

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	littleworkers 0.3.1 documentation

littleworkers

	author:	Daniel Lindsley

	date:	2011/11/10

	version:	0.3.1

	license:	BSD

Little process-based workers to do your bidding.

Deliberately minimalist, you provide the number of workers to use & a list of
commands (to be executed at the shell) & littleworkers will eat through the
list as fast as it can.

Topics

	Tutorial

	API

Requirements

	Python 2.6+ (may work with Python 2.5)

littleworkers is tested & works on Mac OS X/Linux/BSD. It may work on
Windows (!) but is untested. Feedback welcome.

Installation

You can install from PyPI using pip (or easy_install if you prefer
broken, unmaintained software):

pip install littleworkers

The only dependencies are in Python’s stdlib & the code is pure Python, so
there’s nothing to compile.

Testing

littleworkers is maintained with a passing test suite at all times. You
should use nose_ or similar tools to run the tests like:

nosetests tests.py

Output is currently pretty verbose, which will be fixed in the future.

Contributions

Contributions are welcome & should be submitted as pull requests on GitHub_.
The pull request must have:

	Only the code needed to add the feature or fix the bug (not several in one)

	Added tests to cover the change

	Internal docs in the form of docstrings

	If it changes the public API, it should include docs

	Must be BSD-licensed code

 Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	littleworkers 0.3.1 documentation

Tutorial

Quick Start

A simple setup looks like:

from littleworkers import Pool

Define your commands.
commands = [
 'ls -al',
 'cd /tmp && mkdir foo',
 'date',
 'echo "Hello There."',
 'sleep 2 && echo "Done."'
]

Setup a pool. Since I have two cores, I'll use two workers.
lil = Pool(workers=2)

Run!
lil.run(commands)

Philosophy

littleworkers shines when you just want to parallelize something without a lot
of fuss & when you care more about the data/commands to be run.

	Tiny source

	Easy to queue a set of actions

	Works with any runnable commands

	Uses processes

	Non-blocking

Seriously, it’s not a replacement for threading or multiprocessing if your
application needs to share a ton of data with the children.

Extension

littleworkers was designed to be extended, so most customizations should be
possible without forking the code. Instead, you should simple subclass Pool
& extend/override the method. You can find the details of each method in the
API docs.

Example Customizations

You want the stdout back:

import subprocess
from littleworkers import Pool

class MyPool(Pool):
 def __init__(self, *args, **kwargs):
 super(MyPool, self).__init__(*args, **kwargs)
 self.collected_output = []

 def create_process(self, command):
 logging.debug("Starting process to handle command '%s'." % command)
 return subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)

 def remove_from_pool(self, pid):
 self.collected_output.append(self.pool[pid].stdout.read())
 return super(MyPool, self).remove_from_pool(pid)

You want to use a Queue instead of the default list:

from Queue import Queue, Empty
from littleworkers import Pool

class QueuePool(Pool):
 def __init__(self, *args, **kwargs):
 super(QueuePool, self).__init__(*args, **kwargs)
 self.commands = Queue()

 def prepare_commands(self, commands):
 for command in commands:
 self.commands.put(command)

 def command_count(self):
 return self.commands.qsize()

 def next_command(self):
 try:
 return self.commands.get()
 except Empty:
 return None

You want to setup a callback:

from littleworkers import Pool

codes = []

def track(proc):
 codes.append("%s returned status %s" % (proc.pid, proc.returncode))

commands = [
 'sleep 1',
 'busted_command --here',
 'sleep 1',
]
lil.run(commands, callback=track)

 Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	littleworkers 0.3.1 documentation

API

	
class littleworkers.Pool(workers=1, debug=False, wait_time=0.1)

	The main pool object. Manages a set of specified workers.

Usage:

commands = [
 'ls -al',
 'cd /tmp && mkdir foo',
 'date',
 'echo "Hello There."',
 'sleep 2 && echo "Done."'
]
lil = Pool(workers=2)
lil.run(commands)

Optionally accepts a workers kwarg. Default is 1.

Optionally accepts a debug kwarg. Default is False.

Optionally accepts a wait_time kwarg. Default is 0.1.

	
add_to_pool(proc)

	Adds a process to the pool.

	
busy_wait()

	A hook to control how often the busy-wait loop runs.

By default, sleeps for 0.1 seconds.

	
command_count()

	Returns the number of commands to be run.

Useful as a hook if you use a different structure for the commands.

	
create_process(command)

	Given a provided command (string or list), creates a new process
to execute the command.

	
inspect_pool()

	A hook for inspecting the pool’s current status.

By default, simply makes a log message and returns the length of
the pool.

	
next_command()

	Fetches the next command for processing.

Will return None if there are no commands remaining (unless
Pool.debug = True).

	
prepare_commands(commands)

	A hook to override how the commands are added.

By default, simply copies the provided command list to the
internal commands list.

	
process_kwargs(command)

	A hook to alter the kwargs given to subprocess.Process.

Takes a command argument, which is unused by default, but can be
used to switch the flags used.

By default, only specifies shell=True.

	
remove_from_pool(pid)

	Removes a process to the pool.

Fails silently if the process id is no longer present (unless
Pool.debug = True).

	
run(commands=None, callback=None)

	The method to actually execute all the commands with the pool.

Optionally accepts a commands kwarg, as a shortcut not to have to
call Pool.prepare_commands.

	
set_callback(callback=None)

	Sets up a callback to be run whenever a process finishes.

If called with None or without any args, it will clear any
existing callback.

 Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	littleworkers 0.3.1 documentation

 Python Module Index

 l

 			

 		
 l	

 	
 	
 littleworkers	

 Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	littleworkers 0.3.1 documentation

Index

 A
 | B
 | C
 | I
 | L
 | N
 | P
 | R
 | S

A

 	

 	add_to_pool() (littleworkers.Pool method)

B

 	

 	busy_wait() (littleworkers.Pool method)

C

 	

 	command_count() (littleworkers.Pool method)

 	

 	create_process() (littleworkers.Pool method)

I

 	

 	inspect_pool() (littleworkers.Pool method)

L

 	

 	littleworkers (module)

N

 	

 	next_command() (littleworkers.Pool method)

P

 	

 	Pool (class in littleworkers)

 	prepare_commands() (littleworkers.Pool method)

 	

 	process_kwargs() (littleworkers.Pool method)

R

 	

 	remove_from_pool() (littleworkers.Pool method)

 	

 	run() (littleworkers.Pool method)

S

 	

 	set_callback() (littleworkers.Pool method)

 Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		
 modules |

 		littleworkers 0.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Daniel Lindsley.
 Created using Sphinx 1.3.4.

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

