
littleworkers Documentation
Release 0.3.1

Daniel Lindsley

February 23, 2016

Contents

1 Topics 3

2 Requirements 7

3 Installation 9

4 Testing 11

5 Contributions 13

Python Module Index 15

i

ii

littleworkers Documentation, Release 0.3.1

author Daniel Lindsley

date 2011/11/10

version 0.3.1

license BSD

Little process-based workers to do your bidding.

Deliberately minimalist, you provide the number of workers to use & a list of commands (to be executed at the shell)
& littleworkers will eat through the list as fast as it can.

Contents 1

littleworkers Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Topics

1.1 Tutorial

1.1.1 Quick Start

A simple setup looks like:

from littleworkers import Pool

Define your commands.
commands = [

'ls -al',
'cd /tmp && mkdir foo',
'date',
'echo "Hello There."',
'sleep 2 && echo "Done."'

]

Setup a pool. Since I have two cores, I'll use two workers.
lil = Pool(workers=2)

Run!
lil.run(commands)

1.1.2 Philosophy

littleworkers shines when you just want to parallelize something without a lot of fuss & when you care more about the
data/commands to be run.

• Tiny source

• Easy to queue a set of actions

• Works with any runnable commands

• Uses processes

• Non-blocking

Seriously, it’s not a replacement for threading or multiprocessing if your application needs to share a ton of data with
the children.

3

littleworkers Documentation, Release 0.3.1

1.1.3 Extension

littleworkers was designed to be extended, so most customizations should be possible without forking the code. In-
stead, you should simple subclass Pool & extend/override the method. You can find the details of each method in the
API docs.

1.1.4 Example Customizations

You want the stdout back:

import subprocess
from littleworkers import Pool

class MyPool(Pool):
def __init__(self, *args, **kwargs):

super(MyPool, self).__init__(*args, **kwargs)
self.collected_output = []

def create_process(self, command):
logging.debug("Starting process to handle command '%s'." % command)
return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)

def remove_from_pool(self, pid):
self.collected_output.append(self.pool[pid].stdout.read())
return super(MyPool, self).remove_from_pool(pid)

You want to use a Queue instead of the default list:

from Queue import Queue, Empty
from littleworkers import Pool

class QueuePool(Pool):
def __init__(self, *args, **kwargs):

super(QueuePool, self).__init__(*args, **kwargs)
self.commands = Queue()

def prepare_commands(self, commands):
for command in commands:

self.commands.put(command)

def command_count(self):
return self.commands.qsize()

def next_command(self):
try:

return self.commands.get()
except Empty:

return None

You want to setup a callback:

from littleworkers import Pool

codes = []

def track(proc):

4 Chapter 1. Topics

littleworkers Documentation, Release 0.3.1

codes.append("%s returned status %s" % (proc.pid, proc.returncode))

commands = [
'sleep 1',
'busted_command --here',
'sleep 1',

]
lil.run(commands, callback=track)

1.2 API

class littleworkers.Pool(workers=1, debug=False, wait_time=0.1)
The main pool object. Manages a set of specified workers.

Usage:

commands = [
'ls -al',
'cd /tmp && mkdir foo',
'date',
'echo "Hello There."',
'sleep 2 && echo "Done."'

]
lil = Pool(workers=2)
lil.run(commands)

Optionally accepts a workers kwarg. Default is 1.

Optionally accepts a debug kwarg. Default is False.

Optionally accepts a wait_time kwarg. Default is 0.1.

add_to_pool(proc)
Adds a process to the pool.

busy_wait()
A hook to control how often the busy-wait loop runs.

By default, sleeps for 0.1 seconds.

command_count()
Returns the number of commands to be run.

Useful as a hook if you use a different structure for the commands.

create_process(command)
Given a provided command (string or list), creates a new process to execute the command.

inspect_pool()
A hook for inspecting the pool’s current status.

By default, simply makes a log message and returns the length of the pool.

next_command()
Fetches the next command for processing.

Will return None if there are no commands remaining (unless Pool.debug = True).

prepare_commands(commands)
A hook to override how the commands are added.

1.2. API 5

littleworkers Documentation, Release 0.3.1

By default, simply copies the provided command list to the internal commands list.

process_kwargs(command)
A hook to alter the kwargs given to subprocess.Process.

Takes a command argument, which is unused by default, but can be used to switch the flags used.

By default, only specifies shell=True.

remove_from_pool(pid)
Removes a process to the pool.

Fails silently if the process id is no longer present (unless Pool.debug = True).

run(commands=None, callback=None)
The method to actually execute all the commands with the pool.

Optionally accepts a commands kwarg, as a shortcut not to have to call Pool.prepare_commands.

set_callback(callback=None)
Sets up a callback to be run whenever a process finishes.

If called with None or without any args, it will clear any existing callback.

6 Chapter 1. Topics

CHAPTER 2

Requirements

• Python 2.6+ (may work with Python 2.5)

littleworkers is tested & works on Mac OS X/Linux/BSD. It may work on Windows (!) but is untested. Feed-
back welcome.

7

littleworkers Documentation, Release 0.3.1

8 Chapter 2. Requirements

CHAPTER 3

Installation

You can install from PyPI using pip (or easy_install if you prefer broken, unmaintained software):

pip install littleworkers

The only dependencies are in Python’s stdlib & the code is pure Python, so there’s nothing to compile.

9

littleworkers Documentation, Release 0.3.1

10 Chapter 3. Installation

CHAPTER 4

Testing

littleworkers is maintained with a passing test suite at all times. You should use nose_ or similar tools to run
the tests like:

nosetests tests.py

Output is currently pretty verbose, which will be fixed in the future.

11

littleworkers Documentation, Release 0.3.1

12 Chapter 4. Testing

CHAPTER 5

Contributions

Contributions are welcome & should be submitted as pull requests on GitHub_. The pull request must have:

• Only the code needed to add the feature or fix the bug (not several in one)

• Added tests to cover the change

• Internal docs in the form of docstrings

• If it changes the public API, it should include docs

• Must be BSD-licensed code

13

littleworkers Documentation, Release 0.3.1

14 Chapter 5. Contributions

Python Module Index

l
littleworkers, 5

15

littleworkers Documentation, Release 0.3.1

16 Python Module Index

Index

A
add_to_pool() (littleworkers.Pool method), 5

B
busy_wait() (littleworkers.Pool method), 5

C
command_count() (littleworkers.Pool method), 5
create_process() (littleworkers.Pool method), 5

I
inspect_pool() (littleworkers.Pool method), 5

L
littleworkers (module), 5

N
next_command() (littleworkers.Pool method), 5

P
Pool (class in littleworkers), 5
prepare_commands() (littleworkers.Pool method), 5
process_kwargs() (littleworkers.Pool method), 6

R
remove_from_pool() (littleworkers.Pool method), 6
run() (littleworkers.Pool method), 6

S
set_callback() (littleworkers.Pool method), 6

17

	Topics
	Requirements
	Installation
	Testing
	Contributions
	Python Module Index

