

ListenBrainz documentation

ListenBrainz is a project by the MetaBrainz foundation which allows you to publicly store a record of all of the songs
that you listen to. Using this data, we provide statistics, recommendations, and a platform for you and other developers
to explore this data.

If you want to use the ListenBrainz API to read or submit data, see the API documentation. You also
may want to review the JSON documentation.

If you are interested in contributing to ListenBrainz as a developer, see the
Developer documentation.

We also publish some maintainer documentation, which is used by the MetaBrainz team to run the ListenBrainz site.

Contents

API Documentation

	ListenBrainz API
	Authentication

	Reference

	Rate limiting

	Usage Examples
	Prerequisites

	Examples

	JSON Documentation
	Submission JSON

	Fetching listen JSON

	Payload JSON details

	Client Metadata examples

	Client Libraries
	Haskell

	Go

	Rust

	.NET

	Python

	Java

	Last.FM Compatible API for ListenBrainz
	AudioScrobbler API v1.2

	Last.FM API

	Data Dumps
	Dump mirrors

	File Descriptions

	Structure of the listens dump

	Incremental dumps

ListenBrainz Data Update Intervals

	ListenBrainz Data Update Intervals
	Listens and Listen Counts

	User Statistics

	MBID Mapper & MusicBrainz Metadata Cache

	ListenBrainz data infrastructure

Developer Documentation

	Server development
	Set up ListenBrainz Server development environment

	Clone listenbrainz-server

	Install docker

	Register a MusicBrainz application

	Initialize ListenBrainz containers

	Initialize ListenBrainz databases

	Run the magic script

	Listenbrainz containers

	Test your changes with unit tests

	Lint your code

	Using develop.sh

	Spark development
	Set up the webserver

	Initialize ListenBrainz Spark containers

	Bring containers up

	Import data into the spark environment

	Working with request_consumer

	Test your changes with unit tests

	Architecture
	Services

	Listen Flow

	Frontend Rendering

	Spark Architecture
	Developing request_consumer

	MBID Mapping
	Database tables

	Fuzzy lookups

	MBID Mapper

	Scripts
	ListenBrainz

	Dump Manager

	ListenBrainz Spark

	Troubleshooting
	Docker Installations

Maintainer Documentation

	Production Deployment
	Cron

	Building Docker Images
	Production Images

	Test Images

	Using Github Actions

	Using docker/push.sh script

	Data Dumps
	Check FTP Dumps age script

	Logs

	Manually triggering dumps

	MBID Mapping
	Containers

	Data sources

	Debugging lookups

	Debugging Spotify Reader

	RabbitMQ
	Maintenance

	Implementation details

	Updating Production Database Schema

	Pull Requests Policy

Indices and tables

	Index

	Module Index

	Search Page

ListenBrainz API

All endpoints have this root URL for our current production site.

	API Root URL: https://api.listenbrainz.org

Note

All ListenBrainz services are only available on HTTPS!

Authentication

ListenBrainz makes use of private API keys called user tokens to authenticate requests and ensure the proper
access controls on user data. A user token is a unique alphanumeric string linked to a user account. To retrieve
your user token, follow this guide.

Get the User token

Every account has a User token associated with it, to get the token:

	Sign up or Log in your an account using this link [https://listenbrainz.org/login/].

	Navigate to profile [https://listenbrainz.org/profile/] page to find your user Token (See image below for reference).

[image: Screenshot showing the user profile.]

	Copy the User Token to your clipboard.

Note

You may also reset your user token by clicking the Reset token button on the profile [https://listenbrainz.org/profile/] page.

Add the User token to your requests

The user token must be included in the request header for its usage.
To format the header correctly, you can use the following piece of code:

The following token must be valid, but it doesn't have to be the token of the user you're
trying to get the listen history of.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {
 "Authorization": "Token {0}".format(TOKEN)
}

Then include the formatted header in the request to use it.

 response = requests.get(
 ...
 # Your request url and params go here.
 ...
 headers=AUTH_HEADER,
)

Note

A complete usage example for a request employing Authorization headers to make authenticated requests to ListenBrainz
can be found on the API Usage page.

Reference

	Core

	Playlists

	Recordings

	Statistics

	Metadata

	Social

	Recommendations

	Art

	Miscellaneous

Rate limiting

The ListenBrainz API is rate limited via the use of rate limiting headers that
are sent as part of the HTTP response headers. Each call will include the
following headers:

	X-RateLimit-Limit: Number of requests allowed in given time window

	X-RateLimit-Remaining: Number of requests remaining in current time
window

	X-RateLimit-Reset-In: Number of seconds when current time window expires
(recommended: this header is resilient against clients with incorrect
clocks)

	X-RateLimit-Reset: UNIX epoch number of seconds (without timezone) when
current time window expires [1]

Rate limiting is automatic and the client must use these headers to determine
the rate to make API calls. If the client exceeds the number of requests
allowed, the server will respond with error code 429: Too Many Requests.
Requests that provide the Authorization header with a valid user token may
receive higher rate limits than those without valid user tokens.

[1]
Provided for compatibility with other APIs, but we still recommend using
X-RateLimit-Reset-In wherever possible

Core

The ListenBrainz server supports the following end-points for submitting and fetching listens.

	
GET /1/search/users/

	Search a ListenBrainz-registered user.

	Parameters:

	
	search_term – Input on which search operation is to be performed.

	
POST /1/submit-listens

	Submit listens to the server. A user token (found on https://listenbrainz.org/settings/) must
be provided in the Authorization header! Each request should also contain at least one listen
in the payload.

Listens should be submitted for tracks when the user has listened to half the track or 4 minutes of
the track, whichever is lower. If the user hasn’t listened to 4 minutes or half the track, it doesn’t
fully count as a listen and should not be submitted.

For complete details on the format of the JSON to be POSTed to this endpoint, see JSON Documentation.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – listen(s) accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/listens

	Get listens for user user_name. The format for the JSON returned is defined in our JSON Documentation.

If none of the optional arguments are given, this endpoint will return the DEFAULT_ITEMS_PER_GET most recent listens.
The optional max_ts and min_ts UNIX epoch timestamps control at which point in time to start returning listens. You may specify max_ts or
min_ts, but not both in one call. Listens are always returned in descending timestamp order.

	Parameters:

	
	max_ts – If you specify a max_ts timestamp, listens with listened_at less than (but not including) this value will be returned.

	min_ts – If you specify a min_ts timestamp, listens with listened_at greater than (but not including) this value will be returned.

	count – Optional, number of listens to return. Default: DEFAULT_ITEMS_PER_GET . Max: MAX_ITEMS_PER_GET

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/listen-count

	
Get the number of listens for a user user_name.

The returned listen count has an element ‘payload’ with only key: ‘count’
which unsurprisingly contains the listen count for the user.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have listen counts!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/playing-now

	Get the listen being played right now for user user_name.

This endpoint returns a JSON document with a single listen in the same format as the /user/<user_name>/listens endpoint,
with one key difference, there will only be one listen returned at maximum and the listen will not contain a listened_at element.

The format for the JSON returned is defined in our JSON Documentation.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/similar-users

	Get list of users who have similar music tastes (based on their listen history)
for a given user. Returns an array of dicts like these:

{
 "user_name": "hwnrwx",
 "similarity": 0.1938480256
}

	Parameters:

	
	user_name – the MusicBrainz ID of the user whose similar users are being requested.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/similar-to/(other_user_name)

	Get the similarity of the user and the other user, based on their listening history.
Returns a single dict:

{
 "user_name": "other_user",
 "similarity": 0.1938480256
}

	Parameters:

	
	user_name – the MusicBrainz ID of the the one user

	other_user_name – the MusicBrainz ID of the other user whose similar users are

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/validate-token

	Check whether a User Token is a valid entry in the database.

In order to query this endpoint, send a GET request with the Authorization
header set to the value Token [the token value].

Note

This endpoint also checks for token argument in query params
(example: /validate-token?token=token-to-check) if the Authorization
header is missing for backward compatibility.

A JSON response, with the following format, will be returned.

	If the given token is valid:

{
 "code": 200,
 "message": "Token valid.",
 "valid": true,
 "user_name": "MusicBrainz ID of the user with the passed token"
}

	If the given token is invalid:

{
 "code": 200,
 "message": "Token invalid.",
 "valid": false,
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The user token is valid/invalid.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – No token was sent to the endpoint.

	
POST /1/delete-listen

	Delete a particular listen from a user’s listen history.
This checks for the correct authorization token and deletes the listen.

Note

The listen is not deleted immediately, but is scheduled for deletion, which
usually happens shortly after the hour.

The format of the JSON to be POSTed to this endpoint is:

{
 "listened_at": 1,
 "recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f"
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – listen deleted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists

	Fetch playlist metadata in JSPF format without recordings for the given user.
If a user token is provided in the Authorization header, return private playlists as well
as public playlists for that user.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists/createdfor

	Fetch playlist metadata in JSPF format without recordings that have been created for the user.
Createdfor playlists are all public, so no Authorization is needed for this call.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists/collaborator

	Fetch playlist metadata in JSPF format without recordings for which a user is a collaborator.
If a playlist is private, it will only be returned if the caller is authorized to edit that playlist.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists/recommendations

	Fetch recommendation playlist metadata in JSPF format without recordings for playlist_user_name.
This endpoint only lists playlists that are to be shown on the listenbrainz.org recommendations
pages.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – user not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/services

	Get list of services which are connected to a given user’s account.

{
 "user_name": "hwnrwx",
 "services": ["spotify"]
}

	Parameters:

	
	user_name – the MusicBrainz ID of the user whose similar users are being requested.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you do not have permissions to view this user’s information.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	
GET /1/lb-radio/tags

	Get recordings for use in LB radio with the specified tags that match the requested criteria.

	Parameters:

	
	tag – the MusicBrainz tag to fetch recordings for, this parameter can be specified multiple times. if more
than one tag is specified, the operator param should also be specified.

	operator – specify AND to retrieve recordings that have all the tags, otherwise specify OR to retrieve
recordings that have any one of the tags.

	pop_begin – percent is a measure of the recording’s popularity, pop_begin denotes a preferred
lower bound on the popularity of recordings to be returned.

	pop_end – percent is a measure of the recording’s popularity, pop_end denotes a preferred
upper bound on the popularity of recordings to be returned.

	count – number of recordings to return for the

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid or missing param in request, see error message for details.

	
GET /1/lb-radio/artist/(seed_artist_mbid)

	Get recordings for use in LB radio with the given seed artist. The endpoint
returns a dict of all the similar artists, including the seed artist. For each artists,
there will be a list of dicts that contain recording_mbid, similar_artist_mbid and total_listen_count:

{
 "recording_mbid": "401c1a5d-56e7-434d-b07e-a14d4e7eb83c",
 "similar_artist_mbid": "cb67438a-7f50-4f2b-a6f1-2bb2729fd538",
 "similar_artist_name": "Boo Hoo Boys",
 "total_listen_count": 232361
}

	Parameters:

	
	mode – mode is the LB radio mode to be used for this query. Must be one of “easy”, “medium”, “hard”.

	max_similar_artists – The maximum number of similar artists to return recordings for.

	max_recordings_per_artist – The maximum number of recordings to return for each artist. If there are aren’t enough recordings, all available recordings will be returned.

	pop_begin – Popularity range percentage lower bound. A popularity range is given to narrow down the recordings into a smaller target group. The most popular recording(s) on LB have a pop percent of 100. The least popular recordings have a score of 0. This range is not coupled to the specified mode, but the mode would often determine the popularity range, so that less popular recordings can be returned on the medium and harder modes.

	pop_end – Popularity range percentage upper bound. See above.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid or missing param in request, see error message for details.

	
GET /1/latest-import

	Get the timestamp of the newest listen submitted by a user in previous imports to ListenBrainz.

In order to get the timestamp for a user, make a GET request to this endpoint. The data returned will
be JSON of the following format:

{
 "musicbrainz_id": "the MusicBrainz ID of the user",
 "latest_import": "the timestamp of the newest listen submitted in previous imports. Defaults to 0"
}

	Query Parameters:

	
	user_name (str) – the MusicBrainz ID of the user whose data is needed

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/latest-import

	Update the timestamp of the newest listen submitted by a user in an import to ListenBrainz.

In order to update the timestamp of a user, you’ll have to provide a user token in the Authorization Header. User tokens can be found on https://listenbrainz.org/profile/.

The JSON that needs to be posted must contain a field named ts in the root with a valid unix timestamp. Example:

{
 "ts": 0
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – latest import timestamp updated

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

Timestamps

All timestamps used in ListenBrainz are UNIX epoch timestamps in UTC. When
submitting timestamps to us, please ensure that you have no timezone
adjustments on your timestamps.

Constants

Constants that are relevant to using the API:

	
listenbrainz.webserver.views.api_tools.MAX_LISTEN_PAYLOAD_SIZE = 10240000

	The maximum size of a payload in bytes. The same as MAX_LISTEN_SIZE * MAX_LISTENS_PER_REQUEST.

	
listenbrainz.webserver.views.api_tools.MAX_LISTEN_SIZE = 10240

	Maximum overall listen size in bytes, to prevent egregious spamming.

	
listenbrainz.webserver.views.api_tools.MAX_DURATION_LIMIT = 2073600

	The max permitted value of duration field - 24 days

	
listenbrainz.webserver.views.api_tools.MAX_DURATION_MS_LIMIT = 2073600000

	The max permitted value of duration_ms field - 24 days

	
listenbrainz.webserver.views.api_tools.MAX_LISTENS_PER_REQUEST = 1000

	The maximum number of listens in a request.

	
listenbrainz.webserver.views.api_tools.MAX_ITEMS_PER_GET = 1000

	The maximum number of listens returned in a single GET request.

	
listenbrainz.webserver.views.api_tools.DEFAULT_ITEMS_PER_GET = 25

	The default number of listens returned in a single GET request.

	
listenbrainz.webserver.views.api_tools.MAX_TAGS_PER_LISTEN = 50

	The maximum number of tags per listen.

	
listenbrainz.webserver.views.api_tools.MAX_TAG_SIZE = 64

	The maximum length of a tag

	
listenbrainz.listenstore.LISTEN_MINIMUM_TS = 1033430400

	The minimum acceptable value for listened_at field

Playlists

The playlists API allows for the creation and editing of lists of recordings

	
GET /1/user/(playlist_user_name)/playlists

	Fetch playlist metadata in JSPF format without recordings for the given user.
If a user token is provided in the Authorization header, return private playlists as well
as public playlists for that user.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists/createdfor

	Fetch playlist metadata in JSPF format without recordings that have been created for the user.
Createdfor playlists are all public, so no Authorization is needed for this call.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(playlist_user_name)/playlists/collaborator

	Fetch playlist metadata in JSPF format without recordings for which a user is a collaborator.
If a playlist is private, it will only be returned if the caller is authorized to edit that playlist.

	Parameters:

	
	count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

	offset (int) – The offset of into the list of playlists to return (for pagination)

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/create

	Create a playlist. The playlist must be in JSPF format with MusicBrainz extensions, which is defined
here: https://musicbrainz.org/doc/jspf . To create an empty playlist, you can send an empty playlist
with only the title field filled out. If you would like to create a playlist populated with recordings,
each of the track items in the playlist must have an identifier element that contains the MusicBrainz
recording that includes the recording MBID.

When creating a playlist, only the playlist title and the track identifier elements will be used – all
other elements in the posted JSPF wil be ignored.

If a created_for field is found and the user is not an approved playlist bot, then a 403 forbidden will be raised.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. The submitting user is not allowed to create playlists for other users.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/edit/(playlist_mbid)

	Edit the private/public status, name, description or list of collaborators for an exising playlist.
The Authorization header must be set and correspond to the owner of the playlist otherwise a 403
error will be returned. All fields will be overwritten with new values.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. The subitting user is not allowed to edit playlists for other users.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/playlist/(playlist_mbid)

	Fetch the given playlist.

	Parameters:

	
	playlist_mbid (str) – The playlist mbid to fetch.

	fetch_metadata (bool) – Optional, pass value ‘false’ to skip lookup up recording metadata

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Playlist not found

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/playlist/(playlist_mbid)/xspf

	Fetch the given playlist as XSPF.

	Parameters:

	
	playlist_mbid (str) – The playlist mbid to fetch.

	fetch_metadata (bool) – Optional, pass value ‘false’ to skip lookup up recording metadata

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Playlist not found

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/xspf+xml

	
POST /1/playlist/(playlist_mbid)/item/add

	

	
POST /1/playlist/(playlist_mbid)/item/add/(int: offset)

	Append recordings to an existing playlist by posting a playlist with one of more recordings in it.
The playlist must be in JSPF format with MusicBrainz extensions, which is defined here:
https://musicbrainz.org/doc/jspf .

If the offset is provided in the URL, then the recordings will be added at that offset,
otherwise they will be added at the end of the playlist.

You may only add MAX_RECORDINGS_PER_ADD recordings in one
call to this endpoint.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. the requesting user was not allowed to carry out this operation.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/(playlist_mbid)/item/move

	To move an item in a playlist, the POST data needs to specify the recording MBID and current index
of the track to move (from), where to move it to (to) and how many tracks from that position should
be moved (count). The format of the post data should look as follows:

{
 "mbid": "<mbid>",
 "from": 3,
 "to": 4,
 "count": 2
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – move operation succeeded

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. the requesting user was not allowed to carry out this operation.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/(playlist_mbid)/item/delete

	To delete an item in a playlist, the POST data needs to specify the recording MBID and current index
of the track to delete, and how many tracks from that position should be moved deleted. The format of the
post data should look as follows:

{
 "index": 3,
 "count": 2
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. the requesting user was not allowed to carry out this operation.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/(playlist_mbid)/delete

	Delete a playlist. POST body data does not need to contain anything.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist deleted.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – forbidden. the requesting user was not allowed to carry out this operation.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Playlist not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/(playlist_mbid)/copy

	Copy a playlist – the new playlist will be given the name “Copy of <playlist_name>”.
POST body data does not need to contain anything.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist copied.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Playlist not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/(playlist_mbid)/export/(service)

	Export a playlist to an external service, given a playlist MBID.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Parameters:

	
	playlist_mbid – The playlist mbid to export.

	is_public – Should the exported playlist be public or not?

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist copied.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Playlist not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/playlist/export-jspf/(service)

	Export a playlist to an external service from JSPF POSTed to this endpoint.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Parameters:

	
	is_public – Should the exported playlist be public or not?

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – playlist copied.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Recordings

Feedback API

These API endpoints allow to submit and retrieve feedback for a user’s recordings

	
POST /1/feedback/recording-feedback

	Submit recording feedback (love/hate) to the server. A user token (found on https://listenbrainz.org/settings/)
must be provided in the Authorization header! Each request should contain only one feedback in the payload.

For complete details on the format of the JSON to be POSTed to this endpoint, see Feedback JSON Documentation.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – feedback accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/feedback/user/(user_name)/get-feedback

	Get feedback given by user user_name. The format for the JSON returned is defined in our Feedback JSON Documentation.

If the optional argument score is not given, this endpoint will return all the feedback submitted by the user.
Otherwise filters the feedback to be returned by score.

	Parameters:

	
	score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

	count (int) – Optional, number of feedback items to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET.

	offset (int) – Optional, number of feedback items to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

	metadata (str) – Optional, ‘true’ or ‘false’ if this call should return the metadata for the feedback.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/feedback/recording/(recording_mbid)/get-feedback-mbid

	Get feedback for recording with given recording_mbid. The format for the JSON returned is defined in
our Feedback JSON Documentation.

	Parameters:

	
	score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

	count (int) – Optional, number of feedback items to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET.

	offset (int) – Optional, number of feedback items to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/feedback/recording/(recording_msid)/get-feedback

	Get feedback for recording with given recording_msid. The format for the JSON returned is defined in
our Feedback JSON Documentation.

	Parameters:

	
	score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

	count (int) – Optional, number of feedback items to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET.

	offset (int) – Optional, number of feedback items to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/feedback/user/(user_name)/get-feedback-for-recordings

	Get feedback given by user user_name for the list of recordings supplied. The format for the JSON returned
is defined in our Feedback JSON Documentation.

If the feedback for given recording MSID doesn’t exist then a score 0 is returned for that recording.

Note

If you get a 502 error while querying this endpoint using a GET request, consider reducing the number of total recordings you are
querying in 1 request. As a rule of thumb, requesting maximum ~75 recordings in 1 request will avert the error.

The reason this error occurs is because the recording uuids are query params which are part of the request url.
The length of the url is subject to a general limit imposed at the middleware level so requests with long urls
never reach the ListenBrainz backend. Due to the same reason, the backend cannot provide a meaningful error.

@GET request
:param recordings: comma separated list of recording_msids for which feedback records are to be fetched.

this param is deprecated and will be removed in the future. use recording_msids instead.

	Parameters:

	
	recording_msids (str) – comma separated list of recording_msids for which feedback records are to be fetched.

	recording_mbids (str) – comma separated list of recording_mbids for which feedback records are to be fetched.

@POST request
The format of the post data should look as follows:
.. code-block:: json

	{
	“recording_msids”: “<msid1>,<msid2>,<msid3>”,
“recording_mbids”: “<mbid1>,<mbid2>,<mbid3>”

}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/feedback/user/(user_name)/get-feedback-for-recordings

	Get feedback given by user user_name for the list of recordings supplied. The format for the JSON returned
is defined in our Feedback JSON Documentation.

If the feedback for given recording MSID doesn’t exist then a score 0 is returned for that recording.

Note

If you get a 502 error while querying this endpoint using a GET request, consider reducing the number of total recordings you are
querying in 1 request. As a rule of thumb, requesting maximum ~75 recordings in 1 request will avert the error.

The reason this error occurs is because the recording uuids are query params which are part of the request url.
The length of the url is subject to a general limit imposed at the middleware level so requests with long urls
never reach the ListenBrainz backend. Due to the same reason, the backend cannot provide a meaningful error.

@GET request
:param recordings: comma separated list of recording_msids for which feedback records are to be fetched.

this param is deprecated and will be removed in the future. use recording_msids instead.

	Parameters:

	
	recording_msids (str) – comma separated list of recording_msids for which feedback records are to be fetched.

	recording_mbids (str) – comma separated list of recording_mbids for which feedback records are to be fetched.

@POST request
The format of the post data should look as follows:
.. code-block:: json

	{
	“recording_msids”: “<msid1>,<msid2>,<msid3>”,
“recording_mbids”: “<mbid1>,<mbid2>,<mbid3>”

}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/feedback/import

	Import feedback from external service.

Pinned Recording API

These API endpoints allow submitting, deleting, and retrieving ListenBrainz pinned recordings for users.

	
POST /1/pin

	Pin a recording for user. A user token (found on https://listenbrainz.org/settings/)
must be provided in the Authorization header! Each request should contain only one pinned recording item in the payload.

The format of the JSON to be POSTed to this endpoint should look like the following:

{
 "recording_msid": "40ef0ae1-5626-43eb-838f-1b34187519bf",
 "recording_mbid": "<this field is optional>",
 "blurb_content": "Wow..",
 "pinned_until": 1824001816
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – feedback accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/pin/unpin

	Unpins the currently active pinned recording for the user. A user token (found on https://listenbrainz.org/settings/)
must be provided in the Authorization header!

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – recording unpinned.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – could not find the active recording to unpin for the user. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/pin/delete/(row_id)

	Deletes the pinned recording with given row_id from the server.
A user token (found on https://listenbrainz.org/settings/) must be provided in the Authorization header!

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Parameters:

	
	row_id (int) – the row_id of the pinned recording that should be deleted.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – recording unpinned.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the requested row_id for the user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/(user_name)/pins

	Get a list of all recordings ever pinned by a user with given user_name in descending order of the time
they were originally pinned. The JSON returned by the API will look like the following:

{
 "count": 10,
 "offset": 0,
 "pinned_recordings": [
 {
 "blurb_content": "Awesome recording!",
 "created": 1623997168,
 "row_id": 10,
 "pinned_until": 1623997485,
 "recording_mbid": null,
 "recording_msid": "fd7d9162-a284-4a10-906c-faae4f1e166b"
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up"
 }
 },
 "-- more pinned recording items here ---"
],
 "total_count": 10,
 "user_name": "-- the MusicBrainz ID of the user --"
}

	Parameters:

	
	user_name (str) – the MusicBrainz ID of the user whose pin track history requested.

	count (int) – Optional, number of pinned recording items to return,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of pinned recording items to skip from the beginning, for pagination.
Ex. An offset of 5 means the most recent 5 pinned recordings from the user will be skipped, defaults to 0

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid query parameters. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/(user_name)/pins/following

	Get a list containing the active pinned recordings for all users in a user’s user_name
following list. The returned pinned recordings are sorted in descending order of the time they were pinned.
The JSON returned by the API will look like the following:

{
 "count": 1,
 "offset": 0,
 "pinned_recordings": [
 {
 "blurb_content": "Spectacular recording!",
 "created": 1624000841,
 "row_id": 1,
 "pinned_until": 1624605641,
 "recording_mbid": null,
 "recording_msid": "40ef0ae1-5626-43eb-838f-1b34187519bf",
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up"
 },
 "user_name": "-- the MusicBrainz ID of the user who pinned this recording --"
 },
 "-- more pinned recordings from different users here ---"
],
 "user_name": "-- the MusicBrainz ID of the original user --"
}

	Parameters:

	
	user_name (str) – the MusicBrainz ID of the user whose followed user’s pinned recordings are being requested.

	count (int) – Optional, number of pinned recording items to return,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of pinned recording items to skip from the beginning, for pagination.
Ex. An offset of 5 means the most recent pinned recordings from the first 5 users will be skipped, defaults to 0

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid query parameters. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/(user_name)/pins/current

	Get the currently pinned recording by a user with given user_name. The JSON returned by the API will look
like the following:

{
 "pinned_recording": {
 "blurb_content": "Awesome recording!",
 "created": 1623997168,
 "row_id": 10,
 "pinned_until": 1623997485,
 "recording_mbid": null,
 "recording_msid": "fd7d9162-a284-4a10-906c-faae4f1e166b"
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up"
 }
 },
 "user_name": "-- the MusicBrainz ID of the user --"
}

If there is no current pin for the user, “pinned_recording” field will be null.

	Parameters:

	
	user_name (str) – the MusicBrainz ID of the user whose pin track history requested.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested user was not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Statistics

ListenBrainz has a statistics infrastructure that collects and computes statistics
from the listen data that has been stored in the database. The endpoints in this section
offer a way to get this data programmatically.

	
GET /1/stats/user/(user_name)/artists

	Get top artists for user user_name.

A sample response from the endpoint may look like:

{
 "payload": {
 "artists": [
 {
 "artist_mbids": ["93e6118e-7fa8-49f6-9e02-699a1ebce105"],
 "artist_name": "The Local train",
 "listen_count": 385
 },
 {
 "artist_mbids": ["ae9ed5e2-4caf-4b3d-9cb3-2ad626b91714"],
 "artist_name": "Lenka",
 "listen_count": 333
 },
 {
 "artist_mbids": ["cc197bad-dc9c-440d-a5b5-d52ba2e14234"],
 "artist_name": "Coldplay",
 "listen_count": 321
 }
],
 "count": 3,
 "total_artist_count": 175,
 "range": "all_time",
 "last_updated": 1588494361,
 "user_id": "John Doe",
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids is an optional field and may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of artists to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of artists to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 artists will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/releases

	Get top releases for user user_name.

A sample response from the endpoint may look like:

{
 "payload": {
 "releases": [
 {
 "artist_mbids": [],
 "artist_name": "Coldplay",
 "listen_count": 26,
 "release_mbid": "",
 "release_name": "Live in Buenos Aires"
 },
 {
 "artist_mbids": [],
 "artist_name": "Ellie Goulding",
 "listen_count": 25,
 "release_mbid": "",
 "release_name": "Delirium (Deluxe)"
 },
 {
 "artist_mbids": [],
 "artist_name": "The Fray",
 "listen_count": 25,
 "release_mbid": "",
 "release_name": "How to Save a Life"
 },
],
 "count": 3,
 "total_release_count": 175,
 "range": "all_time",
 "last_updated": 1588494361,
 "user_id": "John Doe",
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids and release_mbid are optional fields and
may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of releases to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of releases to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 releases will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/release-groups

	Get top release groups for user user_name.

A sample response from the endpoint may look like:

{
 "payload": {
 "release_groups": [
 {
 "artist_mbids": [
 "62162215-b023-4f0e-84bd-1e9412d5b32c",
 "faf4cefb-036c-4c88-b93a-5b03dd0a0e6b",
 "e07d9474-00ea-4460-ac27-88b46b3d976e"
],
 "artist_name": "All Time Low ft. Demi Lovato & blackbear",
 "caa_id": 29179588350,
 "caa_release_mbid": "ee65192d-31f3-437a-b170-9158d2172dbc",
 "listen_count": 456,
 "release_group_mbid": "326b4a29-dff5-4fab-87dc-efc1494001c6",
 "release_group_name": "Monsters"
 },
 {
 "artist_mbids": [
 "c8b03190-306c-4120-bb0b-6f2ebfc06ea9"
],
 "artist_name": "The Weeknd",
 "caa_id": 25720993837,
 "caa_release_mbid": "19e4f6cc-ca0c-4897-8dfc-a36914b7f998",
 "listen_count": 381,
 "release_group_mbid": "78570bea-2a26-467c-a3db-c52723ceb394",
 "release_group_name": "After Hours"
 }
],
 "count": 2,
 "total_release_group_count": 175,
 "range": "all_time",
 "last_updated": 1588494361,
 "user_id": "John Doe",
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids and release_group_mbid are optional fields and
may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of releases to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of releases to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 releases will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/recordings

	Get top recordings for user user_name.

A sample response from the endpoint may look like:

{
 "payload": {
 "recordings": [
 {
 "artist_mbids": [],
 "artist_name": "Ellie Goulding",
 "listen_count": 25,
 "recording_mbid": "0fe11cd3-0be4-467b-84fa-0bd524d45d74",
 "release_mbid": "",
 "release_name": "Delirium (Deluxe)",
 "track_name": "Love Me Like You Do - From \"Fifty Shades of Grey\""
 },
 {
 "artist_mbids": [],
 "artist_name": "The Fray",
 "listen_count": 23,
 "recording_mbid": "0008ab49-a6ad-40b5-aa90-9d2779265c22",
 "release_mbid": "",
 "release_name": "How to Save a Life",
 "track_name": "How to Save a Life"
 }
],
 "count": 2,
 "total_recording_count": 175,
 "range": "all_time",
 "last_updated": 1588494361,
 "user_id": "John Doe",
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	We only calculate the top 1000 all_time recordings

	artist_mbids, release_name, release_mbid and recording_mbid are optional fields

and may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of recordings to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of recordings to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 recordings will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/listening-activity

	Get the listening activity for user user_name. The listening activity shows the number of listens
the user has submitted over a period of time.

A sample response from the endpoint may look like:

{
 "payload": {
 "from_ts": 1587945600,
 "last_updated": 1592807084,
 "listening_activity": [
 {
 "from_ts": 1587945600,
 "listen_count": 26,
 "time_range": "Monday 27 April 2020",
 "to_ts": 1588031999
 },
 {
 "from_ts": 1588032000,
 "listen_count": 57,
 "time_range": "Tuesday 28 April 2020",
 "to_ts": 1588118399
 },
 {
 "from_ts": 1588118400,
 "listen_count": 33,
 "time_range": "Wednesday 29 April 2020",
 "to_ts": 1588204799
 },
 "to_ts": 1589155200,
 "user_id": "ishaanshah"
 }
}

Note

	This endpoint is currently in beta

	The example above shows the data for three days only, however we calculate the statistics for
the current time range and the previous time range. For example for weekly statistics the data
is calculated for the current as well as the past week.

	For all_time listening activity statistics we only return the years which have more than
zero listens.

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/daily-activity

	Get the daily activity for user user_name. The daily activity shows the number of listens
submitted by the user for each hour of the day over a period of time. We assume that all listens are in UTC.

A sample response from the endpoint may look like:

{
 "payload": {
 "from_ts": 1587945600,
 "last_updated": 1592807084,
 "daily_activity": {
 "Monday": [
 {
 "hour": 0
 "listen_count": 26,
 },
 {
 "hour": 1
 "listen_count": 30,
 },
 {
 "hour": 2
 "listen_count": 4,
 },
 "..."
],
 "Tuesday": ["..."],
 "..."
 },
 "stats_range": "all_time",
 "to_ts": 1589155200,
 "user_id": "ishaanshah"
 }
}

Note

	This endpoint is currently in beta

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/artist-map

	Get the artist map for user user_name. The artist map shows the number of artists the user has listened to
from different countries of the world.

A sample response from the endpoint may look like:

{
 "payload": {
 "from_ts": 1587945600,
 "last_updated": 1592807084,
 "artist_map": [
 {
 "country": "USA",
 "artist_count": 34
 },
 {
 "country": "GBR",
 "artist_count": 69
 },
 {
 "country": "IND",
 "artist_count": 32
 }
],
 "stats_range": "all_time"
 "to_ts": 1589155200,
 "user_id": "ishaanshah"
 }
}

Note

	This endpoint is currently in beta

	We cache the results for this query for a week to improve page load times, if you want to request fresh data
you can use the force_recalculate flag.

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	force_recalculate (bool) – Optional, recalculate the data instead of returning the cached result.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/artist/(artist_mbid)/listeners

	Get top listeners for artist artist_mbid. This includes the total listen count for the entity
and top N listeners with their individual listen count for that artist in a given time range. A sample
response from the endpoint may look like:

{
 "payload": {
 "artist_mbid": "00034ede-a1f1-4219-be39-02f36853373e",
 "artist_name": "O Rappa",
 "from_ts": 1009843200,
 "last_updated": 1681839677,
 "listeners": [
 {
 "listen_count": 2469,
 "user_name": "RosyPsanda"
 },
 {
 "listen_count": 1858,
 "user_name": "alexyagui"
 },
 {
 "listen_count": 578,
 "user_name": "rafael_gn"
 },
 {
 "listen_count": 8,
 "user_name": "italooliveira"
 },
 {
 "listen_count": 7,
 "user_name": "paulodesouza"
 },
 {
 "listen_count": 1,
 "user_name": "oldpunisher"
 }
],
 "stats_range": "all_time",
 "to_ts": 1681777035,
 "total_listen_count": 16393
 }
}

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated or the entity does not exist,
empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Entity not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/release-group/(release_group_mbid)/listeners

	Get top listeners for release group release_group_mbid. This includes the total listen count
for the entity and top N listeners with their individual listen count for that release group in a
given time range. A sample response from the endpoint may look like:

{
 "payload": {
 "artist_mbids": [
 "c234fa42-e6a6-443e-937e-2f4b073538a3"
],
 "artist_name": "Chris Brown",
 "caa_id": 23564822587,
 "caa_release_mbid": "25f18616-5a9c-470e-964d-4eb8a511435b",
 "from_ts": 1009843200,
 "last_updated": 1681843150,
 "listeners": [
 {
 "listen_count": 2365,
 "user_name": "purpleyor"
 },
 {
 "listen_count": 570,
 "user_name": "dndty"
 },
 {
 "listen_count": 216,
 "user_name": "iammsyre"
 },
 {
 "listen_count": 141,
 "user_name": "dpmittal"
 },
 {
 "listen_count": 33,
 "user_name": "tazlad"
 },
 {
 "listen_count": 30,
 "user_name": "ratkutti"
 },
 {
 "listen_count": 22,
 "user_name": "Raymorjamiek"
 },
 {
 "listen_count": 21,
 "user_name": "MJJMC"
 },
 {
 "listen_count": 12,
 "user_name": "fookever"
 },
 {
 "listen_count": 8,
 "user_name": "Jamjamk12071983"
 },
 {
 "listen_count": 1,
 "user_name": "hassanymoses"
 },
 {
 "listen_count": 1,
 "user_name": "iJays"
 }
],
 "release_group_mbid": "087b3a7d-d532-44d9-b37a-84427677ddcd",
 "release_group_name": "Indigo",
 "stats_range": "all_time",
 "to_ts": 1681777035,
 "total_listen_count": 10291
 }
}

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated or the entity does not exist,
empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Entity not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/artists

	Get sitewide top artists.

A sample response from the endpoint may look like:

{
 "payload": {
 "artists": [
 {
 "artist_mbids": [],
 "artist_name": "Kanye West",
 "listen_count": 1305
 },
 {
 "artist_mbids": ["0b30341b-b59d-4979-8130-b66c0e475321"],
 "artist_name": "Lil Nas X",
 "listen_count": 1267
 }
],
 "offset": 0,
 "count": 2,
 "range": "year",
 "last_updated": 1588494361,
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids is optional field and may not be present in all the entries

	We only calculate the top 1000 artists for each time period.

	Parameters:

	
	count (int) – Optional, number of artists to return for each time range,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of artists to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 artists will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/releases

	Get sitewide top releases.

A sample response from the endpoint may look like:

{
 "payload": {
 "releases": [
 {
 "artist_mbids": [],
 "artist_name": "Coldplay",
 "listen_count": 26,
 "release_mbid": "",
 "release_name": "Live in Buenos Aires"
 },
 {
 "artist_mbids": [],
 "artist_name": "Ellie Goulding",
 "listen_count": 25,
 "release_mbid": "",
 "release_name": "Delirium (Deluxe)"
 },
 {
 "artist_mbids": [],
 "artist_name": "The Fray",
 "listen_count": 25,
 "release_mbid": "",
 "release_name": "How to Save a Life"
 },
],
 "offset": 0,
 "count": 2,
 "range": "year",
 "last_updated": 1588494361,
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids and release_mbid are optional fields and may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of artists to return for each time range,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of artists to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 artists will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/release-groups

	Get sitewide top release groups.

A sample response from the endpoint may look like:

{
 "payload": {
 "release_groups": [
 {
 "artist_mbids": [
 "62162215-b023-4f0e-84bd-1e9412d5b32c",
 "faf4cefb-036c-4c88-b93a-5b03dd0a0e6b",
 "e07d9474-00ea-4460-ac27-88b46b3d976e"
],
 "artist_name": "All Time Low ft. Demi Lovato & blackbear",
 "caa_id": 29179588350,
 "caa_release_mbid": "ee65192d-31f3-437a-b170-9158d2172dbc",
 "listen_count": 456,
 "release_group_mbid": "326b4a29-dff5-4fab-87dc-efc1494001c6",
 "release_group_name": "Monsters"
 },
 {
 "artist_mbids": [
 "c8b03190-306c-4120-bb0b-6f2ebfc06ea9"
],
 "artist_name": "The Weeknd",
 "caa_id": 25720993837,
 "caa_release_mbid": "19e4f6cc-ca0c-4897-8dfc-a36914b7f998",
 "listen_count": 381,
 "release_group_mbid": "78570bea-2a26-467c-a3db-c52723ceb394",
 "release_group_name": "After Hours"
 }
],
 "offset": 0,
 "count": 2,
 "range": "year",
 "last_updated": 1588494361,
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	artist_mbids and release_mbid are optional fields and may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of artists to return for each time range,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of artists to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 artists will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/recordings

	Get sitewide top recordings.

A sample response from the endpoint may look like:

{
 "payload": {
 "recordings": [
 {
 "artist_mbids": [],
 "artist_name": "Ellie Goulding",
 "listen_count": 25,
 "recording_mbid": "0fe11cd3-0be4-467b-84fa-0bd524d45d74",
 "release_mbid": "",
 "release_name": "Delirium (Deluxe)",
 "track_name": "Love Me Like You Do - From \"Fifty Shades of Grey\""
 },
 {
 "artist_mbids": [],
 "artist_name": "The Fray",
 "listen_count": 23,
 "recording_mbid": "0008ab49-a6ad-40b5-aa90-9d2779265c22",
 "release_mbid": "",
 "release_name": "How to Save a Life",
 "track_name": "How to Save a Life"
 }
],
 "offset": 0,
 "count": 2,
 "range": "year",
 "last_updated": 1588494361,
 "from_ts": 1009823400,
 "to_ts": 1590029157
 }
}

Note

	This endpoint is currently in beta

	We only calculate the top 1000 all_time recordings

	artist_mbids, release_name, release_mbid and recording_mbid are optional fields and

may not be present in all the responses

	Parameters:

	
	count (int) – Optional, number of artists to return for each time range,
Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of artists to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 artists will be skipped, defaults to 0

	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/listening-activity

	Get the listening activity for entire site. The listening activity shows the number of listens
the user has submitted over a period of time.

A sample response from the endpoint may look like:

{
 "payload": {
 "from_ts": 1587945600,
 "last_updated": 1592807084,
 "listening_activity": [
 {
 "from_ts": 1587945600,
 "listen_count": 26,
 "time_range": "Monday 27 April 2020",
 "to_ts": 1588031999
 },
 {
 "from_ts": 1588032000,
 "listen_count": 57,
 "time_range": "Tuesday 28 April 2020",
 "to_ts": 1588118399
 },
 {
 "from_ts": 1588118400,
 "listen_count": 33,
 "time_range": "Wednesday 29 April 2020",
 "to_ts": 1588204799
 }
],
 "to_ts": 1589155200,
 "range": "week"
 }
}

Note

	This endpoint is currently in beta

	The example above shows the data for three days only, however we calculate the statistics for
the current time range and the previous time range. For example for weekly statistics the data
is calculated for the current as well as the past week.

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/sitewide/artist-map

	Get the sitewide artist map. The artist map shows the number of artists listened to by users
from different countries of the world.

A sample response from the endpoint may look like:

{
 "payload": {
 "from_ts": 1587945600,
 "last_updated": 1592807084,
 "artist_map": [
 {
 "country": "USA",
 "artist_count": 34
 },
 {
 "country": "GBR",
 "artist_count": 69
 },
 {
 "country": "IND",
 "artist_count": 32
 }
],
 "stats_range": "all_time"
 "to_ts": 1589155200,
 }
}

Note

	This endpoint is currently in beta

	We cache the results for this query for a week to improve page load times, if you want to request fresh data
you can use the force_recalculate flag.

	Parameters:

	
	range (str) – Optional, time interval for which statistics should be returned, possible values are
ALLOWED_STATISTICS_RANGE, defaults to all_time

	force_recalculate (bool) – Optional, recalculate the data instead of returning the cached result.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Statistics for the user haven’t been calculated, empty response will be returned

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/stats/user/(user_name)/year-in-music/(int: year)

	

	
GET /1/stats/user/(user_name)/year-in-music

	Get data for year in music stuff

Constants

Constants that are relevant to using the API:

	
data.model.common_stat.ALLOWED_STATISTICS_RANGE = ['this_week', 'this_month', 'this_year', 'week', 'month', 'quarter', 'year', 'half_yearly', 'all_time']

	list of allowed value for range param accepted by various statistics endpoints

Metadata

The metadata API looks up MusicBrainz metadata for recordings

	
GET /1/metadata/recording/

	This endpoint takes in a list of recording_mbids and returns an array of dicts that contain
recording metadata suitable for showing in a context that requires as much detail about
a recording and the artist. Using the inc parameter, you can control which portions of metadata
to fetch.

The data returned by this endpoint can be seen here:

{
 "e97f805a-ab48-4c52-855e-07049142113d" : {
 "tag" : {
 "recording" : [
 {
 "genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
 "tag" : "trip hop",
 "count" : 6
 },
 {
 "count" : 1,
 "tag" : "pop",
 "genre_mbid" : "911c7bbb-172d-4df8-9478-dbff4296e791"
 },
 {
 "count" : 1,
 "genre_mbid" : "608b0471-7531-4854-a348-e698c69cb699",
 "tag" : "ambient"
 },
 {
 "count" : 3,
 "tag" : "trip-hop"
 },
 {
 "count" : 1,
 "genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
 "tag" : "downtempo"
 },
 {
 "count" : 3,
 "genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
 "tag" : "electronic"
 },
 {
 "genre_mbid" : "b7864789-29e6-4965-84e4-463baaa869df",
 "tag" : "chanson fran�aise",
 "count" : 1
 },
 {
 "genre_mbid" : "7dc2b20f-3953-4874-b9bf-41b8ba06d20c",
 "tag" : "acid jazz",
 "count" : 1
 }
],
 "artist" : [
 {
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "uk",
 "count" : 1
 },
 {
 "genre_mbid" : "ba318056-9ddf-46cd-8b95-61fc993b962d",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "krautrock",
 "count" : 2
 },
 {
 "count" : 4,
 "tag" : "electronic",
 "genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"
 },
 {
 "count" : 2,
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "65c97e89-b42b-45c2-a70e-0eca1b8f0ff7",
 "tag" : "experimental rock"
 },
 {
 "genre_mbid" : "ec5a14c7-7793-46dc-b858-470183eb63f7",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "folktronica",
 "count" : 1
 },
 {
 "count" : 8,
 "tag" : "trip hop",
 "genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"
 },
 {
 "count" : 3,
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "british"
 },
 {
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
 "tag" : "downtempo",
 "count" : 5
 },
 {
 "tag" : "trip-hop",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "count" : 8
 },
 {
 "count" : 1,
 "tag" : "electro-industrial",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "6e2e809f-8c54-4e0f-aca0-0642771ab3cf"
 }
]
 },
 "recording" : {
 "rels" : [
 {
 "artist_name" : "Beth Gibbons",
 "instrument" : null,
 "artist_mbid" : "5adcb9d9-5ea2-428d-af46-ef626966e106",
 "type" : "vocal"
 },
 {
 "artist_mbid" : "5082a11f-7203-4ff3-ae04-2a0150d3bbb6",
 "type" : "instrument",
 "instrument" : "Rhodes piano",
 "artist_name" : "Geoff Barrow"
 },
 {
 "type" : "instrument",
 "artist_mbid" : "619b1116-740e-42e0-bdfe-96af274f79f7",
 "instrument" : "guitar",
 "artist_name" : "Adrian Utley"
 },
 {
 "artist_name" : "Clive Deamer",
 "instrument" : "drums (drum set)",
 "type" : "instrument",
 "artist_mbid" : "d576e6be-03d1-489c-8c3e-692c6fbfb7ca"
 }
]
 },
 "release" : {
 "caa_id" : 829521842,
 "mbid" : "76df3287-6cda-33eb-8e9a-044b5e15ffdd"
 },
 "artist" : [
 {
 "rels" : {
 "official homepage" : "http://www.portishead.co.uk/",
 "youtube" : "https://www.youtube.com/channel/UC243a5RnwmItLvwhl0YOxbg",
 "purchase for download" : "https://itunes.apple.com/us/artist/id853090",
 "wikidata" : "https://www.wikidata.org/wiki/Q191352",
 "free streaming" : "https://open.spotify.com/artist/6liAMWkVf5LH7YR9yfFy1Y",
 "social network" : "https://www.facebook.com/portishead",
 "lyrics" : "https://muzikum.eu/en/122-6105/portishead/lyrics.html"
 },
 "begin_year" : 1991,
 "area" : "United Kingdom",
 "type" : "Group"
 }
]
 }
}

	Parameters:

	
	recording_mbids (str) – A comma separated list of recording_mbids

	inc (str) – A space separated list of “artist”, “tag” and/or “release” to indicate which portions
of metadata you’re interested in fetching. We encourage users to only fetch the data
they plan to consume.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid recording_mbid arguments

	
POST /1/metadata/recording/

	This endpoint is the POST verson for fetching recording metadata, since it allows up to the
max number of items allowed. (MAX_ITEMS_PER_GET items)

A JSON document with a list of recording_mbids and inc string must be POSTed
to this endpoint to returns an array of dicts that contain
recording metadata suitable for showing in a context that requires as much detail about
a recording and the artist. Using the inc parameter, you can control which portions of metadata
to fetch.

{ “recording_mbids”: [“25d47b0c-5177-49db-b740-c166e4acebd1”, …], inc=”artist tag” }

To see what data this endpoint returns, please look at the data above for the GET version.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid recording_mbid arguments

	
GET /1/metadata/release_group/

	This endpoint takes in a list of release_group_mbids and returns an array of dicts that contain
release_group metadata suitable for showing in a context that requires as much detail about
a release_group and the artist. Using the inc parameter, you can control which portions of metadata
to fetch.

The data returned by this endpoint can be seen here:

	Parameters:

	
	release_group_mbids (str) – A comma separated list of release_group_mbids

	inc (str) – A space separated list of “artist”, “tag” and/or “release” to indicate which portions
of metadata you’re interested in fetching. We encourage users to only fetch the data
they plan to consume.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid release_group_mbid arguments

	
GET /1/metadata/lookup/

	This endpoint looks up mbid metadata for the given artist, recording and optionally a release name.
The total number of characters in the artist name, recording name and release name query arguments should be
less than or equal to MAX_MAPPING_QUERY_LENGTH.

	Parameters:

	
	artist_name (str) – artist name of the listen

	recording_name – track name of the listen

	recording_name – release name of the listen

	metadata (bool) – should extra metadata be also returned if a match is found,
see /metadata/recording for details.

	inc (str) – same as /metadata/recording endpoint

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – lookup succeeded, does not indicate whether a match was found or not

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid arguments

	
POST /1/metadata/submit_manual_mapping/

	Submit a manual mapping of a recording messybrainz ID to a musicbrainz recording id.

The format of the JSON to be POSTed to this endpoint is:

{
 "recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "recording_mbid": "8f3471b5-7e6a-48da-86a9-c1c07a0f47ae"
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Mapping added, or already exists.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/metadata/get_manual_mapping/

	Get the manual mapping of a recording messybrainz ID that a user added.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response of the mapping.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – No such mapping for this user/recording msid

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/metadata/artist/

	This endpoint takes in a list of artist_mbids and returns an array of dicts that contain
recording metadata suitable for showing in a context that requires as much detail about
a recording and the artist. Using the inc parameter, you can control which portions of metadata
to fetch.

The data returned by this endpoint can be seen here:

{
 "e97f805a-ab48-4c52-855e-07049142113d" : {
 "tag" : {
 "recording" : [
 {
 "genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
 "tag" : "trip hop",
 "count" : 6
 },
 {
 "count" : 1,
 "tag" : "pop",
 "genre_mbid" : "911c7bbb-172d-4df8-9478-dbff4296e791"
 },
 {
 "count" : 1,
 "genre_mbid" : "608b0471-7531-4854-a348-e698c69cb699",
 "tag" : "ambient"
 },
 {
 "count" : 3,
 "tag" : "trip-hop"
 },
 {
 "count" : 1,
 "genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
 "tag" : "downtempo"
 },
 {
 "count" : 3,
 "genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
 "tag" : "electronic"
 },
 {
 "genre_mbid" : "b7864789-29e6-4965-84e4-463baaa869df",
 "tag" : "chanson fran�aise",
 "count" : 1
 },
 {
 "genre_mbid" : "7dc2b20f-3953-4874-b9bf-41b8ba06d20c",
 "tag" : "acid jazz",
 "count" : 1
 }
],
 "artist" : [
 {
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "uk",
 "count" : 1
 },
 {
 "genre_mbid" : "ba318056-9ddf-46cd-8b95-61fc993b962d",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "krautrock",
 "count" : 2
 },
 {
 "count" : 4,
 "tag" : "electronic",
 "genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"
 },
 {
 "count" : 2,
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "65c97e89-b42b-45c2-a70e-0eca1b8f0ff7",
 "tag" : "experimental rock"
 },
 {
 "genre_mbid" : "ec5a14c7-7793-46dc-b858-470183eb63f7",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "folktronica",
 "count" : 1
 },
 {
 "count" : 8,
 "tag" : "trip hop",
 "genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"
 },
 {
 "count" : 3,
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "tag" : "british"
 },
 {
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
 "tag" : "downtempo",
 "count" : 5
 },
 {
 "tag" : "trip-hop",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "count" : 8
 },
 {
 "count" : 1,
 "tag" : "electro-industrial",
 "artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
 "genre_mbid" : "6e2e809f-8c54-4e0f-aca0-0642771ab3cf"
 }
]
 },
 "recording" : {
 "rels" : [
 {
 "artist_name" : "Beth Gibbons",
 "instrument" : null,
 "artist_mbid" : "5adcb9d9-5ea2-428d-af46-ef626966e106",
 "type" : "vocal"
 },
 {
 "artist_mbid" : "5082a11f-7203-4ff3-ae04-2a0150d3bbb6",
 "type" : "instrument",
 "instrument" : "Rhodes piano",
 "artist_name" : "Geoff Barrow"
 },
 {
 "type" : "instrument",
 "artist_mbid" : "619b1116-740e-42e0-bdfe-96af274f79f7",
 "instrument" : "guitar",
 "artist_name" : "Adrian Utley"
 },
 {
 "artist_name" : "Clive Deamer",
 "instrument" : "drums (drum set)",
 "type" : "instrument",
 "artist_mbid" : "d576e6be-03d1-489c-8c3e-692c6fbfb7ca"
 }
]
 },
 "release" : {
 "caa_id" : 829521842,
 "mbid" : "76df3287-6cda-33eb-8e9a-044b5e15ffdd"
 },
 "artist" : [
 {
 "rels" : {
 "official homepage" : "http://www.portishead.co.uk/",
 "youtube" : "https://www.youtube.com/channel/UC243a5RnwmItLvwhl0YOxbg",
 "purchase for download" : "https://itunes.apple.com/us/artist/id853090",
 "wikidata" : "https://www.wikidata.org/wiki/Q191352",
 "free streaming" : "https://open.spotify.com/artist/6liAMWkVf5LH7YR9yfFy1Y",
 "social network" : "https://www.facebook.com/portishead",
 "lyrics" : "https://muzikum.eu/en/122-6105/portishead/lyrics.html"
 },
 "begin_year" : 1991,
 "area" : "United Kingdom",
 "type" : "Group"
 }
]
 }
}

	Parameters:

	
	artist_mbids (str) – A comma separated list of recording_mbids

	inc (str) – A space separated list of “artist”, “tag” and/or “release” to indicate which portions
of metadata you’re interested in fetching. We encourage users to only fetch the data
they plan to consume.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid recording_mbid arguments

Social

User Timeline API

These api endpoints allow to create and fetch timeline events for a user.

	
POST /1/user/(user_name)/timeline-event/create/recording

	Make the user recommend a recording to their followers.

The request should post the following data about the recording being recommended (either one of recording_msid or
recording_mbid is sufficient):

{
 "metadata": {
 "recording_msid": "<The MessyBrainz ID of the recording, optional>",
 "recording_mbid": "<The MusicBrainz ID of the recording>"
 }
}

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user who is recommending the recording.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, recording has been recommended!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized, you do not have permissions to recommend recordings on the behalf of this user

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you are not an approved user.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/timeline-event/create/notification

	Post a message with a link on a user’s timeline. Only approved users are allowed to perform this action.

The request should contain the following data:

{
 "metadata": {
 "message": "<the message to post, required>",
 }
}

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user on whose timeline the message is to be posted.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, message has been posted!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you are not an approved user.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/timeline-event/create/review

	Creates a CritiqueBrainz review event for the user. This also creates a corresponding review in
CritiqueBrainz. Users need to have linked their ListenBrainz account with CritiqueBrainz first to use
this endpoint successfully.

The request should contain the following data:

{
 "metadata": {
 "entity_name": "<entity name, required>",
 "entity_id": "<entity id, required>",
 "entity_type": "<entity type, required>",
 "text": "<the message to post, required>",
 "language": "<language code, required>",
 "rating": <rating, int>,
 },
}

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user who is creating the review.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, message has been posted!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you have not linked with a CritiqueBrainz account.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/feed/events

	Get feed events for a user’s timeline.

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user whose timeline is being requested.

	max_ts (int) – If you specify a max_ts timestamp, events with timestamps less than the value will be returned.

	min_ts (int) – If you specify a min_ts timestamp, events with timestamps greater than the value will be returned.

	count (int) – Optional, number of events to return. Default: DEFAULT_ITEMS_PER_GET . Max: MAX_ITEMS_PER_GET

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have feed events!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized, you do not have permission to view this user’s feed.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you do not have permission to view this user’s feed.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/feed/events/listens/following

	Get feed’s listen events for followed users.

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user whose timeline is being requested.

	max_ts (int) – If you specify a max_ts timestamp, events with timestamps less than the value will be returned.

	min_ts (int) – If you specify a min_ts timestamp, events with timestamps greater than the value will be returned.

	count (int) – Optional, number of events to return. Default: DEFAULT_ITEMS_PER_GET . Max: MAX_ITEMS_PER_GET

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have feed listen-events!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you do not have permission to view this user’s feed.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/feed/events/listens/similar

	Get feed’s listen events for similar users.

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user whose timeline is being requested.

	max_ts (int) – If you specify a max_ts timestamp, events with timestamps less than the value will be returned.

	min_ts (int) – If you specify a min_ts timestamp, events with timestamps greater than the value will be returned.

	count (int) – Optional, number of events to return. Default: DEFAULT_ITEMS_PER_GET . Max: MAX_ITEMS_PER_GET

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have feed listen-events!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Invalid authorization. See error message for details.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you do not have permission to view this user’s feed.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/feed/events/delete

	Delete those events from user’s feed that belong to them. Supports deletion of recommendation and notification.
Along with the authorization token, post the event type and event id. For example:

{
 "event_type": "recording_recommendation",
 "id": "<integer id of the event>"
}

{
 "event_type": "notification",
 "id": "<integer id of the event>"
}

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user from whose timeline events are being deleted

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful deletion

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you do not have permission to delete from this user’s feed.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – API Internal Server Error

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/feed/events/hide

	Hide events from the user feed, only recording_recommendation and recording_pin
events that have been generated by the people one is following can be deleted
via this endpoint. For example:

{
 "event_type": "recording_recommendation",
 "event_id": "<integer id of the event>"
}

{
 "event_type": "recording_pin",
 "event_id": "<integer id of the event>"
}

	Parameters:

	
	user_name (str) – The MusicBrainz ID of the user from whose timeline events are being deleted

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Event hidden successfully

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden, you don’t have permissions to hide events from this user’s timeline.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – API Internal Server Error

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/feed/events/unhide

	Delete hidden events from the user feed, aka unhide events. For example:

{
 "event_type": "recording_pin",
 "event_id": "<integer id of the event>"
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Event unhidden successfully

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Forbidden

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – API Internal Server Error

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/timeline-event/create/recommend-personal

	Make the user recommend a recording to their followers. The request should post
the following data about the recording being recommended (either one of recording_msid
or recording_mbid is sufficient), and also the list of followers getting recommended:

{
 "metadata": {
 "recording_msid": "<The MessyBrainz ID of the recording, optional>",
 "recording_mbid": "<The MusicBrainz ID of the recording>",
 "users": [<usernames of the persons you want to recommend to, required>]
 "blurb_content": "<String containing personalized recommendation>"
 }
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, recording has been recommended!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Unauthorized, you do not have permissions to recommend

personal recordings on the behalf of this user
:statuscode 403: Forbidden, you do not have permissions to recommend
:statuscode 404: User not found
:resheader Content-Type: application/json

Follow API

These apis allow to interact with follow user feature of ListenBrainz.

	
GET /1/user/(user_name)/followers

	Fetch the list of followers of the user user_name. Returns a JSON with an array of user names like these:

{
 "followers": ["rob", "mr_monkey", "..."],
 "user": "shivam-kapila"
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	
GET /1/user/(user_name)/following

	Fetch the list of users followed by the user user_name. Returns a JSON with an array of user names like these:

{
 "following": ["rob", "mr_monkey", "..."],
 "user": "shivam-kapila"
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found

	
POST /1/user/(user_name)/follow

	Follow the user user_name. A user token (found on https://listenbrainz.org/settings/) must
be provided in the Authorization header!

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully followed the user user_name.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –
	Already following the user user_name.

	Trying to follow yourself.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/user/(user_name)/unfollow

	Unfollow the user user_name. A user token (found on https://listenbrainz.org/settings/) must
be provided in the Authorization header!

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully unfollowed the user user_name.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Recommendations

ListenBrainz uses collaborative filtering to generate recording recommendations, which may be further processed to
generate playlists for users.

Recording Recommendation API

These api endpoints allow to fetch the raw collaborative filtered recording IDs.

	
GET /1/cf/recommendation/user/(user_name)/recording

	Get recommendations sorted on rating and ratings for user user_name.

A sample response from the endpoint may look like:

{
 "payload": {
 "last_updated": 1588494361,
 "type": "<artist_type>",
 "entity": "recording",
 "mbids": [
 {
 "recording_mbid": "526bd613-fddd-4bd6-9137-ab709ac74cab",
 "score": 9.345
 },
 {
 "recording_mbid": "a6081bc1-2a76-4984-b21f-38bc3dcca3a5",
 "score": 6.998
 }
],
 "user_name": "unclejohn69",
 "count": 10,
 "total_mbid_count": 30,
 "offset": 10
 }
}

Note

	This endpoint is experimental and probably will change in the future.

	Parameters:

	
	count (int) – Optional, number of recording mbids to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

	offset (int) – Optional, number of mbids to skip from the beginning, for pagination.
Ex. An offset of 5 means the 5 mbids will be skipped, defaults to 0

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successful query, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found.

	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Recommendations for the user haven’t been generated, empty response will be returned

Recording Recommendation Feedback API

These api endpoints allow to submit and retrieve feedback for raw collaborative filtered recordings.

	
POST /1/recommendation/feedback/submit

	Submit recommendation feedback. A user token (found on https://listenbrainz.org/settings/)
must be provided in the Authorization header! Each request should contain only one feedback in the payload.

A sample feedback may look like:

{
 "recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "rating": "love"
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – feedback accepted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
POST /1/recommendation/feedback/delete

	Delete feedback for a user. A user token (found on https://listenbrainz.org/settings/)
must be provided in the Authorization header! Each request should contain only one recording mbid in the payload.
A sample feedback may look like:

{
 "recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – Token <user token>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – feedback deleted.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/recommendation/feedback/user/(user_name)

	Get feedback given by user user_name.

A sample response may look like:

{
 "count": 1,
 "feedback": [
 {
 "created": "1345679998",
 "recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "rating": "love"
 },
 "-- more feedback data here ---"
],
 "offset": 0,
 "total_count": 1,
 "user_name": "Vansika"
}

If the optional argument rating is not given, this endpoint will return all the feedback submitted by the user.
Otherwise filters the feedback to be returned by rating.

	Parameters:

	
	rating (str) – Optional, refer to db/model/recommendation_feedback.py for allowed rating values.

	count (int) – Optional, number of feedback items to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET.

	offset (int) – Optional, number of feedback items to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/recommendation/feedback/user/(user_name)/recordings

	Get feedback given by user user_name for the list of recordings supplied.

A sample response may look like:

{
 "feedback": [
 {
 "created": 1604033691,
 "rating": "bad_recommendation",
 "recording_mbid": "9ffabbe4-e078-4906-80a7-3a02b537e251"
 },
 {
 "created": 1604032934,
 "rating": "hate",
 "recording_mbid": "28111d2c-a80d-418f-8b77-6aba58abe3e7"
 }
],
 "user_name": "Vansika Pareek"
}

An empty response will be returned if the feedback for given recording MBID doesn’t exist.

	Parameters:

	
	mbids (str) – comma separated list of recording_mbids for which feedback records are to be fetched.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request, check response['error'] for more details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – User not found.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Art

ListenBrainz has a (cover) art infrastructure that creates new cover art from a user’s statistics or
a user’s instructions on how to composite a cover art grid.

As these endpoints return SVGs rather than images, you must embed them in an html <object data="covert_art_url" type="image/svg+xml">
element rather than an element. Otherwise external resources such as cover art images
and fonts will not be loaded and the result will be useless.

See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object for reference.

	
POST /1/art/grid/

	Create a cover art grid SVG file from the POSTed JSON data to this endpoint. The JSON data
should look like the following:

{
	"background": "transparent",
	"image_size": 750,
	"dimension": 4,
	"skip-missing": false,
	"show-caa": false,
	"tiles": [
		"0,1,4,5",
		"10,11,14,15",
		"2",
		"3",
		"6",
		"7",
		"8",
		"9",
		"12",
		"13"
],
	"release_mbids": [
		"d101e395-0c04-4237-a3d2-167b1d88056c",
		"4211382c-39e8-4a72-a32d-e4046fd96356",
		"6d895dfa-8688-4867-9730-2b98050dae04",
		"773e54bb-3f43-4813-826c-ca762bfa8318",
		"ec782dbe-9204-4ec3-bf50-576c7cf3dfb3",
		"10dffffc-c2aa-4ddd-81fd-42b5e125f240",
		"be5f714d-02eb-4c89-9a06-5e544f132604",
		"3eee4ed1-b48e-4894-8a05-f535f16a4985"
]
}

	Parameters:

	
	background (str) – The background for the cover art: Must be “transparent”, “white” or “black”.

	image_size (int) – The size of the cover art image. See constants at the bottom of this document.

	dimension (int) – The dimension to use for this grid. A grid of dimension 3 has 3 images across
and 3 images down, for a total of 9 images.

	skip-missing (bool) – If cover art is missing for a given release_mbid, skip it and move on to the next
one, if true is passed. If false, the show-caa option will decide what happens.

	show-caa (bool) – If cover art is missing and skip-missing is false, then show-caa will determine if
a blank square is shown or if the Cover Art Archive missing image is show.

one, if true is passed. If false, the show-caa option will decide what happens.

	tiles (list) – The tiles paramater is a list of strings that determines the location where cover art
images should be placed. Each string is a comma separated list of image cells. A grid of
dimension 3 has 9 cells, from 0 in the upper left hand corner, 2 in the upper right
hand corner, 6 in the lower left corner and 8 in the lower right corner. Specifying
only a single cell will have the image cover that cell exactly. If more than one
cell is specified, the image will cover the area defined by the bounding box of all
the given cells. These tiles only define bounding box areas – no clipping of images
that may fall outside of these tiles will be performed.

	release_mbids (list) – An ordered list of release_mbids. The images will be loaded and processed
in the order that this list is in. The cover art for the release_mbids will be placed
on the tiles defined by the tiles parameter.

	cover_art_size (int) – Size in pixels of each cover art in the composited image. Can be either 250 or 500

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – cover art created successfully.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid JSON or invalid options in JSON passed. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – image/svg+xml

See the bottom of this document for constants relating to this method.

	
GET /1/art/grid-stats/(user_name)/(time_range)/(int: dimension)/(int: layout)/(int: image_size)

	Create a cover art grid SVG file from the stats of a given user.

	Parameters:

	
	user_name (str) – The name of the user for whom to create the cover art.

	time_range (str) – Must be a statistics time range – see below.

	dimension (int) – The dimension to use for this grid. A grid of dimension 3 has 3 images across
and 3 images down, for a total of 9 images.

	layout (int) – The layout to be used for this grid. Layout 0 is always a simple grid, but other layouts
may have image images be of different sizes. See https://art.listenbrainz.org for examples
of the available layouts.

	image_size (int) – The size of the cover art image. See constants at the bottom of this document.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – cover art created successfully.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid JSON or invalid options in JSON passed. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – image/svg+xml

See the bottom of this document for constants relating to this method.

	
GET /1/art/(custom_name)/(user_name)/(time_range)/(int: image_size)

	Create a custom cover art SVG file from the stats of a given user.

	Parameters:

	
	cover_name (str) – The name of cover art to be generated. See https://art.listenbrainz.org for the different types
that are available.

	user_name (str) – The name of the user for whom to create the cover art.

	time_range (str) – Must be a statistics time range – see below.

	image_size (int) – The size of the cover art image. See constants at the bottom of this document.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – cover art created successfully.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid JSON or invalid options in JSON passed. See error message for details.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – image/svg+xml

See the bottom of this document for constants relating to this method.

	
GET /1/art/year-in-music/(int: year)/(user_name)

	Create the shareable svg image using YIM stats

Constants

Constants that are relevant to using the API:

	
listenbrainz.art.cover_art_generator.MIN_IMAGE_SIZE = 128

	Minimum image size

	
listenbrainz.art.cover_art_generator.MAX_IMAGE_SIZE = 1024

	Maximum image size

	
listenbrainz.art.cover_art_generator.MIN_DIMENSION = 2

	Minimum dimension

	
listenbrainz.art.cover_art_generator.MAX_DIMENSION = 5

	Maximum dimension

	
data.model.common_stat.ALLOWED_STATISTICS_RANGE = ['this_week', 'this_month', 'this_year', 'week', 'month', 'quarter', 'year', 'half_yearly', 'all_time']

	list of allowed value for range param accepted by various statistics endpoints

Miscellaneous

Various ListenBrainz API endpoints that are not documented elsewhere.

Explore API

These API endpoints allow fetching fresh releases and cover art details for a given color.

	
GET /1/explore/fresh-releases/

	This endpoint fetches upcoming and recently released (fresh) releases and returns a list of:

{
 "artist_credit_name": "Röyksopp",
 "artist_mbids": [
 "1c70a3fc-fa3c-4be1-8b55-c3192db8a884"
],
 "release_date": "2022-04-29",
 "release_group_mbid": "4f1c579a-8a9c-4f96-92ae-befcdf3e0d32",
 "release_group_primary_type": "Album",
 "release_mbid": "1f1db316-8361-4a40-9633-550b259642f5",
 "release_name": "Profound Mysteries"
}

	Parameters:

	
	release_date – Fresh releases will be shown around this pivot date.
Must be in YYYY-MM-DD format

	days – The number of days of fresh releases to show. Max 90 days.

	sort – The sort order of the results. Must be one of “release_date”, “artist_credit_name” or “release_name”.
Default “release_date”.

	past – Whether to show releases in the past. Default True.

	future – Whether to show releases in the future. Default True.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – fetch succeeded

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid date or number of days passed.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/explore/color/(color)

	Fetch a list of releases that have cover art that has a predominant
color that is close to the given color.

{
 "payload": {
 "releases" : [
 {
 "artist_name": "Letherette",
 "color": [250, 90, 192],
 "dist": 109.973,
 "release_mbid": "00a109da-400c-4350-9751-6e6f25e89073",
 "caa_id": 34897349734,
 "release_name": "EP5",
 "recordings": "< array of listen formatted metadata >",
 },
 ". . ."
]
 }
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

	
GET /1/explore/lb-radio

	Generate a playlist with LB Radio.

	Parameters:

	
	prompt – The LB Radio prompt from which to generate playlists.

	mode – The mode that LB radio should use. Must be easy, medium or hard.

{
 "payload": {
 "jspf" : <JSPF playlist here>,
 "feedback": [<user feedback items>]
 }
}

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – bad request: some parameters are missing or invalid

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Troi encountered an error

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Status API

	
GET /1/status/get-dump-info

	Get information about ListenBrainz data dumps.
You need to pass the id parameter in a GET request to get data about that particular
dump.

Example response:

{
 "id": 1,
 "timestamp": "20190625-165900"
}

	Query Parameters:

	
	id – Integer specifying the ID of the dump, if not provided, the endpoint returns information about the latest data dump.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – You have data.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – You did not provide a valid dump ID. See error message for details.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Dump with given ID does not exist.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] – application/json

Usage Examples

Note

These examples are written in Python version 3.6.3 and use requests [http://docs.python-requests.org/en/master/] version 2.18.4.

Prerequisites

All the examples assume you have a development version of the ListenBrainz
server set up on localhost. Remember to set DEBUG to True
in the config. When in production, you can replace localhost with
api.listenbrainz.org to use the real API. In order to use either one,
you’ll need a token. You can find it under ROOT/settings/ when signed
in, with ROOT being either localhost for the dev version or
listenbrainz.org for the real API.

Caution

You should use the token from the API you’re using. In production, change the
token to one from listenbrainz.org.

Examples

Submitting Listens

See JSON Documentation for details on the format of the Track dictionaries.

If everything goes well, the json response should be {"status": "ok"},
and you should see a recent listen of “Never Gonna Give You Up” when you visit
ROOT/user/{your-user-name}.

from time import time
import requests

Set DEBUG to True to test local dev server.
API keys for local dev server and the real server are different.
DEBUG = True
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

def submit_listen(listen_type, payload, token):
 """Submits listens for the track(s) in payload.

 Args:
 listen_type (str): either of 'single', 'import' or 'playing_now'
 payload: A list of Track dictionaries.
 token: the auth token of the user you're submitting listens for

 Returns:
 The json response if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError is the JSON in the response is invalid.
 """

 response = requests.post(
 url="{0}/1/submit-listens".format(ROOT),
 json={
 "listen_type": listen_type,
 "payload": payload,
 },
 headers={
 "Authorization": "Token {0}".format(token)
 }
)

 response.raise_for_status()

 return response.json()

if __name__ == "__main__":
 EXAMPLE_PAYLOAD = [
 {
 # An example track.
 "listened_at": int(time()),
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
 }
]

 # Input token from the user and call submit listen
 token = input('Please enter your auth token: ')
 json_response = submit_listen(listen_type='single', payload=EXAMPLE_PAYLOAD, token=token)

 print("Response was: {0}".format(json_response))
 print("Check your listens - there should be a Never Gonna Give You Up track, played recently.")

Getting Listen History

See JSON Documentation for details on the format of the Track dictionaries.

If there’s nothing in the listen history of your user, you can run
submit_listens before this.

If there is some listen history, you should see a list
of tracks like this:

import requests

Set DEBUG to True to test local dev server.
API keys for local dev server and the real server are different.
DEBUG = True
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

The following token must be valid, but it doesn't have to be the token of the user you're
trying to get the listen history of.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {
 "Authorization": "Token {0}".format(TOKEN)
}

def get_listens(username, min_ts=None, max_ts=None, count=None):
 """Gets the listen history of a given user.

 Args:
 username: User to get listen history of.
 min_ts: History before this timestamp will not be returned.
 DO NOT USE WITH max_ts.
 max_ts: History after this timestamp will not be returned.
 DO NOT USE WITH min_ts.
 count: How many listens to return. If not specified,
 uses a default from the server.

 Returns:
 A list of listen info dictionaries if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON in the response is invalid.
 An IndexError if the JSON is not structured as expected.
 """
 response = requests.get(
 url="{0}/1/user/{1}/listens".format(ROOT, username),
 params={
 "min_ts": min_ts,
 "max_ts": max_ts,
 "count": count,
 },
 # Note that an authorization header isn't compulsary for requests to get listens
 # BUT requests with authorization headers are given relaxed rate limits by ListenBrainz
 headers=AUTH_HEADER,
)

 response.raise_for_status()

 return response.json()['payload']['listens']

if __name__ == "__main__":
 username = input('Please input the MusicBrainz ID of the user: ')
 listens = get_listens(username)

 for track in listens:
 print("Track: {0}, listened at {1}".format(track["track_metadata"]["track_name"],
 track["listened_at"]))

Track: Never Gonna Give You Up, listened at 1512040365
Track: Never Gonna Give You Up, listened at 1511977429
Track: Never Gonna Give You Up, listened at 1511968583
Track: Never Gonna Give You Up, listened at 1443521965
Track: Never Gonna Give You Up, listened at 42042042

Lookup MBIDs

To interact with various ListenBrainz features, you will often need a MBID of
the recording of a listen. You can use the Metadata endpoints to
lookup MBID and additional metadata for the listen using its track name and
artist name. For instance,

#!/usr/bin/env python3

import json
import requests

Set DEBUG to True to test local dev server.
DEBUG = False
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

def lookup_metadata(track_name: str, artist_name: str, incs: str) -> dict:
 """Looks up the metadata for a listen using track name and artist name."""
 params = {
 "recording_name": track_name,
 "artist_name": artist_name
 }
 if incs:
 params["metadata"] = True
 params["incs"] = incs
 response = requests.get(
 url="{0}/1/metadata/lookup/".format(ROOT),
 params=params
)
 response.raise_for_status()
 return response.json()

if __name__ == "__main__":
 track_name = input('Please input the track name of the listen: ').strip()
 artist_name = input('Please input the artist name of the listen: ').strip()
 incs = input('Please input extra metadata to include (leave empty if not desired): ').strip()

 metadata = lookup_metadata(track_name, artist_name, incs)

 print()
 if metadata:
 print("Metadata found.")
 print(json.dumps(metadata, indent=4))
 else:
 print("No metadata found.")

Please provide the prompted data to the script to lookup the given track. Currently the release
argument for a listen is not used, but we plan to support in the near future, so we encourage
you to start sending release information if you have it.

{
 "artist_credit_name": "Ariana Grande",
 "artist_mbids": [
 "f4fdbb4c-e4b7-47a0-b83b-d91bbfcfa387"
],
 "metadata": {
 "recording": {
 "rels": [
 {
 "artist_mbid": "eb811bf7-4c99-4781-84c0-10ba6b8e33b3",
 "artist_name": "Carl Falk",
 "instrument": "guitar",
 "type": "instrument"
 },
 {
 "artist_mbid": "c8af4490-e48a-4f91-aef9-2b1e39369576",
 "artist_name": "Savan Kotecha",
 "instrument": "background vocals",
 "type": "vocal"
 },
 {
 "artist_mbid": "0d33cc88-28ae-44d5-be7e-7a653e518720",
 "artist_name": "Jeanette Olsson",
 "instrument": "background vocals",
 "type": "vocal"
 }
]
 }
 },
 "recording_mbid": "9f24c0f7-a644-4074-8fbd-a1dba03de129",
 "recording_name": "One Last Time",
 "release_mbid": "be5d97b1-408a-4e95-b924-0a61955048de",
 "release_name": "My Everything"
}

Love/hate feedback

To provide love/hate feedback on listens, you need a recording mbid. If you do not
have a recording mbid, you can look it up using the metadata endpoints. See Lookup MBIDs
for an example of the same. Here is an example of how to submit love/hate feedback using
the ListenBrainz API. Refer to Feedback API for more details.

#!/usr/bin/env python3

import requests

Set DEBUG to True to test local dev server.
API keys for local dev server and the real server are different.
DEBUG = True
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

def submit_feedback(token: str, recording_mbid: str, score: int):
 """ Submit feedback for recording. """
 response = requests.post(
 url="{0}/1/feedback/recording-feedback".format(ROOT),
 json={"recording_mbid": recording_mbid, "score": score},
 headers={"Authorization": f"Token {token}"}
)
 response.raise_for_status()
 print("Feedback submitted.")

if __name__ == "__main__":
 recording_mbid = input('Please input the recording mbid of the listen: ').strip()
 score = int(input('Please input the feedback score (1, 0 or -1): ').strip())
 token = input('Please enter your auth token: ').strip()

 submit_feedback(token, recording_mbid, score)

Please provide the prompted data to the script to submit feedback.

Latest Import

Set and get the timestamp of the latest import into ListenBrainz.

Setting

from time import time
import requests

Set DEBUG to True to test local dev server.
API keys for local dev server and the real server are different.
DEBUG = True
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

def set_latest_import(timestamp, token, service="lastfm"):
 """Sets the time of the latest import.

 Args:
 timestamp: Unix epoch to set latest import to.
 token: the auth token of the user you're setting latest_import of
 service: service to set latest import time of.

 Returns:
 The JSON response if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON response is invalid.
 """
 response = requests.post(
 url="{0}/1/latest-import".format(ROOT),
 json={
 "ts": timestamp,
 "service": service
 },
 headers={
 "Authorization": "Token {0}".format(token),
 }
)

 response.raise_for_status()

 return response.json()

if __name__ == "__main__":
 ts = int(time())
 token = input('Please enter your auth token: ')
 json_response = set_latest_import(ts, token)

 print("Response was: {0}".format(json_response))
 print("Set latest import time to {0}.".format(ts))

Getting

If your user has never imported before and the latest import has never been
set by a script, then the server will return 0 by default. Run
set_latest_import before this if you don’t want to actually import any
data.

import requests

Set DEBUG to True to test local dev server.
API keys for local dev server and the real server are different.
DEBUG = True
ROOT = 'http://localhost:8100' if DEBUG else 'https://api.listenbrainz.org'

The token can be any valid token.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {
 "Authorization": "Token {0}".format(TOKEN)
}

def get_latest_import(username, service="lastfm"):
 """Gets the latest import timestamp of a given user.

 Args:
 username: User to get latest import time of.
 service: service to get latest import time of.

 Returns:
 A Unix timestamp if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON in the response is invalid.
 An IndexError if the JSON is not structured as expected.
 """
 response = requests.get(
 url="{0}/1/latest-import".format(ROOT),
 params={
 "user_name": username,
 "service": service
 },
 headers=AUTH_HEADER,
)

 response.raise_for_status()
 return response.json()["latest_import"]

if __name__ == "__main__":
 username = input('Please input the MusicBrainz ID of the user: ')
 timestamp = get_latest_import(username)

 print("User {0} last imported on {1}".format(username, timestamp))

You should see output like this:

User naiveaiguy last imported on 30 11 2017 at 12:23

JSON Documentation

Note

Do not submit copyrighted information in these fields!

Submission JSON

To submit a listen via our API (see: Core), POST a JSON document to
the submit-listens endpoint. Submit one of three types of JSON documents:

	single: Submit single listen

	Indicates user just finished listening to track

	payload should contain information about exactly one track

	playing_now: Submit playing_now notification

	Indicates that user just began listening to track

	payload should contain information about exactly one track

	Submitting playing_now documents is optional

	Timestamp must be omitted from a playing_now submission

Note

Playing Now listens are only stored temporarily. A playing now listen must be
submitted again as a single or import for permanent storage.

	import: Submit previously saved listens

	payload should contain information about at least one track

	Submitting multiple listens in one request is permitted. There are some
limitations on the size of a submission. A request must be less than
MAX_LISTEN_PAYLOAD_SIZE
bytes, and you can only submit up to
MAX_LISTENS_PER_REQUEST listens per
request. Each listen may not exceed
MAX_LISTEN_SIZE bytes in size

The listen_type element defines different types of submissions. The element
is placed at the top-most level of the JSON document. The only other required
element is the payload element. This provides an array of listens – the
payload may be one or more listens (as designated by listen_type):

{
 "listen_type": "single",
 "payload": [
 "--- listen data here ---"
]
}

A sample listen payload may look like:

{
 "listened_at": 1443521965,
 "track_metadata": {
 "additional_info": {
 "release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
 "artist_mbids": [
 "db92a151-1ac2-438b-bc43-b82e149ddd50"
],
 "recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
 "tags": ["you", "just", "got", "rick rolled!"]
 },
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
}

A complete submit listen JSON document may look like:

{
 "listen_type": "single",
 "payload": [
 {
 "listened_at": 1443521965,
 "track_metadata": {
 "additional_info": {
 "media_player": "Rhythmbox",
 "submission_client": "Rhythmbox ListenBrainz Plugin",
 "submission_client_version": "1.0",
 "release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
 "artist_mbids": [
 "db92a151-1ac2-438b-bc43-b82e149ddd50"
],
 "recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
 "tags": ["you", "just", "got", "rick rolled!"],
 "duration_ms": 222000
 },
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
 }
]
}

Fetching listen JSON

The JSON documents returned from our API look like the following:

{
 "payload": {
 "count": 25,
 "user_id": "-- the MusicBrainz ID of the user --",
 "listens": [
 "-- listen data here ---"
]
 }
}

The number of listens in the document are returned by the top-level count
element. The user_id element contains the MusicBrainz ID of the user whose listens are
being returned. The other element is the listens element. This is a list which contains
the listen JSON elements (described above).

The JSON document returned by the API endpoint for getting tracks being played right now
is the same as above, except that it also contains the payload/playing_now element as a
boolean set to True.

Payload JSON details

A minimal payload must include
track_metadata/artist_name and track_metadata/track_name elements:

{
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 }
}

artist_name and track_name elements must be simple strings.

The payload should also include the listened_at element, which must be an integer
representing the Unix time when the track was listened to. This should be set to
playback start time of the submitted track. The minimum accepted
value for this field is LISTEN_MINIMUM_TS.
playing_now requests should not have a listened_at field.

Add additional metadata you may have for a track to the additional_info
element. Any additional information allows us to better correlate your listen
data to existing MusicBrainz-based data. If you have MusicBrainz IDs available,
submit them!

The following optional elements may also be included in the track_metadata element:

	element

	data type

	description

	release_name

	string

	The name of the release this recording was played from.

The following optional elements may also be included in the additional_info element.

Note

If you do not have the data for any of the following fields, omit the key entirely:

Additional Info Fields

	element

	data type

	description

	artist_mbids

	array of strings

	A list of MusicBrainz Artist IDs, one or more Artist IDs may be included here. If you have a complete MusicBrainz artist credit that contains multiple Artist IDs, include them all in this list.

	release_group_mbid

	string

	A MusicBrainz Release Group ID of the release group this recording was played from.

	release_mbid

	string

	A MusicBrainz Release ID of the release this recording was played from.

	recording_mbid

	string

	A MusicBrainz Recording ID of the recording that was played.

	track_mbid

	string

	A MusicBrainz Track ID associated with the recording that was played.

	work_mbids

	array of strings

	A list of MusicBrainz Work IDs that may be associated with this recording.

	tracknumber

	integer

	The tracknumber of the recording. This first recording on a release is tracknumber 1.

	isrc

	string

	The ISRC code associated with the recording.

	spotify_id

	string

	The Spotify track URL associated with this recording. e.g.: http://open.spotify.com/track/1rrgWMXGCGHru5bIRxGFV0

	tags

	array of string

	A list of user-defined folksonomy tags to be associated with this recording. For example, you can apply tags such as punk, see-live, smelly. You may submit up to MAX_TAGS_PER_LISTEN tags and each tag may be up to MAX_TAG_SIZE characters large.

	media_player

	string

	The name of the program being used to listen to music. Don’t include a version number here.

	media_player_version

	string

	The version of the program being used to listen to music.

	submission_client

	string

	The name of the client that is being used to submit listens to ListenBrainz. If the media player has the ability to submit listens built-in then this value may be the same as media_player. Don’t include a version number here.

	submission_client_version

	string

	The version of the submission client.

	music_service

	string

	If the song being listened to comes from an online service, the canonical domain of this service (see below for more details).

	music_service_name

	string

	If the song being listened to comes from an online service and you don’t know the canonical domain, a name that represents the service.

	origin_url

	string

	If the song of this listen comes from an online source, the URL to the place where it is available. This could be a spotify URL (see spotify_id), a YouTube video URL, a Soundcloud recording page URL, or the full URL to a public MP3 file. If there is a webpage for this song (e.g. Youtube page, Soundcloud page) do not try and resolve the URL to an actual audio resource.

	duration_ms and duration

	integer

	The duration of the track in milliseconds and seconds respectively. You should only include one of duration_ms or duration.

Note

Music service names

The music_service field should be a domain name rather than a textual description or URL. This allows us to refer unambiguously to a service without worrying
about capitalization or full/short names (such as the difference between “Internet Archive”, “The Internet Archive” or “Archive”).
If we use this data on ListenBrainz, we will perform a mapping from the domain name to a canonical name. Below is an example of mappings that we currently support.
If you are submitting from a service which doesn’t appear in this list, you should determine a canonical domain from the domain of the service.
Only if you cannot determine a domain for the service should you use the text-only music_service_name field.

Music services domain/name mapping

	domain

	name

	spotify.com

	Spotify

	bandcamp.com

	Bandcamp

	youtube.com

	YouTube

	music.youtube.com

	YouTube Music

	deezer.com

	Deezer

	tidal.com

	TIDAL

	music.apple.com

	Apple Music

	archive.org

	Internet Archive

	soundcloud.com

	Soudcloud

	jamendo.com

	Jamendo Music

	play.google.com

	Google Play Music

Client Metadata examples

Here are a few examples of how to fill in the media_player, submission_client and music_service fields based on our
current recommendations.

BrainzPlayer on the ListenBrainz website playing a video from YouTube

{
 "track_metadata": {
 "additional_info": {
 "media_player": "BrainzPlayer",
 "music_service": "youtube.com",
 "origin_url": "https://www.youtube.com/watch?v=JKFBiaoFHoY",
 "submission_client": "BrainzPlayer"
 },
 "artist_name": "Mdou Moctar",
 "release_name": "Ilana (The Creator)",
 "track_name": "Inizgam"
 }
}

BrainzPlayer on the ListenBrainz website playing a video from Spotify

Note that even though the origin_url is https://open.spotify.com, we set music_service
to spotify.com (see above note).

{
 "track_metadata": {
 "additional_info": {
 "media_player": "BrainzPlayer",
 "music_service": "spotify.com",
 "origin_url": "https://open.spotify.com/track/5fEjp2F0Sqr9fMuLSaDqz0",
 "submission_client": "BrainzPlayer"
 },
 "artist_name": "Les Filles de Illighadad",
 "release_name": "Eghass Malan",
 "track_name": "Inssegh Inssegh"
 }
}

Using Otter for Funkwhale on Android, and submitting with Simple Scrobbler

In this case, the media player and submission client are completely separate programs. Because music is being played
from a user’s private collection and not a streaming service, don’t include music_service or origin_url.

{
 "track_metadata": {
 "additional_info": {
 "media_player": "Otter",
 "media_player_version": "1.0.21",
 "submission_client": "Simple Scrobbler"
 "submission_client_version": "1.7.0"
 },
 "artist_name": "Les Filles de Illighadad",
 "release_name": "Eghass Malan",
 "track_name": "Inssegh Inssegh"
 }
}

Rhythmbox player listening to Jamendo

{
 "track_metadata": {
 "additional_info": {
 "media_player": "Rhythmbox",
 "music_service": "jamendo.com",
 "music_service_name": "Jamendo Music"
 "origin_url": "https://www.jamendo.com/track/1466090/universal-funk",
 "submission_client": "Rhythmbox ListenBrainz Plugin"
 },
 "artist_name": "Duo Teslar",
 "track_name": "Universal Funk"
 }
}

Listening to a recording from Bandcamp and submitting with the browser extension WebScrobbler

Because playback happens in the browser, there is no specific media_player.

{
 "track_metadata": {
 "additional_info": {
 "music_service": "bandcamp.com",
 "music_service_name": "Bandcamp",
 "submission_client": "WebScrobbler",
 "submission_client_version": "v2.48.0"
 "origin_url": "https://greencookierecords.bandcamp.com/track/shake",
 },
 "artist_name": "I Mitomani Beat",
 "release_name": "Fuori Dal Tempo",
 "track_name": "Shake",
 }
}

At this point, we are not removing any other elements that may be
submitted via the additional_info element. We’re open to see how people
will make use of these unspecified fields and may decide to formally specify or
scrub elements in the future.

Client Libraries

Client Libraries have already been written by the community for some languages.

Haskell

	listenbrainz-client [http://hackage.haskell.org/package/listenbrainz-client]

Go

	go-listenbrainz [https://github.com/kori/go-listenbrainz]

Rust

	listenbrainz [https://crates.io/crates/listenbrainz]

.NET

	MetaBrainz.ListenBrainz [https://github.com/Zastai/MetaBrainz.ListenBrainz]

Python

	pylistenbrainz [https://pypi.org/project/pylistenbrainz/]

Java

	listenbrainz-java [https://github.com/rain0r/listenbrainz-java/]

Last.FM Compatible API for ListenBrainz

There are two versions of the Last.FM API used by clients to submit data to Last.FM.

	The latest Last.FM API [https://www.last.fm/api]

	The AudioScrobbler API v1.2 [http://www.audioscrobbler.net/development/protocol/]

ListenBrainz can understand requests sent to both these APIs and use their data to import listens submitted by clients like VLC and Spotify. Existing Last.FM clients can be pointed to the ListenBrainz proxy URL [http://proxy.listenbrainz.org] and they should submit listens to ListenBrainz instead of Last.FM.

Note: This information is also present on the ListenBrainz website [https://listenbrainz.org/lastfm-proxy].

AudioScrobbler API v1.2

Clients supporting the old version of the AudioScrobbler API (such as VLC and Spotify) can be configured to work with ListenBrainz by making the client point to http://proxy.listenbrainz.org and using your MusicBrainz ID as username and the LB Authorization Token [https://listenbrainz.org/settings/] as password.

If the software you are using doesn’t support changing where the client submits info (like Spotify), you can edit your /etc/hosts file as follows:

138.201.169.196 post.audioscrobbler.com
138.201.169.196 post2.audioscrobbler.com

Last.FM API

These instructions are for setting up usage of the Last.FM API for Audacious client on Ubuntu. These steps can be modified for other clients as well.

For development

	Install dependencies from here [http://redmine.audacious-media-player.org/boards/1/topics/788], then clone the repo and install audacious.

	Before installing audacious-plugins, edit the file audacious-plugins/src/scrobbler2/scrobbler.h to update the following setting on line L28. This is required only because the local server does not have https support.:

`SCROBBLER_URL` to "http://ws.audioscrobbler.com/2.0/".

	Compile and install the plugins from the instructions given here [http://redmine.audacious-media-player.org/boards/1/topics/788].

	Edit the /etc/hosts file and add the following entry:

127.0.0.1 ws.audioscrobbler.com

	Flush dns and restart network manager using:

$ sudo /etc/init.d/dns-clean start
$ sudo /etc/init.d/networking restart

	Register an application on MusicBrainz with the following Callback URL http://<HOSTURL>/login/musicbrainz/post and update the received MusicBrainz Client ID and Client Secret in config.py of ListenBrainz. HOSTURL should be as per the settings of the server. Example: localhost

	In Audacious, go to File > Settings > Plugins > Scrobbler2.0 and enable it. Now open its settings and then authenticate.

	
	When you get a URL from your application which look like this http://last.fm/api/auth/?api_key=as3..234&.., replace it with http://<HOSTURL>/api/auth/?api_key=as3..234&...
	
	If you are running a local server, then HOSTURL should be similar to “localhost:7080”.

	If you are not running the server, then HOSTURL should be “api.listenbrainz.org”.

For users

	Repeat all the above steps, except for steps 2 and 6.

	For Step 8, choose the 2nd option for HOSTURL.

Data Dumps

ListenBrainz provides data dumps that you can import into your own server or
use for other purposes. The full data dumps are created twice a month
and the incremental data dumps twice a week.
Each dump contains a number of different files. Depending on your use cases,
you may or may not require all of them.

We have a bunch of commands which may be useful in interacting with dumps
during local development as well.

Dump mirrors

See the ListenBrainz data page [https://listenbrainz.org/data] for information about where to download the data dumps from.

File Descriptions

A ListenBrainz data dump consists of three archives:

	listenbrainz-public-dump.tar.xz

	listenbrainz-listens-dump.tar.xz

	listenbrainz-listens-dump-spark.tar.xz

listenbrainz-public-dump.tar.xz

This file contains information about ListenBrainz users and statistics derived
from listens submitted to ListenBrainz calculated from users, artists, recordings etc.

listenbrainz-listens-dump.tar.xz

This is the core ListenBrainz data dump. This file contains all the listens
submitted to ListenBrainz by its users.

listenbrainz-listens-dump-spark.tar.xz

This is also a dump of the core ListenBrainz listen data. These dumps are
made for consumption by the ListenBrainz Apache Spark cluster, formatting
all listens into monthly JSON files that can easily be loaded into dataframes.

Structure of the listens dump

The ListenBrainz listen dump consists of listens broken down by year and month.
At the top level there are directories for each of the year for which we have
data. Inside each year there are listens files with month number as its name:

	listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/1.listens

	listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/2.listens

	listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/3.listens

	listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/4.listens

	listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/5.listens

Each of the .listens files contains one JSON document per line – each
of the JSON documents is one listen, formatted in the standard listens format.

Incremental dumps

ListenBrainz provides incremental data dumps that you can use to keep up to date with
the ListenBrainz dataset without needing to download the full dumps everytime. These
dumps have the same structure as the corresponding full dumps, but only contain
data that has been submitted since the creation of the previous dump. We create
incremental data dumps daily.

The basic idea here is that dumps create a linear timeline of the dataset
based on the time of submission of data. In order to use the incremental dumps,
you must start with the latest full dump and then, applying all incremental dumps
since will give you the latest data. The series is consistent, if you
take a full dump and apply all incremental dumps since that full dump until the
next full dump, you will have all data as the next full dump.

Deleted listens present a tricky problem in this setup, since they are not included
in the incremental dumps. To get a fully accurate list of listens, with deleted
listens removed, you’ll need to re-import a full dump.

ListenBrainz Data Update Intervals

Expected schedule:

	System

	Update schedule

	Receiving listens, updating listen counts

	Immediate*

	Deleting listens

	Removed at the top of the next hour (UTC)

	Updating statistics for new listens

	Daily

	Removing deleted listens from stats

	On the 2nd and 16th of each month

	Full dumps

	1st and 15th of each month

	Incremental dumps

	Daily

Situations will occasionally arise where these take longer. If you have been a very patient user, and
something still hasn’t updated, check our forum [https://community.metabrainz.org/] for news or discussion.
If you suspect something has gone very wrong you can also search for tickets, and lodge new tickets, in our
ticket tracker [https://tickets.metabrainz.org/projects/LB].

*Listens via a connected Spotify account may not be submitted immediately, causing a short delay

This complicated schedule is caused by ListenBrainz having a lot of interconnected parts that work at
different scales. For more details, read on!

Listens and Listen Counts

Listen submitted via the ListenBrainz API should appear in your Dashboard immediately. The Spotify API does
not immediately report completed listens; it may take several minutes for these to be reported to ListenBrainz.

Listen Count should always be up to date for listens that we have received. The only time we deviate
from this is when listens are to be deleted. Deleting a listen is (surprisingly) a fairly expensive operation
and we have the resources for keeping listen counts updated, but not to keep listen counts fully up to date
when listens are being deleted. Any listens marked for deletion will be deleted at the top of the next hour.
Once this happens, your listen counts will be consistent again.

We’ve spent months working on making this system work well and be scalable. This system is surprisingly
complex and it took us several approaches to get to where we are now. It isn’t ideal but, given our limited
resources, we opted for what we call an “eventually consistent” system that focuses on being consistent
(accurate) for most of our users most of the time.

User Statistics

Calculating user statistics is an entirely different and challenging task! For this we utilize the Spark
database system (more on this below), which requires us to dump, copy and import many gigabytes of data
from our Postgres database into Spark.

Currently, we use our data dumps for this purpose – we dump the full data twice a month on the 1st and
15th of the month and dump incremental dumps on a daily basis. The daily dumps update the listen data in
our Spark system with new listens, but they do not remove any listens from Spark that may have been deleted
from the main database since the last incremental dump. Deleted listens are removed from Spark only when we
import a new full data dump on the 2nd and 16th day of the month.

For example: If you delete a listen on the 5th day of the month, you can expect that the statistics generated
on the 17th will reflect the current stats of your listens as of the end of the 14th day of the month.

We recognize that this is less than ideal – we’re considering how to improve this and to make the ingestion
of listens and the deletion of listens both happen in real time.

MBID Mapper & MusicBrainz Metadata Cache

The MBID mapper is reponsible for taking an incoming listen and using nothing but artist name and recording
name and finding the best match in MusicBrainz. This process normally works quite well, except for when music
you’d like to listen to doesn’t yet exist in MusicBrainz.

The mapper attempts to map a recording when:

	A new listen comes in (we’ve never seen this listen before). If a listen is not matched, we set a timer for when to try to match the listen again. We start the timer at 1day, but for each time we fail to match it we will double the delay before try it again, up to a max of 30 days.

	When a previously unmatched listen comes in again, we’ll attempt a remapping.

	Our periodic mapping process will go over all unmapped listens and attempt to map them. This process can take quite some time to complete (weeks at times!) and once complete it will start over again the next day.

If a listen cannot be mapped, the user can optionally tell us how to map the listen with the “Link with
MusicBrainz” feature from the listen card. A few notes about this:

	If you have an unmatched listen in your stats and then you manually link the listen, the stats will not update until the next time listens are loaded again (2nd and 16th of the month, see above)

	If you would like to manually map a listen, but the recording does not exist in MusicBrainz, you’ll need to add it there (or wait for someone else to add it). Once it has been added to MusicBrainz, it will be available for manual mappping in about 4 hours.

ListenBrainz data infrastructure

The ListenBrainz project makes use of three major types of databases: Postgres/Timescale, Spark and CouchDB.
Postgres is our primary workhorse that serves user data (accounts, followers, likes/hates, etc). Timescale
(an extended version of Postgres) is used to store Listens and Playlists. Postgres and Timescale are fantastic
tools for providing a specific piece of information quickly (e.g which users does this a user follow).
However Postgres/Timescale are not great for inserting large amounts of data into the database each day – it
slows everything down for everyone. So we store the computed user listening statistics in CouchDB, which is
suitable for ingesting large volumes of data and serving it for a day, before it is replaced with the next
iteration of the data.

Finally, we have Spark, which is a batch processing system. Spark is designed to work with large datasets in a
batch fashion, where the data for all users might be processed in one batch task. Spark works with huge amounts
of data in one go, which is very distinct from our use of Postgres/Timescale and CouchDB.

All of the tools we use are excellent open source tools. Each does a fantastic job, at the tasks they were
designed for. There is no one open source solution for all of our needs, so we shuffle data from one system to
another as we need it. This, however, brings latency and delays in keeping all of our data up to date.

Take a look at the general overview of how data flows between each of these systems:

[image: ListenBrainz Data Flow Graph]
In the future we hope to serve content (stats) directly from our Spark installation (with the help of
existing tools) as indicated by the dotted arrow between Spark and the API/web pages box. This will further
reduce the latency of some of our services.

Server development

Set up ListenBrainz Server development environment

To contribute to the ListenBrainz project, you need a development environment.
With your development environment, you can test your changes before submitting a
patch to the project. This guide helps you set up a development environment
and run ListenBrainz locally on your workstation. By the end of this guide, you
will have…

	Installed system dependencies

	Registered a MusicBrainz application

	Initialized development databases

	Running ListenBrainz Server

Clone listenbrainz-server

ListenBrainz is hosted on GitHub at https://github.com/metabrainz/listenbrainz-server/.
You can use git to clone it (or your own fork) to your computer.

Note

Windows users are advised to clone the repository in their WSL2 file system to avoid code watcher issues.
Please refer to run docker inside WSL for more
information.

git clone https://github.com/metabrainz/listenbrainz-server.git

Install docker

ListenBrainz uses Docker for development. This helps you to easily create your development
environment. Therefore, to work on the project, you first need to install Docker.
If you haven’t already, follow the docker installation instructions for your platform [https://docs.docker.com/get-docker/].

Register a MusicBrainz application

Next, you need to register your application and get an OAuth token from
MusicBrainz. This allows you to sign into your development
environment with your MusicBrainz account.

To register, visit the MusicBrainz applications page [https://musicbrainz.org/account/applications]. There, look for the
option to register [https://musicbrainz.org/account/applications/register] your application. Fill out the form with the following data:

	Name: (any name that you want and will recognize, e.g.
listenbrainz-server-devel)

	Type: Web Application

	Callback URL: http://localhost:8100/login/musicbrainz/post/

After entering this information, you’ll have an OAuth client ID and OAuth client
secret. You’ll use these for configuring ListenBrainz.

Update config.py

With your new client ID and secret, update the ListenBrainz configuration file.
If this is your first time configuring ListenBrainz, copy the sample to a live
configuration.

cp listenbrainz/config.py.sample listenbrainz/config.py

Now, open the new config.py file (don’t change config.py.sample) with your favorite
text editor and look for this section.

MusicBrainz OAuth
MUSICBRAINZ_CLIENT_ID = "CLIENT_ID"
MUSICBRAINZ_CLIENT_SECRET = "CLIENT_SECRET"

Update the strings with your client ID and secret. After doing this, your
ListenBrainz development environment is able to authenticate and log in from
your MusicBrainz login.

Note

Make sure the MUSICBRAINZ_CLIENT_ID and MUSICBRAINZ_CLIENT_SECRET parameters are set properly,
failing to do so will result in a basic browser auth popup like the one below:

[image: Screenshot showing the auth popup.]
To use the Last.fm importer you need an API account at Last.fm. You can
register for one at the Last.fm API page [https://last.fm/api]. Look for the following section in config.py.

Lastfm API
LASTFM_API_URL = "https://ws.audioscrobbler.com/2.0/"
LASTFM_API_KEY = "USE_LASTFM_API_KEY"

Update the LASTFM_API_KEY field with your Last.fm API key.

You also need to update the API_URL field value to http://localhost:8100.

To use the Spotify importer you need to register an application on the
Spotify Developer Dashboard [https://developer.spotify.com/dashboard/applications]. Use http://localhost:8100/settings/music-services/spotify/callback/
as the callback URL.

After that, fill out the Spotify client ID and client secret in the following
section of the file.

SPOTIFY
SPOTIFY_CLIENT_ID = ''
SPOTIFY_CLIENT_SECRET = ''

Note

The hostname on the callback URL must be the same as the host you use to
access your development server. If you use something other than localhost, you
should update the SPOTIFY_CALLBACK_URL field accordingly.

To use the CritiqueBrainz reviewer, you’ll need to visit the CritiqueBrainz applications page [https://critiquebrainz.org/profile/applications/]
and create/register an application. Use http://localhost:8100/ as the homepage URL and http://localhost:8100/settings/music-services/critiquebrainz/callback/
as the callback URL.

After registering, update the CritiqueBrainz section of the file with the client ID and client secret
you obtained.

CRITIQUEBRAINZ
CRITIQUEBRAINZ_CLIENT_ID = ''
CRITIQUEBRAINZ_CLIENT_SECRET = ''
CRITIQUEBRAINZ_REDIRECT_URI = 'http://localhost:8100/settings/music-services/critiquebrainz/callback/'

Note

Again, if you use something other than localhost as the host you use to access your development server,
you should update the homepage and Authorization callback URL fields accordingly when registering on CritiqueBrainz.

Initialize ListenBrainz containers

Next, run

./develop.sh build

in the root of the repository. Using docker-compose, this will build multiple
Docker images for the different services that make up the ListenBrainz server.

The first time you run this script it might take some time while it downloads all of the
required dependencies and builds the services.

Initialize ListenBrainz databases

Your development environment needs some specific databases to work. Before
proceeding, run these commands to initialize the databases.

./develop.sh manage init_db --create-db
./develop.sh manage init_ts_db --create-db

Your development environment is now ready. Now, let’s actually see ListenBrainz
load locally!

Run the magic script

Now that the databases are initialized, you can start your development
environment by running develop.sh up.

./develop.sh up

Note

By default, the web service listens on port 8100. If you already have a service listening
on this port, then you can change it by updating the ports section of docker/docker-compose.yml.

ports:
- "8100:80"

To change the listening port, change only the value before the “:” to the port of your choice
and point your browser to http://localhost:<Port>

You will see the output of docker-compose. You can shut down listenbrainz
by pressing CTRL^C. Once everything is running, visit your new site in a browser!

http://localhost:8100

Now, you are all set to begin making changes and seeing them in real-time inside
of your development environment. If you make changes to python code, the server will be
automatically restarted. If you make changes to javascript code it will be
automatically compiled.

Look at the develop.sh documentation for more details.

Listenbrainz containers

A listenbrainz development environment contains a number of different containers running
different services. We provide a small description of each container here:

	db: A PostgreSQL server that contains data about users

	redis: A redis server to store temporary server data

	timescale: A PostgreSQL server with the TimescaleDB extension that stores users listens

	rabbitmq: Used for passing listens between different services

	web: This is the main ListenBrainz server

	api_compat: A Last.fm-compatible API server

	websockets: A websocket server used for the user-following and playlist updates on the front-end

	static_builder: A helper service to build Javascript/Typescript and CSS assets if they are changed

Note

If you add new python dependencies to ListenBrainz by adding them to requirements.txt you will have
rebuild the web server. Use

./develop.sh build web

to do this.

If you add new Javascript dependencies you will have to rebuild the static_builder:

./develop.sh build static_builder

Test your changes with unit tests

Unit tests are an important part of ListenBrainz. It helps make it easier for
developers to test changes and help prevent easily avoidable mistakes later on.
Before committing new code or making a pull request, run the unit tests on your
code.

./test.sh

This builds and runs the containers needed for the tests. This script configures
test-specific data volumes so that test data is isolated from your development
data. Note that all tests are run: Unit tests and integration tests.

To run tests faster, you can use some options to start up the test infrastructure
once so that subsequent running of the tests is faster:

./test.sh -u # build unit test containers, start up and initialise the database
./test.sh # run tests, do this as often as you need to
./test.sh -s # stop test containers, but don't remove them
./test.sh -d # stop and remove all test containers

If you made any changes to the frontend, you can run the tests for frontend using

./test.sh fe

You can also make use of the following frontend testing options for efficient testing.

./test.sh fe run frontend tests
./test.sh fe -u run frontend tests, update snapshots
./test.sh fe -b build frontend test containers
./test.sh fe -t run type-checker

When the tests complete, you will see if your changes are valid or not. These tests
are a helpful way to validate new changes without a lot of work.

Lint your code

ListenBrainz uses ESLint to lint the frontend codebase as part of the development process, in Webpack.

ESLint will automatically fix trivial issues and list all other issues in your terminal.
Make sure to fix any error with the code you’ve modified.

There can be quite a lot of logs in the terminal, so if you want to look only at front-end build output, you can use this command to inspect only the static_builder logs:

./develop.sh logs -f static_builder

Using develop.sh

We provide a utility to wrap docker-compose and some common development processes.

To open a psql session to the listenbrainz database, run:

./develop.sh psql

To open a psql session to the timescale database containing user listens, run:

./develop.sh timescale

To open a bash shell in the webserver container, run:

./develop.sh bash

To open flask shell in the webserver container using ipython with the listenbrainz app loaded, run:

./develop.sh shell

To open a redis shell:

./develop.sh redis

develop.sh provides a direct interface to invoke manage.py inside a docker container.
manage.py is a click script containing a number of listenbrainz management commands.
To invoke manage.py, run:

./develop.sh manage <command>

To get a list of manage.py commands, run:

./develop.sh manage --help

To pass any other command to docker-compose, run:

./develop.sh <command>

To get a list of valid docker-compose commands, see the output of docker-compose help:

./develop.sh help

Spark development

The ListenBrainz Spark environment is used for computing statistics and computing recommendations.
If you’re just working on adding a feature to the ListenBrainz webserver, you do not need
to set up the Spark development environment. However, if you’re looking to add
a new stat or improve our fledgling recommender system, you’ll need both the webserver
and the spark development environment.

This guide should explain how to develop and test new features for ListenBrainz that use Spark.

Set up the webserver

The spark environment is dependent on the webserver. Follow the steps in the guide to set up the webserver environment.

Create listenbrainz_spark/config.py

The spark environment needs a config.py in the listenbrainz_spark/ dir. Create it by copying from the sample config file.

cp listenbrainz_spark/config.py.sample listenbrainz_spark/config.py

Initialize ListenBrainz Spark containers

Run the following command to build the spark containers.

./develop.sh spark build

The first time you build the containers, you also need to format the namenode
container.

./develop.sh spark format

Note

You can run ./develop.sh spark format any time that you want to delete all of the
data that is loaded in spark. This will shut down the spark docker cluster, remove
the docker volumes used to store the data, and recreate the HDFS filesystem.

Your development environment is now ready. Now, let’s actually see ListenBrainz Spark
in action!

Bring containers up

First, ensure that you are running the main ListenBrainz development environment:

./develop.sh up

Start the ListenBrainz Spark environment:

./develop.sh spark up

This will also bring up the spark reader container which is described in detail here.

Import data into the spark environment

We provide small data dumps that are helpful for working with real ListenBrainz data.
Download and import a data dump into your spark environment using the following
commands in a separate terminal.

./develop.sh spark run spark_reader python manage.py spark request_import_incremental

Now, you are all set to begin making changes and seeing them in real-time inside
of your development environment!

Once you are done with your work, shut down the containers using the following command.

./develop.sh spark down

Note

You’ll need to run ./develop.sh spark down every time you restart your environment, otherwise hadoop errors out.

Working with request_consumer

The ListenBrainz webserver and spark cluster interact with each other via the request consumer. For a more detailed
guide on working with the request consumer, read this document.

Test your changes with unit tests

Unit tests are an important part of ListenBrainz Spark. It helps make it easier for
developers to test changes and help prevent easily avoidable mistakes later on.
Before committing new code or making a pull request, run the unit tests on your
code.

./test.sh spark

This builds and runs the containers needed for the tests. This script configures
test-specific data volumes so that test data is isolated from your development
data.

When the tests complete, you will see if your changes are valid or not. These tests
are a helpful way to validate new changes without a lot of work.

Architecture

Services

This is a list of the docker containers for ListenBrainz services used in local development and running in the
MetaBrainz server infrastructure.

In production, webservers run uwsgi server to serve the flask application. In development, the flask development server is used.

Webservers

	Development

	Production

	Description

	web [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L35]

	listenbrainz-web-prod

	serves the ListenBrainz flask app for the website and APIs (except compat APIs).

	api_compat [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L58]

	listenbrainz-api-compat-prod

	serves a flask app for only Last.fm compatible APIs.

	websockets [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L88]

	listenbrainz-websockets-prod

	runs websockets server to handle realtime listen and playlist updates.

Databases and Cache

	Development

	Production

	Description

	redis [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L16]

	listenbrainz-redis

	redis instance used for caching all stuff ListenBrainz.

	lb_db [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L21]

	listenbrainz-timescale

	timescale instance for ListenBrainz to store listens and playlists. in development environment, the all databases
are part of lb_db container.

	lb_db [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L21]

	postgres-floyd

	primary database instance shared by multiple MetaBrainz projects. The main ListenBrainz DB resides here as well
as the MessyBrainz DB.

Misc Services

	Development

	Production

	Description

	timescale_writer [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L70]

	listenbrainz-timescale-writer-prod

	runs timescale writer which consumes listens from incoming rabbitmq queue, performs a messybrainz lookup and
inserts listens in the database.

	spotify_reader [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L79]

	listenbrainz-spotify-reader-prod

	runs a service for importing listens from spotify API and submitting to rabbitmq.

	spark_reader [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.spark.override.yml#L24]

	listenbrainz-spark-reader-prod

	processes incoming results from spark cluster like inserting statistics in database etc.

	rabbitmq [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L30]

	rabbitmq-clash

	rabbitmq instance shared by MetaBrainz services. listenbrainz queues are under /listenbrainz vhost.

Only Production Services

	Production

	Description

	listenbrainz-labs-api-prod

	serves a flask app for experimental ListenBrainz APIs

	listenbrainz-api-compat-nginx-prod

	runs a nginx container for the compat API that exposes this service on a local IP, not through gateways.

	listenbrainz-cron-prod

	runs cron jobs used to execute periodic tasks like creating dumps, invoking spark jobs to import dump, requesting
statistics and so on.

	exim-relay-listenbrainz.org

	smtp relay used by LB to send emails.

	listenbrainz-typesense

	typesense (typo robust search) used by the mbid-mapping.

	listenbrainz-mbid-mapping

	A cron container that fires off periodic MBID data processing tasks.

	listenbrainz-mbid-mapping-writer-prod

	Maps incoming listens to the MBID mapping as well as updating the mapping.

	listenbrainz spark cluster

	spark cluster to generate statistics and recommendations for LB.

Listen Flow

[image: How listens flow in ListenBrainz]Listens can be submitted to ListenBrainz using native ListenBrainz API [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api.py#L34],
Last.fm compatible API (API compat) [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_compat.py#L238]
and AudioScrobbler 1.2 compatible API (API compat deprecated) [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_compat_deprecated.py#L107].
Each api endpoint validates the listens submitted through it and sends the listens to a RabbitMQ queue based on listen
type. Playing Now listens are sent [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_tools.py#L342]
to the Playing Now queue, and permanent listens are sent to the Incoming queue.

Playing now listens are ephemeral are only stored [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_tools.py#L59]
in Redis, with an expiry time of the duration of the track (if duration is unavailable then a configurable fallback time
is used). The Playing now queue is consumed by Websockets service. The frontend connects with the Websockets service to
display listens on the website without manually reloading the page.

On the other hand, “Permanent” Listens need to be persisted in the database. Timescale Writer service consumes from the
Incoming queue. It begins with querying [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/timescale_writer/timescale_writer.py#L72]
the MessyBrainz database for MessyBrainz IDs. MessyBrainz tries to find an existing match for the hash of the listen in
the database. If one exists, it is returned otherwise it inserts the hash and data into the database and returns a new
MessyBrainz ID.

Once the writer receives MSIDs from MessyBrainz, the MSID is added to the track metadata and the listen is inserted in the
listen table. The insert deduplicates [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/listenstore/timescale_listenstore.py#L263]
listens based on a (user, timestamp, track_name) triplet i.e. at a given timestamp, a user can have a track entry only
once. As you can see, listens of different tracks at the same timestamp are allowed for a user. The database returns the
“unique” listens to the writer which publishes those to Unique queue.

The Websockets [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/websockets/listens_dispatcher.py]
server consumes from the unique queue and sends a list of tracks to connected clients (like the now playing queue). The
MBID mapper also consumes [https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/mbid_mapping_writer/mbid_mapping_writer.py]
from the unique queue and builds a MSID->MBID mapping using these listens.

Frontend Rendering

ListenBrainz frontend pages are a blend of Jinja2 templates (Python) and React components (Javascript). The Jinja2
templates used are bare bones , they include a placeholder div called react-container into which the react components
are rendered. To render the components, some data like current user info, api url etc are needed. These are injected as
json into two script tags in the HTML page, to be consumed by the React application: page-react-props and
global-react-props.

Most ListenBrainz pages will have a Jinja2 template and at least 1 React component file. The components are written in
Typescript, and we use Webpack to transpile them to javascript, to compile CSS from LESS and to minify and bundle
everything. In local development, this is all done in a separate Docker container static_builder which watches for
changes in front-end files and recompiles automatically. In production, the compilation happens only once and at time
of building the docker image.

Using script tags, we manually specify the appropriate compiled javascript file to include on a given page in its
Jinja2 template.

Spark Architecture

In order to actually build features that use Spark, it is important to
understand how the ListenBrainz webserver and the Spark environment
interact.

[image: Lifecycle of a Stat]
The ListenBrainz webserver and Spark cluster are completely seperate entities,
only connected by RabbitMQ. This document explains how they interact with each
other, taking the example of a stat.

The ListenBrainz environment sends a request to the request_consumer script
via RabbitMQ. The request consumer, which is connected to Spark, takes the
request and uses Spark to compute an appropriate response (or many responses).
The request consumer then sends these responses via RabbitMQ to the spark_reader
script, which runs alongside the webserver. The spark reader then takes the responses,
and in the case of a stat, writes them to the ListenBrainz PostgreSQL database.
Now that the stat has been updated in the database, users can view them on
listenbrainz.org or via the API.

Developing request_consumer

Start the webserver

./develop.sh up

Start the spark containers

Follow the instructions to set up a Spark environment
and import a small incremental dump so that you have some data.

Start the spark reader

The spark reader is brought up when you run ./develop.sh spark up . Now, you have everything needed to work with
Spark. You can trigger a request like this

./develop.sh manage spark request_user_stats --type=entity --range=week --entity=artists

MBID Mapping

The MBID mapping scripts allow us to take metadata from the messybrainz database and look up recording MBIDs
from the MusicBrainz database.

Note

The MBID Mapping source code lives in listenbrainz/mbid_mapping but is run independently
from the main listenbrainz web docker image. You can use your own virtual environment or use
listenbrainz/mbid_mapping/build.sh to build a standalone docker image.

Database tables

The MBID Mapping supplemental tables hold preprocessed data from the MusicBrainz database.

	mapping.canonical_musicbrainz_data: The MBID and Name of Recordings, Artists (and credits), and Releases for all recordings in MusicBrainz

	mapping.canonical_recording_redirect: A mapping to find the “canonical” recording given an artist credit + recording name

	mapping.canonical_release_redirect: A mapping to find the “canonical” release given an artist credit + release name

These tables can be populated by running

python mapper/manage.py canonical-data

The update process build the new data in a temporary table and then
replaces them in a single transaction. This means that lookups can continue to run on the
existing tables while the new ones are being built.

Fuzzy lookups

We use typesense as a way of performing quick, fuzzy lookups based on artist name and recording name

Build the typesese index with

python mapper/manage.py build-index

As with the data tables, a new typesense collection is created and then swapped into place in a
single operation.

Build the mapping tables and then the typesense index directly afterwards with

python mapper/manage.py create-all

MBID Mapper

The mapper looks for new MSIDs submitted to messybrainz and finds a matching MBID in MusicBrainz

python3 -u -m listenbrainz.mbid_mapping_writer.mbid_mapping_writer

A background thread pushes items to be processed onto a queue - recent submissions first, and then if nothing
is to be done, old items.
The processing thread pops items off the queue and then looks them up, adding them to the mbid_mapping table.

There is also a background thread that fires off daily, which looks for listens that have been written to the
listens table, but for some reason do not have a matching mapping entry. (This could happen due to
restarts or problems with the mapper itself). These are called legacy listens.

The background thread will walk the entire listens table once a day to find these legacy listens and attempt to
map them. In the same thread we also look for mapping items with timestamp of the unix epoch (1970-01-01 00:00:00),
which indicates that they ought to be re-checked. Currently we have no automated mechanism in place for setting any mapping
entries to the epoch.

TODO: Detuning algorithm
TODO: match quality types

Scripts

We have a bunch of python scripts to execute common tasks.

Note

During development, you can use ./develop.sh manage ... to execute
the commands. In production, the command should be run inside the appropriate
container using python manage.py

ListenBrainz

These commands are helpful in running a ListenBrainz development
instance and some other miscellaneous tasks.

./develop.sh manage

./develop.sh manage [OPTIONS] COMMAND [ARGS]...

add_missing_to_listen_users_metadata

./develop.sh manage add_missing_to_listen_users_metadata [OPTIONS]

clear-expired-do-not-recommends

Delete expired do not recommend entries from database

./develop.sh manage clear-expired-do-not-recommends [OPTIONS]

delete_listens

Complete all pending listen deletes and also run update script for
updating listen metadata since last cron run

./develop.sh manage delete_listens [OPTIONS]

delete_pending_listens

Complete all pending listen deletes since last cron run

./develop.sh manage delete_pending_listens [OPTIONS]

init_db

Initializes database.

	This process involves several steps:
	
	Table structure is created.

	Primary keys and foreign keys are created.

	Indexes are created.

./develop.sh manage init_db [OPTIONS]

Options

	
-f, --force

	Drop existing database and user.

	
--create-db

	Create the database and user.

init_ts_db

Initializes database.

	This process involves several steps:
	
	Table structure is created.

	Indexes are created.

	Views are created

./develop.sh manage init_ts_db [OPTIONS]

Options

	
-f, --force

	Drop existing database and user.

	
--create-db

	Create the database and user.

notify_yim_users

./develop.sh manage notify_yim_users [OPTIONS]

Options

	
--year <year>

	Year for which to send the emails

recalculate_all_user_data

Recalculate all user timestamps and listen counts.

Note

ONLY USE THIS WHEN YOU KNOW WHAT YOU ARE DOING!

./develop.sh manage recalculate_all_user_data [OPTIONS]

refresh-top-manual-mappings

Refresh top manual msid-mbid mappings view

./develop.sh manage refresh-top-manual-mappings [OPTIONS]

run-daily-jams

Generate daily playlists for users soon after the new day begins in their timezone. This is an internal LB
method and not a core function of troi.

./develop.sh manage run-daily-jams [OPTIONS]

Options

	
--create-all

	Create the daily jams for all users. if false (default), only for users according to timezone.

run-metadata-cache-seeder

Query external services’ new releases api for new releases and submit those to our cache as seeds

./develop.sh manage run-metadata-cache-seeder [OPTIONS]

run_websockets

./develop.sh manage run_websockets [OPTIONS]

Options

	
-h, --host <host>

	
	Default:

	0.0.0.0

	
-p, --port <port>

	
	Default:

	7082

	
-d, --debug

	Turns debugging mode on or off. If specified, overrides ‘DEBUG’ value in the config file.

set_rate_limits

./develop.sh manage set_rate_limits [OPTIONS] PER_TOKEN_LIMIT PER_IP_LIMIT
 WINDOW_SIZE

Arguments

	
PER_TOKEN_LIMIT

	Required argument

	
PER_IP_LIMIT

	Required argument

	
WINDOW_SIZE

	Required argument

submit-release

Submit a release from MusicBrainz to the local ListenBrainz instance

Specify -u to use the token of this user when submitting, or
-t to specify a specific token.

./develop.sh manage submit-release [OPTIONS] RELEASEMBID

Options

	
-u, --user <user>

	

	
-t, --token <token>

	

Arguments

	
RELEASEMBID

	Required argument

update-msid-tables

Scan tables using msids to find matching mbids from mapping tables and update them.

./develop.sh manage update-msid-tables [OPTIONS]

update_user_emails

./develop.sh manage update_user_emails [OPTIONS]

update_user_listen_data

Scans listen table and update listen metadata for all users

./develop.sh manage update_user_listen_data [OPTIONS]

Dump Manager

These commands are used to export and import dumps.

./develop.sh manage dump

./develop.sh manage dump [OPTIONS] COMMAND [ARGS]...

check_dump_ages

Check to make sure that data dumps are sufficiently fresh. Send mail if they are not.

./develop.sh manage dump check_dump_ages [OPTIONS]

create_feedback

Create a spark formatted dump of user/recommendation feedback data.

./develop.sh manage dump create_feedback [OPTIONS]

Options

	
-l, --location <location>

	path to the directory where the dump should be made

	
-t, --threads <threads>

	the number of threads to be used while compression

create_full

Create a ListenBrainz data dump which includes a private dump, a statistics dump
and a dump of the actual listens from the listenstore.

./develop.sh manage dump create_full [OPTIONS]

Options

	
-l, --location <location>

	path to the directory where the dump should be made

	
-lp, --location-private <location_private>

	path to the directory where the private dumps should be made

	
-t, --threads <threads>

	the number of threads to be used while compression

	
--dump-id <dump_id>

	the ID of the ListenBrainz data dump

	
--listen, --no-listen

	If True, make a listens dump

	
--spark, --no-spark

	If True, make a spark listens dump

	
--db, --no-db

	If True, make a public/private postgres dump

	
--timescale, --no-timescale

	If True, make a public/private timescale dump

	
--stats, --no-stats

	If True, make a couchdb stats dump

create_incremental

./develop.sh manage dump create_incremental [OPTIONS]

Options

	
-l, --location <location>

	

	
-t, --threads <threads>

	

	
--dump-id <dump_id>

	

create_mbcanonical

	Create a dump of the canonical mapping tables. This includes the following items:
	
	metadata for canonical recordings

	canonical recording redirect

	canonical release redirect

These tables are created by the mapping canonical-data management command.
If canonical-data is called with –use-lb-conn then the canonical metadata and recording redirect tables will

be in the listenbrainz timescale database connection

If called with –use-mb-conn then all tables will be in the musicbrainz database connection.
The canonical release redirect table will always be in the musicbrainz database connection.

./develop.sh manage dump create_mbcanonical [OPTIONS]

Options

	
-l, --location <location>

	path to the directory where the dump should be made

	
--use-lb-conn, --use-mb-conn

	Dump the metadata table from the listenbrainz database

create_parquet

./develop.sh manage dump create_parquet [OPTIONS]

delete_old_dumps

./develop.sh manage dump delete_old_dumps [OPTIONS] LOCATION

Arguments

	
LOCATION

	Required argument

import_dump

Import a ListenBrainz dump into the database.

	Args:
	private_archive (str): the path to the ListenBrainz private dump to be imported
private_timescale_archive (str): the path to the ListenBrainz private timescale dump to be imported
public_archive (str): the path to the ListenBrainz public dump to be imported
public_timescale_archive (str): the path to the ListenBrainz public timescale dump to be imported
listen_archive (str): the path to the ListenBrainz listen dump archive to be imported
threads (int): the number of threads to use during decompression, defaults to 1

Note

This method tries to import the private db dump first, followed by the public db
dump. However, in absence of a private dump, it imports sanitized versions of the user
table in the public dump in order to satisfy foreign key constraints. Then it imports
the listen dump.

./develop.sh manage dump import_dump [OPTIONS]

Options

	
-pr, --private-archive <private_archive>

	the path to the ListenBrainz private dump to be imported

	
--private-timescale-archive <private_timescale_archive>

	the path to the ListenBrainz private timescale dump to be imported

	
-pu, --public-archive <public_archive>

	the path to the ListenBrainz public dump to be imported

	
--public-timescale-archive <public_timescale_archive>

	the path to the ListenBrainz public timescale dump to be imported

	
-l, --listen-archive <listen_archive>

	the path to the ListenBrainz listen dump archive to be imported

	
-t, --threads <threads>

	the number of threads to use during decompression, defaults to 1

ListenBrainz Spark

These commands are used to interact with the Spark Cluster.

python spark_manage.py

python spark_manage.py [OPTIONS] COMMAND [ARGS]...

request_consumer

Invoke script responsible for the request consumer

python spark_manage.py request_consumer [OPTIONS]

./develop.sh manage spark

./develop.sh manage spark [OPTIONS] COMMAND [ARGS]...

cron_request_all_stats

./develop.sh manage spark cron_request_all_stats [OPTIONS]

cron_request_recommendations

./develop.sh manage spark cron_request_recommendations [OPTIONS]

cron_request_similar_users

./develop.sh manage spark cron_request_similar_users [OPTIONS]

cron_request_similarity_datasets

./develop.sh manage spark cron_request_similarity_datasets
 [OPTIONS]

request_dataframes

Send the cluster a request to create dataframes.

./develop.sh manage spark request_dataframes [OPTIONS]

Options

	
--days <days>

	Request model to be trained on data of given number of days

	
--job-type <job_type>

	The type of dataframes to request. ‘recommendation_recording’ or ‘similar_users’ are allowed.

	
--listens-threshold <listens_threshold>

	The minimum number of listens a user should have to be included in the dataframes.

request_entity_stats

Send an entity stats request to the spark cluster

./develop.sh manage spark request_entity_stats [OPTIONS]

Options

	
--type <type_>

	Required Type of statistics to calculate

	Options:

	listeners

	
--range <range_>

	Required Time range of statistics to calculate

	Options:

	this_week | this_month | this_year | week | month | quarter | year | half_yearly | all_time

	
--entity <entity>

	Entity for which statistics should be calculated

	Options:

	artists | release_groups

	
--database <database>

	Name of the couchdb database to store data in

request_fresh_releases

Send the cluster a request to generate release radar data.

./develop.sh manage spark request_fresh_releases [OPTIONS]

Options

	
--days <days>

	Number of days of listens to consider for artist listening data

	
--database <database>

	Name of the couchdb database to store data in

	
--threshold <threshold>

	Number of days of listens to consider for artist listening data

request_import_artist_relation

Send the spark cluster a request to import artist relation.

./develop.sh manage spark request_import_artist_relation [OPTIONS]

request_import_full

Send the cluster a request to import a new full data dump

./develop.sh manage spark request_import_full [OPTIONS]

Options

	
--id <id_>

	Optional. ID of the full dump to import, defaults to latest dump available on FTP server

	
--use-local

	Use local dump instead of FTP

request_import_incremental

Send the cluster a request to import a new incremental data dump

./develop.sh manage spark request_import_incremental [OPTIONS]

Options

	
--id <id_>

	Optional. ID of the incremental dump to import, defaults to latest dump available on FTP server

	
--use-local

	Use local dump instead of FTP

request_import_mlhd_dump

Send the spark cluster a request to import musicbrainz release dump.

./develop.sh manage spark request_import_mlhd_dump [OPTIONS]

request_import_musicbrainz_release_dump

Send the spark cluster a request to import musicbrainz release dump.

./develop.sh manage spark request_import_musicbrainz_release_dump
 [OPTIONS]

request_import_pg_tables

Send the cluster a request to import metadata table from MB db postgres

./develop.sh manage spark request_import_pg_tables [OPTIONS]

request_missing_mb_data

Send the cluster a request to generate missing MB data.

./develop.sh manage spark request_missing_mb_data [OPTIONS]

Options

	
--days <days>

	Request missing musicbrainz data based on listen data of given number of days

request_model

Send the cluster a request to train the model.

For more details refer to https://spark.apache.org/docs/2.1.0/mllib-collaborative-filtering.html

./develop.sh manage spark request_model [OPTIONS]

Options

	
--rank <rank>

	Number of hidden features

	
--itr <itr>

	Number of iterations to run.

	
--lmbda <lmbda>

	Controls over fitting.

	
--alpha <alpha>

	Baseline level of confidence weighting applied.

	
--use-transformed-listencounts

	Whether to apply a transformation function on the listencounts or use original listen playcounts

request_popularity

Request mlhd popularity data using the specified dataset.

./develop.sh manage spark request_popularity [OPTIONS]

Options

	
--use-mlhd

	Use MLHD+ data or ListenBrainz listens data

request_recommendations

Send the cluster a request to generate recommendations.

./develop.sh manage spark request_recommendations [OPTIONS]

Options

	
--raw <raw>

	Generate given number of raw recommendations

	
--user-name <users>

	Generate recommendations for given users. Generate recommendations for all users by default.

request_recording_discovery

Send the cluster a request to generate recording discovery data.

./develop.sh manage spark request_recording_discovery [OPTIONS]

request_similar_artists

Send the cluster a request to generate similar artists index.

./develop.sh manage spark request_similar_artists [OPTIONS]

Options

	
--days <days>

	Required The number of days of listens to use.

	
--session <session>

	Required The maximum duration in seconds between two listens in a listening session.

	
--contribution <contribution>

	Required The maximum contribution a user’s listens can make to the similarity score of a artist pair.

	
--threshold <threshold>

	Required The minimum similarity score to include a recording pair in the simlarity index.

	
--limit <limit>

	Required The maximum number of similar artists to generate per artist (the limit is instructive. upto 2x artists may be returned than the limit).

	
--skip <skip>

	Required the minimum difference threshold to mark track as skipped

	
--production

	Required whether the dataset is being created as a production dataset. affects how the resulting dataset is stored in LB.

request_similar_recordings

Send the cluster a request to generate similar recordings index.

./develop.sh manage spark request_similar_recordings [OPTIONS]

Options

	
--days <days>

	Required The number of days of listens to use.

	
--session <session>

	Required The maximum duration in seconds between two listens in a listening session.

	
--contribution <contribution>

	Required The maximum contribution a user’s listens can make to the similarity score of a recording pair.

	
--threshold <threshold>

	Required The minimum similarity score to include a recording pair in the simlarity index.

	
--limit <limit>

	Required The maximum number of similar recordings to generate per recording (the limit is instructive. upto 2x recordings may be returned than the limit).

	
--skip <skip>

	Required the minimum difference threshold to mark track as skipped

	
--production

	Required whether the dataset is being created as a production dataset. affects how the resulting dataset is stored in LB.

request_similar_recordings_mlhd

Send the cluster a request to generate similar recordings index.

./develop.sh manage spark request_similar_recordings_mlhd [OPTIONS]

Options

	
--session <session>

	Required The maximum duration in seconds between two listens in a listening session.

	
--contribution <contribution>

	Required The maximum contribution a user’s listens can make to the similarity score of a recording pair.

	
--threshold <threshold>

	Required The minimum similarity score to include a recording pair in the simlarity index.

	
--limit <limit>

	Required The maximum number of similar recordings to generate per recording (the limit is instructive. upto 2x recordings may be returned than the limit).

	
--skip <skip>

	Required the minimum difference threshold to mark track as skipped

request_similar_users

Send the cluster a request to generate similar users.

./develop.sh manage spark request_similar_users [OPTIONS]

Options

	
--max-num-users <max_num_users>

	The maxiumum number of similar users to return for any given user.

request_sitewide_stats

Send request to calculate sitewide stats to the spark cluster

./develop.sh manage spark request_sitewide_stats [OPTIONS]

Options

	
--type <type_>

	Required Type of statistics to calculate

	Options:

	entity | listening_activity

	
--range <range_>

	Required Time range of statistics to calculate

	Options:

	this_week | this_month | this_year | week | month | quarter | year | half_yearly | all_time

	
--entity <entity>

	Entity for which statistics should be calculated

	Options:

	artists | releases | recordings | release_groups

request_tags

Generate the tags dataset with percent rank

./develop.sh manage spark request_tags [OPTIONS]

request_troi_playlists

Bulk generate troi playlists for all users

./develop.sh manage spark request_troi_playlists [OPTIONS]

Options

	
--slug <slug>

	Required

	Options:

	weekly-jams | weekly-exploration

	
--create-all

	whether to create the periodic playlists for all users or only for users according to timezone.

request_user_stats

Send a user stats request to the spark cluster

./develop.sh manage spark request_user_stats [OPTIONS]

Options

	
--type <type_>

	Required Type of statistics to calculate

	Options:

	entity | listening_activity | daily_activity | listeners

	
--range <range_>

	Required Time range of statistics to calculate

	Options:

	this_week | this_month | this_year | week | month | quarter | year | half_yearly | all_time

	
--entity <entity>

	Entity for which statistics should be calculated

	Options:

	artists | releases | recordings | release_groups

	
--database <database>

	Name of the couchdb database to store data in

request_year_in_music

Send the cluster a request to generate all year in music statistics.

./develop.sh manage spark request_year_in_music [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_artist_map

Send the cluster a request to generate artist map data and then
once the data has been imported generate YIM artist map.

./develop.sh manage spark request_yim_artist_map [OPTIONS]

Options

	
--year <year>

	Year for which to generate the playlists

request_yim_day_of_week

Send request to calculate most listened day of week to the spark cluster

./develop.sh manage spark request_yim_day_of_week [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_listen_count

Send request to calculate yearly listen count stat to the spark cluster

./develop.sh manage spark request_yim_listen_count [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_listening_time

Send request to calculate yearly total listening time stat for each user to the spark cluster

./develop.sh manage spark request_yim_listening_time [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_listens_per_day

Send request to calculate listens per day stat to the spark cluster

./develop.sh manage spark request_yim_listens_per_day [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_most_listened_year

Send request to calculate most listened year stat to the spark cluster

./develop.sh manage spark request_yim_most_listened_year [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_new_artists_discovered

Send request to calculate count of new artists user listened to this year.

./develop.sh manage spark request_yim_new_artists_discovered
 [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_new_release_stats

Send request to calculate new release stats to the spark cluster

./develop.sh manage spark request_yim_new_release_stats [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_similar_users

Send the cluster a request to generate similar users for Year in Music.

./develop.sh manage spark request_yim_similar_users [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_top_discoveries

Send the cluster a request to generate tracks of the year data and then
once the data has been imported generate YIM playlists.

./develop.sh manage spark request_yim_top_discoveries [OPTIONS]

Options

	
--year <year>

	Year for which to generate the playlists

request_yim_top_genres

Send request to calculate top genres each user listened to this year.

./develop.sh manage spark request_yim_top_genres [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

request_yim_top_missed_recordings

Send the cluster a request to generate tracks of the year data and then
once the data has been imported generate YIM playlists.

./develop.sh manage spark request_yim_top_missed_recordings
 [OPTIONS]

Options

	
--year <year>

	Year for which to generate the playlists

request_yim_top_stats

Send request to calculate top stats to the spark cluster

./develop.sh manage spark request_yim_top_stats [OPTIONS]

Options

	
--year <year>

	Year for which to calculate the stat

Troubleshooting

Docker Installations

Windows

If changes to JS files are not being watched or hot reloaded by the host file system, follow
these steps:

	Clone or move the project into your WSL2 file system.

	Create a .wslconfig file under C:/Users/<user-name>/ with the following content:

[wsl2]
localhostforwarding=true

3. To apply the changes, you may need to shut down the WSL 2 VM by running wsl --shutdown in
the command prompt. Then, restart your WSL instance.

For more detailed information, refer to the wsl settings page [https://learn.microsoft.com/en-us/windows/wsl/wsl-config#main-wsl-settings].

Production Deployment

Note

This documentation is for ListenBrainz maintainers for when they deploy the website

Cron

You can cleanly shut down cron from docker-server-configs by running

./scripts/terminate_lb_cron.sh

If no cron jobs are running, this will stop and delete the cron container. If a job is running
it will notify you and not stop the container.

Building Docker Images

Note

This documentation is for ListenBrainz maintainers for when they deploy the website

Production Images

When a Github release is made, production images are automatically built and pushed by the
Publish image [https://github.com/metabrainz/listenbrainz-server/actions/workflows/deploy-image.yml] action.
The git tag associated with the Github release is used as docker image tag.

Test Images

From time to time we want to build images to test PRs on beta.listenbrainz.org or test.listenbrainz.org. To build
images for this purpose you can either use the docker/push.sh script or Github Actions.

Note

Usually, the tags for these images is test or beta. However, you can use any arbitrary image tag. This is
useful if you want to test multiple PRs simultaneously or avoid conflicting with another developer’s images.
These image tags appear on Dockerhub forever unless removed manually. To my knowledge it is not an issue.
Regardless its not a bad idea to login to Dockerhub once in a while and clean up such unused test tags.

Using Github Actions

	Go to Actions -> Push deployment image [https://github.com/metabrainz/listenbrainz-server/actions/workflows/push-dev-image.yml].

	Select the branch and enter the docker image tag (version).

[image: Action Workflow Invoking Screenshot]

	Click on Run Workflow.

	The image will be built and pushed to Docker Hub with the desired tag.

	To monitor the status of the build, wait for the workflow run to appear. You may need to wait for a
few seconds and reload the page.

[image: Action Workflow Running Screenshot]

Using docker/push.sh script

If Github Actions is unavailable or you want to take advantage of local docker build cache, you can use the
docker/push.sh script. You will need to be correctly authenticated to docker hub to push this image. From
the repository root, invoke the script with desired docker image tag. For example:

./docker/push.sh beta

Data Dumps

Check FTP Dumps age script

Dumps may fail in production due to many reasons. We have a script to check the latest dump available on the FTP is
younger than a specified timeframe. If the latest dump is older, an email is sent to the maintainers. This email
is usually responsible for bringing dump failures to the notice of maintainers. This script is part of the ListenBrainz
cron jobs and is scheduled to run a few hours after the regular dump times. If dumps are not working but no email was
received by the maintainers, it is possible that the cron jobs are not setup properly.

Logs

Looking at the logs is a good starting point to debug dump failures, the log file is located at /logs/dumps.log
inside the listenbrainz-cron-prod container. The output of dump-related jobs is redirected in the crontab [https://github.com/metabrainz/listenbrainz-server/blob/1f2e2634126a32a75bdb717b741d55099f4dd411/docker/services/cron/crontab#L8-L19]
. Open a bash shell in the cron container by running docker exec -it listenbrainz-cron-prod bash.

This file is large, so use tail instead of cat to view the logs. For example:
tail -n 500 /logs/dumps.log will list the last 500 lines of the log file.

From the log file, you should probably be able to see whether the error occurred in python part of the code or bash
script. If you see a python stack trace, it is likely that sentry recorded the error too. The sentry view [https://sentry.metabrainz.org/organizations/metabrainz/issues/?project=15]
sometimes offers more details so searching sentry for this error can be helpful.

Manually triggering dumps

If you want to re-run a dump after it fails, or manually trigger a dump then you can run the dump script manually. A few
things need to be kept in mind while doing this, the create_full invoked to do the dump
accepts a --dump-id parameter to number the dump. If no id specified, the script will look in the database for
the last id, add 1 to it and use it for the dump.

select * from data_dump order by created desc;

If a dump failed too early in the script, it won’t have an id in the database. Otherwise, it will have created one
before failing. To be sure, check the data_dump table in the database. If the id exists and the dump had failed
, it makes sense to reuse that dump id when generating the dump again manually.

Also the bash script to create dumps performs setup, cleanup and syncing to FTP tasks so do not invoke the python
command directly. The bash script forwards arguments to the python command so you can pass any arguments that the python
command accepts to it as well. See the current version of the script in the repository for more details. Here is an
example of how you can manually specify the id of the dump (copied the cronjob command at the time of writing and
added the argument before redirecting):

flock -x -n /var/lock/lb-dumps.lock /code/listenbrainz/admin/create-dumps.sh incremental --dump-id 700 >> /logs/dumps.log 2>&1

Note

Full dumps take over 12 hours to complete. If you run the command directly and close the terminal before full dumps
completion, the dumps will get interrupted and fail. So either run the command inside a tmux session
or use a combination of nohup and & with the dump command.

MBID Mapping

For a background on how the mapping works, see MBID Mapping

Containers

The mapping tools run in two containers:

	
	mbid-mapping-writer-prod: Populates the mbid_mapping table for new listens. Built from the
	main ListenBrainz dockerfile.

	
	mbid-mapping: Periodically generates the MBID Mapping supplemental tables, typesense index,
	and huesound index. Built from listenbrainz/mbid_mapping/Dockerfile

Data sources

In the production environment, the mbid-mapping container reads from the MB replica on aretha.

Debugging lookups

If a listen isn’t showing up as mapped on ListenBrainz, one of the following might be true:

	The item wasn’t in musicbrainz at the time that the lookup was made

	There is a bug in the mapping algorithm

If the recording doesn’t exist in MusicBrainz during mapping, a row will be added to the mbid_mapping table
with the MSID and a match_type of no_match. Currently no_match values aren’t looked up again automatically.

You can test the results of a lookup by using https://labs.api.listenbrainz.org/explain-mbid-mapping <https://labs.api.listenbrainz.org/explain-mbid-mapping>
This uses the same lookup process that the mapper uses. If this returns a result, but there is no mapping present
it could be due to data being recently added to MusicBrainz or improvements to the mapping algorithm.

If no data is returned or an incorrect match is being returned, this should be reported to us, by adding a comment
to LB-1036 <https://tickets.metabrainz.org/browse/LB-1036>.

In this case you can retrigger a lookup by seting the mbid_mapping.last_updated field to ‘1970-01-01 00:00:00’ (the unix epoch).
The mapper will pick up these items and put them on the queue again.

UPDATE mbid_mapping SET last_updated = 'epoch' WHERE recording_msid = '00000737-3a59-4499-b30a-31fe2464555d';
UPDATE mbid_mapping SET last_updated = 'epoch' WHERE match_type = 'no_match' AND last_updated = now() - interval '1 day';

In the LB production environment these items will be picked up and re-processed once a day.

Debugging Spotify Reader

To debug spotify reader issues, begin with checking logs of the container. The ListenBrainz admin [https://listenbrainz.org/admin]
panel has external_service_ouath and listens_importer table which show the user’s token, importer error if any, last
import time and latest listen imported for that user.

Sometimes spotify’s recent listens API does not show updated listens for hours while the currently playing endpoint
does. So the user may see currently playing listens arrive but the “permanent” listens missing. To confirm this is the
case, you can use the spotify api console [https://developer.spotify.com/console/get-recently-played/] and directly
query the api to see what listens spotify is currently returning. You can get the user’s spotify access token for this
endpoint from admin panel. If the api does not have listens, it makes sense those to not be present in ListenBrainz yet.
However if the api returns the listens but those are not in ListenBrainz, there is likely an issue with Spotify Reader.
Consider adding more logging to the container to debug issues.

RabbitMQ

Maintenance

Tolerance to connectivity issues

RabbitMQ is a mandatory service required by consul-template config used in common by almost all ListenBrainz containers.
Therefore, ListenBrainz will refuse to come up if no RabbitMQ instance is running. If an instance is available but
there are connectivity issues, various ListenBrainz services will remain up but throw errors while trying to perform
some functions.

The most important part that relies on RabbitMQ is the listens submission API. If RabbitMQ is unreachable, users will
be unable to submit listens to ListenBrainz.

Maintenance mode

It doesn’t exist. To perform maintenance operations, ListenBrainz requires switching to another instance
of RabbitMQ to prevent any data loss, even for a short period of time.

Data importance

ListenBrainz uses RabbitMQ in various places, for a brief overview see listen flow. The most
important is listens submission. Listens are published to the incoming exchange and expected to be persisted durably
until the timescale writer has acknowledged writing those to the database. This data is of utmost importance.

Other uses of RabbitMQ in ListenBrainz include delivering now playing listens to websockets, unique listens to the mbid
mapping writer, results from spark cluster to the database etc. In these cases, the data can be regenerated. Data loss
in these cases is tolerable as long as it is known that some messages were lost.

Data persistence

Messages are expected to be processed within seconds (or minutes during activity peaks), but because of the importance
of the listen data a persistent volume is needed. Listen data messages are critical and should be backed up, other
messages can be regenerated and can be ignored in case of a disaster.

Procedures

	Start service: LB containers automatically connect to RabbitMQ on startup.

	Reload service configuration: Update the RabbitMQ service details in consul configuration for LB and deploy a new image.

	Restart service: Restart LB docker containers and each container will disconnect and reconnect to RabbitMQ.

	
	Move service:
	
	Create vhost, user, permissions, queues in the new instance

	Stop LB producers (except the web and api containers)

	Use shovels to transfer existing messages from old RabbitMQ instance to new one

	Build an image using the a new consul config pointing to new RabbitMQ instance

	Deploy all consumers using the new image

	Deploy all producers using the new image

	Stop shovels

There will be no data loss but a short downtime while the containers restart.

	Remove service: LB cannot function without RabbitMQ. So the only way is to stop LB containers, and LB will become unavailable.

Implementation details

	Connectivity issues are reported through both Docker logs and Sentry.

	ListenBrainz has multiple producers and consumers.

	message protocol version: AMQP 0.9.1.

	heartbeat timeout: client sets to 0, rabbitmq will use the server specified value.

	
	ack mode:
	
	producers do not use any ack mode.

	auto ack: spark-request-consumer-michael

	manual ack: all other consumers

	Each connection identifies itself with RabbitMQ server by using the name of the docker container in which the service is running.

Updating Production Database Schema

Warning

The production database cluster is serious business 😱. Think twice whenever interacting with it and check with
others in face of the slightest doubt.

The listenbrainz image on which most of ListenBrainz containers run has the psql command installed. You can
exec into a container and use the psql to connect to the relevant database and execute scripts. The
connection parameters to connect to the databases are in /code/listenbrainz/listenbrainz/config.py.

Whenever modifying the database, run the sql commands inside a transaction if possible. Once you have started the
transaction, execute the commands you want to. Do not commit the transaction yet. Double check the state of the database
to ensure the changes are in line with what you expect. If so commit the transaction otherwise rollback and contact
other maintainers.

Pull Requests Policy

It is recommended that maintainers (unless the change is urgently needed) do not push directly or merge pull requests
without review . By default, one approving review is sufficient to merge a pull request. The pull request author
or the reviewer can request more reviews or review from a specific person as they deem necessary.

 HTTP Routing Table

 /1

 		 	

 		
 /1	

 	
 	
 GET /1/(user_name)/pins	

 	
 	
 GET /1/(user_name)/pins/current	

 	
 	
 GET /1/(user_name)/pins/following	

 	
 	
 GET /1/art/(custom_name)/(user_name)/(time_range)/(int:image_size)	

 	
 	
 GET /1/art/grid-stats/(user_name)/(time_range)/(int:dimension)/(int:layout)/(int:image_size)	

 	
 	
 GET /1/art/year-in-music/(int:year)/(user_name)	

 	
 	
 GET /1/cf/recommendation/user/(user_name)/recording	

 	
 	
 GET /1/explore/color/(color)	

 	
 	
 GET /1/explore/fresh-releases/	

 	
 	
 GET /1/explore/lb-radio	

 	
 	
 GET /1/feedback/recording/(recording_mbid)/get-feedback-mbid	

 	
 	
 GET /1/feedback/recording/(recording_msid)/get-feedback	

 	
 	
 GET /1/feedback/user/(user_name)/get-feedback	

 	
 	
 GET /1/feedback/user/(user_name)/get-feedback-for-recordings	

 	
 	
 GET /1/latest-import	

 	
 	
 GET /1/lb-radio/artist/(seed_artist_mbid)	

 	
 	
 GET /1/lb-radio/tags	

 	
 	
 GET /1/metadata/artist/	

 	
 	
 GET /1/metadata/get_manual_mapping/	

 	
 	
 GET /1/metadata/lookup/	

 	
 	
 GET /1/metadata/recording/	

 	
 	
 GET /1/metadata/release_group/	

 	
 	
 GET /1/playlist/(playlist_mbid)	

 	
 	
 GET /1/playlist/(playlist_mbid)/xspf	

 	
 	
 GET /1/recommendation/feedback/user/(user_name)	

 	
 	
 GET /1/recommendation/feedback/user/(user_name)/recordings	

 	
 	
 GET /1/search/users/	

 	
 	
 GET /1/stats/artist/(artist_mbid)/listeners	

 	
 	
 GET /1/stats/release-group/(release_group_mbid)/listeners	

 	
 	
 GET /1/stats/sitewide/artist-map	

 	
 	
 GET /1/stats/sitewide/artists	

 	
 	
 GET /1/stats/sitewide/listening-activity	

 	
 	
 GET /1/stats/sitewide/recordings	

 	
 	
 GET /1/stats/sitewide/release-groups	

 	
 	
 GET /1/stats/sitewide/releases	

 	
 	
 GET /1/stats/user/(user_name)/artist-map	

 	
 	
 GET /1/stats/user/(user_name)/artists	

 	
 	
 GET /1/stats/user/(user_name)/daily-activity	

 	
 	
 GET /1/stats/user/(user_name)/listening-activity	

 	
 	
 GET /1/stats/user/(user_name)/recordings	

 	
 	
 GET /1/stats/user/(user_name)/release-groups	

 	
 	
 GET /1/stats/user/(user_name)/releases	

 	
 	
 GET /1/stats/user/(user_name)/year-in-music	

 	
 	
 GET /1/stats/user/(user_name)/year-in-music/(int:year)	

 	
 	
 GET /1/status/get-dump-info	

 	
 	
 GET /1/user/(playlist_user_name)/playlists	

 	
 	
 GET /1/user/(playlist_user_name)/playlists/collaborator	

 	
 	
 GET /1/user/(playlist_user_name)/playlists/createdfor	

 	
 	
 GET /1/user/(playlist_user_name)/playlists/recommendations	

 	
 	
 GET /1/user/(user_name)/feed/events	

 	
 	
 GET /1/user/(user_name)/feed/events/listens/following	

 	
 	
 GET /1/user/(user_name)/feed/events/listens/similar	

 	
 	
 GET /1/user/(user_name)/followers	

 	
 	
 GET /1/user/(user_name)/following	

 	
 	
 GET /1/user/(user_name)/listen-count	

 	
 	
 GET /1/user/(user_name)/listens	

 	
 	
 GET /1/user/(user_name)/playing-now	

 	
 	
 GET /1/user/(user_name)/services	

 	
 	
 GET /1/user/(user_name)/similar-to/(other_user_name)	

 	
 	
 GET /1/user/(user_name)/similar-users	

 	
 	
 GET /1/validate-token	

 	
 	
 POST /1/art/grid/	

 	
 	
 POST /1/delete-listen	

 	
 	
 POST /1/feedback/import	

 	
 	
 POST /1/feedback/recording-feedback	

 	
 	
 POST /1/feedback/user/(user_name)/get-feedback-for-recordings	

 	
 	
 POST /1/latest-import	

 	
 	
 POST /1/metadata/recording/	

 	
 	
 POST /1/metadata/submit_manual_mapping/	

 	
 	
 POST /1/pin	

 	
 	
 POST /1/pin/delete/(row_id)	

 	
 	
 POST /1/pin/unpin	

 	
 	
 POST /1/playlist/(playlist_mbid)/copy	

 	
 	
 POST /1/playlist/(playlist_mbid)/delete	

 	
 	
 POST /1/playlist/(playlist_mbid)/export/(service)	

 	
 	
 POST /1/playlist/(playlist_mbid)/item/add	

 	
 	
 POST /1/playlist/(playlist_mbid)/item/add/(int:offset)	

 	
 	
 POST /1/playlist/(playlist_mbid)/item/delete	

 	
 	
 POST /1/playlist/(playlist_mbid)/item/move	

 	
 	
 POST /1/playlist/create	

 	
 	
 POST /1/playlist/edit/(playlist_mbid)	

 	
 	
 POST /1/playlist/export-jspf/(service)	

 	
 	
 POST /1/recommendation/feedback/delete	

 	
 	
 POST /1/recommendation/feedback/submit	

 	
 	
 POST /1/submit-listens	

 	
 	
 POST /1/user/(user_name)/feed/events/delete	

 	
 	
 POST /1/user/(user_name)/feed/events/hide	

 	
 	
 POST /1/user/(user_name)/feed/events/unhide	

 	
 	
 POST /1/user/(user_name)/follow	

 	
 	
 POST /1/user/(user_name)/timeline-event/create/notification	

 	
 	
 POST /1/user/(user_name)/timeline-event/create/recommend-personal	

 	
 	
 POST /1/user/(user_name)/timeline-event/create/recording	

 	
 	
 POST /1/user/(user_name)/timeline-event/create/review	

 	
 	
 POST /1/user/(user_name)/unfollow	

Index

 Symbols
 | A
 | D
 | L
 | M
 | P
 | R
 | W

Symbols

 	
 	
 --alpha

 	./develop.sh-manage-spark-request_model command line option

 	
 --contribution

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	
 --create-all

 	./develop.sh-manage-run-daily-jams command line option

 	./develop.sh-manage-spark-request_troi_playlists command line option

 	
 --create-db

 	./develop.sh-manage-init_db command line option

 	./develop.sh-manage-init_ts_db command line option

 	
 --database

 	./develop.sh-manage-spark-request_entity_stats command line option

 	./develop.sh-manage-spark-request_fresh_releases command line option

 	./develop.sh-manage-spark-request_user_stats command line option

 	
 --days

 	./develop.sh-manage-spark-request_dataframes command line option

 	./develop.sh-manage-spark-request_fresh_releases command line option

 	./develop.sh-manage-spark-request_missing_mb_data command line option

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	
 --db

 	./develop.sh-manage-dump-create_full command line option

 	
 --debug

 	./develop.sh-manage-run_websockets command line option

 	
 --dump-id

 	./develop.sh-manage-dump-create_full command line option

 	./develop.sh-manage-dump-create_incremental command line option

 	
 --entity

 	./develop.sh-manage-spark-request_entity_stats command line option

 	./develop.sh-manage-spark-request_sitewide_stats command line option

 	./develop.sh-manage-spark-request_user_stats command line option

 	
 --force

 	./develop.sh-manage-init_db command line option

 	./develop.sh-manage-init_ts_db command line option

 	
 --host

 	./develop.sh-manage-run_websockets command line option

 	
 --id

 	./develop.sh-manage-spark-request_import_full command line option

 	./develop.sh-manage-spark-request_import_incremental command line option

 	
 --itr

 	./develop.sh-manage-spark-request_model command line option

 	
 --job-type

 	./develop.sh-manage-spark-request_dataframes command line option

 	
 --limit

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	
 --listen

 	./develop.sh-manage-dump-create_full command line option

 	
 --listen-archive

 	./develop.sh-manage-dump-import_dump command line option

 	
 --listens-threshold

 	./develop.sh-manage-spark-request_dataframes command line option

 	
 --lmbda

 	./develop.sh-manage-spark-request_model command line option

 	
 --location

 	./develop.sh-manage-dump-create_feedback command line option

 	./develop.sh-manage-dump-create_full command line option

 	./develop.sh-manage-dump-create_incremental command line option

 	./develop.sh-manage-dump-create_mbcanonical command line option

 	
 --location-private

 	./develop.sh-manage-dump-create_full command line option

 	
 --max-num-users

 	./develop.sh-manage-spark-request_similar_users command line option

 	
 --no-db

 	./develop.sh-manage-dump-create_full command line option

 	
 --no-listen

 	./develop.sh-manage-dump-create_full command line option

 	
 --no-spark

 	./develop.sh-manage-dump-create_full command line option

 	
 --no-stats

 	./develop.sh-manage-dump-create_full command line option

 	
 --no-timescale

 	./develop.sh-manage-dump-create_full command line option

 	
 --port

 	./develop.sh-manage-run_websockets command line option

 	
 --private-archive

 	./develop.sh-manage-dump-import_dump command line option

 	
 --private-timescale-archive

 	./develop.sh-manage-dump-import_dump command line option

 	
 --production

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	
 --public-archive

 	./develop.sh-manage-dump-import_dump command line option

 	
 --public-timescale-archive

 	./develop.sh-manage-dump-import_dump command line option

 	
 --range

 	./develop.sh-manage-spark-request_entity_stats command line option

 	./develop.sh-manage-spark-request_sitewide_stats command line option

 	./develop.sh-manage-spark-request_user_stats command line option

 	
 --rank

 	./develop.sh-manage-spark-request_model command line option

 	
 --raw

 	./develop.sh-manage-spark-request_recommendations command line option

 	
 --session

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	
 --skip

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	
 --slug

 	./develop.sh-manage-spark-request_troi_playlists command line option

 	
 --spark

 	./develop.sh-manage-dump-create_full command line option

 	
 --stats

 	./develop.sh-manage-dump-create_full command line option

 	
 --threads

 	./develop.sh-manage-dump-create_feedback command line option

 	./develop.sh-manage-dump-create_full command line option

 	./develop.sh-manage-dump-create_incremental command line option

 	./develop.sh-manage-dump-import_dump command line option

 	
 --threshold

 	./develop.sh-manage-spark-request_fresh_releases command line option

 	./develop.sh-manage-spark-request_similar_artists command line option

 	./develop.sh-manage-spark-request_similar_recordings command line option

 	./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	
 --timescale

 	./develop.sh-manage-dump-create_full command line option

 	
 --token

 	./develop.sh-manage-submit-release command line option

 	
 --type

 	./develop.sh-manage-spark-request_entity_stats command line option

 	./develop.sh-manage-spark-request_sitewide_stats command line option

 	./develop.sh-manage-spark-request_user_stats command line option

 	
 --use-lb-conn

 	./develop.sh-manage-dump-create_mbcanonical command line option

 	
 --use-local

 	./develop.sh-manage-spark-request_import_full command line option

 	./develop.sh-manage-spark-request_import_incremental command line option

 	
 --use-mb-conn

 	./develop.sh-manage-dump-create_mbcanonical command line option

 	
 --use-mlhd

 	./develop.sh-manage-spark-request_popularity command line option

 	
 --use-transformed-listencounts

 	./develop.sh-manage-spark-request_model command line option

 	
 --user

 	./develop.sh-manage-submit-release command line option

 	
 --user-name

 	./develop.sh-manage-spark-request_recommendations command line option

 	
 --year

 	./develop.sh-manage-notify_yim_users command line option

 	./develop.sh-manage-spark-request_year_in_music command line option

 	./develop.sh-manage-spark-request_yim_artist_map command line option

 	./develop.sh-manage-spark-request_yim_day_of_week command line option

 	./develop.sh-manage-spark-request_yim_listen_count command line option

 	./develop.sh-manage-spark-request_yim_listening_time command line option

 	./develop.sh-manage-spark-request_yim_listens_per_day command line option

 	./develop.sh-manage-spark-request_yim_most_listened_year command line option

 	./develop.sh-manage-spark-request_yim_new_artists_discovered command line option

 	./develop.sh-manage-spark-request_yim_new_release_stats command line option

 	./develop.sh-manage-spark-request_yim_similar_users command line option

 	./develop.sh-manage-spark-request_yim_top_discoveries command line option

 	./develop.sh-manage-spark-request_yim_top_genres command line option

 	./develop.sh-manage-spark-request_yim_top_missed_recordings command line option

 	./develop.sh-manage-spark-request_yim_top_stats command line option

 	
 -d

 	./develop.sh-manage-run_websockets command line option

 	
 -f

 	./develop.sh-manage-init_db command line option

 	./develop.sh-manage-init_ts_db command line option

 	
 -h

 	./develop.sh-manage-run_websockets command line option

 	
 -l

 	./develop.sh-manage-dump-create_feedback command line option

 	./develop.sh-manage-dump-create_full command line option

 	./develop.sh-manage-dump-create_incremental command line option

 	./develop.sh-manage-dump-create_mbcanonical command line option

 	./develop.sh-manage-dump-import_dump command line option

 	
 -lp

 	./develop.sh-manage-dump-create_full command line option

 	
 -p

 	./develop.sh-manage-run_websockets command line option

 	
 -pr

 	./develop.sh-manage-dump-import_dump command line option

 	
 -pu

 	./develop.sh-manage-dump-import_dump command line option

 	
 	
 -t

 	./develop.sh-manage-dump-create_feedback command line option

 	./develop.sh-manage-dump-create_full command line option

 	./develop.sh-manage-dump-create_incremental command line option

 	./develop.sh-manage-dump-import_dump command line option

 	./develop.sh-manage-submit-release command line option

 	
 -u

 	./develop.sh-manage-submit-release command line option

 	
 ./develop.sh-manage-dump-create_feedback command line option

 	--location

 	--threads

 	-l

 	-t

 	
 ./develop.sh-manage-dump-create_full command line option

 	--db

 	--dump-id

 	--listen

 	--location

 	--location-private

 	--no-db

 	--no-listen

 	--no-spark

 	--no-stats

 	--no-timescale

 	--spark

 	--stats

 	--threads

 	--timescale

 	-l

 	-lp

 	-t

 	
 ./develop.sh-manage-dump-create_incremental command line option

 	--dump-id

 	--location

 	--threads

 	-l

 	-t

 	
 ./develop.sh-manage-dump-create_mbcanonical command line option

 	--location

 	--use-lb-conn

 	--use-mb-conn

 	-l

 	
 ./develop.sh-manage-dump-delete_old_dumps command line option

 	LOCATION

 	
 ./develop.sh-manage-dump-import_dump command line option

 	--listen-archive

 	--private-archive

 	--private-timescale-archive

 	--public-archive

 	--public-timescale-archive

 	--threads

 	-l

 	-pr

 	-pu

 	-t

 	
 ./develop.sh-manage-init_db command line option

 	--create-db

 	--force

 	-f

 	
 ./develop.sh-manage-init_ts_db command line option

 	--create-db

 	--force

 	-f

 	
 ./develop.sh-manage-notify_yim_users command line option

 	--year

 	
 ./develop.sh-manage-run-daily-jams command line option

 	--create-all

 	
 ./develop.sh-manage-run_websockets command line option

 	--debug

 	--host

 	--port

 	-d

 	-h

 	-p

 	
 ./develop.sh-manage-set_rate_limits command line option

 	PER_IP_LIMIT

 	PER_TOKEN_LIMIT

 	WINDOW_SIZE

 	
 ./develop.sh-manage-spark-request_dataframes command line option

 	--days

 	--job-type

 	--listens-threshold

 	
 ./develop.sh-manage-spark-request_entity_stats command line option

 	--database

 	--entity

 	--range

 	--type

 	
 ./develop.sh-manage-spark-request_fresh_releases command line option

 	--database

 	--days

 	--threshold

 	
 ./develop.sh-manage-spark-request_import_full command line option

 	--id

 	--use-local

 	
 ./develop.sh-manage-spark-request_import_incremental command line option

 	--id

 	--use-local

 	
 ./develop.sh-manage-spark-request_missing_mb_data command line option

 	--days

 	
 ./develop.sh-manage-spark-request_model command line option

 	--alpha

 	--itr

 	--lmbda

 	--rank

 	--use-transformed-listencounts

 	
 ./develop.sh-manage-spark-request_popularity command line option

 	--use-mlhd

 	
 ./develop.sh-manage-spark-request_recommendations command line option

 	--raw

 	--user-name

 	
 ./develop.sh-manage-spark-request_similar_artists command line option

 	--contribution

 	--days

 	--limit

 	--production

 	--session

 	--skip

 	--threshold

 	
 ./develop.sh-manage-spark-request_similar_recordings command line option

 	--contribution

 	--days

 	--limit

 	--production

 	--session

 	--skip

 	--threshold

 	
 ./develop.sh-manage-spark-request_similar_recordings_mlhd command line option

 	--contribution

 	--limit

 	--session

 	--skip

 	--threshold

 	
 ./develop.sh-manage-spark-request_similar_users command line option

 	--max-num-users

 	
 ./develop.sh-manage-spark-request_sitewide_stats command line option

 	--entity

 	--range

 	--type

 	
 ./develop.sh-manage-spark-request_troi_playlists command line option

 	--create-all

 	--slug

 	
 ./develop.sh-manage-spark-request_user_stats command line option

 	--database

 	--entity

 	--range

 	--type

 	
 ./develop.sh-manage-spark-request_year_in_music command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_artist_map command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_day_of_week command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_listen_count command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_listening_time command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_listens_per_day command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_most_listened_year command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_new_artists_discovered command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_new_release_stats command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_similar_users command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_top_discoveries command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_top_genres command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_top_missed_recordings command line option

 	--year

 	
 ./develop.sh-manage-spark-request_yim_top_stats command line option

 	--year

 	
 ./develop.sh-manage-submit-release command line option

 	--token

 	--user

 	-t

 	-u

 	RELEASEMBID

A

 	
 	ALLOWED_STATISTICS_RANGE (in module data.model.common_stat), [1]

D

 	
 	DEFAULT_ITEMS_PER_GET (in module listenbrainz.webserver.views.api_tools)

L

 	
 	LISTEN_MINIMUM_TS (in module listenbrainz.listenstore)

 	
 	
 LOCATION

 	./develop.sh-manage-dump-delete_old_dumps command line option

M

 	
 	MAX_DIMENSION (in module listenbrainz.art.cover_art_generator)

 	MAX_DURATION_LIMIT (in module listenbrainz.webserver.views.api_tools)

 	MAX_DURATION_MS_LIMIT (in module listenbrainz.webserver.views.api_tools)

 	MAX_IMAGE_SIZE (in module listenbrainz.art.cover_art_generator)

 	MAX_ITEMS_PER_GET (in module listenbrainz.webserver.views.api_tools)

 	MAX_LISTEN_PAYLOAD_SIZE (in module listenbrainz.webserver.views.api_tools)

 	
 	MAX_LISTEN_SIZE (in module listenbrainz.webserver.views.api_tools)

 	MAX_LISTENS_PER_REQUEST (in module listenbrainz.webserver.views.api_tools)

 	MAX_TAG_SIZE (in module listenbrainz.webserver.views.api_tools)

 	MAX_TAGS_PER_LISTEN (in module listenbrainz.webserver.views.api_tools)

 	MIN_DIMENSION (in module listenbrainz.art.cover_art_generator)

 	MIN_IMAGE_SIZE (in module listenbrainz.art.cover_art_generator)

P

 	
 	
 PER_IP_LIMIT

 	./develop.sh-manage-set_rate_limits command line option

 	
 	
 PER_TOKEN_LIMIT

 	./develop.sh-manage-set_rate_limits command line option

R

 	
 	
 RELEASEMBID

 	./develop.sh-manage-submit-release command line option

W

 	
 	
 WINDOW_SIZE

 	./develop.sh-manage-set_rate_limits command line option

Using develop.sh

We provide a utility to wrap docker-compose and some common development processes.

To open a psql session to the listenbrainz database, run:

./develop.sh psql

To open a psql session to the timescale database containing user listens, run:

./develop.sh timescale

To open a bash shell in the webserver container, run:

./develop.sh bash

To open flask shell in the webserver container using ipython with the listenbrainz app loaded, run:

./develop.sh shell

To open a redis shell:

./develop.sh redis

develop.sh provides a direct interface to invoke manage.py inside a docker container.
manage.py is a click script containing a number of listenbrainz management commands.
To invoke manage.py, run:

./develop.sh manage <command>

To get a list of manage.py commands, run:

./develop.sh manage --help

To pass any other command to docker-compose, run:

./develop.sh <command>

To get a list of valid docker-compose commands, see the output of docker-compose help:

./develop.sh help

Feedback JSON Documentation

Submission JSON

To submit recording feedback via our API (see: Recordings), POST a JSON document to
the recording-feedback endpoint.

A sample feedback may look like:

{
 "recording_mbid": "9f24c0f7-a644-4074-8fbd-a1dba03de129",
 "score": 1
}

{
 "recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "score": 1
}

{
 "recording_mbid": "9f24c0f7-a644-4074-8fbd-a1dba03de129",
 "recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "score": 1
}

Score can have one of these three values:

	1: Mark the track as loved

	Indicates user has marked the recording as loved

	-1: Mark the track as hated

	Indicates user has marked the recording as hated

	0: Remove the feedback from the track

	Indicates user wants to remove the feedback (loved or hated) from the recording

Fetching feedback JSON

The JSON documents returned from our API for recording feedback look like the following:

{
 "count": 1,
 "feedback": [
 {
 "user_id": "-- the MusicBrainz ID of the user --",
 "recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
 "recording_msid": "9f24c0f7-a644-4074-8fbd-a1dba03de129",
 "score": 1
 },
 "-- more feedback data here ---"
],
 "offset": 0,
 "total_count": 1
}

The number of feedback items in the document are returned by the top-level count element. The total number of
feedback items for the user/recording are returned by the top-level total_count. offset specifies the
number of feedback to skip from the beginning, for pagination. The other element is the feedback element.
This is a list which contains the feedback JSON elements having a user_id the MusicBrainz ID of the user,
a recording_msid, a recording_mbid and a score key.

 _static/file.png

_static/minus.png

_static/plus.png

_images/release-workflow.png
Workflows New workflow Push development image

push-dev-image.yml
All workflows

Q
Build and publish image to Dock...
ListenBrainz Build Production Im... 0 workflow runs Event v Status v Branch ~ Actor v
ListenBrainz Frontend Tests
This workflow has a workflow_dispatch event trigger.

ListenBrainz Integration Tests

Use workflow from
ListenBrainz Spark Tests Select Branch

Branch: master v

&£ &£ &L L &L

ListenBrainz Unit Tests Docker Image Tag (Version) *

CIEETE 0% [~
S 0 o vorton

This workflow has no runs yet.
Enter Docker Image Tag Here

_images/request_consumer.png
Users

[

Stats

/

ListenBrainz
webserver

/
Stats '
/ Stat results

—SQL Query?

Stats reque st s—— Spark

Request Consumer data
4 Query result=

Stats DB 4 Stats =——— Spark reader

_images/release-result.png
Workflows New workflow
All workflows
®% Build and publish image to Dock...
®% ListenBrainz Build Production Im....
ListenBrainz Frontend Tests
ListenBrainz Integration Tests
ListenBrainz Spark Tests
ListenBrainz Unit Tests

%5 Release Drafter

&£ &£ &L P

Push development image
push-dev-imageyml

Q Filter workflow runs
1workflow run Event v Status v Branch v Actor v
This workflow has a workflow_dispatch event trigger. Run workflow ~
® Push development image B 15seconds ago .,

Push development image #1: Manually run by amCap1712 @ In progress

_images/user-profile.png
tenBrainz Home Feed Recent Data~ Explore~ About~

JohnDoe

User token

If you would like to use an external program to submit data to ListenBrainz, you will need the following user token:

If you want to reset your token, click below

Reset token

nav.xhtml

 Table of Contents

 		
 ListenBrainz documentation

 		
 ListenBrainz API

 		
 Authentication

 		
 Get the User token

 		
 Add the User token to your requests

 		
 Reference

 		
 Core

 		
 Playlists

 		
 Recordings

 		
 Statistics

 		
 Metadata

 		
 Social

 		
 Recommendations

 		
 Art

 		
 Miscellaneous

 		
 Rate limiting

 		
 Usage Examples

 		
 Prerequisites

 		
 Examples

 		
 Submitting Listens

 		
 Getting Listen History

 		
 Lookup MBIDs

 		
 Love/hate feedback

 		
 Latest Import

 		
 JSON Documentation

 		
 Submission JSON

 		
 Fetching listen JSON

 		
 Payload JSON details

 		
 Client Metadata examples

 		
 BrainzPlayer on the ListenBrainz website playing a video from YouTube

 		
 BrainzPlayer on the ListenBrainz website playing a video from Spotify

 		
 Using Otter for Funkwhale on Android, and submitting with Simple Scrobbler

 		
 Rhythmbox player listening to Jamendo

 		
 Listening to a recording from Bandcamp and submitting with the browser extension WebScrobbler

 		
 Client Libraries

 		
 Haskell

 		
 Go

 		
 Rust

 		
 .NET

 		
 Python

 		
 Java

 		
 Last.FM Compatible API for ListenBrainz

 		
 AudioScrobbler API v1.2

 		
 Last.FM API

 		
 For development

 		
 For users

 		
 Data Dumps

 		
 Dump mirrors

 		
 File Descriptions

 		
 listenbrainz-public-dump.tar.xz

 		
 listenbrainz-listens-dump.tar.xz

 		
 listenbrainz-listens-dump-spark.tar.xz

 		
 Structure of the listens dump

 		
 Incremental dumps

 		
 ListenBrainz Data Update Intervals

 		
 Listens and Listen Counts

 		
 User Statistics

 		
 MBID Mapper & MusicBrainz Metadata Cache

 		
 ListenBrainz data infrastructure

 		
 Server development

 		
 Set up ListenBrainz Server development environment

 		
 Clone listenbrainz-server

 		
 Install docker

 		
 Register a MusicBrainz application

 		
 Update config.py

 		
 Initialize ListenBrainz containers

 		
 Initialize ListenBrainz databases

 		
 Run the magic script

 		
 Listenbrainz containers

 		
 Test your changes with unit tests

 		
 Lint your code

 		
 Using develop.sh

 		
 Spark development

 		
 Set up the webserver

 		
 Create listenbrainz_spark/config.py

 		
 Initialize ListenBrainz Spark containers

 		
 Bring containers up

 		
 Import data into the spark environment

 		
 Working with request_consumer

 		
 Test your changes with unit tests

 		
 Architecture

 		
 Services

 		
 Listen Flow

 		
 Frontend Rendering

 		
 Spark Architecture

 		
 Developing request_consumer

 		
 Start the webserver

 		
 Start the spark containers

 		
 Start the spark reader

 		
 MBID Mapping

 		
 Database tables

 		
 Fuzzy lookups

 		
 MBID Mapper

 		
 Scripts

 		
 ListenBrainz

 		
 ./develop.sh manage

 		
 Dump Manager

 		
 ./develop.sh manage dump

 		
 ListenBrainz Spark

 		
 python spark_manage.py

 		
 ./develop.sh manage spark

 		
 Troubleshooting

 		
 Docker Installations

 		
 Windows

 		
 Production Deployment

 		
 Cron

 		
 Building Docker Images

 		
 Production Images

 		
 Test Images

 		
 Using Github Actions

 		
 Using docker/push.sh script

 		
 Data Dumps

 		
 Check FTP Dumps age script

 		
 Logs

 		
 Manually triggering dumps

 		
 MBID Mapping

 		
 Containers

 		
 Data sources

 		
 Debugging lookups

 		
 Debugging Spotify Reader

 		
 RabbitMQ

 		
 Maintenance

 		
 Tolerance to connectivity issues

 		
 Maintenance mode

 		
 Data importance

 		
 Data persistence

 		
 Procedures

 		
 Implementation details

 		
 Updating Production Database Schema

 		
 Pull Requests Policy

_images/auth-popup.png
@ musicbrainz.org
This site s asking you to sign in.

Username

Password

Cancel

_images/dataflows-graph.png
P

/ listens ‘ ‘ listens ‘ ‘ recs ‘

web pages/
AP results e
ﬂh ListenBrainz \ -

