

LensKit

LensKit is a set of Python tools for experimenting with and studying recommender
systems. It provides support for training, running, and evaluating recommender
algorithms in a flexible fashion suitable for research and education.

LensKit for Python (also known as LKPY) is the successor to the Java-based LensKit
project.

Installation

To install the current release with Anaconda (recommended):

conda install -c lenskit lenskit

Or you can use pip:

pip install lenskit

To use the latest development version, install directly from GitHub:

pip install git+https://github.com/lenskit/lkpy

Then see Getting Started.

Resources

	Mailing list, etc. [https://lenskit.org/connect]

	Source and issues on GitHub [https://github.com/lenskit/lkpy]

Contents:

	Getting Started

	Crossfold preparation
	Row-based splitting

	User-based splitting

	Utility Classes

	Batch-Running Recommendations
	Rating Prediction

	Algorithms
	Algorithm Interfaces

	Basic and Utility Algorithms

	k-NN Collaborative Filtering

	Classic Matrix Factorization

	Utility Functions

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

We’re working on documentation!

For now, this example computes nDCG for an item-based k-NN collaborative filter:

import pandas as pd
from lenskit import batch, topn
from lenskit import crossfold as xf
from lenskit.algorithms import knn

ratings = pd.read_csv('ml-100k/u.data', sep='\t',
 names=['user', 'item', 'rating', 'timestamp'])

algo = knn.ItemItem(30)

def eval(train, test):
 model = algo.train(train)
 users = test.user.unique()
 recs = batch.recommend(algo, model, users, 100,
 topn.UnratedCandidates(train))
 # combine with test ratings for relevance data
 res = pd.merge(recs, test, how='left',
 on=('user', 'item'))
 # fill in missing 0s
 res.loc[res.rating.isna(), 'rating'] = 0
 return res

compute evaluation
splits = xf.partition_users(ratings, 5,
 xf.SampleFrac(0.2)
recs = pd.concat((eval(train, test)
 for (train, test) in splits))

compile results
ndcg = recs.groupby('user').rating.apply(topn.ndcg)

Crossfold preparation

The LKPY crossfold module provides support for preparing data sets for
cross-validation. Crossfold methods are implemented as functions that operate
on data frames and return generators of (train, test) pairs
(lenskit.crossfold.TTPair objects). The train and test objects
in each pair are also data frames, suitable for evaluation or writing out to
a file.

Crossfold methods make minimal assumptions about their input data frames, so the
frames can be ratings, purchases, or whatever. They do assume that each row
represents a single data point for the purpose of splitting and sampling.

Experiment code should generally use these functions to prepare train-test files
for training and evaluating algorithms. For example, the following will perform
a user-based 5-fold cross-validation as was the default in the old LensKit:

import pandas as pd
import lenskit.crossfold as xf
ratings = pd.read_csv('ml-20m/ratings.csv')
ratings = ratings.rename(columns={'userId': 'user', 'movieId': 'item'})
for i, tp in enumerate(xf.partition_users(ratings, 5, xf.SampleN(5))):
 tp.train.to_csv('ml-20m.exp/train-%d.csv' % (i,))
 tp.train.to_parquet('ml-20m.exp/train-%d.parquet % (i,))
 tp.test.to_csv('ml-20m.exp/test-%d.csv' % (i,))
 tp.test.to_parquet('ml-20m.exp/test-%d.parquet % (i,))

Row-based splitting

The simplest preparation methods sample or partition the rows in the input frame.
A 5-fold partition_rows() split will result in 5
splits, each of which extracts 20% of the rows for testing and leaves 80% for
training.

	
lenskit.crossfold.partition_rows(data, partitions)

	Partition a frame of ratings or other datainto train-test partitions. This function does not
care what kind of data is in data, so long as it is a Pandas DataFrame (or equivalent).

	Parameters

	
	data (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or equivalent) – a data frame containing ratings or other data you wish to partition.

	partitions (integer) – the number of partitions to produce

	Return type

	iterator

	Returns

	an iterator of train-test pairs

	
lenskit.crossfold.sample_rows(data, partitions, size, disjoint=True)

	Sample train-test a frame of ratings into train-test partitions. This function does not care
what kind of data is in data, so long as it is a Pandas DataFrame (or equivalent).

	Parameters

	
	data (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or equivalent) – a data frame containing ratings or other data you wish to partition.

	partitions (integer) – the number of partitions to produce

	Return type

	iterator

	Returns

	an iterator of train-test pairs

User-based splitting

It’s often desirable to use users, instead of raw rows, as the basis for splitting
data. This allows you to control the experimental conditions on a user-by-user basis,
e.g. by making sure each user is tested with the same number of ratings. These methods
require that the input data frame have a user column with the user names or identifiers.

The algorithm used by each is as follows:

	Sample or partition the set of user IDs into n sets of test users.

	For each set of test users, select a set of that user’s rows to be test rows.

	
	Create a training set for each test set consisting of the non-selected rows from each

	of that set’s test users, along with all rows from each non-test user.

	
lenskit.crossfold.partition_users(data, partitions: int, method: lenskit.crossfold.PartitionMethod)

	Partition a frame of ratings or other data into train-test partitions user-by-user.
This function does not care what kind of data is in data, so long as it is a Pandas DataFrame
(or equivalent) and has a user column.

	Parameters

	
	data (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or equivalent) – a data frame containing ratings or other data you wish to partition.

	partitions (integer) – the number of partitions to produce

	method – The method for selecting test rows for each user.

	Return type

	iterator

	Returns

	an iterator of train-test pairs

	
lenskit.crossfold.sample_users(data, partitions: int, size: int, method: lenskit.crossfold.PartitionMethod, disjoint=True)

	Create train-test partitions by sampling users.
This function does not care what kind of data is in data, so long as it is
a Pandas DataFrame (or equivalent) and has a user column.

	Parameters

	
	data (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or equivalent) – a data frame containing ratings or other data you wish to partition.

	partitions – the number of partitions to produce

	size – the sample size

	method – The method for selecting test rows for each user.

	disjoint – whether user samples should be disjoint

	Return type

	iterator

	Returns

	an iterator of train-test pairs

Selecting user test rows

These functions each take a method to decide how select each user’s test rows. The method
is a function that takes a data frame (containing just the user’s rows) and returns the
test rows. This function is expected to preserve the index of the input data frame (which
happens by default with common means of implementing samples).

We provide several partition method factories:

	
lenskit.crossfold.SampleN(n)

	Randomly select a fixed number of test rows per user/item.

	Parameters

	n – The number of test items to select.

	
lenskit.crossfold.SampleFrac(frac)

	Randomly select a fraction of test rows per user/item.

	Parameters

	frac – the fraction of items to select for testing.

	
lenskit.crossfold.LastN(n, col='timestamp')

	Select a fixed number of test rows per user/item, based on ordering by a
column.

	Parameters

	
	n – The number of test items to select.

	col – The column to sort by.

	
lenskit.crossfold.LastFrac(frac, col='timestamp')

	Select a fraction of test rows per user/item.

	Parameters

	
	frac – the fraction of items to select for testing.

	col – The column to sort by.

Utility Classes

	
class lenskit.crossfold.PartitionMethod

	Partition methods select test rows for a user or item. Partition methods
are callable; when called with a data frame, they return the test rows.

	
__call__(udf)

	Subset a data frame.

	Parameters

	udf – The input data frame of rows for a user or item.

	Returns

	The data frame of test rows, a subset of udf.

	
class lenskit.crossfold.TTPair

	Train-test pair (named tuple).

	
test

	Test data for this pair.

	
train

	Train data for this pair.

Batch-Running Recommendations

The lenskit.batch module contains support for batch-running recommender and predictor
algorithms. This is often used as part of a recommender evaluation experiment.

Rating Prediction

	
lenskit.batch.predict(algo, pairs, model=None)

	Generate predictions for user-item pairs. The provided algorithm should be a
algorithms.Predictor or a function of two arguments: the user ID and
a list of item IDs. It should return a dictionary or a pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]
mapping item IDs to predictions.

	Parameters

	
	or (predictor(callable) – py:class:algorithms.Predictor):
a rating predictor function or algorithm.

	pairs (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – a data frame of (user, item) pairs to predict for. If this frame also
contains a rating column, it will be included in the result.

	model (any) – a model for the algorithm.

	Returns

	a frame with columns user, item, and prediction containing
the prediction results. If pairs contains a rating column, this
result will also contain a rating column.

	Return type

	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]

Algorithms

LKPY provides general algorithmic concepts, along with implementations of several
algorithms.

Algorithm Families:

	Algorithm Interfaces

	Basic and Utility Algorithms

	k-NN Collaborative Filtering

	Classic Matrix Factorization

Algorithm Interfaces

LKPY’s batch routines and utility support for managing algorithms expect algorithms
to implement consistent interfaces. This page describes those interfaces.

The interfaces are realized as abstract base classes with the Python abc [https://docs.python.org/3/library/abc.html#module-abc] module.
Implementations must be registered with their interfaces, either by subclassing the interface
or by calling abc.ABCMeta.register() [https://docs.python.org/3/library/abc.html#abc.ABCMeta.register].

Rating Prediction

	
class lenskit.algorithms.Predictor

	Predicts user ratings of items. Predictions are really estimates of the user’s like or
dislike, and the Predictor interface makes no guarantees about their scale or
granularity.

	
predict(model, user, items, ratings=None)

	Compute predictions for a user and items.

	Parameters

	
	model – the trained model to use. Either None or the ratings matrix if the
algorithm has no concept of training.

	user – the user ID

	items (array-like) – the items to predict

	ratings (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the user’s ratings (indexed by item id); if provided, they may be used to
override or augment the model’s notion of a user’s preferences.

	Returns

	scores for the items, indexed by item id.

	Return type

	pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]

Model Training

Most algorithms have some concept of a trained model. The Trainable interface captures the
ability of a model to be trained and saved to disk.

	
class lenskit.algorithms.Trainable

	Models that can be trained and have their models saved.

	
train(ratings)

	Train the model on rating/consumption data. Training methods that require additional
data may accept it as additional parameters or via class members.

	Parameters

	ratings (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – rating data, as a matrix with columns ‘user’, ‘item’, and ‘rating’. The
user and item identifiers may be of any type.

	Returns

	the trained model (of an implementation-defined type).

	
save_model(model, file)

	Save a trained model to a file. The default implementation pickles the model.

Algorithms are allowed to use any format for saving their models, including
directories.

	Parameters

	
	model – the trained model.

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file in which to save the model.

	
load_model(file)

	Save a trained model to a file.

	Parameters

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to file from which to load the model.

	Returns

	the re-loaded model (of an implementation-defined type).

Basic and Utility Algorithms

The lenskit.algorithms.basic module contains baseline and utility algorithms
for nonpersonalized recommendation and testing.

Personalized Mean Rating Prediction

Fallback Predictor

The Fallback rating predictor is a simple hybrid that takes a list of composite algorithms,
and uses the first one to return a result to predict the rating for each item.

A common case is to fill in with Bias when a primary predictor cannot score an item.

Memorized Predictor

The Memorized recommender is primarily useful for test cases. It memorizes a set of
rating predictions and returns them.

k-NN Collaborative Filtering

LKPY provides user- and item-based classical k-NN collaborative Filtering
implementations. These lightly-configurable implementations are intended
to capture the behavior of the Java-based LensKit implementations to provide
a good upgrade path and enable basic experiments out of the box.

User-based k-NN

Classic Matrix Factorization

LKPY provides classical matrix factorization implementations.

FunkSVD

FunkSVD [http://sifter.org/~simon/journal/20061211.html] is an SVD-like matrix factorization that uses stochastic gradient descent,
configured much like coordinate descent, to train the user-feature and item-feature
matrices.

Utility Functions

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lenskit	

 	
 	
 lenskit.algorithms	

 	
 	
 lenskit.algorithms.basic	

 	
 	
 lenskit.algorithms.funksvd	

 	
 	
 lenskit.algorithms.user_knn	

 	
 	
 lenskit.batch	

 	
 	
 lenskit.crossfold	

Index

 _
 | L
 | P
 | S
 | T

_

 	
 	__call__() (lenskit.crossfold.PartitionMethod method)

L

 	
 	LastFrac() (in module lenskit.crossfold)

 	LastN() (in module lenskit.crossfold)

 	lenskit.algorithms (module)

 	lenskit.algorithms.basic (module)

 	
 	lenskit.algorithms.funksvd (module)

 	lenskit.algorithms.user_knn (module)

 	lenskit.batch (module)

 	lenskit.crossfold (module)

 	load_model() (lenskit.algorithms.Trainable method)

P

 	
 	partition_rows() (in module lenskit.crossfold)

 	partition_users() (in module lenskit.crossfold)

 	PartitionMethod (class in lenskit.crossfold)

 	
 	predict() (in module lenskit.batch)

 	(lenskit.algorithms.Predictor method)

 	Predictor (class in lenskit.algorithms)

S

 	
 	sample_rows() (in module lenskit.crossfold)

 	sample_users() (in module lenskit.crossfold)

 	
 	SampleFrac() (in module lenskit.crossfold)

 	SampleN() (in module lenskit.crossfold)

 	save_model() (lenskit.algorithms.Trainable method)

T

 	
 	test (lenskit.crossfold.TTPair attribute)

 	train (lenskit.crossfold.TTPair attribute)

 	
 	train() (lenskit.algorithms.Trainable method)

 	Trainable (class in lenskit.algorithms)

 	TTPair (class in lenskit.crossfold)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 LensKit

 		
 Getting Started

 		
 Crossfold preparation

 		
 Row-based splitting

 		
 User-based splitting

 		
 Selecting user test rows

 		
 Utility Classes

 		
 Batch-Running Recommendations

 		
 Rating Prediction

 		
 Algorithms

 		
 Algorithm Interfaces

 		
 Rating Prediction

 		
 Model Training

 		
 Basic and Utility Algorithms

 		
 Personalized Mean Rating Prediction

 		
 Fallback Predictor

 		
 Memorized Predictor

 		
 k-NN Collaborative Filtering

 		
 User-based k-NN

 		
 Classic Matrix Factorization

 		
 FunkSVD

 		
 Utility Functions

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

