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Deprecated

This package only serves as archive and will be deleted soon.





          

      

      

    

  

    
      
          
            
  
Installation


Stable release

To install lmfit-varpro, run this command in your terminal:

$ pip install lmfit-varpro





This is the preferred method to install lmfit-varpro, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io/en/stable/] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




From sources

The sources for lmfit-varpro can be downloaded from the Github repo [https://github.com/glotaran/lmfit-varpro].

You can simply use pip [https://pip.pypa.io/en/stable/] to install it directly from the Github repo [https://github.com/glotaran/lmfit-varpro].

$ pip install git+https://github.com/glotaran/lmfit-varpro.git





Or you can either clone the public repository:

$ git clone git://github.com/glotaran/lmfit-varpro





Or download the tarball [https://github.com/glotaran/lmfit-varpro/tarball/master]:

$ curl  -OL https://github.com/glotaran/lmfit-varpro/tarball/master





And once you have a copy of the source, you can install it with:

$ python setup.py install











          

      

      

    

  

    
      
          
            
  
Usage

To use lmfit-varpro in a project:

import lmfit_varpro









          

      

      

    

  

    
      
          
            
  
API Documentation

The API Documentation for lmfit_varpro is automatically created from its docstrings.
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	util

	










          

      

      

    

  

    
      
          
            
  
constraints


Classes


Summary







	CompartmentEqualityConstraint

	An CompartmentEqualityConstraint adds a penalty to the residual if 2 compartments of the e matrix differ more than by just a scaling parameter in the sum over a given range.















          

      

      

    

  

    
      
          
            
  
CompartmentEqualityConstraint


	
class CompartmentEqualityConstraint(weight, i, j, parameter, erange, crange)

	Bases: object

An CompartmentEqualityConstraint adds a penalty to the residual if 2
compartments of the e matrix differ more than by just a scaling parameter
in the sum over a given range. It calculates as


penalty = weight * (parameter * sum(c[range, i]) - c[range, j])




Methods Summary







	calculate

	






Methods Documentation


	
calculate(e_matrix, parameter)

	




	
crange = None

	The range on the c matrix axis the constraint is applied on






	
erange = None

	The range on the e matrix axis the constraint is applied on






	
i = None

	Index of the first compartment






	
j = None

	Index of the second compartment






	
parameter = None

	Index of the parameter






	
weight = None

	Weight factor of the penalty













          

      

      

    

  

    
      
          
            
  
calculate


	
CompartmentEqualityConstraint.calculate(e_matrix, parameter)

	







          

      

      

    

  

    
      
          
            
  
qr_decomposition


Functions


Summary







	qr_coefficents

	



	qr_residual

	















          

      

      

    

  

    
      
          
            
  
qr_coefficents


	
qr_coefficents(A, B)

	







          

      

      

    

  

    
      
          
            
  
qr_residual


	
qr_residual(A, B)

	







          

      

      

    

  

    
      
          
            
  
result


Functions


Summary







	iter

	












Classes


Summary







	SeparableModelResult

	















          

      

      

    

  

    
      
          
            
  
iter


	
iter(data, c_matrix)

	







          

      

      

    

  

    
      
          
            
  
SeparableModelResult


	
class SeparableModelResult(model, initial_parameter, nnls, equality_constraints, *args, nan_policy='raise', **kwargs)

	Bases: lmfit.minimizer.Minimizer

Attributes Summary







	fitresult

	The lmfit.MinimizerResult returned by the minimization.



	values

	Return Parameter values in a simple dictionary.






Methods Summary







	ampgo

	Find the global minimum of a multivariate function using AMPGO.



	basinhopping

	Use the basinhopping algorithm to find the global minimum of a function.



	brute

	Use the brute method to find the global minimum of a function.



	c_matrix

	



	e_matrix

	



	emcee

	Bayesian sampling of the posterior distribution using emcee.



	eval

	



	final_residual

	



	final_residual_svd

	



	fit

	



	get_model

	



	least_squares

	Least-squares minimization using scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html].



	leastsq

	Use Levenberg-Marquardt minimization to perform a fit.



	minimize

	Perform the minimization.



	penalty

	Penalty function for scalar minimizers.



	prepare_fit

	Prepare parameters for fitting.



	scalar_minimize

	Scalar minimization using scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].



	unprepare_fit

	Clean fit state, so that subsequent fits need to call prepare_fit().






Methods Documentation


	
ampgo(params=None, **kws)

	Find the global minimum of a multivariate function using AMPGO.

AMPGO stands for ‘Adaptive Memory Programming for Global Optimization’
and is an efficient algorithm to find the global minimum.


	Parameters

	
	params (Parameters, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.


	**kws (dict, optional) – Minimizer options to pass to the ampgo algorithm, the options are
listed below:

local: str (default is 'L-BFGS-B')
    Name of the local minimization method. Valid options are:
    - 'L-BFGS-B'
    - 'Nelder-Mead'
    - 'Powell'
    - 'TNC'
    - 'SLSQP'
local_opts: dict (default is None)
    Options to pass to the local minimizer.
maxfunevals: int (default is None)
    Maximum number of function evaluations. If None, the optimization will stop
    after `totaliter` number of iterations.
totaliter: int (default is 20)
    Maximum number of global iterations.
maxiter: int (default is 5)
    Maximum number of `Tabu Tunneling` iterations during each global iteration.
glbtol: float (default is 1e-5)
    Tolerance whether or not to accept a solution after a tunneling phase.
eps1: float (default is 0.02)
    Constant used to define an aspiration value for the objective function during
    the Tunneling phase.
eps2: float (default is 0.1)
    Perturbation factor used to move away from the latest local minimum at the
    start of a Tunneling phase.
tabulistsize: int (default is 5)
    Size of the (circular) tabu search list.
tabustrategy: str (default is 'farthest')
    Strategy to use when the size of the tabu list exceeds `tabulistsize`. It
    can be 'oldest' to drop the oldest point from the tabu list or 'farthest'
    to drop the element farthest from the last local minimum found.
disp: bool (default is False)
    Set to True to print convergence messages.












	Returns

	Object containing the parameters from the ampgo method, with fit
parameters, statistics and such. The return values (x0, fval,
eval, msg, tunnel) are stored as ampgo_<parname> attributes.



	Return type

	MinimizerResult






New in version 0.9.10.



Notes

The Python implementation was written by Andrea Gavana in 2014
(http://infinity77.net/global_optimization/index.html).

The details of the AMPGO algorithm are described in the paper
“Adaptive Memory Programming for Constrained Global Optimization”
located here:

http://leeds-faculty.colorado.edu/glover/fred%20pubs/416%20-%20AMP%20(TS)%20for%20Constrained%20Global%20Opt%20w%20Lasdon%20et%20al%20.pdf






	
basinhopping(params=None, **kws)

	Use the basinhopping algorithm to find the global minimum of a function.

This method calls scipy.optimize.basinhopping [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html] using the default
arguments. The default minimizer is BFGS, but since lmfit supports
parameter bounds for all minimizers, the user can choose any of the
solvers present in scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].


	Parameters

	params (Parameters object, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.



	Returns

	Object containing the optimization results from the basinhopping
algorithm.



	Return type

	MinimizerResult






New in version 0.9.10.








	
brute(params=None, Ns=20, keep=50)

	Use the brute method to find the global minimum of a function.

The following parameters are passed to scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html]
and cannot be changed:








	brute() arg

	Value

	Description





	full_output

	1

	Return the evaluation grid and
the objective function’s values on it.



	finish

	None

	No “polishing” function is to be used
after the grid search.



	disp

	False

	Do not print convergence messages
(when finish is not None).






It assumes that the input Parameters have been initialized, and a
function to minimize has been properly set up.


	Parameters

	
	params (Parameters, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.


	Ns (int, optional) – Number of grid points along the axes, if not otherwise specified
(see Notes).


	keep (int, optional) – Number of best candidates from the brute force method that are
stored in the candidates attribute. If ‘all’, then all grid
points from scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] are stored as candidates.






	Returns

	Object containing the parameters from the brute force method.
The return values (x0, fval, grid, Jout) from
scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] are stored as brute_<parname> attributes.
The MinimizerResult also contains the candidates attribute and
show_candidates() method. The candidates attribute contains the
parameters and chisqr from the brute force method as a namedtuple,
(‘Candidate’, [‘params’, ‘score’]), sorted on the (lowest) chisqr
value. To access the values for a particular candidate one can use
result.candidate[#].params or result.candidate[#].score, where
a lower # represents a better candidate. The show_candidates(#)
uses the pretty_print() method to show a specific candidate-#
or all candidates when no number is specified.



	Return type

	MinimizerResult






New in version 0.9.6.



Notes

The brute() method evalutes the function at each point of a
multidimensional grid of points. The grid points are generated from the
parameter ranges using Ns and (optional) brute_step.
The implementation in scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] requires finite bounds
and the range is specified as a two-tuple (min, max) or slice-object
(min, max, brute_step). A slice-object is used directly, whereas a
two-tuple is converted to a slice object that interpolates Ns points
from min to max, inclusive.

In addition, the brute() method in lmfit, handles three other
scenarios given below with their respective slice-object:



	
	lower bound (min) and brute_step are specified:

	range = (min, min + Ns * brute_step, brute_step).







	
	upper bound (max) and brute_step are specified:

	range = (max - Ns * brute_step, max, brute_step).







	
	numerical value (value) and brute_step are specified:

	range = (value - (Ns//2) * brute_step, value +
(Ns//2) * brute_step, brute_step).

















	
c_matrix(*args, **kwargs)

	




	
e_matrix(*args, **kwargs)

	




	
emcee(params=None, steps=1000, nwalkers=100, burn=0, thin=1, ntemps=1, pos=None, reuse_sampler=False, workers=1, float_behavior='posterior', is_weighted=True, seed=None, progress=True)

	Bayesian sampling of the posterior distribution using emcee.

Bayesian sampling of the posterior distribution for the parameters
using the emcee Markov Chain Monte Carlo package. The method assumes
that the prior is Uniform. You need to have emcee installed to use
this method.


	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point. If this is not specified
then the Parameters used to initialize the Minimizer object are
used.


	steps (int, optional) – How many samples you would like to draw from the posterior
distribution for each of the walkers?


	nwalkers (int, optional) – Should be set so \(nwalkers >> nvarys\), where nvarys are
the number of parameters being varied during the fit.
“Walkers are the members of the ensemble. They are almost like
separate Metropolis-Hastings chains but, of course, the proposal
distribution for a given walker depends on the positions of all
the other walkers in the ensemble.” - from the emcee webpage.


	burn (int, optional) – Discard this many samples from the start of the sampling regime.


	thin (int, optional) – Only accept 1 in every thin samples.


	ntemps (int, optional) – If ntemps > 1 perform a Parallel Tempering.


	pos (numpy.ndarray, optional) – Specify the initial positions for the sampler.  If ntemps == 1
then pos.shape should be (nwalkers, nvarys). Otherwise,
(ntemps, nwalkers, nvarys). You can also initialise using a
previous chain that had the same ntemps, nwalkers and
nvarys. Note that nvarys may be one larger than you expect it
to be if your userfcn returns an array and is_weighted is
False.


	reuse_sampler (bool, optional) – If you have already run emcee on a given Minimizer object then
it possesses an internal sampler attribute. You can continue to
draw from the same sampler (retaining the chain history) if you set
this option to True. Otherwise a new sampler is created. The
nwalkers, ntemps, pos, and params keywords are ignored with
this option.
Important: the Parameters used to create the sampler must not
change in-between calls to emcee. Alteration of Parameters
would include changed min, max, vary and expr
attributes. This may happen, for example, if you use an altered
Parameters object and call the minimize method in-between calls
to emcee.


	workers (Pool-like or int, optional) – For parallelization of sampling.  It can be any Pool-like object
with a map method that follows the same calling sequence as the
built-in map function. If int is given as the argument, then a
multiprocessing-based pool is spawned internally with the
corresponding number of parallel processes. ‘mpi4py’-based
parallelization and ‘joblib’-based parallelization pools can also
be used here. Note: because of multiprocessing overhead it may
only be worth parallelising if the objective function is expensive
to calculate, or if there are a large number of objective
evaluations per step (ntemps * nwalkers * nvarys).


	float_behavior (str, optional) – Specifies meaning of the objective function output if it returns a
float. One of:


	’posterior’ - objective function returns a log-posterior
probability


	’chi2’ - objective function returns \(\chi^2\)




See Notes for further details.




	is_weighted (bool, optional) – Has your objective function been weighted by measurement
uncertainties? If is_weighted is True then your objective
function is assumed to return residuals that have been divided by
the true measurement uncertainty (data - model) / sigma. If
is_weighted is False then the objective function is assumed to
return unweighted residuals, data - model. In this case emcee
will employ a positive measurement uncertainty during the sampling.
This measurement uncertainty will be present in the output params
and output chain with the name __lnsigma. A side effect of this
is that you cannot use this parameter name yourself.
Important this parameter only has any effect if your objective
function returns an array. If your objective function returns a
float, then this parameter is ignored. See Notes for more details.


	seed (int or numpy.random.RandomState, optional) – If seed is an int, a new numpy.random.RandomState instance is
used, seeded with seed.
If seed is already a numpy.random.RandomState instance, then
that numpy.random.RandomState instance is used.
Specify seed for repeatable minimizations.






	Returns

	MinimizerResult object containing updated params, statistics,
etc. The updated params represent the median (50th percentile) of
all the samples, whilst the parameter uncertainties are half of the
difference between the 15.87 and 84.13 percentiles.
The MinimizerResult also contains the chain, flatchain
and lnprob attributes. The chain and flatchain
attributes contain the samples and have the shape
(nwalkers, (steps - burn) // thin, nvarys) or
(ntemps, nwalkers, (steps - burn) // thin, nvarys),
depending on whether Parallel tempering was used or not.
nvarys is the number of parameters that are allowed to vary.
The flatchain attribute is a pandas.DataFrame of the
flattened chain, chain.reshape(-1, nvarys). To access flattened
chain values for a particular parameter use
result.flatchain[parname]. The lnprob attribute contains the
log probability for each sample in chain. The sample with the
highest probability corresponds to the maximum likelihood estimate.



	Return type

	MinimizerResult





Notes

This method samples the posterior distribution of the parameters using
Markov Chain Monte Carlo.  To do so it needs to calculate the
log-posterior probability of the model parameters, F, given the data,
D, \(\ln p(F_{true} | D)\). This ‘posterior probability’ is
calculated as:


\[\ln p(F_{true} | D) \propto \ln p(D | F_{true}) + \ln p(F_{true})\]

where \(\ln p(D | F_{true})\) is the ‘log-likelihood’ and
\(\ln p(F_{true})\) is the ‘log-prior’. The default log-prior
encodes prior information already known about the model. This method
assumes that the log-prior probability is -numpy.inf (impossible) if
the one of the parameters is outside its limits. The log-prior probability
term is zero if all the parameters are inside their bounds (known as a
uniform prior). The log-likelihood function is given by 1:


\[\ln p(D|F_{true}) = -\frac{1}{2}\sum_n \left[\frac{(g_n(F_{true}) - D_n)^2}{s_n^2}+\ln (2\pi s_n^2)\right]\]

The first summand in the square brackets represents the residual for a
given datapoint (\(g\) being the generative model, \(D_n\) the
data and \(s_n\) the standard deviation, or measurement
uncertainty, of the datapoint). This term represents \(\chi^2\)
when summed over all data points.
Ideally the objective function used to create lmfit.Minimizer should
return the log-posterior probability, \(\ln p(F_{true} | D)\).
However, since the in-built log-prior term is zero, the objective
function can also just return the log-likelihood, unless you wish to
create a non-uniform prior.

If a float value is returned by the objective function then this value
is assumed by default to be the log-posterior probability, i.e.
float_behavior is ‘posterior’. If your objective function returns
\(\chi^2\), then you should use a value of ‘chi2’ for
float_behavior. emcee will then multiply your \(\chi^2\) value
by -0.5 to obtain the posterior probability.

However, the default behaviour of many objective functions is to return
a vector of (possibly weighted) residuals. Therefore, if your objective
function returns a vector, res, then the vector is assumed to contain
the residuals. If is_weighted is True then your residuals are assumed
to be correctly weighted by the standard deviation (measurement
uncertainty) of the data points (res = (data - model) / sigma) and
the log-likelihood (and log-posterior probability) is calculated as:
-0.5 * numpy.sum(res**2).
This ignores the second summand in the square brackets. Consequently,
in order to calculate a fully correct log-posterior probability value
your objective function should return a single value. If
is_weighted is False then the data uncertainty, s_n, will be
treated as a nuisance parameter and will be marginalized out. This is
achieved by employing a strictly positive uncertainty
(homoscedasticity) for each data point, \(s_n = \exp(\_\_lnsigma)\).
__lnsigma will be present in MinimizerResult.params, as well as
Minimizer.chain, nvarys will also be increased by one.

References
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	http://dan.iel.fm/emcee/current/user/line/










	
eval(*args, **kwargs)

	




	
final_residual(*args, **kwargs)

	




	
final_residual_svd(*args, **kwargs)

	




	
fit(*args, **kwargs)

	




	
fitresult

	The lmfit.MinimizerResult returned by the minimization.






	
get_model()

	




	
least_squares(params=None, **kws)

	Least-squares minimization using scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html].

This method wraps scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html], which has inbuilt
support for bounds and robust loss functions. By default it uses the
Trust Region Reflective algorithm with a linear loss function (i.e.,
the standard least-squares problem).


	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options to pass to scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html].






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.








	
leastsq(params=None, **kws)

	Use Levenberg-Marquardt minimization to perform a fit.

It assumes that the input Parameters have been initialized, and
a function to minimize has been properly set up.
When possible, this calculates the estimated uncertainties and
variable correlations from the covariance matrix.

This method calls scipy.optimize.leastsq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html].
By default, numerical derivatives are used, and the following
arguments are set:








	leastsq()
arg

	Default Value

	Description





	xtol

	1.e-7

	Relative error in the approximate solution



	ftol

	1.e-7

	Relative error in the desired sum of squares



	maxfev

	2000*(nvar+1)

	Maximum number of function calls (nvar= # of variables)



	Dfun

	None

	Function to call for Jacobian calculation







	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options to pass to scipy.optimize.leastsq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html].






	Returns

	Object containing the optimized parameter
and several goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.








	
minimize(method='leastsq', params=None, **kws)

	Perform the minimization.


	Parameters

	
	method (str, optional) – Name of the fitting method to use. Valid values are:


	’leastsq’: Levenberg-Marquardt (default)


	’least_squares’: Least-Squares minimization, using Trust Region Reflective method


	’differential_evolution’: differential evolution


	’brute’: brute force method


	’basinhopping’: basinhopping


	’ampgo’: Adaptive Memory Programming for Global Optimization


	’nelder’: Nelder-Mead


	’lbfgsb’: L-BFGS-B


	’powell’: Powell


	’cg’: Conjugate-Gradient


	’newton’: Newton-CG


	’cobyla’: Cobyla


	’bfgs’: BFGS


	’tnc’: Truncated Newton


	’trust-ncg’: Newton-CG trust-region


	’trust-exact’: nearly exact trust-region (SciPy >= 1.0)


	’trust-krylov’: Newton GLTR trust-region (SciPy >= 1.0)


	’trust-constr’: trust-region for constrained optimization (SciPy >= 1.1)


	’dogleg’: Dog-leg trust-region


	’slsqp’: Sequential Linear Squares Programming


	’emcee’: Maximum likelihood via Monte-Carlo Markov Chain




In most cases, these methods wrap and use the method with the
same name from scipy.optimize, or use
scipy.optimize.minimize with the same method argument.
Thus ‘leastsq’ will use scipy.optimize.leastsq, while
‘powell’ will use scipy.optimize.minimizer(…,
method=’powell’)

For more details on the fitting methods please refer to the
SciPy docs [https://docs.scipy.org/doc/scipy/reference/optimize.html].




	params (Parameters, optional) – Parameters of the model to use as starting values.


	**kws (optional) – Additional arguments are passed to the underlying minimization
method.






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.








	
penalty(fvars)

	Penalty function for scalar minimizers.


	Parameters

	fvars (numpy.ndarray) – Array of values for the variable parameters.



	Returns

	r – The evaluated user-supplied objective function.

If the objective function is an array of size greater than 1,
use the scalar returned by self.reduce_fcn.  This defaults
to sum-of-squares, but can be replaced by other options.





	Return type

	float










	
prepare_fit(params=None)

	Prepare parameters for fitting.

Prepares and initializes model and Parameters for subsequent
fitting. This routine prepares the conversion of Parameters
into fit variables, organizes parameter bounds, and parses, “compiles”
and checks constrain expressions.   The method also creates and returns
a new instance of a MinimizerResult object that contains the
copy of the Parameters that will actually be varied in the fit.


	Parameters

	params (Parameters, optional) – Contains the Parameters for the model; if None, then the
Parameters used to initialize the Minimizer object are used.



	Returns

	



	Return type

	MinimizerResult





Notes

This method is called directly by the fitting methods, and it is
generally not necessary to call this function explicitly.


Changed in version 0.9.0: Return value changed to MinimizerResult.








	
scalar_minimize(method='Nelder-Mead', params=None, **kws)

	Scalar minimization using scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].

Perform fit with any of the scalar minimization algorithms supported by
scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html]. Default argument values are:








	scalar_minimize()
arg

	Default Value

	Description





	method

	Nelder-Mead

	fitting method



	tol

	1.e-7

	fitting and parameter tolerance



	hess

	None

	Hessian of objective function







	Parameters

	
	method (str, optional) – Name of the fitting method to use. One of:


	’Nelder-Mead’ (default)


	’L-BFGS-B’


	’Powell’


	’CG’


	’Newton-CG’


	’COBYLA’


	’BFGS’


	’TNC’


	’trust-ncg’


	’trust-exact’ (SciPy >= 1.0)


	’trust-krylov’ (SciPy >= 1.0)


	’trust-constr’ (SciPy >= 1.1)


	’dogleg’


	’SLSQP’


	’differential_evolution’







	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options pass to scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.



Notes

If the objective function returns a NumPy array instead
of the expected scalar, the sum of squares of the array
will be used.

Note that bounds and constraints can be set on Parameters
for any of these methods, so are not supported separately
for those designed to use bounds. However, if you use the
differential_evolution method you must specify finite
(min, max) for each varying Parameter.






	
unprepare_fit()

	Clean fit state, so that subsequent fits need to call prepare_fit().

removes AST compilations of constraint expressions.






	
values

	Return Parameter values in a simple dictionary.













          

      

      

    

  

    
      
          
            
  
ampgo


	
SeparableModelResult.ampgo(params=None, **kws)

	Find the global minimum of a multivariate function using AMPGO.

AMPGO stands for ‘Adaptive Memory Programming for Global Optimization’
and is an efficient algorithm to find the global minimum.


	Parameters

	
	params (Parameters, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.


	**kws (dict, optional) – Minimizer options to pass to the ampgo algorithm, the options are
listed below:

local: str (default is 'L-BFGS-B')
    Name of the local minimization method. Valid options are:
    - 'L-BFGS-B'
    - 'Nelder-Mead'
    - 'Powell'
    - 'TNC'
    - 'SLSQP'
local_opts: dict (default is None)
    Options to pass to the local minimizer.
maxfunevals: int (default is None)
    Maximum number of function evaluations. If None, the optimization will stop
    after `totaliter` number of iterations.
totaliter: int (default is 20)
    Maximum number of global iterations.
maxiter: int (default is 5)
    Maximum number of `Tabu Tunneling` iterations during each global iteration.
glbtol: float (default is 1e-5)
    Tolerance whether or not to accept a solution after a tunneling phase.
eps1: float (default is 0.02)
    Constant used to define an aspiration value for the objective function during
    the Tunneling phase.
eps2: float (default is 0.1)
    Perturbation factor used to move away from the latest local minimum at the
    start of a Tunneling phase.
tabulistsize: int (default is 5)
    Size of the (circular) tabu search list.
tabustrategy: str (default is 'farthest')
    Strategy to use when the size of the tabu list exceeds `tabulistsize`. It
    can be 'oldest' to drop the oldest point from the tabu list or 'farthest'
    to drop the element farthest from the last local minimum found.
disp: bool (default is False)
    Set to True to print convergence messages.












	Returns

	Object containing the parameters from the ampgo method, with fit
parameters, statistics and such. The return values (x0, fval,
eval, msg, tunnel) are stored as ampgo_<parname> attributes.



	Return type

	MinimizerResult






New in version 0.9.10.



Notes

The Python implementation was written by Andrea Gavana in 2014
(http://infinity77.net/global_optimization/index.html).

The details of the AMPGO algorithm are described in the paper
“Adaptive Memory Programming for Constrained Global Optimization”
located here:

http://leeds-faculty.colorado.edu/glover/fred%20pubs/416%20-%20AMP%20(TS)%20for%20Constrained%20Global%20Opt%20w%20Lasdon%20et%20al%20.pdf









          

      

      

    

  

    
      
          
            
  
basinhopping


	
SeparableModelResult.basinhopping(params=None, **kws)

	Use the basinhopping algorithm to find the global minimum of a function.

This method calls scipy.optimize.basinhopping [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html] using the default
arguments. The default minimizer is BFGS, but since lmfit supports
parameter bounds for all minimizers, the user can choose any of the
solvers present in scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].


	Parameters

	params (Parameters object, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.



	Returns

	Object containing the optimization results from the basinhopping
algorithm.



	Return type

	MinimizerResult






New in version 0.9.10.











          

      

      

    

  

    
      
          
            
  
brute


	
SeparableModelResult.brute(params=None, Ns=20, keep=50)

	Use the brute method to find the global minimum of a function.

The following parameters are passed to scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html]
and cannot be changed:








	brute() arg

	Value

	Description





	full_output

	1

	Return the evaluation grid and
the objective function’s values on it.



	finish

	None

	No “polishing” function is to be used
after the grid search.



	disp

	False

	Do not print convergence messages
(when finish is not None).






It assumes that the input Parameters have been initialized, and a
function to minimize has been properly set up.


	Parameters

	
	params (Parameters, optional) – Contains the Parameters for the model. If None, then the
Parameters used to initialize the Minimizer object are used.


	Ns (int, optional) – Number of grid points along the axes, if not otherwise specified
(see Notes).


	keep (int, optional) – Number of best candidates from the brute force method that are
stored in the candidates attribute. If ‘all’, then all grid
points from scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] are stored as candidates.






	Returns

	Object containing the parameters from the brute force method.
The return values (x0, fval, grid, Jout) from
scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] are stored as brute_<parname> attributes.
The MinimizerResult also contains the candidates attribute and
show_candidates() method. The candidates attribute contains the
parameters and chisqr from the brute force method as a namedtuple,
(‘Candidate’, [‘params’, ‘score’]), sorted on the (lowest) chisqr
value. To access the values for a particular candidate one can use
result.candidate[#].params or result.candidate[#].score, where
a lower # represents a better candidate. The show_candidates(#)
uses the pretty_print() method to show a specific candidate-#
or all candidates when no number is specified.



	Return type

	MinimizerResult






New in version 0.9.6.



Notes

The brute() method evalutes the function at each point of a
multidimensional grid of points. The grid points are generated from the
parameter ranges using Ns and (optional) brute_step.
The implementation in scipy.optimize.brute [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html] requires finite bounds
and the range is specified as a two-tuple (min, max) or slice-object
(min, max, brute_step). A slice-object is used directly, whereas a
two-tuple is converted to a slice object that interpolates Ns points
from min to max, inclusive.

In addition, the brute() method in lmfit, handles three other
scenarios given below with their respective slice-object:



	
	lower bound (min) and brute_step are specified:

	range = (min, min + Ns * brute_step, brute_step).







	
	upper bound (max) and brute_step are specified:

	range = (max - Ns * brute_step, max, brute_step).







	
	numerical value (value) and brute_step are specified:

	range = (value - (Ns//2) * brute_step, value +
(Ns//2) * brute_step, brute_step).




















          

      

      

    

  

    
      
          
            
  
c_matrix


	
SeparableModelResult.c_matrix(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
e_matrix


	
SeparableModelResult.e_matrix(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
emcee


	
SeparableModelResult.emcee(params=None, steps=1000, nwalkers=100, burn=0, thin=1, ntemps=1, pos=None, reuse_sampler=False, workers=1, float_behavior='posterior', is_weighted=True, seed=None, progress=True)

	Bayesian sampling of the posterior distribution using emcee.

Bayesian sampling of the posterior distribution for the parameters
using the emcee Markov Chain Monte Carlo package. The method assumes
that the prior is Uniform. You need to have emcee installed to use
this method.


	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point. If this is not specified
then the Parameters used to initialize the Minimizer object are
used.


	steps (int, optional) – How many samples you would like to draw from the posterior
distribution for each of the walkers?


	nwalkers (int, optional) – Should be set so \(nwalkers >> nvarys\), where nvarys are
the number of parameters being varied during the fit.
“Walkers are the members of the ensemble. They are almost like
separate Metropolis-Hastings chains but, of course, the proposal
distribution for a given walker depends on the positions of all
the other walkers in the ensemble.” - from the emcee webpage.


	burn (int, optional) – Discard this many samples from the start of the sampling regime.


	thin (int, optional) – Only accept 1 in every thin samples.


	ntemps (int, optional) – If ntemps > 1 perform a Parallel Tempering.


	pos (numpy.ndarray, optional) – Specify the initial positions for the sampler.  If ntemps == 1
then pos.shape should be (nwalkers, nvarys). Otherwise,
(ntemps, nwalkers, nvarys). You can also initialise using a
previous chain that had the same ntemps, nwalkers and
nvarys. Note that nvarys may be one larger than you expect it
to be if your userfcn returns an array and is_weighted is
False.


	reuse_sampler (bool, optional) – If you have already run emcee on a given Minimizer object then
it possesses an internal sampler attribute. You can continue to
draw from the same sampler (retaining the chain history) if you set
this option to True. Otherwise a new sampler is created. The
nwalkers, ntemps, pos, and params keywords are ignored with
this option.
Important: the Parameters used to create the sampler must not
change in-between calls to emcee. Alteration of Parameters
would include changed min, max, vary and expr
attributes. This may happen, for example, if you use an altered
Parameters object and call the minimize method in-between calls
to emcee.


	workers (Pool-like or int, optional) – For parallelization of sampling.  It can be any Pool-like object
with a map method that follows the same calling sequence as the
built-in map function. If int is given as the argument, then a
multiprocessing-based pool is spawned internally with the
corresponding number of parallel processes. ‘mpi4py’-based
parallelization and ‘joblib’-based parallelization pools can also
be used here. Note: because of multiprocessing overhead it may
only be worth parallelising if the objective function is expensive
to calculate, or if there are a large number of objective
evaluations per step (ntemps * nwalkers * nvarys).


	float_behavior (str, optional) – Specifies meaning of the objective function output if it returns a
float. One of:


	’posterior’ - objective function returns a log-posterior
probability


	’chi2’ - objective function returns \(\chi^2\)




See Notes for further details.




	is_weighted (bool, optional) – Has your objective function been weighted by measurement
uncertainties? If is_weighted is True then your objective
function is assumed to return residuals that have been divided by
the true measurement uncertainty (data - model) / sigma. If
is_weighted is False then the objective function is assumed to
return unweighted residuals, data - model. In this case emcee
will employ a positive measurement uncertainty during the sampling.
This measurement uncertainty will be present in the output params
and output chain with the name __lnsigma. A side effect of this
is that you cannot use this parameter name yourself.
Important this parameter only has any effect if your objective
function returns an array. If your objective function returns a
float, then this parameter is ignored. See Notes for more details.


	seed (int or numpy.random.RandomState, optional) – If seed is an int, a new numpy.random.RandomState instance is
used, seeded with seed.
If seed is already a numpy.random.RandomState instance, then
that numpy.random.RandomState instance is used.
Specify seed for repeatable minimizations.






	Returns

	MinimizerResult object containing updated params, statistics,
etc. The updated params represent the median (50th percentile) of
all the samples, whilst the parameter uncertainties are half of the
difference between the 15.87 and 84.13 percentiles.
The MinimizerResult also contains the chain, flatchain
and lnprob attributes. The chain and flatchain
attributes contain the samples and have the shape
(nwalkers, (steps - burn) // thin, nvarys) or
(ntemps, nwalkers, (steps - burn) // thin, nvarys),
depending on whether Parallel tempering was used or not.
nvarys is the number of parameters that are allowed to vary.
The flatchain attribute is a pandas.DataFrame of the
flattened chain, chain.reshape(-1, nvarys). To access flattened
chain values for a particular parameter use
result.flatchain[parname]. The lnprob attribute contains the
log probability for each sample in chain. The sample with the
highest probability corresponds to the maximum likelihood estimate.



	Return type

	MinimizerResult





Notes

This method samples the posterior distribution of the parameters using
Markov Chain Monte Carlo.  To do so it needs to calculate the
log-posterior probability of the model parameters, F, given the data,
D, \(\ln p(F_{true} | D)\). This ‘posterior probability’ is
calculated as:


\[\ln p(F_{true} | D) \propto \ln p(D | F_{true}) + \ln p(F_{true})\]

where \(\ln p(D | F_{true})\) is the ‘log-likelihood’ and
\(\ln p(F_{true})\) is the ‘log-prior’. The default log-prior
encodes prior information already known about the model. This method
assumes that the log-prior probability is -numpy.inf (impossible) if
the one of the parameters is outside its limits. The log-prior probability
term is zero if all the parameters are inside their bounds (known as a
uniform prior). The log-likelihood function is given by 1:


\[\ln p(D|F_{true}) = -\frac{1}{2}\sum_n \left[\frac{(g_n(F_{true}) - D_n)^2}{s_n^2}+\ln (2\pi s_n^2)\right]\]

The first summand in the square brackets represents the residual for a
given datapoint (\(g\) being the generative model, \(D_n\) the
data and \(s_n\) the standard deviation, or measurement
uncertainty, of the datapoint). This term represents \(\chi^2\)
when summed over all data points.
Ideally the objective function used to create lmfit.Minimizer should
return the log-posterior probability, \(\ln p(F_{true} | D)\).
However, since the in-built log-prior term is zero, the objective
function can also just return the log-likelihood, unless you wish to
create a non-uniform prior.

If a float value is returned by the objective function then this value
is assumed by default to be the log-posterior probability, i.e.
float_behavior is ‘posterior’. If your objective function returns
\(\chi^2\), then you should use a value of ‘chi2’ for
float_behavior. emcee will then multiply your \(\chi^2\) value
by -0.5 to obtain the posterior probability.

However, the default behaviour of many objective functions is to return
a vector of (possibly weighted) residuals. Therefore, if your objective
function returns a vector, res, then the vector is assumed to contain
the residuals. If is_weighted is True then your residuals are assumed
to be correctly weighted by the standard deviation (measurement
uncertainty) of the data points (res = (data - model) / sigma) and
the log-likelihood (and log-posterior probability) is calculated as:
-0.5 * numpy.sum(res**2).
This ignores the second summand in the square brackets. Consequently,
in order to calculate a fully correct log-posterior probability value
your objective function should return a single value. If
is_weighted is False then the data uncertainty, s_n, will be
treated as a nuisance parameter and will be marginalized out. This is
achieved by employing a strictly positive uncertainty
(homoscedasticity) for each data point, \(s_n = \exp(\_\_lnsigma)\).
__lnsigma will be present in MinimizerResult.params, as well as
Minimizer.chain, nvarys will also be increased by one.

References


	1

	http://dan.iel.fm/emcee/current/user/line/













          

      

      

    

  

    
      
          
            
  
eval


	
SeparableModelResult.eval(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
final_residual


	
SeparableModelResult.final_residual(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
final_residual_svd


	
SeparableModelResult.final_residual_svd(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
fit


	
SeparableModelResult.fit(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
get_model


	
SeparableModelResult.get_model()

	







          

      

      

    

  

    
      
          
            
  
least_squares


	
SeparableModelResult.least_squares(params=None, **kws)

	Least-squares minimization using scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html].

This method wraps scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html], which has inbuilt
support for bounds and robust loss functions. By default it uses the
Trust Region Reflective algorithm with a linear loss function (i.e.,
the standard least-squares problem).


	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options to pass to scipy.optimize.least_squares [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html].






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.











          

      

      

    

  

    
      
          
            
  
leastsq


	
SeparableModelResult.leastsq(params=None, **kws)

	Use Levenberg-Marquardt minimization to perform a fit.

It assumes that the input Parameters have been initialized, and
a function to minimize has been properly set up.
When possible, this calculates the estimated uncertainties and
variable correlations from the covariance matrix.

This method calls scipy.optimize.leastsq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html].
By default, numerical derivatives are used, and the following
arguments are set:








	leastsq()
arg

	Default Value

	Description





	xtol

	1.e-7

	Relative error in the approximate solution



	ftol

	1.e-7

	Relative error in the desired sum of squares



	maxfev

	2000*(nvar+1)

	Maximum number of function calls (nvar= # of variables)



	Dfun

	None

	Function to call for Jacobian calculation







	Parameters

	
	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options to pass to scipy.optimize.leastsq [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html].






	Returns

	Object containing the optimized parameter
and several goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.











          

      

      

    

  

    
      
          
            
  
minimize


	
SeparableModelResult.minimize(method='leastsq', params=None, **kws)

	Perform the minimization.


	Parameters

	
	method (str, optional) – Name of the fitting method to use. Valid values are:


	’leastsq’: Levenberg-Marquardt (default)


	’least_squares’: Least-Squares minimization, using Trust Region Reflective method


	’differential_evolution’: differential evolution


	’brute’: brute force method


	’basinhopping’: basinhopping


	’ampgo’: Adaptive Memory Programming for Global Optimization


	’nelder’: Nelder-Mead


	’lbfgsb’: L-BFGS-B


	’powell’: Powell


	’cg’: Conjugate-Gradient


	’newton’: Newton-CG


	’cobyla’: Cobyla


	’bfgs’: BFGS


	’tnc’: Truncated Newton


	’trust-ncg’: Newton-CG trust-region


	’trust-exact’: nearly exact trust-region (SciPy >= 1.0)


	’trust-krylov’: Newton GLTR trust-region (SciPy >= 1.0)


	’trust-constr’: trust-region for constrained optimization (SciPy >= 1.1)


	’dogleg’: Dog-leg trust-region


	’slsqp’: Sequential Linear Squares Programming


	’emcee’: Maximum likelihood via Monte-Carlo Markov Chain




In most cases, these methods wrap and use the method with the
same name from scipy.optimize, or use
scipy.optimize.minimize with the same method argument.
Thus ‘leastsq’ will use scipy.optimize.leastsq, while
‘powell’ will use scipy.optimize.minimizer(…,
method=’powell’)

For more details on the fitting methods please refer to the
SciPy docs [https://docs.scipy.org/doc/scipy/reference/optimize.html].




	params (Parameters, optional) – Parameters of the model to use as starting values.


	**kws (optional) – Additional arguments are passed to the underlying minimization
method.






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.











          

      

      

    

  

    
      
          
            
  
penalty


	
SeparableModelResult.penalty(fvars)

	Penalty function for scalar minimizers.


	Parameters

	fvars (numpy.ndarray) – Array of values for the variable parameters.



	Returns

	r – The evaluated user-supplied objective function.

If the objective function is an array of size greater than 1,
use the scalar returned by self.reduce_fcn.  This defaults
to sum-of-squares, but can be replaced by other options.





	Return type

	float













          

      

      

    

  

    
      
          
            
  
prepare_fit


	
SeparableModelResult.prepare_fit(params=None)

	Prepare parameters for fitting.

Prepares and initializes model and Parameters for subsequent
fitting. This routine prepares the conversion of Parameters
into fit variables, organizes parameter bounds, and parses, “compiles”
and checks constrain expressions.   The method also creates and returns
a new instance of a MinimizerResult object that contains the
copy of the Parameters that will actually be varied in the fit.


	Parameters

	params (Parameters, optional) – Contains the Parameters for the model; if None, then the
Parameters used to initialize the Minimizer object are used.



	Returns

	



	Return type

	MinimizerResult





Notes

This method is called directly by the fitting methods, and it is
generally not necessary to call this function explicitly.


Changed in version 0.9.0: Return value changed to MinimizerResult.











          

      

      

    

  

    
      
          
            
  
scalar_minimize


	
SeparableModelResult.scalar_minimize(method='Nelder-Mead', params=None, **kws)

	Scalar minimization using scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].

Perform fit with any of the scalar minimization algorithms supported by
scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html]. Default argument values are:








	scalar_minimize()
arg

	Default Value

	Description





	method

	Nelder-Mead

	fitting method



	tol

	1.e-7

	fitting and parameter tolerance



	hess

	None

	Hessian of objective function







	Parameters

	
	method (str, optional) – Name of the fitting method to use. One of:


	’Nelder-Mead’ (default)


	’L-BFGS-B’


	’Powell’


	’CG’


	’Newton-CG’


	’COBYLA’


	’BFGS’


	’TNC’


	’trust-ncg’


	’trust-exact’ (SciPy >= 1.0)


	’trust-krylov’ (SciPy >= 1.0)


	’trust-constr’ (SciPy >= 1.1)


	’dogleg’


	’SLSQP’


	’differential_evolution’







	params (Parameters, optional) – Parameters to use as starting point.


	**kws (dict, optional) – Minimizer options pass to scipy.optimize.minimize [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html].






	Returns

	Object containing the optimized parameter and several
goodness-of-fit statistics.



	Return type

	MinimizerResult






Changed in version 0.9.0: Return value changed to MinimizerResult.



Notes

If the objective function returns a NumPy array instead
of the expected scalar, the sum of squares of the array
will be used.

Note that bounds and constraints can be set on Parameters
for any of these methods, so are not supported separately
for those designed to use bounds. However, if you use the
differential_evolution method you must specify finite
(min, max) for each varying Parameter.









          

      

      

    

  

    
      
          
            
  
unprepare_fit


	
SeparableModelResult.unprepare_fit()

	Clean fit state, so that subsequent fits need to call prepare_fit().

removes AST compilations of constraint expressions.
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SeparableModel


	
class SeparableModel

	Bases: object

Methods Summary







	c_matrix

	



	data

	



	e_matrix

	



	eval

	



	fit

	



	retrieve_e_matrix

	



	retrieve_e_matrix_from_c

	






Methods Documentation


	
c_matrix(parameter, *args, **kwargs)

	




	
data(**kwargs)

	




	
e_matrix(parameter, *args, **kwarg)

	




	
eval(parameter, *args, **kwargs)

	




	
fit(initial_parameter, nnls, constraints, *args, nan_policy='raise', **kwargs)

	




	
retrieve_e_matrix(parameter, *args, **kwargs)

	




	
retrieve_e_matrix_from_c(c_matrix, **kwargs)

	











          

      

      

    

  

    
      
          
            
  
c_matrix


	
SeparableModel.c_matrix(parameter, *args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
data


	
SeparableModel.data(**kwargs)

	







          

      

      

    

  

    
      
          
            
  
e_matrix


	
SeparableModel.e_matrix(parameter, *args, **kwarg)

	







          

      

      

    

  

    
      
          
            
  
eval


	
SeparableModel.eval(parameter, *args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
fit


	
SeparableModel.fit(initial_parameter, nnls, constraints, *args, nan_policy='raise', **kwargs)

	







          

      

      

    

  

    
      
          
            
  
retrieve_e_matrix


	
SeparableModel.retrieve_e_matrix(parameter, *args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
retrieve_e_matrix_from_c


	
SeparableModel.retrieve_e_matrix_from_c(c_matrix, **kwargs)
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dot


	
dot(e, c)
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Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/glotaran/lmfit-varpro/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

lmfit-varpro could always use more documentation, whether as part of the
official lmfit-varpro docs, in docstrings, or even on the web in blog posts,
articles, and such.
If you are writing docstrings please use the
NumPyDoc [https://numpydoc.readthedocs.io/en/latest/example.html]
style to write them.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/glotaran/lmfit-varpro/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up lmfit-varpro for local development.


	Fork the lmfit-varpro repo on GitHub.


	Clone your fork locally:

$git clone git@github.com:your_name_here/lmfit-varpro.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$mkvirtualenv lmfit_varpro
$cd lmfit_varpro/
$python setup.py develop







	Create a branch for local development:

$git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.





5. When you’re done making changes, check that your changes pass all tests
(unit tests, codestyle tests and doc creation test):

 $tox

To get all requirements run `pip install -r requirements_dev.txt` in your virtualenv.






	Commit your changes and push your branch to GitHub:

$git add .
$git commit -m "Your detailed description of your changes."
$git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.6 and 3.7. Check
https://travis-ci.org/glotaran/lmfit_varpro/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ py.test tests.test_lmfit_varpro








Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags





Travis will then deploy to PyPI if tests pass.







          

      

      

    

  

    
      
          
            
  
“how to” in depth

This section serves as a more complete guide for new developers, as well
as place to put useful resources for fast lookup i.e. if you forgot an option for .. toctree:: .



	Virtual envs “how to” in depth
	Using conda

	Using mkvirtualenv

	Setting up glotaran





	Documentation “how to” in depth
	How to use Sphinx in general

	Generate API Documentation













          

      

      

    

  

    
      
          
            
  
Virtual envs “how to” in depth

This Section explains how to get you virtual env up an running with different virtual env providers.


Using conda

The full conda documentation [https://conda.io/docs/].


Note

This is the recommended way if you use Windows.




Installation

First you have to download
anaconda [https://www.anaconda.com/download/] (conda installation with “full” science stack)
or
miniconda [https://conda.io/miniconda.html] (minimal conda installation)
for your OS and follow its install instructions.

After that is done (maybe a restart of the terminal or PC is needed) have the conda command
available in your terminal:

$conda update conda








Environment creation

If that is working, create an environment:

$conda create --name glotaran python=3.6 -y






Note

Python 3.7 could also be used, but packages can’t be installed with conda install packages
right now. If the packages are are on PIPY already they can still be installed with
pip install package.






De-/Activating an Environment

To activate the environment run:

$source activate glotaran





Or to deactivate respectively:

$source deactivate






Note

On default Windows terminal (cmd/PS) you might need omit source and run
activate glotaran/deactivate instead.




Note

To easily manage your conda environments you can use the tool
enboard [https://pypi.org/project/enboard/] .


Warning

If you want to use enboard with git bash on Windows,
this won’t work out of the box.
You will have to edit your .bash_profile as follows:

export CONDA_ROOT_DIR='/path/to/conda/windows/style' # i.e. mine is 'C:\Anaconda3'
alias python='winpty python'
alias enboard='winpty enboard'














Using mkvirtualenv

The full virtualenvwrapper documentation [https://virtualenvwrapper.readthedocs.io/en/latest/].


Installation

To install virtualenvwrapper run:

$pip install virtualenvwrapper
$source /usr/local/bin/virtualenvwrapper.sh






Note

Depending on your python installation you will have to search for the location of
virtualenvwrapper.sh and change the path accordingly.




Warning

The line source /usr/local/bin/virtualenvwrapper.sh is for Posix Terminals and
might not work on Windows terminals.






Environment creation

To create an environment with virtualenvwrapper run:

$mkvirtualenv glotaran





You should now already be in that environment:

(glotaran)$








De-/Activating an Environment

To change in an existing environment from a fresh terminal run:

$workon glotaran





Or to deactivate respectively:

$deactivate










Setting up glotaran

Once you got your environment running you can start contributing to glotaran.
Just run the following commands and you are all set:

(glotaran)$git clone https://github.com/<your_name_here>/glotaran.git
(glotaran)$cd glotaran
(glotaran)$python -m pip install -r requirements_dev.txt
(glotaran)$pip install -e .











          

      

      

    

  

    
      
          
            
  
Documentation “how to” in depth

Our documentation is build using Sphinx [http://www.sphinx-doc.org/en/master/], which uses
reStructuredText (and with extensions Markdown) to compile documentation as html, LaTeX,
PDF and more.
It takes care of linking all pages together, building a search index and also extraction the documentation
written in the docstrings of the code.


How to use Sphinx in general

First you have enter your virtual env (if you don’t know how, have a look here:
Get Started! or Virtual envs “how to” in depth)

When you are in your virtual env (here called glotaran) navigate to glotarans docs folder:

(glotaran)$cd docs






Note

Consider for the following steps that, if you are on a Posix system
(Linux, MacOS, BSD or Git Bash/migwin on Windows) use make,
on normal Windows cmd/PS use make.bat instead.
If your Git Bash is missing the make functionality you can follow this
guide [https://gist.github.com/evanwill/0207876c3243bbb6863e65ec5dc3f058].



Once you are in the docs folder, generating/compiling the documentation is as easy as running:

(glotaran)$make html





The documentation than can be found is the folder docs/_build/html, where you can open it by
double clicking index.html


Warning

The reStructuredText Syntax isn’t as forgiving as html (where browsers correct most
of the falsey). It’s more like LaTeX, which is why it is recommended to compile often,
for errors not to stack up.



It might happen, that you change the documentation and can’t see the changes after a refresh in the browser.
Since Sphinx to reduce the compile time, it only recompiles the changed files, which can lead to problems
if you add new files, because the indexing wasn’t updated. If this happens, you can force Sphinx to rebuild
the whole documentation by first running:

(glotaran)$make clean






Workflow


	Change the docs


	Build the docs:

(glotaran)$make html







	Look at the commandline interface and make sure no errors happened.


	Refresh the you browser to see the changes.


	If there are no changes, even so there was no error, force Sphinx to rebuild all:

(glotaran)$make clean html







	Start with step 1 again.





	Useful resources:

	
	Sphinx reST Docs [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]


	Sphinx/reST Memo [https://rest-sphinx-memo.readthedocs.io/en/latest/index.html]


	reST Cheatsheet [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst]


	Restructured Text (reST) and Sphinx CheatSheet [https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html]


	Read the Docs Sphinx Theme [https://sphinx-rtd-theme.readthedocs.io/en/latest/]


	Sphinx Configuration [http://www.sphinx-doc.org/en/master/usage/configuration.html]






	Often used commands (for Windows replace `make with `make.bat):

	
	(glotaran)$make html


	(glotaran)$make clean


	(glotaran)$make clean html


	(glotaran)$make help













Generate API Documentation

The API Documentation will be generated automatically form the docstrings.
Those Docstrings should be formatted in the
NumPyDoc [https://numpydoc.readthedocs.io/en/latest/example.html] style.
Please make use of all available features as you see fit.


	The features are:

	
	Parameters


	Returns


	Raises


	See Also


	Notes


	References


	Examples








If you add packages, modules, classes, methods, attributes,
functions or exceptions, please read the introduction of Api Documentation Creation Helper.

Often used commands (for Windows replace `make with `make.bat):



	(glotaran)$make html


	(glotaran)$make clean_all


	(glotaran)$make api_docs


	(glotaran)$make clean_all api_docs html










Api Documentation Creation Helper

The helper Module to generate the API documentation is located at docs/generate_api_documentation.py.

The functionality is available by calling make api_docs on a Posix system
or make.bat api_docs on Windows.

If you add packages, modules, classes, methods, attributes,
functions or exceptions, you might need to run make clean_all on a Posix system
or make.bat clean_all on Windows to see changes in the documentation.

The generation of the API is done by traversing the main package
traverse_module and listing all child modules for autosummary to process
(see write_api_documentation, api_documentation.rst and
_templates/api_documentation_template.rst).

If the child module is also a package all its contained modules will be listed
(see write_known_packages, known_packages.rst, _templates/known_packages_template.rst and
_templates/autosummary/module.rst).

To understand how it works in detail the following links might be of help:


	Sphinx Templating Docs [http://www.sphinx-doc.org/en/master/templating.html]


	Jinja Templating [http://jinja.pocoo.org/docs/2.10/templates/]


	Sphinx autosummary Docs [http://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html?highlight=autosummary%20]


	Sphinx autodoc Docs [http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#module-sphinx.ext.autodoc]
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