LMSTools Documentation
Release 0.0.1

elParaguayo

May 17, 2019

Contents:

1 Introduction

2 Installation

2.1 Manualinstallation e e e e
3 Examples

3.1 Startin@ out L. L L e e e e e e e e e e e e

3.2 Controlling/querying your squeezeplayer v v v it e e e e

3.3 Usingthe callbackserver 0 e e e e e e e

34 Generating player menus oo e e e e e e e e e e e

4 Module documentation

4.1 LMSServer o e e e e e
42 LMSPIayer o e e e e e e e e
43 Callback Server e e e e e e
4.4 Squeezeplayer Menus Lo e e e e e e e e
4.5 Servercommand tags e
4.6 Artwork . . .o e

5 Contributing

5.1 Enhancements e e e e e e e e
5.2 BUES .o e e e e e
6 License

7 Indices and tables

Python Module Index

w W

O 0 L W

13

15
21
24
27
28

31
31
31

33

35

37

CHAPTER 1

Introduction

LMSTools is a python library for interacting with a Logitech Media Server.

This code was inspired by the PyLMS library by JingleManSweep and has sought to recreate a lot of the functionality
that was provided by that library. The main difference is that the PyLMS library used the server’s telnet interface
whereas LMSTools uses the JSON interface.

LMSTools also includes additional functionality: an asynchronous callback server and the ability to generate player
menus.

https://github.com/jinglemansweep/PyLMS

LMSTools Documentation, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER 2

Installation

The project is not currently on PyPi so you need to install the library manually.

2.1 Manual installation

Download the zip file from github (it’s recommended you stick to the master branch unless you want to test new
features).

Unzip the file and copy the LMSTools folder to your project folder or, if you want to use it in multiple projects, copt
it to a folder in your python path.

Note: Once the code reaches a stable enough level I will submit to PyPi.

This process can be accelerated by submitting bug reports whenever encountered.

LMSTools Documentation, Release 0.0.1

4 Chapter 2. Installation

CHAPTER 3

Examples

Please use the links below to see examples of how to use the LMSTools library.

3.1 Starting out

Unsurprisingly, the library is centered around the server. So your first step is to create a server object.

from LMSTools import LMSServer

Define your server address
SERVER_IP = "192.168.0.1"

create the server object
server = LMSServer (SERVER_IP)

At this point, you can test if your connection works by running the Ping method.

>>>server.Ping ()
True

Pretty unexciting though, isn’t it?

That’s because you know it’s not the server that really matters, it’s the players. So let’s see how they work in the next
section: Controlling/querying your squeezeplayer.

3.2 Controlling/querying your squeezeplayer

3.2.1 Retrieving players

Once you’ve got your server, you’ll want to get your players next.

It’s easy to get the list of the players currently attached to your server:

LMSTools Documentation, Release 0.0.1

from LMSTools import LMSServer

Define your server address
SERVER_IP = "192.168.0.1"

create the server object
server = LMSServer (SERVER_IP)

get the attached players
players = server.get_players()

Each item in ‘players’ will be a LMSP1ayer instance and should be easily identifiable by printing the output of the
list.

>>>server.get_players ()
[LMSPlayer: Living Room (40:40:40:40:40:40),
LMSPlayer: PiRadio (41:41:41:41:41:41),
LMSPlayer: elParaguayo's Laptop (42:42:42:42:42:42)]
>>>laptop = server.get_players () [2]
>>>Laptop
LMSPlayer: elParaguayo's Laptop (42:42:42:42:42:42)

So, now you’ve got your player, what can you do with it?

3.2.2 Controlling the player

It’s easy to do simple manipulation of the playlist.

The player has methods to play, pause and skip tracks.

>>>laptop.play ()
>>>laptop.next ()
>>>]laptop.stop ()
>>>

3.2.3 Changing volume

Players have a volume <LMSTools.player.LMSPlayer.volume property. This can be used to retrieve the
current volume level and adjust it. In addition there are volume_up and volume_down methods.

>>># Get the volume level
>>>laptop.volume

75
>>>laptop.volume_down ()
>>>laptop.volume

70
>>>laptop.volume_down (10)
>>>laptop.volume

60

>>>laptop.volume = 90
>>>laptop.volume

90

6 Chapter 3. Examples

LMSTools Documentation, Release 0.0.1

3.2.4 Syncing players

You can sync and unsync players easily.

>>>1livingroom = server.get_players () [0]
>>>1livingroom

LMSPlayer: Living Room (40:40:40:40:40:40
>>>laptop.sync (livingroom)

>>>

You can confirm which players are synced with your player:

>>>laptop.get_synced_players ()
[LMSPlayer: Living Room (40:40:40:40:40:40]
>>>

If there are multiple sync groups then you can view members by using the show_players_ sync_status method.

3.2.5 Adding tracks to the playlist

If you have a path to a playable item, these can be added to the playlist directly.

>>># You can use spotify urls if the app is installed
>>>laptop.playlist_play ("spotify://track:5xYZXIgVANDS5sWIN8GOhID")
>>>

The playlist_insert and playlist_add methods can be used to place tracks at different locations in the
playlist (i.e. next and last) while playlist_delete can be used to remove tracks.

>>>laptop.playlist_delete ("spotify://track:5xYZXIgVANDS5sWIN8GOhID")
>>>

3.2.6 Getting metadata

In case you don’t know what’s actually playing at the moment, you can retrieve metadata about the track (and other
items in the playlist).

>>>laptop.track_title

u'Go!’

>>>laptop.track_artist
u'Public Service Broadcasting'
>>>laptop.track_album

u'The Race For Space'

If you want to query the playlist, there are a number of options open to you. See: playlist_get_info,
playlist_get_detailand playlist_get_current_detail.

>>>laptop.playlist_get_current_detail ()
[{u'album': u'The Race For Space',

u'artist': u'Public Service Broadcasting',
u'coverart': u'0’',

u'coverid': u'-186029800"',

u'duration': u'252"',

u'id': u'-186029800"',

(continues on next page)

3.2. Controlling/querying your squeezeplayer 7

LMSTools Documentation, Release 0.0.1

(continued from previous page)

u'playlist index': 0,
u'remote': 1,
u'title': u'Go!'}]

Additional information can be requested by using tags.

>>>from LMSTools import LMSTags as tags
>>>laptop.playlist_get_current_detail (taglist=[tags.DURATION, tags.CONTENT_TYPE])
[{u'duration': u'252"',

u'id': u'-186029800"',

u'playlist index': 0,

u'title': u'Go!’,

u'type': u'Ogg Vorbis (Spotify) '}]

3.2.7 ...and more

See the class documentation for LMSP1ayer for further information on available properties and methods.

3.3 Using the callbackserver

Callbacks can be configured in two different ways:
1) Using decorators
2) Using the ‘add_callback’ method

Decorators

squeeze = LMSCallbackServer ()

@squeeze.event (squeeze.VOLUME_CHANGE)
def volume_event (event=None) :
print "Volume event received: {}".format (event)

squeeze.set_server ("192.168.0.1")
squeeze.start ()

If you are using decorators inside a class then this will happen before your class has been initialised so you need to
provide the callback server with a reference to the class instance.

squeeze = LMSCallbackServer ()
class MyClass (object) :

def _ init_ (self):
self.squeeze = squeeze
self.squeeze.set_server ("192.168.0.1", parent_class=self)
self.squeeze.start ()

@squeeze.event (squeeze.VOLUME_CHANGE)
def volume_event (self, event=None):
print "Volume event received: {}".format (event)

Multiple events can be added with multiple decorators

8 Chapter 3. Examples

LMSTools Documentation, Release 0.0.1

@squeeze.event (squeeze.VOLUME_CHANGE)
@squeeze.event (squeeze.PLAY_ PAUSE)
def generic_event (event=None) :

print "Event received: {}".format (event)

Or by passing events as a list

@squeeze.event ([squeeze.VOLUME_CHANGE, squeeze.PLAY_ PAUSE])
def generic_event (event=None) :
print "Event received: {}".format (event)

Using ‘add_callback’ method

def volume_event (event=None) :
print "Volume event received: {}".format (event)

squeeze = LMSCallbackServer ("192.168.0.1")
squeeze.add_callback (squeeze.VOLUME_CHANGE, volume_event)
squeeze.start ()

3.4 Generating player menus

The LMSMenuHandler class allows you to generate squeezeplayer menus on the fly. This will allow you to create
your own interfaces in your applications.

Note: This code is a work in progress and may therefore lack some of the functionality that you may encounter on
more ‘professional” applications.

If there is some functionality that is missing (or the code otherwise works in unexpected ways) then please notify me
in the GitHub issues tracker.

3.4.1 Understanding the menu system
Menus are provided by the server as JSON objects. At their most basic, they provide text, icon path and the relevant
command to be executed.
This library currently categorises each menu item into one of four types:
* NextMenuItem: a menu item which just provides an additional submenu;

* PlaylistMenuItem: amenu item which can be played/added to playlist or can provide a subsequent menu
showing the tracks in the playlist;

* AudioMenuItem: a menu item which can be played/added to playlist; and
* SearchMenuItem: a menu item which requires user input before providing results.

The use of these different menu types is set out further below.

3.4.2 Creating a menu handler

The menu handler is currently included as a separate class. As the menus are specific to each player, the menu handler
must have information about the player for which the menu is being requested.

3.4. Generating player menus 9

https://github.com/elParaguayo/LMSTools/issues

LMSTools Documentation, Release 0.0.1

>>>from LMSTools import LMSServer, LMSMenuHandler

>>>server = LMSServer ("192.168.0.1")
>>>laptop = server.get_players () [1]
>>>handler = LMSMenuHandler (laptop)
>>>

If you wish to create a menu for a different player then you can change the current player as follows:

>>>1livingroom = server.get_players () [0]
>>>handler.changePlayer (livingroom)
>>>

3.4.3 Generating a menu

To simplify the process of creating a menu, the menu handler has a a built infunction to retrieve the home menu:
getHomeMenu

>>>home = handler.getHomeMenu ()
>>>home

[<LMSTools
<LMSTools
<LMSTools
<LMSTools
etc.

1

.menuitems
.menuitems
.menuitems
.menuitems

.NextMenultem at 0x7f049a0ded90>,
.NextMenuItem at 0x7f049a0ded50>,
.NextMenulItem at 0x7f049a0de9d0>,
.NextMenulItem at 0x7f049a0de510>,

3.4.4 Custom menus

As you can see from the above, the default home menu is very large and may be unwieldy for your own application.

As a result, you may want to define your own menu and have the menu handler process this menu.

CUSTOM_MENU

=

"count": 5,
"item_loop": [{

"node":

"weight": 11

"myMusic",

4

"text": "Artists",
"actions": {
"go": |
"cmd": ["browselibrary", "items"],
"params": {
"menu": 1,
"mode": "artists",
"role_id": "ALBUMARTIST,ARTIST,BAND, COMPOSER, CONDUCTOR, TRACKARTIST
o
}
}
br
"icon": "html/images/artists.png"
b Ao
"node": "myMusic",
"text": "Albums",
"actions": {

(continues on next page)

10

Chapter 3. Examples

LMSTools Documentation, Release 0.0.1

(continued from previous page)

"go": {
"cmd": ["browselibrary", "items"],
"params": {
"menu": 1,
"mode": "albums"
}
}
}V
"id": "myMusicAlbums",
"icon": "html/images/albums.png"
boo A
"node": "myMusic",
"text": "Playlists",
"icon": "html/images/playlists.png",
"actions": {
"go": |
"cmd": ["browselibrary", "items"],
"params": {
"menu": 1,
"mode": "playlists"
}
}
}
Foo A
"node": "myMusic",
"text": "Search",
"icon": "html/images/search.png",
"actions": {
"go": {
"cmd": ["browselibrary", "items"],
"params": {
"menu": 1,
"mode": "search"
}
}
}
Foo A
"node": "home",
"window": {
"titleStyle": "album",
"icon-id": "plugins/MyApps/html/images/icon.png"
}I
"text": "My Apps",
"actions": {
"go": {
"player": O,
"cmd": ["myapps", "items"],
"params": {
"menu": "myapps"

menu = LMSMenuHandler (player)
results = menu.getCustomMenu (CUSTOM_MENU)

(continues on next page)

3.4. Generating player menus 11

LMSTools Documentation, Release 0.0.1

(continued from previous page)

for item in results:
print item.text, item.cmd

should output the following

Artists ['browselibrary', 'items', 0, 1000, 'menu:1', 'mode:artists', 'role_
—1d:ALBUMARTIST, ARTIST, BAND, COMPOSER, CONDUCTOR, TRACKARTIST']

Albums |['browselibrary', 'items', 0, 1000, 'menu:1', 'mode:albums']
Playlists ['browselibrary', 'items', 0, 1000, 'menu:1', 'mode:playlists']
Search ['browselibrary', 'items', 0, 1000, 'menu:1', 'mode:search']

My Apps ['myapps', 'items', 0, 1000, 'menu:myapps']

3.4.5 Navigating the menu
Next Menu items

NextMenultems’ purpose is to take the user to another menu. The object therefore provides the necessary command
required to generate the next menu:

>>>next = home[0]
>>>menu = handler.getMenu (next.go())
>>>

Playlist Menu items

In addition to providing a submenu (i.e. a list of the tracks in the playlist) a playlist meny item can be played/added to
the queue.

>>># Assume this is a playlist menu item!
>>>playlist = home[0]

>>>playlist.play ()

>>>

See the P1aylistMenultem class documentation for more information.

Audio Menu items

These behave the same as Playlist Menu items (with the exception that they don’t provide a submenu of playable
tracks).

Search Menu items

These items require user input to deliver tailored responses.

>>># Assume this is a search menu item!
>>>searchitem = home[0]

>>>cmd = searchitem.search ("My search term")
>>>results = handler.getMenu (cmd)
>>>

12 Chapter 3. Examples

CHAPTER 4

Module documentation

4.1 LMSServer

Simple python class definitions for interacting with Logitech Media Server. This code uses the JSON interface.
exception LMSTools.server.LMSConnectionError
class LMSTools.server.LMSServer (host=’localhost’, port=9000)
Parameters
* host (str) - address of LMS server (default “localhost”)
* port (int) - port for the web interface (default 9000)

Class for Logitech Media Server. Provides access via JSON interface. As the class uses the JSON interface, no
active connections are maintained.

get_player_count ()
Return type int

Returns number of connected players

>>>server.get_player_count ()
3

get_players ()
Return type list
Returns list of LMSPlayer instances

Return a list of currently connected Squeezeplayers.

>>>server.get_players ()

[LMSPlayer: Living Room (40:40:40:40:40:40),
LMSPlayer: PiRadio (41:41:41:41:41:41),

LMSPlayer: elParaguayo's Laptop (42:42:42:42:42:42)]

13

LMSTools Documentation, Release 0.0.1

get_sync_groups ()
Return type list

Returns list of syncgroups. Each group is a list of references of the members.

>>>server.get_sync_groups ()
[[u'40:40:40:40:40:40"', u'41:41:41:41:41:41"1]

ping ()
Return type bool
Returns True if server is alive, False if server is unreachable

Method to test if server is active.

>>>server.ping ()
True

request (player="-’, params=None)
Parameters

[T3RL]

e player ((str))— MAC address of a connected player. Alternatively, can be used

for server level requests.
e params ((str, list))-Requestcommand
rescan (mode="fast’)

Parameters mode (st r)—Mode can be ‘fast’ for update changes on library, ‘full’ for complete
library scan and ‘playlists’ for playlists scan only

Trigger rescan of the media library.
rescanprogress
Attr rescanprogress current rescan progress
show_players_sync_status ()
Return type dict
Returns dictionary (see attributes below)
Attr group_count (int) Number of sync groups
Attr player_count (int) Number of connected players
Attr players (list) List of players (see below)
Player object (dict)
Attr name Name of player
Attr ref Player reference

Attr sync_index Index of sync group (-1 if not synced)

>>>server.show_players_sync_status()
{'group_count': 1,
'player_count': 3,
'players': [{'name': u'Living Room',
'ref': u'40:40:40:40:40:40",
'sync_index': 0},

(continues on next page)

14 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

(continued from previous page)

'ref':

'ref':

{"name"':

'sync_index':
{"name"':

u'PiRadio',
u'41:41:41:41:41:41",

0},
u"elParaguayo's Laptop",
u'42:42:42:42:42:42",

'sync_index':

-1}1}

sync (master, slave)
Parameters
* master ((ref))— Reference of the player to which you wish to sync another player
* slave ((ref))— Reference of the player which you wish to sync to the master
Sync squeezeplayers.
version

Attr version Version number of server Software

>>>server.version
u'7.9.0"

4.2 LMSPlayer

class LMSTools.player.LMSPlayer (ref, server)
The LMSPIlayer class represents an individual squeeze player connected to your Logitech Media Server.

Instances of this class are generated from the LMSServer object and it is not expected that you would create an
instance directly. However, it is posible to create instances directly:

server

LMSServer ("192.168.0.1")

Get player instance with MAC address of player
player LMSPlayer ("12:34:56:78:90:AB",

server)

Get player based on index of player on server
player LMSPlayer.from_index (0,

server)

Upon intialisation, basic information about the player is retrieved from the server:

>>>player LMSPlayer ("12:34:56:78:90:AB",
>>>player.name

u'Living Room'

>>>player.model

u'squeezelite'

server)

forward (seconds=10)
Parameters seconds (int, float)-number of seconds to jump forwards in current track.
Jump forward in current track. Number of seconds will be converted to integer.

classmethod from_index (index, server)
Create an instance of LMSPlayer when the MAC address of the player is unknown.

This class method uses the index of the player (as registered on the server) to identify the player.

4.2. LMSPlayer 15

LMSTools Documentation, Release 0.0.1

Return type LMSPlayer
Returns Instance of squeezeplayer

get_synced_players (refs_only=False)
Retrieve list of players synced to current player.

Parameters refs_only (bool) — whether the method should return list of MAC references
or list of LMSPIlayer instances.

Return type list

mode
Return type str, unicode
Returns curent mode (e.g. “play”, “pause”)
model
Return type str, unicode
Returns model name of the current player.
mute ()
Mute player
muted
Muting
Getter retrieve current muting status
Return type bool
Returns True if muted, False if not.
Setter set muting status (True = muted)
name

Player name.
Getter retrieve name of player
Return type unicode, str
Returns name of player

Setter update name of player on server

>>>p.name
u"elParaguayo's Laptop"
>>>p.name = "New name"
>>>p.name
'New name'

next ()
Play next item in playlist

parse_request (command, key)
Parameters
e command (str, 1ist)-command to be sentto server
* key (str)—key to retrieve desired info from JSON response

Returns value from JSON response

16 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

Send the request and extract the info from the JSON response.
This is the same as player.request(command).get(key)

pause ()
Pause the player. This does not unpause the player if already paused.

percentage_elapsed (upper=100)

Parameters upper (float, int)-— (optional) scale - returned value is between 0 and upper
(default 100)

Return type float

Returns current percentage elapsed

>>>player.percentage_elapsed()
29.784033576552005
>>>p.percentage_elapsed (upper=1)
0.31738374576051237

play ()
Start playing the current item

playlist_add (item)
Add item to playlist

Parameters item (str) - link to playable item

playlist_clear()
Clear the entire playlist. Will also stop the player.

playlist_delete (item)
Delete item

Parameters item (str) - link to playable item

playlist_erase (index)
Remove item from playlist by index

Parameters index — index of item to delete
playlist_get_current_detail (amount=None, taglist=None)
Parameters
* amount (int)— number of tracks to query
* taglist (1ist) - list of tags (NEED LINK)
Return type list
Returns server result
If amount is None, all remaining tracks will be displayed.

If not taglist is provided, the default list is: [tags.ARTIST, tags.COVERID, tags.DURATION,
tags. COVERART, tags. ARTWORK_URL, tags. ALBUM, tags. REMOTE, tags. ARTWORK_TRACK_ID]

>>>player.playlist_get_current_detail (amount=1)
[{u'album': u'Jake Bugg',

u'artist': u'Jake Bugg',

u'artwork_url': u'https://i.scdn.co/image/
—6bab0b26867613b100281669f£f1a917c5a020534",

u'coverart': u'o0’,

(continues on next page)

4.2,

LMSPlayer 17

LMSTools Documentation, Release 0.0.1

(continued from previous page)

u'coverid': u'-161090728",

u'duration': u'ld44"',

u'id': u'-161090728",

u'playlist index': 7,

u'remote': 1,

u'title': u'Lightning Bolt'}]
>>>player.playlist_get_current_detail (amount=1, taglist=[tags.DURATION])
[{u'duration': u'l144",

u'id': u'-161090728",

u'playlist index': 7,

u'title': u'Lightning Bolt'}]

playlist_get_detail (start=None, amount=None, taglist=None)
Parameters
* start (int) - playlist index of first track to query
e amount (int)— number of tracks to query
* taglist (list) - list of tags (NEED LINK)
Return type list
Returns server result
If start is None, results will start with the first track in the playlist.
If amount is None, all playlist tracks will be returned.

If not taglist is provided, the default list is: [tags.ARTIST, tags.COVERID, tags.DURATION,
tags.COVERART, tags. ARTWORK_URL, tags. ALBUM, tags. REMOTE, tags. ARTWORK_TRACK_ID]

>>>player.playlist_get_detail (start=1, amount=1, taglist=[tags.URL])

[{u'id': u'-137990288",

u'playlist index': 1,

u'title': u"Mardy Bum by Arctic Monkeys from Whatever People Say I Am, That
—'s What I'm Not",

u'url': u'spotify://track:2fyIS6GXMgUcSv4oejx63f'}]

playlist_get_info (taglist=None, start=None, amount=None)
Parameters
* start (int) - playlist index of first track to query
e amount (int)— number of tracks to query
* taglist (1ist) - list of tags (NEED LINK)
Return type list
Returns server result
If start is None, results will start with the first track in the playlist.
If amount is None, all playlist tracks will be returned.

Unlike playlist_get_detail, no default taglist is provided.

>>>player.playlist_get_info(start=1, amount=1)
[{u'id': u'-137990288",

(continues on next page)

18 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

(continued from previous page)

u'playlist index': 1,
u'title': u'Mardy Bum'}]

playlist_insert (item)
Insert item into playlist (after current track)

Parameters item (str) - link to playable item

playlist_move (from_index, to_index)
Move items in playlist

Parameters
e from_index (int) - index of item to move
* to_index (int) — new playlist position

playlist_play (item)
Play item

Parameters item (str) - link to playable item
playlist_play index (index)

Parameters index (int) - index of playlist track to play (zero-based index)
playlist_position

Return type int

Returns position of current track in playlist

prev ()
Play previous item in playlist

request (command)
Parameters command (str, 1ist)-command tobe sent to server
Return type dict
Returns JSON response received from server
Send the request to the server.
rewind (seconds=10)

Parameters seconds (int, float) — number of seconds to jump backwards in current
track.

Jump backwards in current track. Number of seconds will be converted to integer.
seek_to (seconds)
Parameters seconds (int, float) - position (in seconds) that player should seek to
Move player to specified position in current playlist item

stop ()
Stop the player

sync (player=None, ref=None, index=None, master=True)
Synchronise squeezeplayers

Parameters

* player (LMSPlayer) — Instance of player

4.2. LMSPlayer 19

LMSTools Documentation, Release 0.0.1

* ref (str)— MAC address of player

* index (int) — server index of squeezeplayer

* master (bool)— whether current player should be the master player in sync group
Raises LMSPlayerError

You must provide one of player, ref or index otherwise an exception will be raised. If master is set to True
then you must provide either player or ref.

time_elapsed

Return type float

Returns elapsed time in seconds. Returns 0.0 if an exception is encountered.
time_remaining

Return type float

Returns remaining time in seconds. Returns 0.0 if an exception is encountered.

toggle ()
Play/Pause Toggle

track _album
Return type unicode, str

Returns name of album for current playlist item

>>>player.track_album
u'Kiasmos'

track_artist
Return type unicode, str

Returns name of artist for current playlist item

>>>player.track_artist
u'Kiasmos'

track_count

Return type int

Returns number of tracks in playlist
track _duration

Return type float

Returns duration of track in seconds

>>>player.track_duration
384.809

track_elapsed _and_duration
Return type tuple (float, float)

Returns tuple of elapsed time and track duration

20 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

>>>player.track_elapsed_and_duration
(4.86446976280212, 384.809)

track _title
Return type unicode, str

Returns name of track for current playlist item

>>>player.track_artist
u'Lit’

unmute ()
Unmute player

unpause ()
Unpause the player.

unsynec ()
Remove player from syncgroup.

update ()
Retrieve some basic info about the player.

Retrieves the name, model and ip attributes. This method is called on initialisation.

volume
Volume information

Getter Get current volume
Return type int
Returns current volume

Setter change volume

>>>player.volume
95
>>>player.volume = 50

Min: 0, Max: 100

volume_down (interval=5)
Decrease volume

Parameters interval (int)— amount to decrease volume (default 5)

volume_up (interval=>5)
Increase volume

Parameters interval (int)- amount to increase volume (default 5)
wifi_ signal_strength

Return type int

Returns Wifi signal strength

4.3 Callback Server

An asynchronous client that listens to messages broadcast by the server.

4.3. Callback Server 21

LMSTools Documentation, Release 0.0.1

The client also accepts callback functions.
The client subclasses python threading so methods are built-in to the class object.
Callbacks can be configured in two different ways:

1) Using decorators

2) Using the ‘add_callback’ method

Decorators

squeeze = LMSCallbackServer ()

@squeeze.event (squeeze.VOLUME_CHANGE)
def volume_event (event=None) :
print "Volume event received: {}".format (event)

squeeze.set_server ("192.168.0.1")
squeeze.start ()

If you are using decorators inside a class then this will happen before your class has been initialised so you need to
provide the callback server with a reference to the class instance.

squeeze = LMSCallbackServer ()
class MyClass (object):

def _ init__ (self):
self.squeeze = squeeze
self.squeeze.set_server ("192.168.0.1", parent_class=self)
self.squeeze.start ()

@squeeze.event (squeeze.VOLUME_CHANGE)
def volume_event (self, event=None) :
print "Volume event received: {}".format (event)

Multiple events can be added with multiple decorators

@squeeze.event (squeeze.VOLUME_CHANGE)
@squeeze.event (squeeze.PLAY PAUSE)
def generic_event (event=None) :

print "Event received: {}".format (event)

Or by passing events as a list

@squeeze.event ([squeeze.VOLUME_CHANGE, squeeze.PLAY_ _PAUSE])
def generic_event (event=None) :
print "Event received: {}".format (event)

Using ‘add_callback’ method

def volume_event (event=None) :
print "Volume event received: {}".format (event)

squeeze = LMSCallbackServer ("192.168.0.1")
squeeze.add_callback (squeeze.VOLUME_CHANGE, volume_event)
squeeze.start ()

exception LMSTools.callbackserver.CallbackServerError

22 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

class LMSTools.callbackserver.LMSCallbackServer (hostname=None, port=9090, user-
name=", password="")

Parameters
* hostname (str) — (optional) ip address/name of the server (excluding “http://” prefix)
* port (int) — (optional) port on which the telent interface is running (default 9090)
* username (str) — (optional) username for access on telnet port
* password (str) — (optional) password for access on telnet port

If the class is initialised without the hostname parameter then the “set_server” method must be called before
starting the server otherwise a CallbackServerError will be raised.

Events

The following events are currently define in the class.
Const MIXER_ALL Captures all mixer events
Const VOLUME_CHANGE Captures volume events
Const PLAYLIST_ALL Captures all playlist events
Const PLAY_PAUSE Captures play/pause events
Const PLAY Captures play event
Const PAUSE Captures pause event
Const PLAYLIST_OPEN Captures playlist open event
Const PLAYLIST_CHANGE_TRACK Captures track changes
Const PLAYLIST_LOAD_TRACKS Captures loadtracks event
Const PLAYLIST_ADD_TRACKS Captures addtracks event
Const PLAYLIST_LOADED Captures “playlist load_done” event
Const PLAYLIST REMOVE Captures “playlist delete” event
Const PLAYLIST_CLEAR Captures playlist clear event

Const PLAYLIST_CHANGED Captures PLAYLIST_LOAD_TRACKS, PLAYLIST_LOADED,
PLAYLIST_ADD_TRACKS, PLAYLIST_REMOVE, PLAYLIST_CLEAR

Const CLIENT_ALL Captures all client events

Const CLIENT_NEW Captures new client events

Const CLIENT_DISCONNECT Captures client disconnect events
Const CLIENT_RECONNECT Captures client reconnect events
Const CLIENT_FORGET Captures client forget events

Const SYNC Captures sync events

Const SERVER_ERROR Custom event for server errors

Const SERVER_CONNECT Custom event for server connection

add_callback (event, callback)
Define a callback.

Parameters

* event (event) — Event type

4.3. Callback Server 23

http://

LMSTools Documentation, Release 0.0.1

e callback (function/method) — Reference to the function/method to be called if
matching event is received. The function/method must accept one parmeter which is the
event string.

remove_callback (event)
Remove a callback.

Parameters event (event) — Event type

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

set_server (hostname, port=9090, username=", password=", parent_class=None)
Parameters
* hostname (str) — (required) ip address/name of the server (excluding “http://” prefix)
e port (int) — (optional) port on which the telent interface is running (default 9090)
* username (str)— (optional) username for access on telnet port
* password (str) — (optional) password for access on telnet port

* parent_class (object) — (optional) reference to a class instance. Required where
decorators have been used on class methods prior to initialising the class.

Provide details of the server if not provided when the class is initialised (e.g. if you are using decorators
to define callbacks).

stop ()
Stop the callack server thread.

4.4 Squeezeplayer Menus

exception LMSTools.menu.LMSMenuException
Simple exception class for handling errors in the LMSMenuHandler.

class LMSTools.menu.LMSMenuHandler (player=None)
Parameters player (LMSPlayer) —instance of LMSPlayer.
Class for generating squeezeplayer menu for individual players.
This code is a work in progress and currently has limited functionality.

Menus can be requested via the getHomeMenu or getCustomMenu methods. Subsequent menus are generated
by getting the menu command from previous menus and passing it to the getMenu method.

If no player is set when the handler is initiated then it must be set before requesting menus.
changePlayer (player)
Parameters player (LMSPlayer) —instance of LMSPlayer.
Change the player for which the menu is being created.

While this may have little relevance on retrieiving menus, it is important if you wish to manipulate the
playlist or other player specific items directly from the menu.

24 Chapter 4. Module documentation

http://

LMSTools Documentation, Release 0.0.1

dump (menu, filename)
Parameters
* menu (dict)—raw json menu
e filename (str)— name of file to save menu
Save the supplied menu to file (useful for debugging purposes).
getCustomMenu (raw)
Parameters raw (dict) — custom menu format (see docs for example)
Return type list
Returns list of menu items
Generate menu items from a custom menu.

This can be useful if you want to create a tailored menu rather than use the full default menu generated by
the server.

getHomeMenu ()
Return type list
Returns list of menu items
Generate menu items from default menu.
getMenu (menucmd)
Parameters menuemd (str, 1ist)-command to request next menu from server
Return type list
Returns list of menu items
Generate menu from the supplied menu command.

class LMSTools.menuitems.AudioMenulItem (player=None, menuitem=None, base=None)
Audio menu item. Basically the same as a playlist.

add ()
Add the selected item to your playlist.

cmd _add

Return type str

Returns command string to add selected item to playlist
cmd_play

Return type str

Returns command string to play selected item
cmd_play next

Return type str

Returns command string to play selected item after currently playing item
go ()

Return type list

Returns command list for submenu

4.4. Squeezeplayer Menus 25

LMSTools Documentation, Release 0.0.1

Go to submenu i.e. list of tracks in playlist.

play ()

Play the selected item.

play_next ()

Play the selected item after the currently playing item.
show_items_cmd
Return type str

Returns command string to show submenu items

class LMSTools.menuitems.NextMenuItem (player=None, menuitem=None, base=None)

Menu item which has no other purpose than to create a new submenu.
cmd

Return type str

Returns command string for next menu

Get command string for submenu.

class LMSTools.menuitems.PlaylistMenultem (player=None, menuitem=None, base=None)

A playlist menu item is one that can be played directly from this link but can also provide a submenu of all the
tracks in the playlist.

add ()
Add the selected item to your playlist.

cmd _add

Return type str

Returns command string to add selected item to playlist
cmd_play

Return type str

Returns command string to play selected item
cmd_play next

Return type str

Returns command string to play selected item after currently playing item
go ()

Return type list

Returns command list for submenu

Go to submenu i.e. list of tracks in playlist.

play ()
Play the selected item.

play_next ()
Play the selected item after the currently playing item.

show_items_cmd
Return type str

Returns command string to show submenu items

26

Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

class LMSTools.menuitems.SearchMenuItem (player=None, menuitem=None, base=None)
Menu item where a search term is required.

cmd_search
Return type str
Returns raw command string

You will need to replace __ TAGGEDINPUT__ with your search term before building a menu with this
command.

search (query)
Parameters query (str) — search terms
Return type list

Returns command to generate search results

4.5 Server command tags

class LMSTools.tags.LMSTags
Const ARTIST Artist name.
Const ALBUM_ID Album ID. Only if known.
Const ALBUM_REPLAY_GAIN Replay gain of the album (in dB), if any
Const ALBUM Album name. Only if known.
Const ARTIST_ID Artist ID.
Const ARTIST_ROLE_IDS For each role as defined above, the list of ids.
Const ARTIST_ROLE a comma separated list of names.

Const ARTWORK_TRACK_ID Identifier of the album track used by the server to display the
album’s artwork. Not listed if artwork is not available for this album.

Const ARTWORK_URL A full URL to remote artwork. Only available for certain plugins such as
Pandora and Rhapsody.

Const BITRATE Song bitrate. Only if known.
Const BPM Beats per minute. Only if known.

Const BUTTONS A hash with button definitions. Only available for certain plugins such as Pan-
dora.

Const COMMENT Song comments, if any.

Const COMPILATION 1 if the album this track belongs to is a compilation
Const CONTENT_TYPE Content type. Only if known.

Const COVERART 1 if coverart is available for this song. Not listed otherwise.

Const COVERID coverid to use when constructing an artwork URL, such as /mu-
sic/$coverid/cover.jpg

Const DISC_COUNT Number of discs. Only if known.
Const DISC Disc number. Only if known.

4.5. Server command tags 27

LMSTools Documentation, Release 0.0.1

Const DURATION Song duration in seconds.
Const FILESIZE Song file length in bytes. Only if known.

Const GENRE_ID_LIST Genre IDs, separated by commas (only useful if the server is set to handle
multiple items in tags).

Const GENRE_ID Genre ID. Only if known.

Const GENRE_LIST Genre names, separated by commas (only useful if the server is set to handle
multiple items in tags).

Const GENRE Genre name. Only if known.

Const INFO_LINK A custom link to use for trackinfo. Only available for certain plugins such as
Pandora.

Const LYRICS Lyrics. Only if known.

Const MODIFICATION_TIME Date and time song file was last changed.
Const MUSICMAGIC_MIXABLE 1 if track is mixable, otherwise 0.
Const RATING Song rating, if known and greater than 0.

Const REMOTE_TITLE Title of the internet radio station.

Const REMOTE If 1, this is a remote track.

Const REPLAY_GAIN Replay gain (in dB), if any

Const SAMPLERATE Song sample rate (in KHz)

Const SAMPLESIZE Song sample size (in bits)

Const TAG_VERSION Version of tag information in song file. Only if known.
Const TRACK_NUMBER Track number. Only if known.

Const URL Song file url.

Const YEAR Song year. Only if known.

4.6 Artwork

Note: There is limited documentation for this class as it is expected that the functionality will be added to the
LMSPlayer class.

class LMSTools.artworkresolver.LMSArtworkResolver (host="localhost’, port=9000)
Class object to help provide an easy way of obtaining a URL to a playlist item.

The class is capable of working out the appropriate path depending on whether the file is remote or local.
Parameters
e host (str) - address of the server
* port (int)— webport of the server (default 9000)

getURL (track, size=(500, 500))
Method for generating link to artwork for the selected track.

Parameters

28 Chapter 4. Module documentation

LMSTools Documentation, Release 0.0.1

* track (dict)—adict object which must contain the “remote”, “coverid” and “coverart”
tags as returned by the server.

* size (tuple) — optional parameter which can be used when creating links for local
images. Default (500, 500).

4.6. Artwork 29

LMSTools Documentation, Release 0.0.1

30

Chapter 4. Module documentation

CHAPTER B

Contributing

5.1 Enhancements

Requests should be submitted on the Issues tracker on Github.

Please submit any pull requests to the development branch. Requests to master will be rejected.

5.2 Bugs

Bugs should be logged on the Issues tracker .

31

https://github.com/elParaguayo/LMSTools/issues
https://github.com/elParaguayo/LMSTools/issues

LMSTools Documentation, Release 0.0.1

32

Chapter 5. Contributing

CHAPTER O

License

As PyLMS was licensed under GPL v2, this library has used the same license.

Attention: LMSTools: A python library for interacting with a Logitech Media Server
Copyright (C) 2017 elParaguayo

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to:

Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

33

LMSTools Documentation, Release 0.0.1

34

Chapter 6. License

CHAPTER /

Indices and tables

* genindex
* modindex

e search

35

LMSTools Documentation, Release 0.0.1

36

Chapter 7. Indices and tables

Python Module Index

LMSTools.
.callbackserver, 21
.menu, 24
.menuitems, 25
.player, 15
LMSTools.
.tags, 27

LMSTools
LMSTools
LMSTools
LMSTools

LMSTools

artworkresolver, 28

server, 13

37

LMSTools Documentation, Release 0.0.1

38

Python Module Index

Index

A

add () (LMSTools.menuitems.AudioMenultem method),
25

add () (LMSTools.menuitems.PlaylistMenultem

method), 26

add_callback () (LM-
STools.callbackserver. LMSCallbackServer
method), 23

AudioMenultem (class in LMSTools.menuitems), 25

C

CallbackServerError, 22

changePlayer () (LM-
STools.menu.LMSMenuHandler method),
24

cmd (LMSTools.menuitems.NextMenultem attribute), 26
cmd_add (LMSTools.menuitems.AudioMenultem — at-

tribute), 25

cmd_add (LMSTools.menuitems. PlaylistMenultem at-
tribute), 26

cmd_play (LMSTools.menuitems.AudioMenultem at-
tribute), 25

cmd_play (LMSTools.menuitems.PlaylistMenultem at-
tribute), 26

cmd_play_next (LM-
STools.menuitems.AudioMenultem attribute),
25

cmd_play_next (LM-

STools.menuitems.PlaylistMenultem attribute),
26

cmd_search (LMSTools.menuitems.SearchMenultem
attribute), 27

D

dump () (LMSTools.menu.LMSMenuHandler method),

24

F

forward () (LMSTools.player. LMSPlayer method), 15

from_index () (LMSTools.player.LMSPlayer class
method), 15

G

get_player_count () (LMSTools.server.LMSServer

method), 13

get_players () (LMSTools.server.LMSServer
method), 13

get_sync_groups () (LMSTools.server.LMSServer
method), 13

get_synced_players () (LM-
STools.player. LMSPlayer method), 16

getCustomMenu () (LM-
STools.menu. LMSMenuHandler method),
25

getHomeMenu () (LMSTools.menu.LMSMenuHandler
method), 25

getMenu () (LMSTools.menu.LMSMenuHandler
method), 25

getURL () (LMSTools.artworkresolver. LMSArtworkResolver
method), 28

go () (LMSTools.menuitems.AudioMenultem method),
25

go () (LMSTools.menuitems.PlaylistMenultem method),
26

L

LMSArtworkResolver (class in LM-
STools.artworkresolver), 28

LMSCallbackServer (class in LM-

STools.callbackserver), 22
LMSConnectionError, 13
LMSMenuException, 24
LMSMenuHandler (class in LMSTools.menu), 24
LMSPlayer (class in LMSTools.player), 15
LMSServer (class in LMSTools.server), 13
LMSTags (class in LMSTools.tags), 27
LMSTools.artworkresolver (module), 28
LMSTools.callbackserver (module), 21
LMSTools.menu (module), 24

39

LMSTools Documentation, Release 0.0.1

LMSTools
LMSTools
LMSTools
LMSTools

M

mode (LMSTools.player. LMSPlayer attribute), 16

model (LMSTools.player. LMSPlayer attribute), 16
mute () (LMSTools.player.LMSPlayer method), 16
muted (LMSTools.player. LMSPlayer attribute), 16

N

name (LMSTools.player. LMSPlayer attribute), 16
next () (LMSTools.player. LMSPlayer method), 16
NextMenulItem (class in LMSTools.menuitems), 26

P

parse_request ()
method), 16

pause () (LMSTools.player. LMSPlayer method), 17

percentage_elapsed() (LM-
STools.player. LMSPlayer method), 17

ping () (LMSTools.server.LMSServer method), 14

.menuitems (module), 25
.player (module), 15
.server (module), 13
.tags (module), 27

(LMSTools.player. LMSPlayer

play () (LMSTools.menuitems.AudioMenultem
method), 26

play () (LMSTools.menuitems.PlaylistMenultem
method), 26

play () (LMSTools.player. LMSPlayer method), 17

play_next () (LMSTools.menuitems.AudioMenultem
method), 26

play_next () (LMSTools.menuitems.PlaylistMenultem
method), 26

playlist_add() (LMSTools.player. LMSPlayer

method), 17

playlist_clear () (LMSTools.player. LMSPlayer
method), 17

playlist_delete () (LMSTools.player.LMSPlayer
method), 17

playlist_erase () (LMSTools.player. LMSPlayer
method), 17

playlist_get_current_detail () (LM-
STools.player. LMSPlayer method), 17

playlist_get_detail () (LM-
STools.player. LMSPlayer method), 18

playlist_get_info () (LM-

STools.player. LMSPlayer method), 18
playlist_insert () (LMSTools.player.LMSPlayer

method), 19

playlist_move () (LMSTools.player. LMSPlayer
method), 19

playlist_play () (LMSTools.player. LMSPlayer
method), 19

playlist_play_index() (LM-

STools.player. LMSPlayer method), 19

playlist_position (LMSTools.player.LMSPlayer
attribute), 19

PlaylistMenulItem (class in LMSTools.menuitems),
26

prev () (LMSTools.player. LMSPlayer method), 19

R

remove_callback () (LM-
STools.callbackserver LMSCallbackServer
method), 24

request () (LMSTools.player.LMSPlayer method), 19

request () (LMSTools.server.LMSServer method), 14

rescan () (LMSTools.server.LMSServer method), 14

rescanprogress (LMSTools.server.LMSServer at-
tribute), 14

rewind () (LMSTools.player.LMSPlayer method), 19

run () (LMSTools.callbackserver. LMSCallbackServer
method), 24

S

search () (LMSTools.menuitems.SearchMenultem

method), 27

SearchMenultem (class in LMSTools.menuitems), 26

seek_to () (LMSTools.player. LMSPlayer method), 19

set_server () (LM-
STools.callbackserver. LMSCallbackServer
method), 24

show_items_cmd (LM-
STools.menuitems.AudioMenultem attribute),
26

show_items_cmd (LM-
STools.menuitems.PlaylistMenultem attribute),
26

show_players_sync_status ()

STools.server. LMSServer method), 14

(LMSTools.callbackserver.LMSCallbackServer

method), 24

stop () (LMSTools.player.LMSPlayer method), 19

sync () (LMSTools.player. LMSPlayer method), 19

sync () (LMSTools.server.LMSServer method), 15

T

time_elapsed
tribute), 20

time_remaining (LMSTools.player.LMSPlayer at-
tribute), 20

toggle () (LMSTools.player. LMSPlayer method), 20

track_album (LMSTools.player. LMSPlayer attribute),
20

track_artist
tribute), 20

track_count (LMSTools.player. LMSPlayer attribute),
20

(LM-

stop ()

at-

(LMSTools.player. LMSPlayer

(LMSTools.player.LMSPlayer at-

40

Index

LMSTools Documentation, Release 0.0.1

track_duration (LMSTools.player.LMSPlayer at-
tribute), 20

track_elapsed_and_duration (LM-
STools.player. LMSPlayer attribute), 20

track_title (LMSTools.player. LMSPlayer attribute),
21

U

unmute () (LMSTools.player. LMSPlayer method), 21
unpause () (LMSTools.player. LMSPlayer method), 21
unsync () (LMSTools.player. LMSPlayer method), 21
update () (LMSTools.player. LMSPlayer method), 21

\Y

version (LMSTools.server.LMSServer attribute), 15

volume (LMSTools.player. LMSPlayer attribute), 21

volume_down () (LMSTools.player. LMSPlayer
method), 21

volume_up () (LMSTools.player.LMSPlayer method),
21

W
wifi_signal_strength (LM-
STools.player. LMSPlayer attribute), 21

Index

41

	Introduction
	Installation
	Manual installation

	Examples
	Starting out
	Controlling/querying your squeezeplayer
	Using the callbackserver
	Generating player menus

	Module documentation
	LMSServer
	LMSPlayer
	Callback Server
	Squeezeplayer Menus
	Server command tags
	Artwork

	Contributing
	Enhancements
	Bugs

	License
	Indices and tables
	Python Module Index

