

Lithoxyl

Lithoxyl is a next-generation instrumentation toolkit for Python
applications, offering a semantic, action-oriented approach to logging
and metrics collection. Lithoxyl integration is compact and
performant, minimizing impact on codebase readability and system
performance.

Sections

	Lithoxyl Overview
	Motivating factors

	Instrumenting with Actions

	Creating Loggers

	Configuring Sinks

	Logging Sensibly

	The Action
	Action level

	Action status

	Action API

	Action concurrency

	The Logger
	Action creation

	Sink registration

	Event handling

	The Sink
	Writing a simple Sink

	Events

	The Sensible Suite
	The Sensible Interfaces

	Sensible Fields

	The Logging Tradition
	Logging in General

	Logging in Python

	The Lithoxyl Response

	Frequently Asked Questions
	Design questions

	Background questions

	Glossary

Lithoxyl Overview

Lithoxyl is next-generation logging and instrumentation for
Python. This practical tutorial walks new users through the
fundamentals necessary to get up and running with Lithoxyl in under 10
minutes.

Motivating factors

Lithoxyl began as a response to the tired traditions of
logging. Traditions that included omission, procrastination, and only
adding it once things break.

Logging is not the last step anymore. Lithoxyl makes instrumentation
worthwhile from day 1, so all your projects are designed for
introspection. Lithoxyl achieves this by taking full advantage of
Python’s rich syntax and runtime, providing features ranging from
metrics collection to structured logging to interactive debugging
hooks.

The Lithoxyl approach is practical. After running pip install
lithoxyl, integrating Lithoxyl comes down to two steps:
instrumentation and configuration. First, instrumentation.

Instrumenting with Actions

With Lithoxyl, all instrumentation, including logging, starts with
knowing your application. We want to find the important parts of your
application and wrap them in microtransactions, called Actions.

Much more than print statements, Actions are lightweight objects that
track the state of code execution, from timing information to uncaught
exceptions. Each Action also has a name and a level, to enable
aggregation and filtering.

Actions are created with Loggers. We get into creating and configuring
Loggers later in the overview, but here’s a basic example of creating
an info-level Action with a preconfigured Logger:

import backend # some convenient backend logic for brevity
from log import app_log # preconfigured Lithoxyl Logger

def create_entry(name):
 with app_log.info('adding entry by name'):
 name = name.strip()
 backend.add_by_name(name)
 return True

As you can see, the transactionality of Actions translates well to
Python’s with context manager syntax. A single line of logging
code succinctly records the beginning and ending of this code
block. Even better, there’s no chance of missing an unexpected
exception. For instance, if name is not a string, and .strip()
raises an AttributeError, then that exception is guaranteed to
be captured and recorded.

You can do so much more with actions. Using dictionary syntax,
arbitrary data can be added to the action. And while actions finish
with a success status and autogenerate a message if no exception is
raised, failures and exceptions can also be set manually:

import backend
from log import app_log

def set_entry_state(name, state):

 with app_log.info('setting entry state') as act:
 act['name'] = name
 status = backend.STATE_MAP[state.lower()]
 success = backend.set_entry_state(name, state)
 if not success:
 act.failure('set {name} status to {state} failed', state=state)

 return success

As seen above, actions can also have a custom completion message,
which supports templating with new-style formatting syntax, using data
from within the action’s data map (name), as well as arguments and
keyword arguments (state).

Note

Even if message formatting fails, the log message will still be
recorded. Only the failing segments will be left unformatted. As a
rule, Lithoxyl degrades gracefully, to minimize impact to your
application’s primary functionality.

Furthermore, in cases like this, where you want the whole function
logged, you can use the logger’s wrap() method.:

import backend
from log import app_log

@app_log.wrap('critical', inject_as='act')
def delete_entry(name, act):
 try:
 ret = backend.delete_entry_by_name(name.strip())
 except backend.EntryNotFound:
 # log soft error, let other exceptions raise through
 act.failure('no entry with name: {}', name)
 ret = False
 return ret

Note the decorator syntax, as well as the ability to inject the
action as one of the arguments of the function. This reduces the
instrumentation’s code footprint even further.

That about covers creating and interacting with actions. Now we turn
to the origin and destination of the actions we create and populate:
Loggers and Sinks.

Creating Loggers

Actions make up most of an application’s interaction with Lithoxyl,
but it would not be very easy to create an Action without a Logger.

As we learned above, before an Action can be populated, it must be
created, and Actions are created through Logger. As for the Logger
itself, here is how it is created:

from lithoxyl import Logger

app_log = Logger('entry_system')

Like that, the Logger we’ve been using above is ready to be
imported. A Logger is a lightweight, simple object, requiring only a
name. They are designed to be created once, configured, and imported
by other modules. That said, they are conceptually very useful.

Loggers generally correspond to parts or aspects of the
application. Small- to medium-sized applications can be fully
instrumented with just one Logger, but as applications grow, they tend
to add aspects. For example, if file access grows increasingly
important to an application, it would make sense to add a dedicated
low-level log just for instrumenting file access:

file_log = Logger('file_access')

In short, Loggers themselves are simple, and designed to be fit to
your application, no matter how many aspects it may have. On their
own, they are conceptually useful, but without Sinks, they are all
potential.

Configuring Sinks

So far, we have discovered two uses of the Lithoxyl Logger:

	Creating actions

	Segmenting and naming aspects of an application

Now, we are ready to add the third: publishing log events to the
appropriate handlers, called Sinks. Actions can carry all manner of
messages and measurements. That variety is only surpassed by the
Sinks, which handle aggregation and persistence, through log files,
network streams, and much more. Before getting into those
complexities, let’s configure our app_log with a simple but very
useful sink:

from lithoxyl import AggregateSink

agg_sink = AggregateSink(limit=100)
app_log.add_sink(agg_sink)

Now, by adding an instance of the AggregateSink to the app_log, we
have a technically complete system. At any given point after this, the
last 100 events that passed through our application log will be
available inside agg_sink. However, AggregateSinks only provide
in-memory storage, meaning data must be pulled out, either through a
monitoring thread or network service. Most developers expect
persistent logging to streams (stdout/stderr) and files. Lithoxyl is
more than capable.

Logging Sensibly

For developers who want a sensible and practical default Sink,
Lithoxyl provides the SensibleSink. The Sensible Suite chapter has a
full introduction, so let’s just cover the basics.

The Sensible approach has 3 steps:

	Filter - Optionally ignore events for a given Sink.

	Format - Convert an event into a string.

	Emit - Output the formatted string to a file, database, network, etc.

While totally pluggable and overridable, the Sensible suite ships with
types for each of these:

from lithoxyl import (SensibleFilter,
 SensibleFormatter,
 StreamEmitter,
 SensibleSink)

Create a filter that controls output verbosity
fltr = SensibleFilter(success='critical',
 failure='info',
 exception='debug')

Create a simple formatter with just two bits of info:
The time since startup/import and end event message.
These are just two of the built-in "fields",
and the syntax is new-style string formatting syntax.
fmtr = SensibleFormatter('+{import_delta_s} - {end_message}')

Create an emitter to write to stderr. 'stdout' and open file objects
also behave predictably.
emtr = StreamEmitter('stderr')

Tie them all together. Note that filters accepts an iterable
sink = SensibleSink(filters=[fltr], formatter=fmtr, emitter=emtr)

Add the sink to app_log, a vanilla Logger created above
app_log.add_sink(sink)

In these six lines of code, using only built-in Lithoxyl types, we
create a filter, formatter, and emitter, then we bind them all
together with a SensibleSink. The output is first filtered by our
SensibleFilter, which only shows critical-level successes and
info-level failures, but shows all exceptions. Our SensibleFormatter
provides a simple but practical output, giving us a play-by-play
timing and message. That message is output to stderr by our
StreamEmitter. Just don’t forget to add our newly-created SensibleSink
to the app_log.

As configured, the app_log will now write to stderr output that looks
like:

+0.015255 - "load credential succeeded"
+0.179199 - "client authorization succeeded"
+0.344523 - "load configuration succeeded"
+0.547119 - "optional backup failed"
+1.258266 - "processing task succeeded"

Ain’t it a thing of beauty? Here we see the SensibleFormatter at
work. It may not look like much, but there is a powerful feature at
work.

The ambitious aim underlying the Sensible approach is to create
human-readable structured logs. These are logs that are guaranteed to
be uniformly formatted and escaped, allowing them to be loaded for
further processing steps, such as collation with other logs, ETL into
database/OLAP, and calculation of system-wide statistics. Extending
the flow of logged information opens up many new roads in debugging,
optimization, and system robustification, easily justifying a bit of
extra up-front setup.

Here we only used two fields, import_time_s and end_message. The
list of Sensible built-in fields is quite expansive and worth a look
when designing your own log formats.

The Action

Actions are Lithoxyl’s primary interface for instrumenting your
application. Actions are created with a
Logger instance, and are used to wrap
functions and code blocks.

At their most basic, Actions have a:

	name - A string description of the behavior being wrapped.

	level - An indicator of the importance of the action (debug, info, critical).

	status - The state of the action (begin, success, failure, exception).

	duration - The time between the begin and end events of a
completed action, i.e., the time between entering and exiting a
code block.

To track this information, Lithoxyl wraps important pieces of
your application in microtransactions called Actions:

with log.info('user creation', username=name) as act:
 succeeded = _create_user(name)
 if not succeeded:
 act.failure()

This pattern is using an info-level Action as a context manager. The indented
part of the code after the with statement is the code block
managed by the Action. Here is how the basics of the Action are
populated in our example:

	name - “user creation”

	level - INFO

	status - failure if _create_user(name) returns a falsey
value, exception if it raises an exception, otherwise defaults
to success.

	
	duration - Set automatically, duration is the time difference

	from before the execution of the first line of the code block to
after the execution of the last line in the code block, or the
r.failure() call, depending on the outcome of
_create_user(name).

There’s quite a bit going on, but Lithoxyl has several tricks that let
it flow with the semantics of applications. First, let’s learn a bit
about these attributes, starting with the Action level.

Action level

Levels are a basic indicator of how important a block of application
logic is. Lithoxyl has three built-in levels. In order of increasing
importance:

	debug - Of interest to developers. Supplementary info for when
something goes wrong.

	info - Informational. Can be helpful to know even when there are
no problems.

	critical - Core functionality. Essential details at all times.

When instrumenting with Lithoxyl, the developer is always asking, how
significant is the success of this code block, how catastrophic is a
failure in this function?

It’s only natural that instrumented code will start with more
critical actions. The most important parts should be instrumented
first. Eventually the instrumentation spreads to lower levels.

Note

As a general tendency, as code gets closer to the operating system,
the corresponding Action also gets a lower level. High-level
operations get higher levels of Actions. Start high and move lower
as necessary.

Action status

The Lithoxyl Action has an eventful lifetime. Even the most basic
usage sees the Action going from creation to beginning to one of the
ending states: success, failure, or exception.

First, simply creating an Action does not “begin” it. An action begins
when it is entered with a with statement, as we saw in the example
above. Entering an action creates a timestamp and makes it the parent
of future actions, until it is ended.

There are three end statuses:

	success - The action described by the action completed without
issue. This is the automatic default when no exception is raised.

	failure - The action did not complete successfully, and the
failure was expected and/or handled within the application.

	exception - The action terminated unexpectedly, likely with a
Python exception. This is the automatic default when an exception is
raised within an action context manager.

The split between failure and exception should be familiar to
users of standard testing frameworks like py.test [http://pytest.org]. Test frameworks
distinguish between a test that fails and a test that could not be
fully run because the test code raised an unexpected
exception. Lithoxyl brings these semantics into an application’s
runtime instrumentation.

Note

If an action is manually set to complete with
success() or failure(), and an
unexpected exception occurs, the Action will end with the
exception status.

Action API

Actions are usually constructed through Loggers, but it can help to
know the underlying API and see the obvious parallels.

	
class lithoxyl.action.Action(logger, level, name, data=None, reraise=True, parent=None, frame=None)

	The Action type is one of the core Lithoxyl types, and the key to
instrumenting application logic. Actions are usually instantiated
through convenience methods on Logger
instances, associated with their level (e.g.,
critical()).

	Parameters

	
	logger – The Logger instance responsible for creating and
publishing the Action.

	level – Log level of the Action. Generally one of
DEBUG,
INFO, or
CRITICAL. Defaults to None.

	name (str [https://docs.python.org/2.7/library/functions.html#str]) – A string description of some application action.

	data (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A mapping of non-builtin fields to user
values. Defaults to an empty dict ({}) and can be
populated after Action creation by accessing the Action
like a dict.

	reraise (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether or not the Action should catch and
reraise exceptions. Defaults to True. Setting to
False will cause all exceptions to be caught and
logged appropriately, but not reraised. This should be
used to eliminate try/except verbosity.

	frame – Frame of the callpoint creating the Action. Defaults to
the caller’s frame.

Most of these parameters are managed by the Actions and respective
Logger themselves. While they are provided here
for advanced use cases, usually only the name and raw_message
are provided.

Actions are dict [https://docs.python.org/2.7/library/stdtypes.html#dict]-like, and can be accessed as mappings

and used to store additional structured data:

>>> action['my_data'] = 20.0
>>> action['my_lore'] = -action['my_data'] / 10.0
>>> from pprint import pprint
>>> pprint(action.data_map)
{'my_data': 20.0, 'my_lore': -2.0}

	
exception(message=None, *a, **kw)

	Mark this Action as having had an exception. Also
sets the Action’s message template similar to
Action.success() and Action.failure().

Unlike those two attributes, this method is rarely called
explicitly by application code, because the context manager
aspect of the Action catches and sets the appropriate
exception fields. When called explicitly, this method should
only be called in an except [https://docs.python.org/2.7/reference/compound_stmts.html#except] block.

	
failure(message=None, *a, **kw)

	Mark this Action failed. Also set the Action’s
message template. Positional and keyword arguments will be
used to generate the formatted message. Keyword arguments will
also be added to the Action’s data_map attribute.

	
get_elapsed_time()

	Simply get the amount of time that has passed since begin was
called on this action, or 0.0 if it has not begun. This method
has no side effects.

	
success(message=None, *a, **kw)

	Mark this Action successful. Also set the Action’s
message template. Positional and keyword arguments will be
used to generate the formatted message. Keyword arguments will
also be added to the Action’s data_map attribute.

Action concurrency

TODO

The Logger

The Logger is the application developer’s primary
interface to using Lithoxyl. It is used to conveniently create
Actions and publish them to sinks.

	
class lithoxyl.logger.Logger(name, sinks=None, **kwargs)

	The Logger is one of three core Lithoxyl types, and the main
entrypoint to creating Action instances,
and publishing those actions to sinks.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of this Logger.

	sinks (list) – A list of sink objects to be attached to
the Logger. Defaults to []. Sinks can be added later
with Logger.add_sink().

	module (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of the module where the new Logger instance
will be stored. Defaults to the module of the caller.

Most Logger methods and attributes fal into three categories:
Action creation, Sink registration, and
Event handling.

Action creation

The Logger is primarily used through its
Action-creating convenience methods named
after various log levels: debug(), info(),
and critical().

Each creates a new action with a given name, passing any
additional keyword arguments on through to the
lithoxyl.action.Action constructor.

	
Logger.debug(action_name, **kw)

	Returns a new DEBUG-level Action named name.

	
Logger.info(action_name, **kw)

	Returns a new INFO-level Action named name.

	
Logger.critical(action_name, **kw)

	Returns a new CRITICAL-level Action named name.

The action level can also be passed in:

	
Logger.action(level, action_name, **kw)

	Return a new Action named name classified as level.

Sink registration

Another vital aspect of Loggers is the registration and
management of Sinks.

	
Logger.sinks

	A copy of all sinks set on this Logger.
Set sinks with Logger.set_sinks().

	
Logger.add_sink(sink)

	Add sink to this Logger’s sinks. Does nothing if sink is
already in this Logger’s sinks.

	
Logger.set_sinks(sinks)

	Replace this Logger’s sinks with sinks.

	
Logger.clear_sinks()

	Clear this Logger’s sinks.

Event handling

The event handling portion of the Logger API exists for Logger-Sink
interactions.

	
Logger.on_begin(begin_event)

	Publish begin_event to all sinks with on_begin() hooks.

	
Logger.on_end(end_event)

	Publish end_event to all sinks with on_end() hooks.

	
Logger.on_warn(warn_event)

	Publish warn_event to all sinks with on_warn() hooks.

	
Logger.on_exception(exc_event, exc_type, exc_obj, exc_tb)

	Publish exc_event to all sinks with on_exception() hooks.

The Sink

In Lithoxyl’s system of instrumentation, Actions are used to carry
messages, data, and timing metadata through the Loggers to their
destination, the Sinks. This chapter focuses in on this last
step.

Writing a simple Sink

Sinks can grow to be very involved, but a useful Sink can be as
simple as:

import sys

class DotSink(object):
 def on_end(self, end_event):
 sys.stdout.write('.')
 sys.stdout.flush()

Note that our new Sink does not have to inherit from any special
object. DotSink is a correct and capable Sink, ready to be
instantiated and installed with Logger.add_sink(), just like in
the overview. Once added to your Logger,
every time an Action ends, a dot will be written out to your console.

In this example, on_end is the handler for just one of Lithoxyl’s
events. The next section takes a look at all five of them.

Events

Lithoxyl Events are state changes associated with a particular
Action. Five types of events can happen in the Lithoxyl system:

	begin - The beginning of an Action, whether manually or through
entering a context-managed block of code.

The begin event corresponds to the method signature on_begin(self,
begin_event). Designed to be called once per Action.

	end - The completion of an Action, whether manually
(success() and failure()) or through exiting a
context-managed block of code. There are three ways an Action can
end, success, failure, and exception, but all of them
result in an end event.

The end event corresponds to the method signature on_end(self,
end_event). Designed to be called once per Action.

	exception - Called immediately when an exception is raised from
within the context-managed block, or when an exception is manually
handled with Action.exception(). Actions ending in exception state
typically fire two events, one for handling the exception, and one
for ending the Action.

The exception event corresponds to the Sink method signature
on_exception(self, exc_event, exc_type, exc_obj, exc_tb).
Designed to be called up to once.

	warn - The registration of a warning within an Action.

Corresponds to the Sink method signature on_warn(self,
warn_event). Can be called an arbitrary number of times.

	comment - The registration of a comment from a Logger. Comments
are used for publishing metadata associated with a Logger.

The comment event corresponds to the Sink method signature
on_comment(self, comment_event). See here for more about
comments. Can be called an arbitrary number of times.

A Sink handles the event by implementing the respective method. The
event objects that accompany every event are meant to be practically
immutable; their values are set once, at creation.

The Sensible Suite

Structured logging creates logs with a consistent format, allowing
them to be loaded later for further processing and analysis.

One of Lithoxyl’s primary uses is as a toolkit for creating these
structured logs. The Sensible Suite is the first generalized approach
to offer structured logging without sacrificing human readability.

Let’s look at an example. Perhaps the most common structured log is
the HTTP server access log, such as the one created by Apache or
nginx. A couple entries from that log might look like:

78.178.243.200 - - [22/Jun/2013:15:02:31 -0700] "GET /favicon.ico HTTP/1.1" 404 570 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36" "-"
119.63.193.132 - - [22/Jun/2013:14:19:36 -0700] "GET / HTTP/1.1" 200 9755 "-" "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)" "-"

It’s a bit on the wide side, but here we see:

	The IP [https://en.wikipedia.org/wiki/IP_address] of the client

	The local date and time the request was received

	The request line, including the method, path, and version

	The response code returned to the client

	The size of the response in bytes

	The user agent from the client browser

With the Sensible suite, each of these values becomes a field,
represented by SensibleField objects. The Sensible suite comes with
over twenty built-in fields to cover most use cases, and sensible
default handling for other values. These fields are used to create a
template for the SensibleFormatter, which knows how to turn a Lithoxyl
Action into a structured string. Let’s see how it all comes together
by creating an equivalent log that uses Lithoxyl built-in behavior:

from lithoxyl import SensibleFormatter, FileEmitter, Logger

a_log = Logger('access_log')

a_fmtr = SensibleFormatter('{ip} - [{iso_begin_local}] {req_line} {resp_code} {resp_len} {user_agent}')

a_sink = SensibleSink(formatter=fmtr, emitter=FileEmitter('access.log'))

a_log.add_sink(a_sink)

No arcane configuration format here. Everything is configured through
explicit Python code. The a_log logger has only one sink right
now, a SensibleSink that ties together three entities, in their
running order:

	Filters - This list of objects checks each event, and returns
True/False depending on whether it should be logged. See the
SensibleFilter for more info.

	Formatter - Turns events that make it through the filters into
strings. The SensibleFormatter is the canonical
formatter of the suite, though you’re free to provide your own.

	Emitters - Writes formatted strings into files or network
streams. Emitters are not strictly a Sensible construct; several
can be found in the emitters module.

The flow through the SensibleSink is clear: Filtration → Formatting →
Output. Any actions passing through the a_log Logger will have
their end events logged to access.log.

The Sensible Interfaces

To achieve human-readable strutured logging, Lithoxyl’s Sensible suite
uses four key types with a sensible naming scheme:

	The SensibleSink

	The SensibleFilter

	The SensibleFormatter

	The SensibleField

The first three are used fairly regularly, but SensibleField is mostly
behind the scenes. That said, the built-in fields can in many ways the
most important part. See the Sensible Fields section below for
details on those.

	
class sensible.SensibleSink(formatter=None, emitter=None, filters=None, on=('begin', 'warn', 'end', 'exception', 'comment'))

	

	
class sensible.SensibleFilter(base=None, **kw)

	

	
class sensible.SensibleFormatter(base=None, **kwargs)

	

Sensible Fields

There are many built-in Sensible Fields, for a variety of use
cases. First, some example code to set the context for the field examples:

logger = Logger('test_logger')
with logger.critical('test_task', reraise=False) as act:
 time.sleep(0.7)
 act['item'] = 'cur_item'
 act.failure('task status: {status_str}')
 raise ValueError('unexpected value for {item}')
return act

And now the fields themselves:

	Name

	Description

	Example

	logger_name

	The name of the Logger, as set in the constructor. Quoted.

	"test_logger"

	logger_id

	An automatic integer ID. See Action concurrency.

	3

	action_name

	Short string description of the action. Quoted.

	"test_task"

	action_id

	An automatic integer ID. See Action concurrency.

	17

	action_guid

	A globally unique ID string. See Action concurrency.

	c3124107db02ff33dbde8e85

	status_str

	The full name of action status. See Action status.

	exception

	status_char

	A single-character action status. See Action status.

	E

	level_name

	Full name of the action level.

	critical

	level_name_upper

	Full name of the action level, in uppercase. See Action level.

	CRITICAL

	level_char

	Single-character form of the action level.

	C

	level_number

	The integer value associated with the action level.

	90

	data_map

	JSON-serialized form of all values in the Action data map.

	{"item": "cur_item"}

	data_map_repr

	repr()-serialized form of all values in the Action data map.

	{"item": "cur_item"}

	begin_message

	The message associated with the event’s action’s begin event.

	"test_task beginning"

	begin_message_raw

	Same as begin_message, before formatting.

	"test_task beginning"

	end_message

	The message associated with the event’s action’s end event.

	"test_task raised ... ue for cur_item',)"

	end_message_raw

	Same as end_message, before formatting.

	"test_task raised ... lue for {item}',)"

	event_message

	The message associated with the event.

	"test_task raised ... ue for cur_item',)"

	event_message_raw

	Same as event_message, before formatting.

	"test_task raised ... lue for {item}',)"

	duration_s

	Duration in floating point number of seconds.

	0.701

	duration_ms

	Duration in floating point number of milliseconds (ms).

	700.908

	duration_us

	Duration in floating point number of microseconds (us).

	700907.946

	duration_auto

	Duration in floating point with automatic unit (s/ms/us).

	700.908ms

	module_name

	The name of the module where the action was created.

	"__main__"

	module_path

	The path of the module where the action was created.

	"misc/gen_field_table.py"

	func_name

	The name of the function that created the action

	get_test_action

	line_number

	The line number where the action was created.

	26

	exc_type

	The name of the exception type, if an exception was caught.

	ValueError

	exc_message

	The exception message, if there was one. Quoted.

	"unexpected value for {item}"

	exc_tb_str

	The exception’s full traceback, if there was one. Quoted.

	"Traceback (most r ... ue for {item}')\n"

	exc_tb_list

	A JSON representation of the exception traceback. Quoted.

	"[Callpoint('get_t ... for {item}')\")]"

	process_id

	The integer process ID. See os.getpid() [https://docs.python.org/2.7/library/os.html#os.getpid].

	19828

There can be some subtle nuances when designing your log
structure. For instance, when choosing which message to use for an
event, you almost certainly want event_message, which works
equally well with all event types, including begin, end, comment, and
warn.

Timestamp fields

Timestamps are so important to logging, especially structured logging,
that they get a table of their own:

	Name

	Description

	Example

	iso_begin

	The full ISO8601 begin event UTC timestamp, with timezone.

	2016-05-22T10:41:06.470354+0000

	iso_end

	The full ISO8601 end event UTC timestamp, with timezone.

	2016-05-22T10:41:07.171262+0000

	iso_begin_notz

	The begin event ISO UTC timestamp, without timezone.

	2016-05-22T10:41:06.470354

	iso_end_notz

	The end event ISO UTC timestamp, without timezone.

	2016-05-22T10:41:07.171262

	iso_begin_local

	The begin event ISO local timestamp, with timezone.

	2016-05-22T03:41:06.470354-0700

	iso_end_local

	The end event ISO local timestamp, with timezone.

	2016-05-22T03:41:07.171262-0700

	iso_begin_local_notz

	The begin event ISO local timestamp, without timezone.

	2016-05-22T03:41:06.470354

	iso_end_local_notz

	The end event ISO local timestamp, without timezone.

	2016-05-22T03:41:07.171262

	iso_begin_local_noms

	The begin event ISO local timestamp, without subsecond timing.

	2016-05-22T03:41:06 PDT

	iso_end_local_noms

	The end event ISO local timestamp, without subsecond timing.

	2016-05-22T03:41:07 PDT

	iso_begin_local_noms_notz

	The begin event local times, without subsecond or timezone.

	2016-05-22T03:41:06

	iso_end_local_noms_notz

	The end event local times, without subsecond or timezone.

	2016-05-22T03:41:07

The timestamp fields above are geared toward long-running processes
like servers. For shorter running processes, it’s often more readable
and more useful to know the time between the log message and process
start.

	Name

	Description

	Example

	import_delta_s

	Floating-point number of seconds since lithoxyl import.

	2.887265

	import_delta_ms

	Floating-point number of milliseconds since lithoxyl import.

	2887.265

Creating custom fields

Most custom data does not require new fields. Unrecognized fields are
treated as quoted and escaped string data. If you want to change that
representation, you can create a SensibleField and either register it
locally with a Formatter, or globally, using
sensible.register_field().

	
class sensible.SensibleField(fname, fspec='s', getter=None, **kwargs)

	Fields specify whether or not they should be quoted (i.e.,
whether or not values will contain whitespace or other
delimiters), but not the exact method for their quoting. That
aspect is reserved for the Formatter.

The Logging Tradition

For experienced engineers, it can help to understand Lithoxyl by
taking a hard look at the past and current state of logging.

Logging in General

Without getting into Python specifics, most ecosystems have pretty low
standards for logging. Logging is an afterthought, added when the
application misbehaves and needs to be debugged. Just having any
logging can easily put an application in the top quartile for quality.

And worse yet, the opposite can be true. Logging’s place in software
is so low that having logging is often a yellow flag for lower-quality
code in need of constant debugging. If the code needed so much
logging, it must have had a lot of problems.

This is the past and present reality of logging in general.

Logging in Python

This will be frank, so first things first: all due respect to Vinay
Sajip and all the Python contributors who worked on Python
logging. Without their work, there is no telling where we would be
today. Now, the critique.

The built-in logging [https://docs.python.org/2.7/library/logging.html#module-logging] module itself followed this afterthought
pattern. Little more than a knockoff of Log4j [http://logging.apache.org/log4j/1.2/], logging pays
virtually no mind to performance, practicality, or the fact that
Python is not Java.

Application instrumentation is important. Good metrics are worth more
than their weight in CPU cycles. By running a high-level language like
Python, a design decision has already been made to achieve a richer,
more featureful environment.

With that in mind, it is critical that Python libraries take the
semantic high road. Always emphasize maintainability,
introspectability, and reliability in Python code.

Because application instrumentation is vital to all these areas, the
approach and framework used must be closely matched. The built-in
logging library is a frumpy, secondhand suit, thrifted and
worn without even a thorough cleaning. Lithoxyl is new, tailored to
fit Python and its many, many modern applications.

The Lithoxyl Response

Python’s power lets us do better. And we can’t stop with just
logging. We need to look at instrumentation as a whole.

Tradition is to add logging to indicate breakage. Little more than
print statements and tracebacks piped to files.

Modern instrumentation is more than a debugging utility.

Lithoxyl provides structured data and online statistics to unlock your
application’s potential. Lithoxyl is a development tool, worth using
from day one. Good instrumentation focuses on the whole application
lifecycle. It helps with debugging problems, but it also offers
direction when the sun is shining and the monitoring is
green. Lithoxyl is the Pythonic step toward that bright,
introspectable future.

Frequently Asked Questions

Lithoxyl’s new approach answers quite a lot of questions, but raises a
few others. These questions fall into two categories, Design and Background.

Design questions

Some questions are hard because they are ultimately decided by your
application’s design. Lithoxyl is mostly an API to
instrumentation. There are many right ways.

What is the difference between failure status and exception status?

There are a couple angles to answer this. First, it is pretty rare to
set an exception status manually, as exception information is usually
populated automatically when there are uncaught exceptions. That
contrasts with failure(), which is seen more often.

So when to call failure()? As with many design
questions, an example is often best. With an HTTP server, returning a
4xx or even a 503 can be viewed as failures outside of the control of
the application, which is performing fine. A 500, on the other hand,
is generally unexpected and deserves an exception status.

Why does Lithoxyl sometimes fail silently?

Built-in to the design of Lithoxyl itself, there are several
deviations from what one might consider standard practice. With most
libraries, one expects that code will “fail fast”. However, failing
fast does not work well for instrumentation code.

Lithoxyl assumes that you are instrumenting a system which has
behavior other than logging and statistics collection. Your system’s
primary functions take priority. Instrumentation must degrade
gracefully.

This means if your message is malformed Lithoxyl will do its best to
output the most that it can and no exception will be raised. If your
logging service is down, maybe the Sink queues the message, but
eventually that queues bounds will be overrun and messages may
silently drop.

This graceful degradation takes place at all the runtime integration
points, i.e., action usage within your application code. For Sink and
Logger configuration, actions which are typically performed at startup
and import time, exceptions are still raised as usual. In fact, it is
considered good Lithoxyl practice to forward-check these
configurations. This means checking that callable arguments are

If you discover a runtime scenario that should degrade with more grace
or a configuration-time scenario which could prevent runtime failures
through more forward checking, please do file an issue.

Background questions

Unlike the design questions above, background questions relate to just
the objective facts.

What’s with the name, Lithoxyl, what’s that even mean?

Lithoxyl is a geological term for petrified wood. Fossilized
trees. Rock-solid logs.

Glossary

	action

	An instance of the Action type, and one
of the three fundamental Lithoxyl types. The Action type
is rarely instantiated directly, instead they are created by
loggers, manipulated, and automatically
published to sinks.

	emitter

	An object capable of publishing formatted messages out of the
process. Emitters commonly publish to network services, local
services, and files. The last step in the Sensible
Filter-Format-Emit logging process.

	event

	An occurence associated with a Logger and Action. One of:

	begin - The start of an Action.

	end - The completion of an Action (success, failure, or exception)

	warn - A warning related to an Action.

	comment - A metadata event associated with a Logger

	exception - An unhandled exception during an Action.

Sinks implement methods to handle each of these events.

	formatter

	An object responsible for transforming a action into a
string, ready to be encoded and emitted

	lithoxyl

	Mineralized wood.

	logger

	An instance of the Logger
type. Responsible for facilitating the creation and publication
of actions. Generally there is one logger per
aspect of an application. For example, a request logger and a
database query logger.

	sink

	Any object implementing the Sink protocol for handling
events. Typically subscribed to actions by being attached to a logger. Some basic types
of sinks include action emitters, statistics collectors, and
profilers.

	status

	The completion state of an action, meant to represent one
of four possible task outcomes:

	Begin - not yet completed

	Success - no exceptions or failures

	Failure - anticipated or application-level unsuccessful
completion (e.g., invalid username)

	Exception - unanticipated or lower-level unsuccessful
completion (e.g., database connection interrupted)

	with

	Python’s compact context manager syntax, roughly approximating a
“try-finally” block. With blocks have enter and exit hooks
that enable tracking of Action events, no matter whether the
wrapped code executes successfully or raises an exception.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lithoxyl	

 	
 	
 lithoxyl.action	

 	
 	
 lithoxyl.logger	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | S
 | W

A

 	
 	action

 	Action (class in lithoxyl.action)

 	
 	action() (lithoxyl.logger.Logger method)

 	add_sink() (lithoxyl.logger.Logger method)

C

 	
 	clear_sinks() (lithoxyl.logger.Logger method)

 	
 	critical() (lithoxyl.logger.Logger method)

D

 	
 	debug() (lithoxyl.logger.Logger method)

E

 	
 	emitter

 	
 	event

 	exception() (lithoxyl.action.Action method)

F

 	
 	failure() (lithoxyl.action.Action method)

 	
 	formatter

G

 	
 	get_elapsed_time() (lithoxyl.action.Action method)

I

 	
 	info() (lithoxyl.logger.Logger method)

L

 	
 	lithoxyl

 	lithoxyl.action (module)

 	
 	lithoxyl.logger (module)

 	logger

 	Logger (class in lithoxyl.logger)

O

 	
 	on_begin() (lithoxyl.logger.Logger method)

 	on_end() (lithoxyl.logger.Logger method)

 	
 	on_exception() (lithoxyl.logger.Logger method)

 	on_warn() (lithoxyl.logger.Logger method)

S

 	
 	SensibleField (class in sensible)

 	SensibleFilter (class in sensible)

 	SensibleFormatter (class in sensible)

 	SensibleSink (class in sensible)

 	
 	set_sinks() (lithoxyl.logger.Logger method)

 	sink

 	sinks (lithoxyl.logger.Logger attribute)

 	status

 	success() (lithoxyl.action.Action method)

W

 	
 	with

On Concurrency, Crossing, and Continuity

oOne of the biggest challenges for developers is maintaining log
continuity across operations.

Lithoxyl solves this within the same process with the
Context.get_parent hook, the default of which is configured for
synchronous operation.

Beyond this, concurrency runs a huge gamut. There are basic cases and
very, very advanced cases. Lithoxyl is foremost a developer interface
to logging. Even if it were possible, Lithoxyl does not aim to build
in solutions to every concurrency use case. Lithoxyl provides what it
can, but it’s up to framework developers to adapt Lithoxyl more
completely.

One option is to solve it at a higher level, IDs that are used to
correlate and collate actions. Lithoxyl provides a few helpful values
in this domain:

	context.PROCESS_GUID

	context.get_context().context_guid

	Logger.logger_guid and logger.logger_id

	Action.action_id

	sensible.get_action_guid

GUIDs are opaque values with uniqueness assurance. They are similar to
UUIDs, but are denser (base64, not hex) for smaller logs and faster to
generate (by about 20x). The biggest application I’ve worked on, in
terms of application logging, generated well over 100GB per day. Every
byte matters.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Lithoxyl

 		
 Lithoxyl Overview

 		
 Motivating factors

 		
 Instrumenting with Actions

 		
 Creating Loggers

 		
 Configuring Sinks

 		
 Logging Sensibly

 		
 The Action

 		
 Action level

 		
 Action status

 		
 Action API

 		
 Action concurrency

 		
 The Logger

 		
 Action creation

 		
 Sink registration

 		
 Event handling

 		
 The Sink

 		
 Writing a simple Sink

 		
 Events

 		
 The Sensible Suite

 		
 The Sensible Interfaces

 		
 Sensible Fields

 		
 Timestamp fields

 		
 Creating custom fields

 		
 The Logging Tradition

 		
 Logging in General

 		
 Logging in Python

 		
 The Lithoxyl Response

 		
 Frequently Asked Questions

 		
 Design questions

 		
 What is the difference between failure status and exception status?

 		
 Why does Lithoxyl sometimes fail silently?

 		
 Background questions

 		
 What’s with the name, Lithoxyl, what’s that even mean?

 		
 Glossary

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

