr:`callback` if it is not `None`.
 """
 if self.callback is not None:
 self.callback(record)

class _InheritedType(object):
 __slots__ = ()

 def __repr__(self):
 return 'Inherit'

 def __reduce__(self):
 return 'Inherit'
Inherit = _InheritedType()

[docs]class Flags(ContextObject):
 """Allows flags to be pushed on a flag stack. Currently two flags
 are available:

 `errors`
 Can be set to override the current error behaviour. This value is
 used when logging calls fail. The default behaviour is spitting
 out the stacktrace to stderr but this can be overridden:

 =================== ==
 ``'silent'`` fail silently
 ``'raise'`` raise a catchable exception
 ``'print'`` print the stacktrace to stderr (default)
 =================== ==

 `introspection`
 Can be used to disable frame introspection. This can give a
 speedup on production systems if you are using a JIT compiled
 Python interpreter such as pypy. The default is `True`.

 Note that the default setup of some of the handler (mail for
 instance) includes frame dependent information which will
 not be available when introspection is disabled.

 Example usage::

 with Flags(errors='silent'):
 ...
 """
 stack_manager = ContextStackManager()

 def __init__(self, **flags):
 self.__dict__.update(flags)

 @staticmethod
[docs] def get_flag(flag, default=None):
 """Looks up the current value of a specific flag."""
 for flags in Flags.stack_manager.iter_context_objects():
 val = getattr(flags, flag, Inherit)
 if val is not Inherit:
 return val
 return default

def _create_log_record(cls, dict):
 """Extra function for reduce because on Python 3 unbound methods
 can no longer be pickled.
 """
 return cls.from_dict(dict)

[docs]class LogRecord(object):
 """A LogRecord instance represents an event being logged.

 LogRecord instances are created every time something is logged. They
 contain all the information pertinent to the event being logged. The
 main information passed in is in msg and args
 """
 _pullable_information = frozenset((
 'func_name', 'module', 'filename', 'lineno', 'process_name', 'thread',
 'thread_name', 'formatted_exception', 'message', 'exception_name',
 'exception_message'
))
 _noned_on_close = frozenset(('exc_info', 'frame', 'calling_frame'))

 #: can be overriden by a handler to not close the record. This could
 #: lead to memory leaks so it should be used carefully.
 keep_open = False

 #: the time of the log record creation as :class:`datetime.datetime`
 #: object. This information is unavailable until the record was
 #: heavy initialized.
 time = None

 #: a flag that is `True` if the log record is heavy initialized which
 #: is not the case by default.
 heavy_initialized = False

 #: a flag that is `True` when heavy initialization is no longer possible
 late = False

 #: a flag that is `True` when all the information was pulled from the
 #: information that becomes unavailable on close.
 information_pulled = False

 def __init__(self, channel, level, msg, args=None, kwargs=None,
 exc_info=None, extra=None, frame=None, dispatcher=None):
 #: the name of the logger that created it or any other textual
 #: channel description. This is a descriptive name and can be
 #: used for filtering.
 self.channel = channel
 #: The message of the log record as new-style format string.
 self.msg = msg
 #: the positional arguments for the format string.
 self.args = args or ()
 #: the keyword arguments for the format string.
 self.kwargs = kwargs or {}
 #: the level of the log record as integer.
 self.level = level
 #: optional exception information. If set, this is a tuple in the
 #: form ``(exc_type, exc_value, tb)`` as returned by
 #: :func:`sys.exc_info`.
 self.exc_info = exc_info
 #: optional extra information as dictionary. This is the place
 #: where custom log processors can attach custom context sensitive
 #: data.
 self.extra = ExtraDict(extra or ())
 #: If available, optionally the interpreter frame that pulled the
 #: heavy init. This usually points to somewhere in the dispatcher.
 #: Might not be available for all calls and is removed when the log
 #: record is closed.
 self.frame = frame
 #: the PID of the current process
 self.process = None
 if dispatcher is not None:
 dispatcher = weakref(dispatcher)
 self._dispatcher = dispatcher

[docs] def heavy_init(self):
 """Does the heavy initialization that could be expensive. This must
 not be called from a higher stack level than when the log record was
 created and the later the initialization happens, the more off the
 date information will be for example.

 This is internally used by the record dispatching system and usually
 something not to worry about.
 """
 if self.heavy_initialized:
 return
 assert not self.late, 'heavy init is no longer possible'
 self.heavy_initialized = True
 self.process = os.getpid()
 self.time = datetime.utcnow()
 if self.frame is None and Flags.get_flag('introspection', True):
 self.frame = sys._getframe(1)

[docs] def pull_information(self):
 """A helper function that pulls all frame-related information into
 the object so that this information is available after the log
 record was closed.
 """
 if self.information_pulled:
 return
 # due to how cached_property is implemented, the attribute access
 # has the side effect of caching the attribute on the instance of
 # the class.
 for key in self._pullable_information:
 getattr(self, key)
 self.information_pulled = True

[docs] def close(self):
 """Closes the log record. This will set the frame and calling
 frame to `None` and frame-related information will no longer be
 available unless it was pulled in first (:meth:`pull_information`).
 This makes a log record safe for pickling and will clean up
 memory that might be still referenced by the frames.
 """
 for key in self._noned_on_close:
 setattr(self, key, None)
 self.late = True

 def __reduce_ex__(self, protocol):
 return _create_log_record, (type(self), self.to_dict())

[docs] def to_dict(self, json_safe=False):
 """Exports the log record into a dictionary without the information
 that cannot be safely serialized like interpreter frames and
 tracebacks.
 """
 self.pull_information()
 rv = {}
 for key, value in self.__dict__.iteritems():
 if key[:1] != '_' and key not in self._noned_on_close:
 rv[key] = value
 # the extra dict is exported as regular dict
 rv['extra'] = dict(rv['extra'])
 if json_safe:
 return to_safe_json(rv)
 return rv

 @classmethod
[docs] def from_dict(cls, d):
 """Creates a log record from an exported dictionary. This also
 supports JSON exported dictionaries.
 """
 rv = object.__new__(cls)
 rv.update_from_dict(d)
 return rv

[docs] def update_from_dict(self, d):
 """Like the :meth:`from_dict` classmethod, but will update the
 instance in place. Helpful for constructors.
 """
 self.__dict__.update(d)
 for key in self._noned_on_close:
 setattr(self, key, None)
 self._information_pulled = True
 self._channel = None
 if isinstance(self.time, basestring):
 self.time = parse_iso8601(self.time)
 return self

 @cached_property
[docs] def message(self):
 """The formatted message."""
 if not (self.args or self.kwargs):
 return self.msg
 try:
 return F(self.msg).format(*self.args, **self.kwargs)
 except Exception, e:
 # this obviously will not give a proper error message if the
 # information was not pulled and the log record no longer has
 # access to the frame. But there is not much we can do about
 # that.
 errormsg = F('Could not format message with provided '
 'arguments: {err}\n msg=\'{msg}\'\n '
 'args={args} \n kwargs={kwargs}.\n'
 'Happened in file {file}, line {lineno}').format(
 err=e, msg=self.msg, args=self.args,
 kwargs=self.kwargs, file=self.filename,
 lineno=self.lineno
)
 if not _py3:
 errormsg = errormsg.encode('utf-8')
 raise TypeError(errormsg)

 level_name = level_name_property()

 @cached_property
[docs] def calling_frame(self):
 """The frame in which the record has been created. This only
 exists for as long the log record is not closed.
 """
 frm = self.frame
 globs = globals()
 while frm is not None and frm.f_globals is globs:
 frm = frm.f_back
 return frm

 @cached_property
[docs] def func_name(self):
 """The name of the function that triggered the log call if
 available. Requires a frame or that :meth:`pull_information`
 was called before.
 """
 cf = self.calling_frame
 if cf is not None:
 return cf.f_code.co_name

 @cached_property
[docs] def module(self):
 """The name of the module that triggered the log call if
 available. Requires a frame or that :meth:`pull_information`
 was called before.
 """
 cf = self.calling_frame
 if cf is not None:
 return cf.f_globals.get('__name__')

 @cached_property
[docs] def filename(self):
 """The filename of the module in which the record has been created.
 Requires a frame or that :meth:`pull_information` was called before.
 """
 cf = self.calling_frame
 if cf is not None:
 fn = cf.f_code.co_filename
 if fn[:1] == '<' and fn[-1:] == '>':
 return fn
 return _convert_frame_filename(os.path.abspath(fn))

 @cached_property
[docs] def lineno(self):
 """The line number of the file in which the record has been created.
 Requires a frame or that :meth:`pull_information` was called before.
 """
 cf = self.calling_frame
 if cf is not None:
 return cf.f_lineno

 @cached_property
[docs] def thread(self):
 """The ident of the thread. This is evaluated late and means that
 if the log record is passed to another thread, :meth:`pull_information`
 was called in the old thread.
 """
 return thread.get_ident()

 @cached_property
[docs] def thread_name(self):
 """The name of the thread. This is evaluated late and means that
 if the log record is passed to another thread, :meth:`pull_information`
 was called in the old thread.
 """
 return threading.currentThread().getName()

 @cached_property
[docs] def process_name(self):
 """The name of the process in which the record has been created."""
 # Errors may occur if multiprocessing has not finished loading
 # yet - e.g. if a custom import hook causes third-party code
 # to run when multiprocessing calls import. See issue 8200
 # for an example
 mp = sys.modules.get('multiprocessing')
 if mp is not None: # pragma: no cover
 try:
 return mp.current_process().name
 except Exception:
 pass

 @cached_property
[docs] def formatted_exception(self):
 """The formatted exception which caused this record to be created
 in case there was any.
 """
 if self.exc_info is not None:
 rv = ''.join(traceback.format_exception(*self.exc_info))
 if not _py3:
 rv = rv.decode('utf-8', 'replace')
 return rv.rstrip()

 @cached_property
[docs] def exception_name(self):
 """The name of the exception."""
 if self.exc_info is not None:
 cls = self.exc_info[0]
 return unicode(cls.__module__ + '.' + cls.__name__)

 @property
 def exception_shortname(self):
 """An abbreviated exception name (no import path)"""
 return self.exception_name.rsplit('.')[-1]

 @cached_property
[docs] def exception_message(self):
 """The message of the exception."""
 if self.exc_info is not None:
 val = self.exc_info[1]
 try:
 return unicode(val)
 except UnicodeError:
 return str(val).decode('utf-8', 'replace')

 @property
 def dispatcher(self):
 """The dispatcher that created the log record. Might not exist because
 a log record does not have to be created from a logger or other
 dispatcher to be handled by logbook. If this is set, it will point to
 an object that implements the :class:`~logbook.base.RecordDispatcher`
 interface.
 """
 if self._dispatcher is not None:
 return self._dispatcher()

[docs]class LoggerMixin(object):
 """This mixin class defines and implements the "usual" logger
 interface (i.e. the descriptive logging functions).

 Classes using this mixin have to implement a :meth:`!handle` method which
 takes a :class:`~logbook.LogRecord` and passes it along.
 """

 #: The name of the minimium logging level required for records to be
 #: created.
 level_name = level_name_property()

[docs] def debug(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.DEBUG`.
 """
 if not self.disabled and DEBUG >= self.level:
 self._log(DEBUG, args, kwargs)

[docs] def info(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.INFO`.
 """
 if not self.disabled and INFO >= self.level:
 self._log(INFO, args, kwargs)

[docs] def warn(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.WARNING`. This function has an alias
 named :meth:`warning`.
 """
 if not self.disabled and WARNING >= self.level:
 self._log(WARNING, args, kwargs)

[docs] def warning(self, *args, **kwargs):
 """Alias for :meth:`warn`."""
 return self.warn(*args, **kwargs)

[docs] def notice(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.NOTICE`.
 """
 if not self.disabled and NOTICE >= self.level:
 self._log(NOTICE, args, kwargs)

[docs] def error(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.ERROR`.
 """
 if not self.disabled and ERROR >= self.level:
 self._log(ERROR, args, kwargs)

[docs] def exception(self, *args, **kwargs):
 """Works exactly like :meth:`error` just that the message
 is optional and exception information is recorded.
 """
 if self.disabled or ERROR < self.level:
 return
 if not args:
 args = ('Uncaught exception occurred',)
 if 'exc_info' not in kwargs:
 exc_info = sys.exc_info()
 assert exc_info[0] is not None, 'no exception occurred'
 kwargs.setdefault('exc_info', sys.exc_info())
 return self.error(*args, **kwargs)

[docs] def critical(self, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to :data:`~logbook.CRITICAL`.
 """
 if not self.disabled and CRITICAL >= self.level:
 self._log(CRITICAL, args, kwargs)

[docs] def log(self, level, *args, **kwargs):
 """Logs a :class:`~logbook.LogRecord` with the level set
 to the `level` parameter. Because custom levels are not
 supported by logbook, this method is mainly used to avoid
 the use of reflection (e.g.: :func:`getattr`) for programmatic
 logging.
 """
 level = lookup_level(level)
 if level >= self.level:
 self._log(level, args, kwargs)

[docs] def catch_exceptions(self, *args, **kwargs):
 """A context manager that catches exceptions and calls
 :meth:`exception` for exceptions caught that way. Example::

 with logger.catch_exceptions():
 execute_code_that_might_fail()
 """
 if not args:
 args = ('Uncaught exception occurred',)
 return _ExceptionCatcher(self, args, kwargs)

 def _log(self, level, args, kwargs):
 exc_info = kwargs.pop('exc_info', None)
 extra = kwargs.pop('extra', None)
 self.make_record_and_handle(level, args[0], args[1:], kwargs,
 exc_info, extra)

[docs]class RecordDispatcher(object):
 """A record dispatcher is the internal base class that implements
 the logic used by the :class:`~logbook.Logger`.
 """

 #: If this is set to `True` the dispatcher information will be suppressed
 #: for log records emitted from this logger.
 suppress_dispatcher = False

 def __init__(self, name=None, level=NOTSET):
 #: the name of the record dispatcher
 self.name = name
 #: list of handlers specific for this record dispatcher
 self.handlers = []
 #: optionally the name of the group this logger belongs to
 self.group = None
 #: the level of the record dispatcher as integer
 self.level = level

 disabled = group_reflected_property('disabled', False)
 level = group_reflected_property('level', NOTSET, fallback=NOTSET)

[docs] def handle(self, record):
 """Call the handlers for the specified record. This is
 invoked automatically when a record should be handled.
 The default implementation checks if the dispatcher is disabled
 and if the record level is greater than the level of the
 record dispatcher. In that case it will call the handlers
 (:meth:`call_handlers`).
 """
 if not self.disabled and record.level >= self.level:
 self.call_handlers(record)

[docs] def make_record_and_handle(self, level, msg, args, kwargs, exc_info,
 extra):
 """Creates a record from some given arguments and heads it
 over to the handling system.
 """
 # The channel information can be useful for some use cases which is
 # why we keep it on there. The log record however internally will
 # only store a weak reference to the channel, so it might disappear
 # from one instruction to the other. It will also disappear when
 # a log record is transmitted to another process etc.
 channel = None
 if not self.suppress_dispatcher:
 channel = self

 record = LogRecord(self.name, level, msg, args, kwargs, exc_info,
 extra, None, channel)

 # after handling the log record is closed which will remove some
 # referenes that would require a GC run on cpython. This includes
 # the current stack frame, exception information. However there are
 # some use cases in keeping the records open for a little longer.
 # For example the test handler keeps log records open until the
 # test handler is closed to allow assertions based on stack frames
 # and exception information.
 try:
 self.handle(record)
 finally:
 record.late = True
 if not record.keep_open:
 record.close()

[docs] def call_handlers(self, record):
 """Pass a record to all relevant handlers in the following
 order:

 - per-dispatcher handlers are handled first
 - afterwards all the current context handlers in the
 order they were pushed

 Before the first handler is invoked, the record is processed
 (:meth:`process_record`).
 """
 # for performance reasons records are only heavy initialized
 # and processed if at least one of the handlers has a higher
 # level than the record and that handler is not a black hole.
 record_initialized = False

 # Both logger attached handlers as well as context specific
 # handlers are handled one after another. The latter also
 # include global handlers.
 for handler in chain(self.handlers,
 Handler.stack_manager.iter_context_objects()):
 # skip records that this handler is not interested in based
 # on the record and handler level or in case this method was
 # overridden on some custom logic.
 if not handler.should_handle(record):
 continue

 # if this is a blackhole handler, don't even try to
 # do further processing, stop right away. Technically
 # speaking this is not 100% correct because if the handler
 # is bubbling we shouldn't apply this logic, but then we
 # won't enter this branch anyways. The result is that a
 # bubbling blackhole handler will never have this shortcut
 # applied and do the heavy init at one point. This is fine
 # however because a bubbling blackhole handler is not very
 # useful in general.
 if handler.blackhole:
 break

 # we are about to handle the record. If it was not yet
 # processed by context-specific record processors we
 # have to do that now and remeber that we processed
 # the record already.
 if not record_initialized:
 record.heavy_init()
 self.process_record(record)
 record_initialized = True

 # a filter can still veto the handling of the record. This
 # however is already operating on an initialized and processed
 # record. The impact is that filters are slower than the
 # handler's should_handle function in case there is no default
 # handler that would handle the record (delayed init).
 if handler.filter is not None \
 and not handler.filter(record, handler):
 continue

 # handle the record. If the record was handled and
 # the record is not bubbling we can abort now.
 if handler.handle(record) and not handler.bubble:
 break

[docs] def process_record(self, record):
 """Processes the record with all context specific processors. This
 can be overriden to also inject additional information as necessary
 that can be provided by this record dispatcher.
 """
 if self.group is not None:
 self.group.process_record(record)
 for processor in Processor.stack_manager.iter_context_objects():
 processor.process(record)

[docs]class Logger(RecordDispatcher, LoggerMixin):
 """Instances of the Logger class represent a single logging channel.
 A "logging channel" indicates an area of an application. Exactly
 how an "area" is defined is up to the application developer.

 Names used by logbook should be descriptive and are intended for user
 display, not for filtering. Filtering should happen based on the
 context information instead.

 A logger internally is a subclass of a
 :class:`~logbook.base.RecordDispatcher` that implements the actual
 logic. If you want to implement a custom logger class, have a look
 at the interface of that class as well.
 """

[docs]class LoggerGroup(object):
 """A LoggerGroup represents a group of loggers. It cannot emit log
 messages on its own but it can be used to set the disabled flag and
 log level of all loggers in the group.

 Furthermore the :meth:`process_record` method of the group is called
 by any logger in the group which by default calls into the
 :attr:`processor` callback function.
 """

 def __init__(self, loggers=None, level=NOTSET, processor=None):
 #: a list of all loggers on the logger group. Use the
 #: :meth:`add_logger` and :meth:`remove_logger` methods to add
 #: or remove loggers from this list.
 self.loggers = []
 if loggers is not None:
 for logger in loggers:
 self.add_logger(logger)

 #: the level of the group. This is reflected to the loggers
 #: in the group unless they overrode the setting.
 self.level = lookup_level(level)
 #: the disabled flag for all loggers in the group, unless
 #: the loggers overrode the setting.
 self.disabled = False
 #: an optional callback function that is executed to process
 #: the log records of all loggers in the group.
 self.processor = processor

[docs] def add_logger(self, logger):
 """Adds a logger to this group."""
 assert logger.group is None, 'Logger already belongs to a group'
 logger.group = self
 self.loggers.append(logger)

[docs] def remove_logger(self, logger):
 """Removes a logger from the group."""
 self.loggers.remove(logger)
 logger.group = None

[docs] def process_record(self, record):
 """Like :meth:`Logger.process_record` but for all loggers in
 the group. By default this calls into the :attr:`processor`
 function is it's not `None`.
 """
 if self.processor is not None:
 self.processor(record)

_default_dispatcher = RecordDispatcher()

[docs]def dispatch_record(record):
 """Passes a record on to the handlers on the stack. This is useful when
 log records are created programmatically and already have all the
 information attached and should be dispatched independent of a logger.
 """
 _default_dispatcher.call_handlers(record)

at that point we are save to import handler

from logbook.handlers import Handler

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_modules/logbook/notifiers.html

 Navigation

 		
 index

 		
 modules |

 		Logbook 0.4 »

 		Module code »

 Source code for logbook.notifiers

-*- coding: utf-8 -*-
"""
 logbook.notifiers
    ~~~~~~~~~~~~~~~~~

    System notify handlers for OSX and Linux.

    :copyright: (c) 2010 by Armin Ronacher, Christopher Grebs.
    :license: BSD, see LICENSE for more details.
"""
import os
import sys
import base64
from time import time
from urllib import urlencode
from httplib import HTTPSConnection

from logbook.base import NOTSET, ERROR, WARNING
from logbook.handlers import Handler, LimitingHandlerMixin
from logbook.helpers import get_application_name


[docs]def create_notification_handler(application_name=None, level=NOTSET, icon=None):
    """Creates a handler perfectly fit the current platform.  On Linux
    systems this creates a :class:`LibNotifyHandler`, on OS X systems it
    will create a :class:`GrowlHandler`.
    """
    if sys.platform == 'darwin':
        return GrowlHandler(application_name, level=level, icon=icon)
    return LibNotifyHandler(application_name, level=level, icon=icon)



[docs]class NotificationBaseHandler(Handler, LimitingHandlerMixin):
    """Baseclass for notification handlers."""

    def __init__(self, application_name=None, record_limit=None,
                 record_delta=None, level=NOTSET, filter=None, bubble=False):
        Handler.__init__(self, level, filter, bubble)
        LimitingHandlerMixin.__init__(self, record_limit, record_delta)
        if application_name is None:
            application_name = get_application_name()
        self.application_name = application_name

[docs]    def make_title(self, record):
        """Called to get the title from the record."""
        return u'%s: %s' % (record.channel, record.level_name.title())


[docs]    def make_text(self, record):
        """Called to get the text of the record."""
        return record.message




[docs]class GrowlHandler(NotificationBaseHandler):
    """A handler that dispatches to Growl.  Requires that either growl-py or
    py-Growl are installed.
    """

    def __init__(self, application_name=None, icon=None, host=None,
                 password=None, record_limit=None, record_delta=None,
                 level=NOTSET, filter=None, bubble=False):
        NotificationBaseHandler.__init__(self, application_name, record_limit,
                                         record_delta, level, filter, bubble)

        # growl is using the deprecated md5 module, but we really don't need
        # to see that deprecation warning
        from warnings import filterwarnings
        filterwarnings(module='Growl', category=DeprecationWarning,
                       action='ignore')

        try:
            import Growl
            self._growl = Growl
        except ImportError:
            raise RuntimeError('The growl module is not available.  You have '
                               'to install either growl-py or py-Growl to '
                               'use the GrowlHandler.')

        if icon is not None:
            if not os.path.isfile(icon):
                raise IOError('Filename to an icon expected.')
            icon = self._growl.Image.imageFromPath(icon)
        else:
            try:
                icon = self._growl.Image.imageWithIconForCurrentApplication()
            except TypeError:
                icon = None

        self._notifier = self._growl.GrowlNotifier(
            applicationName=self.application_name,
            applicationIcon=icon,
            notifications=['Notset', 'Debug', 'Info', 'Notice', 'Warning',
                           'Error', 'Critical'],
            hostname=host,
            password=password
        )
        self._notifier.register()

[docs]    def is_sticky(self, record):
        """Returns `True` if the sticky flag should be set for this record.
        The default implementation marks errors and criticals sticky.
        """
        return record.level >= ERROR


[docs]    def get_priority(self, record):
        """Returns the priority flag for Growl.  Errors and criticals are
        get highest priority (2), warnings get higher priority (1) and the
        rest gets 0.  Growl allows values between -2 and 2.
        """
        if record.level >= ERROR:
            return 2
        elif record.level == WARNING:
            return 1
        return 0


    def emit(self, record):
        if not self.check_delivery(record)[1]:
            return
        self._notifier.notify(record.level_name.title(),
                              self.make_title(record),
                              self.make_text(record),
                              sticky=self.is_sticky(record),
                              priority=self.get_priority(record))



[docs]class LibNotifyHandler(NotificationBaseHandler):
    """A handler that dispatches to libnotify.  Requires pynotify installed.
    If `no_init` is set to `True` the initialization of libnotify is skipped.
    """

    def __init__(self, application_name=None, icon=None, no_init=False,
                 record_limit=None, record_delta=None, level=NOTSET,
                 filter=None, bubble=False):
        NotificationBaseHandler.__init__(self, application_name, record_limit,
                                         record_delta, level, filter, bubble)

        try:
            import pynotify
            self._pynotify = pynotify
        except ImportError:
            raise RuntimeError('The pynotify library is required for '
                               'the LibNotifyHandler.')

        self.icon = icon
        if not no_init:
            pynotify.init(self.application_name)

[docs]    def set_notifier_icon(self, notifier, icon):
        """Used to attach an icon on a notifier object."""
        try:
            from gtk import gdk
        except ImportError:
            #TODO: raise a warning?
            raise RuntimeError('The gtk.gdk module is required to set an icon.')

        if icon is not None:
            if not isinstance(icon, gdk.Pixbuf):
                icon = gdk.pixbuf_new_from_file(icon)
            notifier.set_icon_from_pixbuf(icon)


[docs]    def get_expires(self, record):
        """Returns either EXPIRES_DEFAULT or EXPIRES_NEVER for this record.
        The default implementation marks errors and criticals as EXPIRES_NEVER.
        """
        pn = self._pynotify
        return pn.EXPIRES_NEVER if record.level >= ERROR else pn.EXPIRES_DEFAULT


[docs]    def get_urgency(self, record):
        """Returns the urgency flag for pynotify.  Errors and criticals are
        get highest urgency (CRITICAL), warnings get higher priority (NORMAL)
        and the rest gets LOW.
        """
        pn = self._pynotify
        if record.level >= ERROR:
            return pn.URGENCY_CRITICAL
        elif record.level == WARNING:
            return pn.URGENCY_NORMAL
        return pn.URGENCY_LOW


    def emit(self, record):
        if not self.check_delivery(record)[1]:
            return
        notifier = self._pynotify.Notification(self.make_title(record),
                                               self.make_text(record))
        notifier.set_urgency(self.get_urgency(record))
        notifier.set_timeout(self.get_expires(record))
        self.set_notifier_icon(notifier, self.icon)
        notifier.show()



[docs]class BoxcarHandler(NotificationBaseHandler):
    """Sends notifications to boxcar.io.  Can be forwarded to your iPhone or
    other compatible device.
    """
    api_url = 'https://boxcar.io/notifications/'

    def __init__(self, email, password, record_limit=None, record_delta=None,
                 level=NOTSET, filter=None, bubble=False):
        NotificationBaseHandler.__init__(self, None, record_limit, record_delta,
                                         level, filter, bubble)
        self.email = email
        self.password = password

[docs]    def get_screen_name(self, record):
        """Returns the value of the screen name field."""
        return record.level_name.title()


    def emit(self, record):
        if not self.check_delivery(record)[1]:
            return
        body = urlencode({
            'notification[from_screen_name]':
                self.get_screen_name(record).encode('utf-8'),
            'notification[message]':
                self.make_text(record).encode('utf-8'),
            'notification[from_remote_service_id]': str(int(time() * 100))
        })
        con = HTTPSConnection('boxcar.io')
        con.request('POST', '/notifications/', headers={
            'Authorization': 'Basic ' +
                base64.b64encode((u'%s:%s' %
                    (self.email, self.password)).encode('utf-8')).strip(),
        }, body=body)
        con.close()



[docs]class NotifoHandler(NotificationBaseHandler):
    """Sends notifications to notifo.com.  Can be forwarded to your Desktop,
    iPhone, or other compatible device.
    """

    def __init__(self, application_name=None, username=None, secret=None,
                 record_limit=None, record_delta=None, level=NOTSET, filter=None,
                 bubble=False, hide_level=False):
        try:
            import notifo
        except ImportError:
            raise RuntimeError(
                'The notifo module is not available.  You have '
                'to install notifo to use the NotifoHandler.'
            )
        NotificationBaseHandler.__init__(self, None, record_limit, record_delta,
                                         level, filter, bubble)
        self._notifo = notifo
        self.application_name = application_name
        self.username = username
        self.secret = secret
        self.hide_level = hide_level


    def emit(self, record):

        if self.hide_level:
            _level_name = None
        else:
            _level_name = self.level_name

        self._notifo.send_notification(self.username, self.secret, None,
                                       record.message, self.application_name,
                                       _level_name, None)






          

      

      

    


    
        © Copyright 2010, Armin Ronacher, Georg Brandl.
      Created using Sphinx 1.3.1.
    

  

_modules/logbook/handlers.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Logbook 0.4 »


          		Module code »

 
      


    


    
      
          
            
  Source code for logbook.handlers

# -*- coding: utf-8 -*-
"""
    logbook.handlers
    ~~~~~~~~~~~~~~~~

 The handler interface and builtin handlers.

 :copyright: (c) 2010 by Armin Ronacher, Georg Brandl.
 :license: BSD, see LICENSE for more details.
"""
import os
import sys
import stat
import errno
import socket
try:
 from hashlib import sha1
except ImportError:
 from sha import new as sha1
import threading
import traceback
from datetime import datetime, timedelta
from itertools import izip
from threading import Lock
from collections import deque

from logbook.base import CRITICAL, ERROR, WARNING, NOTICE, INFO, DEBUG, \
 NOTSET, level_name_property, _missing, lookup_level, \
 Flags, ContextObject, ContextStackManager
from logbook.helpers import any, rename, F, b, _is_text_stream

DEFAULT_FORMAT_STRING = (
 u'[{record.time:%Y-%m-%d %H:%M}] '
 u'{record.level_name}: {record.channel}: {record.message}'
)
SYSLOG_FORMAT_STRING = u'{record.channel}: {record.message}'
NTLOG_FORMAT_STRING = u'''\
Message Level: {record.level_name}
Location: {record.filename}:{record.lineno}
Module: {record.module}
Function: {record.func_name}
Exact Time: {record.time:%Y-%m-%d %H:%M:%S}

Event provided Message:

{record.message}
'''
TEST_FORMAT_STRING = \
u'[{record.level_name}] {record.channel}: {record.message}'
MAIL_FORMAT_STRING = u'''\
Subject: {handler.subject}

Message type: {record.level_name}
Location: {record.filename}:{record.lineno}
Module: {record.module}
Function: {record.func_name}
Time: {record.time:%Y-%m-%d %H:%M:%S}

Message:

{record.message}
'''
MAIL_RELATED_FORMAT_STRING = u'''\
Message type: {record.level_name}
Location: {record.filename}:{record.lineno}
Module: {record.module}
Function: {record.func_name}
{record.message}
'''

SYSLOG_PORT = 514

_py3 = sys.version_info >= (3, 0)

[docs]def create_syshandler(application_name, level=NOTSET):
 """Creates the handler the operating system provides. On Unix systems
 this creates a :class:`SyslogHandler`, on Windows sytems it will
 create a :class:`NTEventLogHandler`.
 """
 if os.name == 'nt':
 return NTEventLogHandler(application_name, level=level)
 return SyslogHandler(application_name, level=level)

class _HandlerType(type):
 """The metaclass of handlers injects a destructor if the class has an
 overridden close method. This makes it possible that the default
 handler class as well as all subclasses that don't need cleanup to be
 collected with less overhead.
 """

 def __new__(cls, name, bases, d):
 # aha, that thing has a custom close method. We will need a magic
 # __del__ for it to be called on cleanup.
 if bases != (ContextObject,) and 'close' in d and '__del__' not in d \
 and not any(hasattr(x, '__del__') for x in bases):
 def _magic_del(self):
 try:
 self.close()
 except Exception:
 # del is also invoked when init fails, so we better just
 # ignore any exception that might be raised here
 pass
 d['__del__'] = _magic_del
 return type.__new__(cls, name, bases, d)

[docs]class Handler(ContextObject):
 """Handler instances dispatch logging events to specific destinations.

 The base handler class. Acts as a placeholder which defines the Handler
 interface. Handlers can optionally use Formatter instances to format
 records as desired. By default, no formatter is specified; in this case,
 the 'raw' message as determined by record.message is logged.

 To bind a handler you can use the :meth:`push_application` and
 :meth:`push_thread` methods. This will push the handler on a stack of
 handlers. To undo this, use the :meth:`pop_application` and
 :meth:`pop_thread` methods::

 handler = MyHandler()
 handler.push_application()
 # all here goes to that handler
 handler.pop_application()

 By default messages send to that handler will not go to a handler on
 an outer level on the stack, if handled. This can be changed by
 setting bubbling to `True`. This setup for example would not have
 any effect::

 handler = NullHandler(bubble=False)
 handler.push_application()

 Whereas this setup disables all logging for the application::

 handler = NullHandler()
 handler.push_application()

 There are also context managers to setup the handler for the duration
 of a `with`-block::

 with handler.applicationbound():
 ...

 with handler.threadbound():
 ...

 Because `threadbound` is a common operation, it is aliased to a with
 on the handler itself::

 with handler:
 ...
 """
 __metaclass__ = _HandlerType

 stack_manager = ContextStackManager()

 #: a flag for this handler that can be set to `True` for handlers that
 #: are consuming log records but are not actually displaying it. This
 #: flag is set for the :class:`NullHandler` for instance.
 blackhole = False

 def __init__(self, level=NOTSET, filter=None, bubble=False):
 #: the level for the handler. Defaults to `NOTSET` which
 #: consumes all entries.
 self.level = lookup_level(level)
 #: the formatter to be used on records. This is a function
 #: that is passed a log record as first argument and the
 #: handler as second and returns something formatted
 #: (usually a unicode string)
 self.formatter = None
 #: the filter to be used with this handler
 self.filter = filter
 #: the bubble flag of this handler
 self.bubble = bubble

 level_name = level_name_property()

[docs] def format(self, record):
 """Formats a record with the given formatter. If no formatter
 is set, the record message is returned. Generally speaking the
 return value is most likely a unicode string, but nothing in
 the handler interface requires a formatter to return a unicode
 string.

 The combination of a handler and formatter might have the
 formatter return an XML element tree for example.
 """
 if self.formatter is None:
 return record.message
 return self.formatter(record, self)

[docs] def should_handle(self, record):
 """Returns `True` if this handler wants to handle the record. The
 default implementation checks the level.
 """
 return record.level >= self.level

[docs] def handle(self, record):
 """Emits the record and falls back. It tries to :meth:`emit` the
 record and if that fails, it will call into :meth:`handle_error` with
 the record and traceback. This function itself will always emit
 when called, even if the logger level is higher than the record's
 level.

 If this method returns `False` it signals to the calling function that
 no recording took place in which case it will automatically bubble.
 This should not be used to signal error situations. The default
 implementation always returns `True`.
 """
 try:
 self.emit(record)
 except Exception:
 self.handle_error(record, sys.exc_info())
 return True

[docs] def emit(self, record):
 """Emit the specified logging record. This should take the
 record and deliver it to whereever the handler sends formatted
 log records.
 """

[docs] def emit_batch(self, records, reason):
 """Some handlers may internally queue up records and want to forward
 them at once to another handler. For example the
 :class:`~logbook.FingersCrossedHandler` internally buffers
 records until a level threshold is reached in which case the buffer
 is sent to this method and not :meth:`emit` for each record.

 The default behaviour is to call :meth:`emit` for each record in
 the buffer, but handlers can use this to optimize log handling. For
 instance the mail handler will try to batch up items into one mail
 and not to emit mails for each record in the buffer.

 Note that unlike :meth:`emit` there is no wrapper method like
 :meth:`handle` that does error handling. The reason is that this
 is intended to be used by other handlers which are already protected
 against internal breakage.

 `reason` is a string that specifies the rason why :meth:`emit_batch`
 was called, and not :meth:`emit`. The following are valid values:

 ``'buffer'``
 Records were buffered for performance reasons or because the
 records were sent to another process and buffering was the only
 possible way. For most handlers this should be equivalent to
 calling :meth:`emit` for each record.

 ``'escalation'``
 Escalation means that records were buffered in case the threshold
 was exceeded. In this case, the last record in the iterable is the
 record that triggered the call.

 ``'group'``
 All the records in the iterable belong to the same logical
 component and happened in the same process. For example there was
 a long running computation and the handler is invoked with a bunch
 of records that happened there. This is similar to the escalation
 reason, just that the first one is the significant one, not the
 last.

 If a subclass overrides this and does not want to handle a specific
 reason it must call into the superclass because more reasons might
 appear in future releases.

 Example implementation::

 def emit_batch(self, records, reason):
 if reason not in ('escalation', 'group'):
 Handler.emit_batch(self, records, reason)
 ...
 """
 for record in records:
 self.emit(record)

[docs] def close(self):
 """Tidy up any resources used by the handler. This is automatically
 called by the destructor of the class as well, but explicit calls are
 encouraged. Make sure that multiple calls to close are possible.
 """

[docs] def handle_error(self, record, exc_info):
 """Handle errors which occur during an emit() call. The behaviour of
 this function depends on the current `errors` setting.

 Check :class:`Flags` for more information.
 """
 try:
 behaviour = Flags.get_flag('errors', 'print')
 if behaviour == 'raise':
 raise exc_info[0], exc_info[1], exc_info[2]
 elif behaviour == 'print':
 traceback.print_exception(*(exc_info + (None, sys.stderr)))
 sys.stderr.write('Logged from file %s, line %s\n' % (
 record.filename, record.lineno))
 except IOError:
 pass

[docs]class NullHandler(Handler):
 """A handler that does nothing, meant to be inserted in a handler chain
 with ``bubble=False`` to stop further processing.
 """
 blackhole = True

[docs]class WrapperHandler(Handler):
 """A class that can wrap another handler and redirect all calls to the
 wrapped handler::

 handler = WrapperHandler(other_handler)

 Subclasses should override the :attr:`_direct_attrs` attribute as
 necessary.
 """

 #: a set of direct attributes that are not forwarded to the inner
 #: handler. This has to be extended as necessary.
 _direct_attrs = frozenset(['handler'])

 def __init__(self, handler):
 self.handler = handler

 def __getattr__(self, name):
 return getattr(self.handler, name)

 def __setattr__(self, name, value):
 if name in self._direct_attrs:
 return Handler.__setattr__(self, name, value)
 setattr(self.handler, name, value)

[docs]class StringFormatter(object):
 """Many handlers format the log entries to text format. This is done
 by a callable that is passed a log record and returns an unicode
 string. The default formatter for this is implemented as a class so
 that it becomes possible to hook into every aspect of the formatting
 process.
 """

 def __init__(self, format_string):
 self.format_string = format_string

 def _get_format_string(self):
 return self._format_string

 def _set_format_string(self, value):
 self._format_string = value
 self._formatter = F(value)

 format_string = property(_get_format_string, _set_format_string)
 del _get_format_string, _set_format_string

 def format_record(self, record, handler):
 return self._formatter.format(record=record, handler=handler)

 def format_exception(self, record):
 return record.formatted_exception

 def __call__(self, record, handler):
 line = self.format_record(record, handler)
 exc = self.format_exception(record)
 if exc:
 line += u'\n' + exc
 return line

[docs]class StringFormatterHandlerMixin(object):
 """A mixin for handlers that provides a default integration for the
 :class:`~logbook.StringFormatter` class. This is used for all handlers
 by default that log text to a destination.
 """

 #: a class attribute for the default format string to use if the
 #: constructor was invoked with `None`.
 default_format_string = DEFAULT_FORMAT_STRING

 #: the class to be used for string formatting
 formatter_class = StringFormatter

 def __init__(self, format_string):
 if format_string is None:
 format_string = self.default_format_string

 #: the currently attached format string as new-style format
 #: string.
 self.format_string = format_string

 def _get_format_string(self):
 if isinstance(self.formatter, StringFormatter):
 return self.formatter.format_string

 def _set_format_string(self, value):
 if value is None:
 self.formatter = None
 else:
 self.formatter = self.formatter_class(value)

 format_string = property(_get_format_string, _set_format_string)
 del _get_format_string, _set_format_string

[docs]class HashingHandlerMixin(object):
 """Mixin class for handlers that are hashing records."""

[docs] def hash_record_raw(self, record):
 """Returns a hashlib object with the hash of the record."""
 hash = sha1()
 hash.update(('%d\x00' % record.level).encode('ascii'))
 hash.update((record.channel or u'').encode('utf-8') + b('\x00'))
 hash.update(record.filename.encode('utf-8') + b('\x00'))
 hash.update(b(str(record.lineno)))
 return hash

[docs] def hash_record(self, record):
 """Returns a hash for a record to keep it apart from other records.
 This is used for the `record_limit` feature. By default
 The level, channel, filename and location are hashed.

 Calls into :meth:`hash_record_raw`.
 """
 return self.hash_record_raw(record).hexdigest()

[docs]class LimitingHandlerMixin(HashingHandlerMixin):
 """Mixin class for handlers that want to limit emitting records.

 In the default setting it delivers all log records but it can be set up
 to not send more than n mails for the same record each hour to not
 overload an inbox and the network in case a message is triggered multiple
 times a minute. The following example limits it to 60 mails an hour::

 from datetime import timedelta
 handler = MailHandler(record_limit=1,
 record_delta=timedelta(minutes=1))
 """

 def __init__(self, record_limit, record_delta):
 self.record_limit = record_limit
 self._limit_lock = Lock()
 self._record_limits = {}
 if record_delta is None:
 record_delta = timedelta(seconds=60)
 elif isinstance(record_delta, (int, long, float)):
 record_delta = timedelta(seconds=record_delta)
 self.record_delta = record_delta

[docs] def check_delivery(self, record):
 """Helper function to check if data should be delivered by this
 handler. It returns a tuple in the form ``(suppression_count,
 allow)``. The first one is the number of items that were not delivered
 so far, the second is a boolean flag if a delivery should happen now.
 """
 if self.record_limit is None:
 return 0, True
 hash = self.hash_record(record)
 self._limit_lock.acquire()
 try:
 allow_delivery = None
 suppression_count = old_count = 0
 first_count = now = datetime.utcnow()

 if hash in self._record_limits:
 last_count, suppression_count = self._record_limits[hash]
 if last_count + self.record_delta < now:
 allow_delivery = True
 else:
 first_count = last_count
 old_count = suppression_count

 if not suppression_count and \
 len(self._record_limits) >= self.max_record_cache:
 cache_items = self._record_limits.items()
 cache_items.sort()
 del cache_items[:int(self._record_limits) \
 * self.record_cache_prune]
 self._record_limits = dict(cache_items)

 self._record_limits[hash] = (first_count, old_count + 1)

 if allow_delivery is None:
 allow_delivery = old_count < self.record_limit
 return suppression_count, allow_delivery
 finally:
 self._limit_lock.release()

[docs]class StreamHandler(Handler, StringFormatterHandlerMixin):
 """a handler class which writes logging records, appropriately formatted,
 to a stream. note that this class does not close the stream, as sys.stdout
 or sys.stderr may be used.

 If a stream handler is used in a `with` statement directly it will
 :meth:`close` on exit to support this pattern::

 with StreamHandler(my_stream):
 pass

 .. admonition:: Notes on the encoding

 On Python 3, the encoding parameter is only used if a stream was
 passed that was opened in binary mode.
 """

 def __init__(self, stream, level=NOTSET, format_string=None,
 encoding=None, filter=None, bubble=False):
 Handler.__init__(self, level, filter, bubble)
 StringFormatterHandlerMixin.__init__(self, format_string)
 self.encoding = encoding
 self.lock = threading.Lock()
 if stream is not _missing:
 self.stream = stream

 def __enter__(self):
 return Handler.__enter__(self)

 def __exit__(self, exc_type, exc_value, tb):
 self.close()
 return Handler.__exit__(self, exc_type, exc_value, tb)

[docs] def close(self):
 """The default stream handler implementation is not to close
 the wrapped stream but to flush it.
 """
 self.flush()

[docs] def flush(self):
 """Flushes the inner stream."""
 if self.stream is not None and hasattr(self.stream, 'flush'):
 self.stream.flush()

[docs] def format_and_encode(self, record):
 """Formats the record and encodes it to the stream encoding."""
 stream = self.stream
 rv = self.format(record) + '\n'
 if not _py3 or not _is_text_stream(stream):
 enc = self.encoding
 if enc is None:
 enc = getattr(stream, 'encoding', None) or 'utf-8'
 rv = rv.encode(enc, 'replace')
 return rv

[docs] def write(self, item):
 """Writes a bytestring to the stream."""
 self.stream.write(item)

 def emit(self, record):
 self.lock.acquire()
 try:
 self.write(self.format_and_encode(record))
 self.flush()
 finally:
 self.lock.release()

[docs]class FileHandler(StreamHandler):
 """A handler that does the task of opening and closing files for you.
 By default the file is opened right away, but you can also `delay`
 the open to the point where the first message is written.

 This is useful when the handler is used with a
 :class:`~logbook.FingersCrossedHandler` or something similar.
 """

 def __init__(self, filename, mode='a', encoding=None, level=NOTSET,
 format_string=None, delay=False, filter=None, bubble=False):
 if encoding is None:
 encoding = 'utf-8'
 StreamHandler.__init__(self, None, level, format_string,
 encoding, filter, bubble)
 self._filename = filename
 self._mode = mode
 if delay:
 self.stream = None
 else:
 self._open()

 def _open(self, mode=None):
 if mode is None:
 mode = self._mode
 self.stream = open(self._filename, mode)

 def write(self, item):
 if self.stream is None:
 self._open()
 if _py3 and isinstance(item, bytes):
 self.stream.buffer.write(item)
 else:
 self.stream.write(item)

 def close(self):
 if self.stream is not None:
 self.flush()
 self.stream.close()
 self.stream = None

 def format_and_encode(self, record):
 # encodes based on the stream settings, so the stream has to be
 # open at the time this function is called.
 if self.stream is None:
 self._open()
 return StreamHandler.format_and_encode(self, record)

 def emit(self, record):
 if self.stream is None:
 self._open()
 StreamHandler.emit(self, record)

[docs]class MonitoringFileHandler(FileHandler):
 """A file handler that will check if the file was moved while it was
 open. This might happen on POSIX systems if an application like
 logrotate moves the logfile over.

 Because of different IO concepts on Windows, this handler will not
 work on a windows system.
 """

 def __init__(self, filename, mode='a', encoding='utf-8', level=NOTSET,
 format_string=None, delay=False, filter=None, bubble=False):
 FileHandler.__init__(self, filename, mode, encoding, level,
 format_string, delay, filter, bubble)
 if os.name == 'nt':
 raise RuntimeError('MonitoringFileHandler '
 'does not support Windows')
 self._query_fd()

 def _query_fd(self):
 if self.stream is None:
 self._last_stat = None, None
 else:
 try:
 st = os.stat(self._filename)
 except OSError, e:
 if e.errno != 2:
 raise
 self._last_stat = None, None
 else:
 self._last_stat = st[stat.ST_DEV], st[stat.ST_INO]

 def emit(self, record):
 last_stat = self._last_stat
 self._query_fd()
 if last_stat != self._last_stat:
 self.close()
 FileHandler.emit(self, record)
 self._query_fd()

[docs]class StderrHandler(StreamHandler):
 """A handler that writes to what is currently at stderr. At the first
 glace this appears to just be a :class:`StreamHandler` with the stream
 set to :data:`sys.stderr` but there is a difference: if the handler is
 created globally and :data:`sys.stderr` changes later, this handler will
 point to the current `stderr`, whereas a stream handler would still
 point to the old one.
 """

 def __init__(self, level=NOTSET, format_string=None, filter=None,
 bubble=False):
 StreamHandler.__init__(self, _missing, level, format_string,
 None, filter, bubble)

 @property
 def stream(self):
 return sys.stderr

[docs]class RotatingFileHandlerBase(FileHandler):
 """Baseclass for rotating file handlers.

 .. versionchanged:: 0.3
 This class was deprecated because the interface is not flexible
 enough to implement proper file rotations. The former builtin
 subclasses no longer use this baseclass.
 """

 def __init__(self, *args, **kwargs):
 from warnings import warn
 warn(DeprecationWarning('This class is deprecated'))
 FileHandler.__init__(self, *args, **kwargs)

 def emit(self, record):
 self.lock.acquire()
 try:
 msg = self.format_and_encode(record)
 if self.should_rollover(record, msg):
 self.perform_rollover()
 self.write(msg)
 self.flush()
 finally:
 self.lock.release()

[docs] def should_rollover(self, record, formatted_record):
 """Called with the log record and the return value of the
 :meth:`format_and_encode` method. The method has then to
 return `True` if a rollover should happen or `False`
 otherwise.

 .. versionchanged:: 0.3
 Previously this method was called with the number of bytes
 returned by :meth:`format_and_encode`
 """
 return False

[docs] def perform_rollover(self):
 """Called if :meth:`should_rollover` returns `True` and has
 to perform the actual rollover.
 """

[docs]class RotatingFileHandler(FileHandler):
 """This handler rotates based on file size. Once the maximum size
 is reached it will reopen the file and start with an empty file
 again. The old file is moved into a backup copy (named like the
 file, but with a ``.backupnumber`` appended to the file. So if
 you are logging to ``mail`` the first backup copy is called
 ``mail.1``.)

 The default number of backups is 5. Unlike a similar logger from
 the logging package, the backup count is mandatory because just
 reopening the file is dangerous as it deletes the log without
 asking on rollover.
 """

 def __init__(self, filename, mode='a', encoding='utf-8', level=NOTSET,
 format_string=None, delay=False, max_size=1024 * 1024,
 backup_count=5, filter=None, bubble=False):
 FileHandler.__init__(self, filename, mode, encoding, level,
 format_string, delay, filter, bubble)
 self.max_size = max_size
 self.backup_count = backup_count
 assert backup_count > 0, 'at least one backup file has to be ' \
 'specified'

 def should_rollover(self, record, bytes):
 self.stream.seek(0, 2)
 return self.stream.tell() + bytes >= self.max_size

 def perform_rollover(self):
 self.stream.close()
 for x in xrange(self.backup_count - 1, 0, -1):
 src = '%s.%d' % (self._filename, x)
 dst = '%s.%d' % (self._filename, x + 1)
 try:
 rename(src, dst)
 except OSError, e:
 if e.errno != errno.ENOENT:
 raise
 rename(self._filename, self._filename + '.1')
 self._open('w')

 def emit(self, record):
 self.lock.acquire()
 try:
 msg = self.format_and_encode(record)
 if self.should_rollover(record, len(msg)):
 self.perform_rollover()
 self.write(msg)
 self.flush()
 finally:
 self.lock.release()

[docs]class TimedRotatingFileHandler(FileHandler):
 """This handler rotates based on dates. It will name the file
 after the filename you specify and the `date_format` pattern.

 So for example if you configure your handler like this::

 handler = TimedRotatingFileHandler('/var/log/foo.log',
 date_formnat='%Y-%m-%d')

 The filenames for the logfiles will look like this::

 /var/log/foo-2010-01-10.log
 /var/log/foo-2010-01-11.log
 ...

 By default it will keep all these files around, if you want to limit
 them, you can specify a `backup_count`.
 """

 def __init__(self, filename, mode='a', encoding='utf-8', level=NOTSET,
 format_string=None, date_format='%Y-%m-%d',
 backup_count=0, filter=None, bubble=False):
 FileHandler.__init__(self, filename, mode, encoding, level,
 format_string, True, filter, bubble)
 self.date_format = date_format
 self.backup_count = backup_count
 self._fn_parts = os.path.splitext(os.path.abspath(filename))
 self._filename = None

 def _get_timed_filename(self, datetime):
 return datetime.strftime('-' + self.date_format) \
 .join(self._fn_parts)

 def should_rollover(self, record):
 fn = self._get_timed_filename(record.time)
 rv = self._filename is not None and self._filename != fn
 # remember the current filename. In case rv is True, the rollover
 # performing function will already have the new filename
 self._filename = fn
 return rv

[docs] def files_to_delete(self):
 """Returns a list with the files that have to be deleted when
 a rollover occours.
 """
 directory = os.path.dirname(self._filename)
 files = []
 for filename in os.listdir(directory):
 filename = os.path.join(directory, filename)
 if filename.startswith(self._fn_parts[0] + '-') and \
 filename.endswith(self._fn_parts[1]):
 files.append((os.path.getmtime(filename), filename))
 files.sort()
 return files[:-self.backup_count + 1]

 def perform_rollover(self):
 self.stream.close()
 if self.backup_count > 0:
 for time, filename in self.files_to_delete():
 os.remove(filename)
 self._open('w')

 def emit(self, record):
 self.lock.acquire()
 try:
 if self.should_rollover(record):
 self.perform_rollover()
 self.write(self.format_and_encode(record))
 self.flush()
 finally:
 self.lock.release()

[docs]class TestHandler(Handler, StringFormatterHandlerMixin):
 """Like a stream handler but keeps the values in memory. This
 logger provides some ways to test for the records in memory.

 Example usage::

 def my_test():
 with logbook.TestHandler() as handler:
 logger.warn('A warning')
 assert logger.has_warning('A warning')
 ...
 """
 default_format_string = TEST_FORMAT_STRING

 def __init__(self, level=NOTSET, format_string=None, filter=None,
 bubble=False):
 Handler.__init__(self, level, filter, bubble)
 StringFormatterHandlerMixin.__init__(self, format_string)
 #: captures the :class:`LogRecord`\s as instances
 self.records = []
 self._formatted_records = []
 self._formatted_record_cache = []

[docs] def close(self):
 """Close all records down when the handler is closed."""
 for record in self.records:
 record.close()

 def emit(self, record):
 # keep records open because we will want to examine them after the
 # call to the emit function. If we don't do that, the traceback
 # attribute and other things will already be removed.
 record.keep_open = True
 self.records.append(record)

 @property
 def formatted_records(self):
 """Captures the formatted log records as unicode strings."""
 if len(self._formatted_records) != self.records or \
 any(r1 != r2 for r1, (r2, f) in
 izip(self.records, self._formatted_records)):
 self._formatted_records = map(self.format, self.records)
 self._formatted_record_cache = list(self.records)
 return self._formatted_records

 @property
 def has_criticals(self):
 """`True` if any :data:`CRITICAL` records were found."""
 return any(r.level == CRITICAL for r in self.records)

 @property
 def has_errors(self):
 """`True` if any :data:`ERROR` records were found."""
 return any(r.level == ERROR for r in self.records)

 @property
 def has_warnings(self):
 """`True` if any :data:`WARNING` records were found."""
 return any(r.level == WARNING for r in self.records)

 @property
 def has_notices(self):
 """`True` if any :data:`NOTICE` records were found."""
 return any(r.level == NOTICE for r in self.records)

 @property
 def has_infos(self):
 """`True` if any :data:`INFO` records were found."""
 return any(r.level == INFO for r in self.records)

 @property
 def has_debugs(self):
 """`True` if any :data:`DEBUG` records were found."""
 return any(r.level == DEBUG for r in self.records)

[docs] def has_critical(self, *args, **kwargs):
 """`True` if a specific :data:`CRITICAL` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = CRITICAL
 return self._test_for(*args, **kwargs)

[docs] def has_error(self, *args, **kwargs):
 """`True` if a specific :data:`ERROR` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = ERROR
 return self._test_for(*args, **kwargs)

[docs] def has_warning(self, *args, **kwargs):
 """`True` if a specific :data:`WARNING` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = WARNING
 return self._test_for(*args, **kwargs)

[docs] def has_notice(self, *args, **kwargs):
 """`True` if a specific :data:`NOTICE` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = NOTICE
 return self._test_for(*args, **kwargs)

[docs] def has_info(self, *args, **kwargs):
 """`True` if a specific :data:`INFO` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = INFO
 return self._test_for(*args, **kwargs)

[docs] def has_debug(self, *args, **kwargs):
 """`True` if a specific :data:`DEBUG` log record exists.

 See :ref:`probe-log-records` for more information.
 """
 kwargs['level'] = DEBUG
 return self._test_for(*args, **kwargs)

 def _test_for(self, message=None, channel=None, level=None):
 for record in self.records:
 if level is not None and record.level != level:
 continue
 if channel is not None and record.channel != channel:
 continue
 if message is not None and record.message != message:
 continue
 return True
 return False

[docs]class MailHandler(Handler, StringFormatterHandlerMixin,
 LimitingHandlerMixin):
 """A handler that sends error mails. The format string used by this
 handler are the contents of the mail plus the headers. This is handy
 if you want to use a custom subject or ``X-`` header::

 handler = MailHandler(format_string='''\
 Subject: {record.level_name} on My Application

 {record.message}
 {record.extra[a_custom_injected_record]}
 ''')

 This handler will always emit text-only mails for maximum portability and
 best performance.

 In the default setting it delivers all log records but it can be set up
 to not send more than n mails for the same record each hour to not
 overload an inbox and the network in case a message is triggered multiple
 times a minute. The following example limits it to 60 mails an hour::

 from datetime import timedelta
 handler = MailHandler(record_limit=1,
 record_delta=timedelta(minutes=1))

 The default timedelta is 60 seconds (one minute).

 The mail handler is sending mails in a blocking manner. If you are not
 using some centralized system for logging these messages (with the help
 of ZeroMQ or others) and the logging system slows you down you can
 wrap the handler in a :class:`logbook.queues.ThreadedWrapperHandler`
 that will then send the mails in a background thread.

 .. versionchanged:: 0.3
 The handler supports the batching system now.
 """
 default_format_string = MAIL_FORMAT_STRING
 default_related_format_string = MAIL_RELATED_FORMAT_STRING
 default_subject = u'Server Error in Application'

 #: the maximum number of record hashes in the cache for the limiting
 #: feature. Afterwards, record_cache_prune percent of the oldest
 #: entries are removed
 max_record_cache = 512

 #: the number of items to prune on a cache overflow in percent.
 record_cache_prune = 0.333

 def __init__(self, from_addr, recipients, subject=None,
 server_addr=None, credentials=None, secure=None,
 record_limit=None, record_delta=None, level=NOTSET,
 format_string=None, related_format_string=None,
 filter=None, bubble=False):
 Handler.__init__(self, level, filter, bubble)
 StringFormatterHandlerMixin.__init__(self, format_string)
 LimitingHandlerMixin.__init__(self, record_limit, record_delta)
 self.from_addr = from_addr
 self.recipients = recipients
 if subject is None:
 subject = self.default_subject
 self.subject = subject
 self.server_addr = server_addr
 self.credentials = credentials
 self.secure = secure
 if related_format_string is None:
 related_format_string = self.default_related_format_string
 self.related_format_string = related_format_string

 def _get_related_format_string(self):
 if isinstance(self.related_formatter, StringFormatter):
 return self.related_formatter.format_string
 def _set_related_format_string(self, value):
 if value is None:
 self.related_formatter = None
 else:
 self.related_formatter = self.formatter_class(value)
 related_format_string = property(_get_related_format_string,
 _set_related_format_string)
 del _get_related_format_string, _set_related_format_string

[docs] def get_recipients(self, record):
 """Returns the recipients for a record. By default the
 :attr:`recipients` attribute is returned for all records.
 """
 return self.recipients

[docs] def message_from_record(self, record, suppressed):
 """Creates a new message for a record as email message object
 (:class:`email.message.Message`). `suppressed` is the number
 of mails not sent if the `record_limit` feature is active.
 """
 try:
 from email.message import Message
 except ImportError: # Python 2.4
 from email.Message import Message
 msg = Message()
 lineiter = iter(self.format(record).splitlines())
 for line in lineiter:
 if not line:
 break
 pieces = line.split(':', 1)
 msg.add_header(*[x.strip() for x in pieces])
 body = '\r\n'.join(lineiter)
 if suppressed:
 body += '\r\n\r\nThis message occurred additional %d ' \
 'time(s) and was suppressed' % suppressed
 msg.set_payload(body)
 return msg

[docs] def format_related_record(self, record):
 """Used for format the records that led up to another record or
 records that are related into strings. Used by the batch formatter.
 """
 return self.related_formatter(record, self)

[docs] def generate_mail(self, record, suppressed=0):
 """Generates the final email (:class:`email.message.Message`)
 with headers and date. `suppressed` is the number of mails
 that were not send if the `record_limit` feature is active.
 """
 try:
 from email.utils import formatdate
 except ImportError: # Python 2.4
 from email.Utils import formatdate
 msg = self.message_from_record(record, suppressed)
 msg['From'] = self.from_addr
 msg['Date'] = formatdate()
 return msg

[docs] def collapse_mails(self, mail, related, reason):
 """When escaling or grouped mails are """
 if not related:
 return mail
 if reason == 'group':
 title = 'Other log records in the same group'
 else:
 title = 'Log records that led up to this one'
 mail.set_payload('%s\r\n\r\n\r\n%s:\r\n\r\n%s' % (
 mail.get_payload(),
 title,
 '\r\n\r\n'.join(body.rstrip() for body in related)
))
 return mail

[docs] def get_connection(self):
 """Returns an SMTP connection. By default it reconnects for
 each sent mail.
 """
 from smtplib import SMTP, SMTP_PORT, SMTP_SSL_PORT
 if self.server_addr is None:
 host = 'localhost'
 port = self.secure and SMTP_SSL_PORT or SMTP_PORT
 else:
 host, port = self.server_addr
 con = SMTP()
 con.connect(host, port)
 if self.credentials is not None:
 if self.secure is not None:
 con.ehlo()
 con.starttls(*self.secure)
 con.ehlo()
 con.login(*self.credentials)
 return con

[docs] def close_connection(self, con):
 """Closes the connection that was returned by
 :meth:`get_connection`.
 """
 try:
 if con is not None:
 con.quit()
 except Exception:
 pass

[docs] def deliver(self, msg, recipients):
 """Delivers the given message to a list of recpients."""
 con = self.get_connection()
 try:
 con.sendmail(self.from_addr, recipients, msg.as_string())
 finally:
 self.close_connection(con)

 def emit(self, record):
 suppressed = 0
 if self.record_limit is not None:
 suppressed, allow_delivery = self.check_delivery(record)
 if not allow_delivery:
 return
 self.deliver(self.generate_mail(record, suppressed),
 self.get_recipients(record))

 def emit_batch(self, records, reason):
 if reason not in ('escalation', 'group'):
 return MailHandler.emit_batch(self, records, reason)
 records = list(records)
 if not records:
 return

 trigger = records.pop(reason == 'escalation' and -1 or 0)
 suppressed = 0
 if self.record_limit is not None:
 suppressed, allow_delivery = self.check_delivery(trigger)
 if not allow_delivery:
 return

 trigger_mail = self.generate_mail(trigger, suppressed)
 related = [self.format_related_record(record)
 for record in records]

 self.deliver(self.collapse_mails(trigger_mail, related, reason),
 self.get_recipients(trigger))

[docs]class SyslogHandler(Handler, StringFormatterHandlerMixin):
 """A handler class which sends formatted logging records to a
 syslog server. By default it will send to it via unix socket.
 """
 default_format_string = SYSLOG_FORMAT_STRING

 # priorities
 LOG_EMERG = 0 # system is unusable
 LOG_ALERT = 1 # action must be taken immediately
 LOG_CRIT = 2 # critical conditions
 LOG_ERR = 3 # error conditions
 LOG_WARNING = 4 # warning conditions
 LOG_NOTICE = 5 # normal but significant condition
 LOG_INFO = 6 # informational
 LOG_DEBUG = 7 # debug-level messages

 # facility codes
 LOG_KERN = 0 # kernel messages
 LOG_USER = 1 # random user-level messages
 LOG_MAIL = 2 # mail system
 LOG_DAEMON = 3 # system daemons
 LOG_AUTH = 4 # security/authorization messages
 LOG_SYSLOG = 5 # messages generated internally by syslogd
 LOG_LPR = 6 # line printer subsystem
 LOG_NEWS = 7 # network news subsystem
 LOG_UUCP = 8 # UUCP subsystem
 LOG_CRON = 9 # clock daemon
 LOG_AUTHPRIV = 10 # security/authorization messages (private)
 LOG_FTP = 11 # FTP daemon

 # other codes through 15 reserved for system use
 LOG_LOCAL0 = 16 # reserved for local use
 LOG_LOCAL1 = 17 # reserved for local use
 LOG_LOCAL2 = 18 # reserved for local use
 LOG_LOCAL3 = 19 # reserved for local use
 LOG_LOCAL4 = 20 # reserved for local use
 LOG_LOCAL5 = 21 # reserved for local use
 LOG_LOCAL6 = 22 # reserved for local use
 LOG_LOCAL7 = 23 # reserved for local use

 facility_names = {
 'auth': LOG_AUTH,
 'authpriv': LOG_AUTHPRIV,
 'cron': LOG_CRON,
 'daemon': LOG_DAEMON,
 'ftp': LOG_FTP,
 'kern': LOG_KERN,
 'lpr': LOG_LPR,
 'mail': LOG_MAIL,
 'news': LOG_NEWS,
 'syslog': LOG_SYSLOG,
 'user': LOG_USER,
 'uucp': LOG_UUCP,
 'local0': LOG_LOCAL0,
 'local1': LOG_LOCAL1,
 'local2': LOG_LOCAL2,
 'local3': LOG_LOCAL3,
 'local4': LOG_LOCAL4,
 'local5': LOG_LOCAL5,
 'local6': LOG_LOCAL6,
 'local7': LOG_LOCAL7,
 }

 level_priority_map = {
 DEBUG: LOG_DEBUG,
 INFO: LOG_INFO,
 NOTICE: LOG_NOTICE,
 WARNING: LOG_WARNING,
 ERROR: LOG_ERR,
 CRITICAL: LOG_CRIT
 }

 def __init__(self, application_name=None, address=None,
 facility='user', socktype=socket.SOCK_DGRAM,
 level=NOTSET, format_string=None, filter=None,
 bubble=False):
 Handler.__init__(self, level, filter, bubble)
 StringFormatterHandlerMixin.__init__(self, format_string)
 self.application_name = application_name

 if address is None:
 if sys.platform == 'darwin':
 address = '/var/run/syslog'
 else:
 address = '/dev/log'

 self.address = address
 self.facility = facility
 self.socktype = socktype

 if isinstance(address, basestring):
 self._connect_unixsocket()
 else:
 self._connect_netsocket()

 def _connect_unixsocket(self):
 self.unixsocket = True
 self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM)
 try:
 self.socket.connect(self.address)
 except socket.error:
 self.socket.close()
 self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 self.socket.connect(self.address)

 def _connect_netsocket(self):
 self.unixsocket = False
 self.socket = socket.socket(socket.AF_INET, self.socktype)
 if self.socktype == socket.SOCK_STREAM:
 self.socket.connect(self.address)
 self.address = self.socket.getsockname()

 def encode_priority(self, record):
 facility = self.facility_names[self.facility]
 priority = self.level_priority_map.get(record.level,
 self.LOG_WARNING)
 return (facility << 3) | priority

 def emit(self, record):
 prefix = u''
 if self.application_name is not None:
 prefix = self.application_name + u':'
 self.send_to_socket((u'<%d>%s%s\x00' % (
 self.encode_priority(record),
 prefix,
 self.format(record)
)).encode('utf-8'))

 def send_to_socket(self, data):
 if self.unixsocket:
 try:
 self.socket.send(data)
 except socket.error:
 self._connect_unixsocket()
 self.socket.send(data)
 elif self.socktype == socket.SOCK_DGRAM:
 # the flags are no longer optional on Python 3
 self.socket.sendto(data, 0, self.address)
 else:
 self.socket.sendall(data)

 def close(self):
 self.socket.close()

[docs]class NTEventLogHandler(Handler, StringFormatterHandlerMixin):
 """A handler that sends to the NT event log system."""
 dllname = None
 default_format_string = NTLOG_FORMAT_STRING

 def __init__(self, application_name, log_type='Application',
 level=NOTSET, format_string=None, filter=None,
 bubble=False):
 Handler.__init__(self, level, filter, bubble)
 StringFormatterHandlerMixin.__init__(self, format_string)

 if os.name != 'nt':
 raise RuntimeError('NTLogEventLogHandler requires a Windows '
 'operating system.')

 try:
 import win32evtlogutil
 import win32evtlog
 except ImportError:
 raise RuntimeError('The pywin32 library is required '
 'for the NTEventLogHandler.')

 self.application_name = application_name
 self._welu = win32evtlogutil
 dllname = self.dllname
 if not dllname:
 dllname = os.path.join(os.path.dirname(self._welu.__file__),
 '../win32service.pyd')
 self.log_type = log_type
 self._welu.AddSourceToRegistry(self.application_name, dllname,
 log_type)

 self._default_type = win32evtlog.EVENTLOG_INFORMATION_TYPE
 self._type_map = {
 DEBUG: win32evtlog.EVENTLOG_INFORMATION_TYPE,
 INFO: win32evtlog.EVENTLOG_INFORMATION_TYPE,
 NOTICE: win32evtlog.EVENTLOG_INFORMATION_TYPE,
 WARNING: win32evtlog.EVENTLOG_WARNING_TYPE,
 ERROR: win32evtlog.EVENTLOG_ERROR_TYPE,
 CRITICAL: win32evtlog.EVENTLOG_ERROR_TYPE
 }

[docs] def unregister_logger(self):
 """Removes the application binding from the registry. If you call
 this, the log viewer will no longer be able to provide any
 information about the message.
 """
 self._welu.RemoveSourceFromRegistry(self.application_name,
 self.log_type)

 def get_event_type(self, record):
 return self._type_map.get(record.level, self._default_type)

 def get_event_category(self, record):
 return 0

 def get_message_id(self, record):
 return 1

 def emit(self, record):
 id = self.get_message_id(record)
 cat = self.get_event_category(record)
 type = self.get_event_type(record)
 self._welu.ReportEvent(self.application_name, id, cat, type,
 [self.format(record)])

[docs]class FingersCrossedHandler(Handler):
 """This handler wraps another handler and will log everything in
 memory until a certain level (`action_level`, defaults to `ERROR`)
 is exceeded. When that happens the fingers crossed handler will
 activate forever and log all buffered records as well as records
 yet to come into another handled which was passed to the constructor.

 Alternatively it's also possible to pass a factory function to the
 constructor instead of a handler. That factory is then called with
 the triggering log entry and the finger crossed handler to create
 a handler which is then cached.

 The idea of this handler is to enable debugging of live systems. For
 example it might happen that code works perfectly fine 99% of the time,
 but then some exception happens. But the error that caused the
 exception alone might not be the interesting bit, the interesting
 information were the warnings that lead to the error.

 Here a setup that enables this for a web application::

 from logbook import FileHandler
 from logbook import FingersCrossedHandler

 def issue_logging():
 def factory(record, handler):
 return FileHandler('/var/log/app/issue-%s.log' % record.time)
 return FingersCrossedHandler(factory)

 def application(environ, start_response):
 with issue_logging():
 return the_actual_wsgi_application(environ, start_response)

 Whenever an error occours, a new file in ``/var/log/app`` is created
 with all the logging calls that lead up to the error up to the point
 where the `with` block is exited.

 Please keep in mind that the :class:`~logbook.FingersCrossedHandler`
 handler is a one-time handler. Once triggered, it will not reset. Because
 of that you will have to re-create it whenever you bind it. In this case
 the handler is created when it's bound to the thread.

 Due to how the handler is implemented, the filter, bubble and level
 flags of the wrapped handler are ignored.

 .. versionchanged:: 0.3

 The default behaviour is to buffer up records and then invoke another
 handler when a severity theshold was reached with the buffer emitting.
 This now enables this logger to be properly used with the
 :class:`~logbook.MailHandler`. You will now only get one mail for
 each bfufered record. However once the threshold was reached you would
 still get a mail for each record which is why the `reset` flag was added.

 When set to `True`, the handler will instantly reset to the untriggered
 state and start buffering again::

 handler = FingersCrossedHandler(MailHandler(...),
 buffer_size=10,
 reset=True)

 .. versionadded:: 0.3
 The `reset` flag was added.
 """

 #: the reason to be used for the batch emit. The default is
 #: ``'escalation'``.
 #:
 #: .. versionadded:: 0.3
 batch_emit_reason = 'escalation'

 def __init__(self, handler, action_level=ERROR, buffer_size=0,
 pull_information=True, reset=False, filter=None,
 bubble=False):
 Handler.__init__(self, NOTSET, filter, bubble)
 self.lock = Lock()
 self._level = action_level
 if isinstance(handler, Handler):
 self._handler = handler
 self._handler_factory = None
 else:
 self._handler = None
 self._handler_factory = handler
 #: the buffered records of the handler. Once the action is triggered
 #: (:attr:`triggered`) this list will be None. This attribute can
 #: be helpful for the handler factory function to select a proper
 #: filename (for example time of first log record)
 self.buffered_records = deque()
 #: the maximum number of entries in the buffer. If this is exhausted
 #: the oldest entries will be discarded to make place for new ones
 self.buffer_size = buffer_size
 self._buffer_full = False
 self._pull_information = pull_information
 self._action_triggered = False
 self._reset = reset

 def close(self):
 if self._handler is not None:
 self._handler.close()

 def enqueue(self, record):
 if self._pull_information:
 record.pull_information()
 if self._action_triggered:
 self._handler.emit(record)
 else:
 self.buffered_records.append(record)
 if self._buffer_full:
 self.buffered_records.popleft()
 elif self.buffer_size and \
 len(self.buffered_records) >= self.buffer_size:
 self._buffer_full = True
 return record.level >= self._level
 return False

 def rollover(self, record):
 if self._handler is None:
 self._handler = self._handler_factory(record, self)
 self._handler.emit_batch(iter(self.buffered_records), 'escalation')
 self.buffered_records.clear()
 self._action_triggered = not self._reset

 @property
 def triggered(self):
 """This attribute is `True` when the action was triggered. From
 this point onwards the finger crossed handler transparently
 forwards all log records to the inner handler. If the handler resets
 itself this will always be `False`.
 """
 return self._action_triggered

 def emit(self, record):
 self.lock.acquire()
 try:
 if self.enqueue(record):
 self.rollover(record)
 finally:
 self.lock.release()

[docs]class GroupHandler(WrapperHandler):
 """A handler that buffers all messages until it is popped again and then
 forwards all messages to another handler. This is useful if you for
 example have an application that does computations and only a result
 mail is required. A group handler makes sure that only one mail is sent
 and not multiple. Some other handles might support this as well, though
 currently none of the builtins do.

 Example::

 with GroupHandler(MailHandler(...)):
 # everything here ends up in the mail

 The :class:`GroupHandler` is implemented as a :class:`WrapperHandler`
 thus forwarding all attributes of the wrapper handler.

 Notice that this handler really only emit the records when the handler
 is popped from the stack.

 .. versionadded:: 0.3
 """
 _direct_attrs = frozenset(['handler', 'pull_information',
 'buffered_records'])

 def __init__(self, handler, pull_information=True):
 WrapperHandler.__init__(self, handler)
 self.pull_information = pull_information
 self.buffered_records = []

 def rollover(self):
 self.handler.emit_batch(self.buffered_records, 'group')
 self.buffered_records = []

 def pop_application(self):
 Handler.pop_application(self)
 self.rollover()

 def pop_thread(self):
 Handler.pop_thread(self)
 self.rollover()

 def emit(self, record):
 if self.pull_information:
 record.pull_information()
 self.buffered_records.append(record)

 © Copyright 2010, Armin Ronacher, Georg Brandl.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

