LiquidApps

Aug 02, 2019

Contents

1 Developers 1
1.1 Getting Started e e e e e e e e e e 1
L2 OVEIVIEW o it i e e e e e e e e 1
1.3 Zeus Getting Started e e e e e e e e e e 2
1.4 vRAM Getting Started e e e 8
1.5 VRAM Getting Started - without zeus 14
1.6 Packagesand Staking L e e e e e 17
L7 ZeusBOXes e e e e 19
2 DSPs 21
2.1 Getting started L. e e e e e e e e e e e e e e e 21
22 OVEIVIBW . . . o ittt e e e e e e e 22
2.3 Architecture L e e e e e e e 22
24 Demux Backend 22
2.5 ACCOUNT. . . . ittt e e e e e 23
2.6 EOSIONode e 24
277 IPES o 27
2.8 DSPNode e 28
29 Packages e 30
2,10 TeStiNg o e e e e e e e e e e 33
2.11 ClaimRewards o e e e e 35
2.12 Upgrade DSPNode e e e e e 35
3 Services 37
3.1 LiquidAuthenticator SEIrviCe v v v v i i e e e e e e e e e e e e e e 37
3.2 LiquidScheduler Service e e e 38
3.3 LiquidDNS Service e 38
3.4 LiquidArchive Service o o e e e e 39
3.5 LiquidVRAM Service o o i i e e e 40
3.6 LiquidLog Service v i i e e e e e e e e e e e e e e e 40
3.7 LiquidOracle Service i e e e e e e e e e e 41
3.8 LiquidLens Service e e 42
39 LiquidLink Service L. e 43
3.10 LiquidStorage ServiCe o o i i e e e e e e 43
301 LiquidAccounts SEIVICE . . . v v v v v v it e 44
4 DAPP Tokens 47

4.1 DAPPToken OVEIrVIEW v i i e e e e e e e e e e e 47

42 DAPPTokens Tracks o i i i e e e e e e e e e e e e e e 47
43 Claiming DAPP Tokens o i i e e e e e e e e 48
4.4 DAPP Tokens Distribution o o o 0 e e e e e e e e e e 48
45 AI-HODL e e e e e e e e 49
FAQs 51
5.1 Frequently Asked Questions The DAPP Token 51
5.2 Frequently Asked Questions DAPP Service Providers (DSPs) 53
5.3 Frequently Asked Questions VRAM e 53

CHAPTER 1

Developers

1.1 Getting Started

1.1.1 Overview

1.1.2 Packages and Staking
1.1.3 Zeus SDK
zeus-getting-started

1.1.4 vVRAM

With Zeus

Without Zeus

1.2 Overview

1.2.1 Articles

* vVRAM guide for experts

* EOS dApps and Their RAM Expenses

1.2.2 Videos

* Developer Explains - Decentralized Dapp Scaling w/ IPFS! How LiquidApps Dapp Service Providers Work

* EOS Weekly - The LiquidApps Game-Changer

https://medium.com/@liquidapps/vram-guide-for-experts-f809c8f82a27
https://medium.com/@liquidapps/eos-dapps-and-their-ram-expenses-39352417be5c
https://www.youtube.com/watch?v=-XdVnK22mZc
https://www.youtube.com/watch?v=C30kJ7p33wg

LiquidApps

e EOS Weekly - Unlimited DSP Possibilities

1.2.3 Have questions?

* Join our Dev Telegram channel

* Join our Telegram channel

1.2.4 Want more information?

* Read our whitepaper and subscribe to our Medium posts.

1.3 Zeus Getting Started

1.3.1 Overview
Zeus-cmd is an extensible command line tool. SDK extensions come packaged in “boxes” and are served through
IPFS. Zeus is currently in alpha.

e zeus-sdk

e overview of boxes

1.3.2 Features:

* Smart contract templating with a single command

* Install nodeos, keosd, cleos, and eosio.cdt with a single command
 Simulate a blockchain node with a single command

* Test, compile, and deploy smart contracts

 Easily migrate a contract to a different EOSIO chain such as the Kylin and Jungle testnets or the mainnet
* Design fluid dApp frontends

¢ Cross-platform (Windows, OS X, Linux)

* Easily install necessary libraries with a package manager

¢ Truffle-like interface

¢ Manage development lifecycle with version control

* Open source (BSD License)

e And more...

1.3.3 Hardware Requirements

* 16GB RAM
¢ 2 CPU Cores

2 Chapter 1. Developers

https://www.youtube.com/watch?v=g9x-M67iEFA
https://t.me/joinchat/GTxt3lEL6HLeFzgsWA87qg
https://t.me/LiquidAppsOfficial
https://liquidapps.io/DAPP%20Network%20and%20DAPP%20Token%20Whitepaper%20v2.0.pdf
https://medium.com/@liquidapps/
https://github.com/liquidapps-io/zeus-sdk

LiquidApps

1.3.4 Prerequisites

nodejs == 10.x (nvm recommended, install at bottom of doc)
curl
cmake

make

1.3.5 Recommended eosio.cdt and eosio versions

Automatically installed with zeus unbox helloworld

eosio.cdt v1.6.1

eosio v1.7.4

1.3.6 Install Zeus

’npm install -g Q@ligquidapps/zeus-cmd

1.3.7 Update

’npm update —-g @liquidapps/zeus-cmd

1.3.8 Test

zeus unbox helloworld
cd helloworld
zeus test

1.3.9 Try out a game!

LiquidApps’ take on Elemental Battles: https://cardgamel112.dnsregistryl.com/ | code

The game incorporates:

VRAM - light-weight caching solution for EOSIO based RAM
LiquidAccounts - EOSIO accounts that live in VRAM instead of RAM
LiquidDNS - DNS service on the blockchain | contract table

Frontend stored on IPFS

user data is stored in the VRAM dapp: :multi_index table (VRAM) | code
keys stored in dapp: :multi_index table | code

keys created using the account name and password as seed phrases | code
eosjs-ecc’s seedPrivate method is used to create the keypair | code

logic to create LiquidAccount transactions | code

1.3. Zeus Getting Started

https://github.com/EOSIO/eosio.cdt/releases/tag/v1.6.1
https://github.com/EOSIO/eos/releases/tag/v1.7.4
https://cardgame1112.dnsregistry1.com/
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/sample/cardgame
https://kylin.bloks.io/account/dnsregistry1?loadContract=true&tab=Tables&table=dnsentry&account=dnsregistry1&scope=cardgame1112&limit=100
https://github.com/liquidapps-io/zeus-sdk/blob/master/boxes/groups/sample/cardgame/contracts/eos/cardgame/cardgame.hpp#L94
https://github.com/liquidapps-io/zeus-sdk/blob/master/boxes/groups/sample/cardgame/contracts/eos/cardgame/cardgame.hpp#L94
https://github.com/liquidapps-io/zeus-sdk/blob/master/boxes/groups/sample/cardgame/frontends/main/src/components/Login/Login.jsx#L35
https://github.com/EOSIO/eosjs-ecc#seedprivate
https://github.com/liquidapps-io/zeus-sdk/blob/master/boxes/groups/sample/cardgame/frontends/main/src/services/ApiService.js#L12

LiquidApps

To launch locally:

zeus unbox cardgame

cd cardgame

zeus migrate

zeus run frontend main

1.3.10 Samples Boxes

zeus unbox <INSERT_BOX>

vRAM Boxes

* coldtoken - VRAM based eosio.token
* deepfreeze - VRAM based cold storage contract
* vgrab - VRAM based airgrab for eosio.token

e registry - vVRAM based item registration

Zeus Extension Boxes
* contract-migrations-extensions - contract create/deployment command template, deploy contract and allocate
DAPP tokens
* test-extensions - provides logic to test smart contract with unit tests
* cos-extensions - install eos/eosio.cdt, launch local nodeos, launch system contracts
* unbox-extensions - logic to unbox zeus boxes, list all boxes, and deploy a new box

e demux - install EOSIO’s demux backend to capture events for contracts, zmg/state-history plugin options in-
cluded

DAPP Services Boxes

* ipfs-dapp-service - utilize the dapp::multi_index table to store data in IPFS (vVRAM) instead of RAM
* cron-dapp-service - schedule CRON tasks on-chain

* oracle-dapp-service - provide oracle services

 readfn-dapp-service - read a contract function without the need to submit a trx to the chain

* vaccounts-dapp-service - EOSIO accounts that live in vVRAM instead of RAM

Miscellaneous Boxes

* microauctions - twin reverse dutch auctions used in DAPP’s generation event

* eos-detective-reports - EOS Detective Reports - by EOSNation - https://eosdetective.io/

helloworld - Hello World

¢ token - Standard eosio.token

4 Chapter 1. Developers

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/sample/coldtoken
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/sample/deepfreeze
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/sample/vgrab
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/eos-framework/registry
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/core/contract-migrations-extensions
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/core/test-extensions
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/eos-sdk/eos-extensions
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/repos/unbox-extensions
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/microservices/demux
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/ipfs-dapp-service
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/cron-dapp-service
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/oracle-dapp-service
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/readfn-dapp-service
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/vaccounts-dapp-service
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/economics/microauctions
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/economics/eos-detective-reports
https://eosdetective.io/
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/eos-sdk/sample-eos-cpp
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/eos-framework/token

LiquidApps

e airhodl - First ever Air-HODL

1.3.11 Zeus Options

please note: zeus commands are directory sensitive, all commands should be performed in root of box

Zeus compile

Compile a smart contract

zeus compile
optional flags:

-—-all # compile all contracts
default: true

—-—-chain # chain to work on

default: eos

Zeus migrate

Compile and migrate a smart contract to another network such as the Kylin Testnet, Jungle Testnet, or Mainnet

zeus import <CONTRACT_ACCOUNT_NAME> --owner-private-key <KEY> --active-private-key
—<KEY>

zeus create contract-deployment CONTRACT_NAME CONTRACT_ACCOUNT_NAME

zeus migrate

optional flags:

——compile-all # compile all contracts

default: true

--wallet # keosd wallet to use

default: zeus

—--creator-key # contract creator private key

default: (eosio test key) 5S5KQOwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3
—-—creator # account to set contract to

default: eosio

--reset # reset testing environment

default: true

—--chain # chain to work on

default: eos

—--network # network to work on (other options, kylin, jungle, mainnet)
default: development (local)

--verbose-rpc # verbose logs for blockchain communication
default: false

--storage-path # path for persistent storage',

default: path.join(require('os').homedir(), '.zeus')
—--stake # account EOSIO staking amount

default: '30.0000'

--no-compile-all # do not compile contracts

—--no-reset # do not reset local testing environment

1.3. Zeus Getting Started 5

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/economics/airhodl
https://www.cryptokylin.io/
https://monitor.jungletestnet.io/#home
https://eosnetworkmonitor.io/

LiquidApps

Zeus test

Compile and unit test a smart contract

zeus test
optional flags:

—-—compile-all # compile all contracts

default: true

--wallet # keosd wallet to use

default: zeus

—-—-creator-key # contract creator key

default: (eosio test key) 5S5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3
—-—-creator # account to set contract to

default: eosio

--reset # reset testing environment

default: true

——chain # chain to work on

default: eos

--network # network to work on (other options, kylin, jungle, mainnet)
default: development (local)

—--verbose-rpc # verbose logs for blockchain communication
default: false

--storage-path # path for persistent storage',

default: path. join(require('os').homedir(), '.zeus')
—--stake # account EOSIO staking amount

default: '30.0000'

—--no-compile-all # do not compile contracts

--no-reset # do not reset local testing environment

Zeus Import/Export Keys

Import and export keys to your Zeus wallet. Please note by default keys are imported without encryption.

zeus key import <ACCOUNT_NAME> —--owner-private-key <KEY> --active-private-key <KEY>
optional flags:

-—encrypted # encrypt the account keys with a password

default: false

--storage # path to the wallet which will store the key

default: S{home}/.zeus/networks

--network # network to work on (other options, kylin, jungle, mainnet)
development (local)

—--password # password to encrypt the keys with

zeus key export <ACCOUNT_NAME>
optional flags:

-—encrypted # exports encrypted key

default: false

--storage # path to where the key 1is stored

default: S{home}/.zeus/networks

--network # network to work on (other options, kylin, jungle, mainnet)

(continues on next page)

6 Chapter 1. Developers

LiquidApps

(continued from previous page)

default: development (local)
—--password # password to decrypt the keypair

Help

zeus —-help

List Boxes

zeus list-boxes

1.3.12 Project structure

Directory structure

extensions/
contracts/
frontends/
models/

test/
migrations/
utils/
services/
zeus-box. json
zeus—config. js

zeus-box.json

Add commands, NPM intalls, ignores, and command hooks

{

"ignore": [
"README .md"

] 14

"commands": {
"Compile contracts": "zeus compile",
"Migrate contracts": "zeus migrate",
"Test contracts": "zeus test"

s
"install":{

" npm n” . {
}
}y
"hooks": {
"post—-unpack": "echo hello",
"post-install": "git clone ..."

1.3. Zeus Getting Started

LiquidApps

zeus-config.js

Configure zeus environments available to interact with

module.exports = {
defaultArgs: {
chain:"eos",
network:"development"
br
chains: {
eos: {
networks: {
development: {
host: "localhost",
port: 7545,
network_id: "«", // Match any network id
secured: false

}I

jungle: {
host: "jungle2.cryptolions.io",
port: 80,

network_id: "«", // Match any network id
secured: false

}I

kylin: {
host: "api.kylin.eosbeijing.one",
port: 80,
network_id: "+",

secured: false
s
mainnet: {
host: "bp.cryptolions.io",
port: 8888,
network_id: "«", // Match any network id
secured: false

}i

1.3.13 Notes regarding permissions errors:

Recommend using Node Version Manager (nvm)

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.34.0/install.sh | bash
use install instructions provided to set PATH

nvm install 10

nvm use 10

1.4 vRAM Getting Started

8 Chapter 1. Developers

LiquidApps

|
] N D I /N
NN/ /S \
NV /N |
_/ Il NN/ _\

~ >~

1.4.1 Prerequisites
* Zeus
* Kylin Account
* If testing on Kylin: eosio v1.8.1

1.4.2 Unbox sample template

This box supports all DAPP Services and unit tests and is built to integrate your own vRAM logic.

mkdir mydapp; cd mydapp
zeus unbox dapp —--no-create-dir
zeus create contract mycontract

1.4.3 Or use one of our template contracts

unbox coldtoken contract and all dependencies
zeus unbox coldtoken

cd coldtoken

unit test coldtoken contract locally

zeus test

1.4.4 Add your contract logic

in contract/eos/mycontract/mycontract.cpp

#pragma once

#include "../dappservices/log.hpp"
#include "../dappservices/plist.hpp"
#include "../dappservices/plisttree.hpp"
#include "../dappservices/multi_index.hpp"

#define DAPPSERVICES ACTIONS() \
XSIGNAI_DAPPSERVICE_ACTION \
1OG_DAPPSERVICE_ACTIONS \
IPFS _DAPPSERVICE _ACTIONS

/*%+ IPFS: (xcommit) (xcleanup) (xwarmup) | LOG: (xlogevent) (xlogclear) #*x*x/
#define DAPPSERVICE_ACTIONS_COMMANDS () \
IPFS_SVC_COMMANDS () LOG_SVC_COMMANDS ()

(continues on next page)

1.4. vVRAM Getting Started 9

https://github.com/EOSIO/eos/releases/tag/v1.8.1

LiquidApps

(continued from previous page)

/ %%+ UPDATE CONTRACT NAME #+x/
#define CONTRACT _NAME () mycontract

using std::string;

CONTRACT_START ()
public:

/%% YOUR LOGIC x*x%/

private:
struct [[eosio::table]] vramaccounts {
asset balance;
uint64_t primary_key ()const { return balance.symbol.code().raw(); }

}i

/*** VRAM MULTI_INDEX TABLE ***/
typedef dapp::multi_index<"vaccounts"_n, vramaccounts> cold_accounts_t;

/ %%+ FOR CLIENT SIDE QUERY SUPPORT xx*%*/
typedef eosio::multi_index<".vaccounts"_n, vramaccounts> cold_accounts_t_v_abi;
TABLE shardbucket {
std: :vector<char> shard_uri;
uint64_t shard;
uint64_t primary_key() const { return shard; }
}i
typedef eosio::multi_index<"vaccounts"_n, shardbucket> cold_accounts_t_abi;

/#*%+ ADD ACTIONS *x*+/
CONTRACT_END ((your) (actions) (here))

1.4.5 Add your contract unit tests

in tests/mycontract.spec.js

import 'mocha';
require ('babel-core/register');
require ('babel-polyfill'");

const { assert } = require('chai');

const { getCreateKeys } = require('../extensions/helpers/key-utils');

const { getNetwork } = require('../extensions/tools/eos/utils");

var Eos = require('eosjs');

const getDefaultArgs = require('../extensions/helpers/getDefaultArgs');

const artifacts = require('../extensions/tools/eos/artifacts');

const deployer = require('../extensions/tools/eos/deployer');

const { genAllocateDAPPTokens } = require('../extensions/tools/eos/dapp-services');

/#*%+ UPDATE CONTRACT CODE ##*%/

var contractCode = 'mycontract';
var ctrt = artifacts.require(./S{contractCode}/");
const delay = ms => new Promise (res => setTimeout (res, ms));

describe (" S{contractCode} Contract , () => {

(continues on next page)

10 Chapter 1. Developers

LiquidApps

(continued from previous page)

var testcontract;

/ %%+ SET CONTRACT NAME (S) *%x/

const code = 'airairairail';
const code2 = 'testuser5';
var account = code;

before (done => {
(async () => {
try {

/%%% DEPLOY CONTRACT %xx%/
var deployedContract = await deployer.deploy(ctrt, code);

/*#++ DEPLOY ADDITIONAL CONTRACTS #*%/
var deployedContract2 = await deployer.deploy(ctrt, code2);

await genAllocateDAPPTokens (deployedContract, 'ipfs');
var selectedNetwork = getNetwork (getDefaultArgs());
var config = {
expireInSeconds: 120,
sign: true,
chainId: selectedNetwork.chainId
bi
if (account) {
var keys = await getCreateKeys (account);
config.keyProvider = keys.active.privateKey;
}

var eosvram = deployedContract.eos;

config.httpEndpoint = 'http://localhost:13015";
eosvram = new Eos(config);
testcontract = await eosvram.contract (code);
done () ;

} catch (e) {
done (e) ;

/#*#++ DISPLAY NAME FOR TEST, REPLACE 'coldissue' WITH ANYTHING *#*#*/
it ('coldissue', done => {
(async () => {
try {

/*%+ SETUP VARIABLES #%x/
var symbol = 'AIR';

/#*x+ DEFAULT failed = false, SET failed = true IN TRY/CATCH BLOCK TO FAIL_,
—TEST ##*%/
var failed = false;

/ %%+ SETUP CHAIN OF ACTIONS #x%*/
await testcontract.create ({

issuer: code2,

maximum_supply: ~1000000000.0000 ${symbol /"
boo A

authorization: "~ ${code/@active ,

(continues on next page)

1.4. vRAM Getting Started 11

LiquidApps

(continued from previous page)

broadcast: true,
sign: true

1) i

/#*#++ CREATE ADDITIONAL KEYS AS NEEDED ###*/
var key = await getCreateKeys (code2) ;

var testtoken = testcontract;
await testtoken.coldissue ({
to: code2,
quantity: “1000.0000 ${symbol/",
memo: "'
boo A
authorization: "~ ${code2/lactive,
broadcast: true,
keyProvider: [key.active.privateKey],
sign: true

1) i

/*++ ADD DELAY BETWEEN ACTIONS *#x*/
await delay (3000);

/ %%+ EXAMPLE TRY/CATCH failed = true **#*/
try {

await testtoken.transfer ({
from: code2,
to: code,
quantity: “100.0000 ${symbol/}",

memo: "'

P A
authorization: =~ ${code2@active ,
broadcast: true,
keyProvider: [key.active.privateKey],
sign: true

1)

} catch (e) {
failed = true;

/**% ADD CUSTOM FAILURE MESSAGE *x*x/
assert (failed, 'should have failed before withdraw');

/%%% ADDITIONAL ACTIONS ... *%%/
done () ;

} catch (e) {
done (e) ;

/**+ USE it.skip TO CONTINUE WITH UNIT TEST IF TEST FAILS #*#*%*/
it.skip('it.skip does not assert and continues test if fails'

1)

12 Chapter 1. Developers

LiquidApps

1.4.6 Compile and test

zeus test

1.4.7 Deploy Contract

export DSP_ENDPOINT=https://kylin-dsp-1.liquidapps.io

export KYLIN_ TEST ACCOUNT=<ACCOUNT_NAME>

export KYLIN_ TEST PUBLIC_ KEY=<ACTIVE_PUBLIC_KEY>

Buy RAM:

cleos —u $DSP_ENDPOINT system buyram SKYLIN TEST ACCOUNT S$KYLIN_TEST ACCOUNT "50.0000,
—EOS" —-p SKYLIN_TEST_ ACCOUNT@active

Set contract code and abi

cleos —u $DSP_ENDPOINT set contract S$SKYLIN_TEST_ACCOUNT ../contract -p SKYLIN_TEST
—ACCOUNTRactive

Set contract permissions

cleos —u $SDSP_ENDPOINT set account permission SKYLIN_TEST ACCOUNT active "{\
—"threshold\":1,\"keys\": [{\"weight\":1,\"key\":\"SKYLIN_TEST_PUBLIC_KEY\"}],\
—"accounts\": [{\"permission\": {\"actor\":\"SKYLIN_TEST_ACCOUNT\",\"permission\":\
—"eosio.code\"},\"weight\":1}]}" owner —-p SKYLIN_TEST_ ACCOUNTRactive

1.4.8 Select and stake DAPP for DSP package

* Use the faucet to get some DAPP tokens on Kylin
¢ Information on: DSP Packages and staking DAPP/DAPPHDL (AirHODL token)

export PROVIDER=uuddlrlrbass
export PACKAGE_ID=packagel

select your package:

export SERVICE=ipfsservicel

cleos —-u S$DSP_ENDPOINT push action dappservices selectpkg "[\"SKYLIN_TEST_ACCOUNT\",\"
—SPROVIDER\", \"SSERVICE\", \"SPACKAGE_ID\"]" -p SKYLIN_TEST_ACCOUNTRactive

Stake your DAPP to the DSP that you selected the service package for:
cleos —u $SDSP_ENDPOINT push action dappservices stake " [\"SKYLIN_TEST_ACCOUNT\",\"
—S$PROVIDER\", \"S$SERVICE\",\"50.0000 DAPP\"]" -p S$SKYLIN_TEST_ACCOUNTR@active

1.4.9 Test

Finally you can now test your VRAM implementation by sending an action through your DSP’s API endpoint

cleos —u $SDSP_ENDPOINT push action SKYLIN_TEST ACCOUNT youractionl "[\"paraml\",\
—"param2\"]" —-p SKYLIN_TEST_ACCOUNTR@active

coldtoken (issue / transfer use VRAM) :

cleos —u $DSP_ENDPOINT push action SKYLIN_TEST ACCOUNT create "[\"SKYLIN_TEST_ACCOUNT\
<",\"1000000000 TEST\"]" —-p SKYLIN_TEST_ACCOUNT

cleos —-u $DSP_ENDPOINT push action SKYLIN_TEST ACCOUNT issue "[\"SKYLIN_TEST_ACCOUNT\
<",\"1000 TEST\",\"yay vRAM\"]" -p S$KYLIN_TEST_ACCOUNT

cleos —u $SDSP_ENDPOINT push action SKYLIN_TEST ACCOUNT transfer "[\"SKYLIN_ TEST

S ACCOUNT\",\"natdeveloper\",\"1000 TEST\",\"yay VRAM\"]" —p SKYLIN_TEST (¢ontimuesion next page)

1.4. vRAM Getting Started 13

https://kylin-dapp-faucet.liquidapps.io/

LiquidApps

(continued from previous page)

The result should look like:

executed transaction:
—865a377903623eab%4aa2e2672b36dfec9627c2983¢c379717£5225e43ac2b74a 104 bytes 67049
—us

yourcontract <= yourcontract::youractionl {"paraml":"paraml", "param2":
— "param2"}

>> {"version":"1.0","etype":"service_request", "payer":"yourcontract", "service":
—"ipfsservicel", "action":"commit", "provider":"","data":"DH...... "}

1.4.10 Get table row

zeus:
zeus get-table-row "CONTRACT_ACCOUNT" "TABLE_NAME" "SCOPE" "TABLE_PRIMARY_KEY" —-
—endpoint SDSP_ENDPOINT | python -m Jjson.tool

curl:
curl http://SDSP_ENDPOINT/v1/dsp/ipfsservicel/get_table_row —-d '{"contract":"CONTRACT_
—ACCOUNT", "scope":"SCOPE", "table":"TABLE_NAME", "key" :"TABLE_PRIMARY_KEY"}' | python -

—m json.tool

coldtoken:

zeus get-table-row SKYLIN_ TEST ACCOUNT "accounts" SKYLIN_ TEST ACCOUNT "TEST" --
—endpoint $DSP_ENDPOINT | python -m json.tool

curl http://S$DSP_ENDPOINT/v1/dsp/ipfsservicel/get_table_row —-d '{"contract":"CONTRACT_
—ACCOUNT", "scope" : "CONTRACT_ACCOUNT", "table":"accounts", "key":"TEST"}' | python -m_
—Jjson.tool

1.5 VRAM Getting Started - without zeus

[\ /\ VA

— L1 /N N/
NN/ /7 /o /NN IN T
NV NN S N
VP2) B N VA |V VS e

1.5.1 Hardware Requirements

1.5.2 Prerequisites

* eosio.cdt v1.6.1
e eosiovl.7.4
* If testing on Kylin: eosio v1.8.1

* Kylin Account

14 Chapter 1. Developers

https://github.com/EOSIO/eosio.cdt/releases/tag/v1.6.1
https://github.com/EOSIO/eos/releases/tag/v1.7.4
https://github.com/EOSIO/eos/releases/tag/v1.8.1

LiquidApps

1.5.3 Install

Clone into your project directory:

git clone --single-branch —--branch vl.4 —--recursive https://github.com/liquidapps—-io/
—dist

1.5.4 Modify your contract

vRAM provides a drop in replacement for the eosio: :multi_index table that is also interacted with in the
same way as the traditional eosio: :multi_index table making it very easy and familiar to use. Please note that
secondary indexes are not currently implemented for dapp: :multi_index tables.

To access the VRAM table, add the following lines to your smart contract:

At header:

"

#include "../dist/contracts/eos/dappservices/multi_index.hpp"

#define DAPPSERVICES_ACTIONS () \
XSIGNAL DAPPSERVICE_ACTION \
IPFS_DAPPSERVICE_ACTIONS

#define DAPPSERVICE_ACTIONS_COMMANDS () \
IPFS_SVC_COMMANDS ()

#define CONTRACT NAME () mycontract

After contract class header

CONTRACT mycontract : public eosio::contract {
using contract::contract;
public:

/ %%+ ADD HERE *+*%/
DAPPSERVICES_ACTIONS ()

Replace eosio::multi_index

/*%4* REPLACE %%/
typedef eosio::multi_index<"accounts"_n, account> accounts_t;

/Hhk* WITH **%/
typedef dapp::multi_index<"accounts"_n, account> accounts_t;

/*%+ ADD (for client side query support): #*+*/
typedef eosio::multi_index<".accounts"_n, account> accounts_t_v_abi;
TABLE shardbucket {

std: :vector<char> shard_uri;

uint64_t shard;

uint64_t primary_key () const { return shard; }

(continues on next page)

1.5. VRAM Getting Started - without zeus 15

LiquidApps

(continued from previous page)

}i
typedef eosio::multi_index<"accounts"_n, shardbucket> accounts_t_abi;

Add DSP actions dispatcher

/ %%+ REPLACE +*+%/
EOSIO_DISPATCH (mycontract, (youractionl) (youraction2) (youraction?2))

Jxrk WITH **%/
EOSIO_DISPATCH_SVC (mycontract, (youractionl) (youraction?2) (youraction2))

1.5.5 Compile

eosio-cpp —-abigen -o contract.wasm contract.cpp

1.5.6 Deploy Contract

export DSP_ENDPOINT=https://kylin-dsp-1l.liquidapps.io

export KYLIN_TEST_ACCOUNT=

export KYLIN_TEST_PUBLIC_KEY=

Set contract code and abi

cleos —u $SDSP_ENDPOINT set contract S$SKYLIN_TEST_ACCOUNT ../contract -p SKYLIN_TEST
—ACCOUNT@active

Set contract permissions

cleos —u $SDSP_ENDPOINT set account permission SKYLIN_TEST ACCOUNT active "{\
—"threshold\":1,\"keys\": [\"SKYLIN_TEST_PUBLIC_KEY\"],\"accounts\":[{\"permission\":
—{\"actor\":\"eosio.code\", \"permission\":\"active\"},\"weight\":1}]}" active -p

< SKYLIN TEST ACCOUNTRactive

1.5.7 Select and stake DAPP for DSP package

DSP Package and staking

1.5.8 Test

Finally you can now test your VRAM implementation by sending an action through your DSP’s API endpoint.

The endpoint can be found in the package table of the dappservices account on all chains.

cleos —u $DSP_ENDPOINT push action SKYLIN TEST ACCOUNT youractionl "[\"paraml\",\
—"param2\"]" -p SKYLIN_TEST_ACCOUNT@active

The result should look like:

16 Chapter 1. Developers

https://kylin.eosx.io/account/dappservices?mode=contract&sub=tables&table=package&lowerBound=&upperBound=&limit=100

LiquidApps

executed transaction:
—865a377903623eab%4aa2e2672b36dfec9627c2983¢c379717£5225e43ac2b74a 104 bytes 67049
—us

yourcontract <= yourcontract::youractionl {"paraml": "paraml", "param2":
— "param2"}

>> {"version":"1.0","etype":"service_request", "payer":"yourcontract", "service":
—"ipfsservicel", "action":"commit", "provider":"","data":"DH...... "}

1.5.9 Get table row

curl http://SDSP_ENDPOINT/v1/dsp/ipfsservicel/get_table_row —-d '{"contract":"CONTRACT_
—ACCOUNT", "scope":"SCOPE", "table": "TABLE_NAME", "key":"TABLE_PRIMARY_KEY"}' | python -
—m Jjson.tool

1.6 Packages and Staking

1.6.1 List of available Packages
DSPs who have registered their service packages may be found in the package table under the dappservices account
on every supported chain.
DSP Portals for viewing/interacting with packages:

* Bloks.io

* EOS Nation

* Malta Block

* Mission Control

* Aloha EOS

* MinerGate

e DSP HQ

1.6.2 DSP Package Explanation

DSP packages have several fields which are important to understand:

* api_endpoint - endpoint to direct DSP related trxs/api requests to

package_id - ID of the package that can be selected with the selectpkg action

service - the DSP service to be used. Currently LiquidApps supports 6 DSP services; however DSPs are en-
couraged to create services of their own as well as create bundled DSP services. The use of these resources is
measured in QUOTA.

1. ipfsservicel - providing IPFS services to the dapp::multi_index container of a smart contract
. cronservices - enable CRON related tasks such as continuous staking

. oracleservic - provide oracle related services

~ W

. readfndspsvc - return a result from a smart contract function based on current conditions without sending an
EOSIO trx

1.6. Packages and Staking 17

https://bloks.io/account/dappservices?loadContract=true&tab=Tables&account=dappservices&scope=dappservices&limit=100&table=package
https://bloks.io/dsp
https://dsp.eosnation.io/
https://dsp.maltablock.org/
https://dsp.mest.net
https://dsps.io/
https://minergate.com/eos-vram-providers
https://dsphq.io/

LiquidApps

5. accountless1 - virtual accounts that do not require RAM storage for account related data, instead data and
accounts are stored in VRAM

* provider - DSP account name

e quota - QUOTA represents the amount of actions that a DSP supports based on the package_period. You can
think of QUOTA like cell phone minutes in a plan. For a cell phone plan you could pay $10 per month and get
1000 minutes. 1 QUOTA always equals 10,000 actions. Said differently .0001 QUOTA equals 1 action. Instead
of $10 per month perhaps you would be required to stake 10 DAPP and/or 10 DAPPHDL (Air-HODL) tokens
for a day to receive .001 QUOTA or 10 actions.

» package_period - period of the package before restaking is required. Upon restaking the QUOTA and package
period are reset.

* min_stake_quantity - the minimum quantity of DAPP and/or DAPPHDL (Air-HODL) tokens to stake to re-
ceive the designated amount of QUOTA for the specified package_period

* min_unstake_period - period of time required to pass before refund action can be called after unstake com-
mand is executed

* enabled - bool if the package is available or not

1.6.3 Select a DSP Package

Select a service package from the DSP of your choice.

export PROVIDER=someprovider
export PAl SE_ ID=providerpackage
export MY ACCOUNT=myaccount

select your package:

export SERVICE=ipfsservicel

cleos —u $DSP_END NT push action dappservices selectpkg " [\"SMY ACCOUNT\",\"
< $PROVIDER\", \"$SERVICE\", \"$SPACKAGE_ID\"]" -p $MY_ACCOUNT@active

1.6.4 Stake DAPP Tokens for DSP Package

Stake your DAPP to the DSP that you selected the service package for:
cleos —u SDSP_ENDPOINT push action dappservices stake "[\"$SMY_ ACCOUNT\",\"SPROVIDER\",
< \"SSERVICE\",\"50.0000 DAPP\"]" -p SMY_ ACCOUNTRactive

1.6.5 Stake DAPPHDL (AirHODL) Tokens for DSP Package

If you were a holder of the EOS token on February 26th, 2019 then you should have a balance of DAPPHDL tokens.
These tokens possess the ability to 3rd party stake and unstake tokens throughout the duration of the AirHODL, until
February 26th 2021.

Stake your DAPPHDL to the DSP that you selected the service package for:
cleos —u $SDSP_ENDPOINT push action dappairhodll stake "[\"$SMY_ ACCOUNT\",\"SPROVIDER\",
SA\"SSERVICE\",\"50.0000 DAPPHDL\"]" -p S$MY_ACCOUNT@active

18 Chapter 1. Developers

LiquidApps

1.6.6 Unstake DAPP Tokens

The amount of time that must pass before an unstake executes a refund action and returns DAPP or DAPPHDL tokens
is either the current time + the minimum unstake time as stated in the package table, or the end of the current package
period, whichever is greater.

cleos —-u $DSP_ENDPOINT push action dappservices unstake "[\"SMY ACCOUNT\", \"SPROVIDER\
<", \"SSERVICE\",\"50.0000 DAPP\"]" -p SMY_ACCOUNT@active

1.6.7 Unstake DAPPHDL (AirHODL) Tokens

cleos —u $DSP_ENDPOINT push action dappairhodll unstake "[\"SMY_ ACCOUNT\", \"SPROVIDER\
<", \"SSERVICE\",\"50.0000 DAPPHDL\"]" -p $MY_ACCOUNTQactive

In case unstake deferred trx fails, you can manually refund the unstaked tokens:
cleos —u $DSP_ENDPOINT push action dappairhodll refund "[\"$MY ACCOUNT\",\"$SPROVIDER\
<", \"SSERVICEN"]" —-p SMY_ACCOUNTQRactive

1.6.8 Withdraw DAPPHDL (AirHODL) Tokens

Please note: withdrawing your DAPPHDL tokens immediately makes you ineligible for further vesting and forfeits
all your unvested tokens. This action is irrevocable. Vesting ends February 26th 2021. Also, you must hold DAPP
token before executing this action. If you do not, use the open action below to open a 0 balance.

Withdraw

cleos —u $SDSP_ENDPOINT push action dappairhodll withdraw " [\"SMY ACCOUNT\"]" -p SMY__
—ACCOUNT@active

Open DAPP balance to withdraw if needed

cleos —u $DSP_ENDPOINT push action dappservices open "[\"SMY ACCOUNT\",\"4,DAPP\",\"
—$MY_ACCOUNT\"]" -p S$MY_ACCOUNTRactive

1.6.9 Check DAPPHDL (AirHODL) Token Balance & Refresh Data

In the dappairhodll contract under the accounts table, enter your account as the scope to retrieve its information.

Refresh accounts table data
cleos —u $DSP_ENDPOINT push action dappservices refresh "[\"SMY ACCOUNT\"]" -p SMY
—ACCOUNTQactive

1.7 Zeus Boxes

1.7.1 Browse Boxes:

* regression-tests
* helloworld

* coldtoken

e airhodl

e airdrop

1.7. Zeus Boxes 19

https://bloks.io/contract/dappairhodl1/table?table=accounts&scope=YOUR_ACCOUNT_HERE
regression-tests
helloworld
coldtoken
airhodl
airdrop

LiquidApps

* bancor-extensions

e cardgame

* dapp-services-deploy
* templates-emptycontract-eos-cpp
e all-dapp-services

* sample-zeus-extension
* deepfreeze

* vgrab

* dapp

e game

e ide

* dgoods

* eoscraft

e search

20

Chapter 1. Developers

bancor-extensions
cardgame
dapp-services-deploy
templates-emptycontract-eos-cpp
all-dapp-services
sample-zeus-extension
deepfreeze
vgrab
dapp
game
ide
dgoods
eoscraft

CHAPTER 2

DSPs

2.1 Getting started

2.1.1 Overview
Overview

Architecture

2.1.2 Prerequisites

Account

2.1.3 Deploy

EOSIO Node
IPFS Node
DSP Service Node

2.1.4 Configuration

Packages
Testing

2.1.5 Claiming Rewards

Claim

21

LiquidApps

2.1.6 Upgrade Version

Upgrade

2.2 Overview

2.2.1 Articles

* VRAM guide for experts
» EOS dApps and Their RAM Expenses

2.2.2 Videos

* Developer Explains - Decentralized Dapp Scaling w/ IPFS! How LiquidApps Dapp Service Providers Work
* EOS Weekly - The LiquidApps Game-Changer
¢ EOS Weekly - Unlimited DSP Possibilities

2.2.3 Have questions?
* Join our Dev Telegram channel
* Join our Telegram channel
2.2.4 Want more information?

* Read our whitepaper and subscribe to our Medium posts.

2.3 Architecture

* EOS full node - to run a DSP requires running a full EOS node. The EOS node is also configured with a backend
storage mechanism, whether that be the state_history_plugin or the zmq_plugin from eosrio.

* IPES Cluster node - locally hosts your vVRAM related data in IPFS for fast response times.

* DSP Node - the DSP node is responsible for performing actions like get_table_row for VRAM related data
and in the case of LiquidAccounts, parsing related trx’s and sending them to the chain.

2.4 Demux Backend

In the config.toml file in the DSP Node Setup you can configure either the state_history_plugin or
eosrio’s zmg_plugin.

[demux]
backend = "state_history_plugin"
zmg: "zmqg _plugin" only if using nodeos with eosrio's version of the ZMQ plugin:

—https://github.com/eosrio/eos_zmqg plugin

22 Chapter 2. DSPs

https://medium.com/@liquidapps/vram-guide-for-experts-f809c8f82a27
https://medium.com/@liquidapps/eos-dapps-and-their-ram-expenses-39352417be5c
https://www.youtube.com/watch?v=-XdVnK22mZc
https://www.youtube.com/watch?v=C30kJ7p33wg
https://www.youtube.com/watch?v=g9x-M67iEFA
https://t.me/joinchat/GTxt3lEL6HLeFzgsWA87qg
https://t.me/LiquidAppsOfficial
https://liquidapps.io/DAPP%20Network%20and%20DAPP%20Token%20Whitepaper%20v2.0.pdf
https://medium.com/@liquidapps/
https://github.com/eosrio/eos_zmq_plugin

LiquidApps

2.5 Account

2.5.1 Prerequisites

Install cleos from: https://github.com/EOSIO/eos/releases

2.5.2 Create Account

Mainnet

cleos create key —-to-console > keys.txt
export DSP_PRIVATE_KEY="cat keys.txt | head -n 1 | cut -d ":" -f 2 | xargs echo’
export DSP_PUBLIC KEY='cat keys.txt | tail -n 1 | cut -d ":" -f 2 | xargs echo’

Save keys.txt somewhere safe!

Have an exising EOS Account

* Getting started on eos mainnet

First EOS Account

Fiat:
* EOS Account Creator
* EOS Lynx

Bitcoin/ETH/Bitcoin Cash/ALFAcoins:
e« ZEOS

Kylin

Create an account

Create a new available account name (replace 'yourdspaccount' with your account,
—name) :

export DSP_ACCOUNT=yourdspaccount

curl http://faucet.cryptokylin.io/create_account?$DSP_ACCOUNT > keys.json

curl http://faucet.cryptokylin.io/get_token?SDSP_ACCOUNT

export DSP_PRIVATE_KEY='cat keys.json | jg -e '.keys.active_key.private'"

export DSP_PUBLIC_KEY="cat keys.json | jg -e '.keys.active_key.public'"’

Save keys.json somewhere safe!

2.5.3 Account Name

Create wallet
cleos wallet create --file wallet_password.pwd

2.5. Account 23

https://hackernoon.com/getting-started-on-eos-mainnet-in-10-minutes-bf61dd9ec787
https://eos-account-creator.com/
https://eoslynx.com/
https://www.zeos.co/

LiquidApps

Save wallet_password.pwd somewhere safe!

2.5.4 Import account

cleos wallet import —--private-key S$SDSP_PRIVATE KEY

2.6 EOSIO Node

2.6.1 Hardware Requirements
2.6.2 Prerequisites

*iq

* wget

e curl

2.6.3 Get EOSIO binary

install 1.8 even 1if chain is sub 1.7.%*
VERSION=1.8.1

Ubuntu 18.04

FILENAME=eosio_SVERSION-1-ubuntu-18.04_amd64.deb
INSTALL_TOOL=apt

Ubuntu 16.04

FILENAME=eosio_SVERSION-1-ubuntu-16.04_amd64.deb
INSTALL_TOOL=apt

Fedora

FILENAME=eosio_SVERSION-1.fc27.x86_64.rpm
INSTALL_TOOL=yum

Centos

FILENAME=eosio_SVERSION-1.el7.x86_64.rpm
INSTALL_ TOOL=yum

24

Chapter 2. DSPs

LiquidApps

2.6.4 Install

wget https://github.com/EOSIO/eos/releases/download/vSVERSION/SETILENAME
sudo SINSTALIL_TOOL install ./SFILENAME

2.6.5 Prepare Directories

#cleanup
rm —-rf S$SHOME/.local/share/eosio/nodeos || true

#create dirs

mkdir $HOME/.local/share/eosio/nodeos/data/blocks -p
mkdir $HOME/.local/share/eosio/nodeos/data/snapshots -p
mkdir $HOME/.local/share/eosio/nodeos/config -p

Kylin

URL="http://storage.googleapis.com/eos-kylin-snapshot/snapshot-2019-06-10-09 (utc) -
—0312d3b9843e2efa6831806962d6c219d37200e0b897a0d9243bcab40b2b546b.bin"
P2P_FILE=https://raw.githubusercontent.com/cryptokylin/CryptoKylin-Testnet/master/
—fullnode/config/config.ini
GENESIS=https://raw.githubusercontent.com/cryptokylin/CryptoKylin-Testnet/master/
—genesis. json

CHAIN_STATE_SIZE=256000

wget SURL -0 SHOME/.local/share/eosio/nodeos/data/snapshots/boot.bin

Mainnet

URL=$ (wget --quiet "https://eosnode.tools/api/bundle" -0- | jg -r '.data.snapshot.s3")
P2P_FILE=https://eosnodes.privex.io/?config=1
GENESIS=https://raw.githubusercontent.com/CryptoLions/EOS-MainNet/master/genesis. json
CHAIN_STATE_SIZE=131072

cd SHOME/.local/share/eosio/nodeos/data

wget SURL -0 - | tar xvz

SNAPFILE="1ls snapshots/x.bin | head -n 1 | xargs -n 1 basename’

mv snapshots/$SNAPFILE snapshots/boot.bin

2.6.6 Configuration

cd $HOME/.local/share/eosio/nodeos/config

download genesis
wget SGENESIS

config
cat <<EOF >> SHOME/.local/share/eosio/nodeos/config/config.ini
agent—-name = "DSP"

p2p-server—address = addr:8888
http-server—-address = 0.0.0.0:8888
p2p-listen-endpoint = 0.0.0.0:9876

(continues on next page)

2.6. EOSIO Node 25

LiquidApps

(continued from previous page)

blocks—-dir = "blocks"
abi-serializer-max-time-ms = 3000
max—-transaction-time = 150000
wasm-runtime = wabt
reversible-blocks—-db-size-mb = 1024
contracts—-console = true
p2p-max-nodes-per-host = 1
allowed-connection = any

max—-clients = 100
network-version-match = 1
sync—-fetch-span = 500
connection—-cleanup-period = 30
http-validate-host = false
access—control-allow-origin = =
access—-control-allow—headers = %
access—-control—-allow-credentials = false
verbose-http-errors = true
http-threads=8

net-threads=8

read-mode = head
trace-history-debug-mode = true
trace-history = true

plugin = eosio::producer_plugin
plugin = eosio::chain_plugin

plugin = eosio::chain_api_plugin
plugin = eosio::net_plugin

plugin = eosio::state_history_plugin
state-history-endpoint = 0.0.0.0:8887
chain-state-db-size-mb SCHAIN_STATE_SIZE
EOF

curl SP2P _FILE > p2p-config.ini
cat p2p-config.ini | grep "p2p-peer—address" >> SHOME/.local/share/eosio/nodeos/
—config/config.ini

2.6.7 Run

First run (from snapshot)

nodeos —--disable-replay-opts —-snapshot S$SHOME/.local/share/eosio/nodeos/data/
—snapshots/boot.bin —--delete-all-blocks

Wait until the node fully syncs, then press CTRL+C once, wait for the node to shutdown and proceed to the next step.

2.6.8 systemd

export NODEOS_EXEC="which nodeos”
export NODEOS_USER=SUSER

sudo -E su - -p
cat <<EOF > /lib/systemd/system/nodeos.service
[Unit]

Description=nodeos
After=network.target

(continues on next page)

26 Chapter 2. DSPs

LiquidApps

(continued from previous page)

[Service]

User=$NODEOS_USER

ExecStart=$NODEOS_EXEC --disable-replay-opts
[Install]

WantedBy=multiuser.target

EOF

systemctl start nodeos
systemctl enable nodeos
exit

sleep 3

systemctl status nodeos

2.6.9 Optimizations

e atticlab - cpu performance presentation

2.7 IPFS

2.7.1 Standalone

go-ipfs

Hardware Requirements
Prerequisites
* golang

* systemd

Ubuntu/Debian

sudo apt-get update
sudo apt-get install golang-go -y

Centos/Fedora/AWS Linux v2

sudo yum install golang -y

Install

2.7. IPFS 27

https://github.com/atticlab/eos-bp-performance/blob/master/cpu_perf_presentation.pdf
https://dist.ipfs.io/#go-ipfs

LiquidApps

sudo su -

VERS=0.4.19
DIST="go-ipfs_vS{VERS}_linux—-amd64.tar.gz"
wget https://dist.ipfs.io/go-ipfs/vSVERS/SDIST
tar xvfz SDIST

rm *.gz
mv go—ipfs/ipfs /usr/local/bin/ipfs
exit

Configure systemd

sudo su —

ipfs init

ipfs config Addresses.API /ip4/0.0.0.0/tcp/5001
ipfs config Addresses.Gateway /ip4/0.0.0.0/tcp/8080
cat <<EOF > /lib/systemd/system/ipfs.service
[Unit]

Description=IPFS daemon

After=network.target

[Service]

ExecStart=/usr/local/bin/ipfs daemon
Restart=always

[Install]

WantedBy=multiuser.target

EOF

systemctl start ipfs
systemctl enable ipfs

exit

2.7.2 Cluster

IPFS-Cluster

IPFS-Cluster Documentation

Kubernetes

IPFS Helm Chart

2.8 DSP Node

2.8.1 Prerequisites

Linux

28

Chapter 2. DSPs

https://cluster.ipfs.io/documentation/
https://github.com/helm/charts/tree/master/stable/ipfs

LiquidApps

sudo su -

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.34.0/install.sh | bash
export NVM_DIR=" XDG_CONFIG_HOME/:-=$SHOME/. }nvm"

[-s "SNVM_DIR/nvm.sh"] && \. "SNVM_DIR/nvm.sh" # This loads nvm

nvm install 10
nvm use 10
exit

Ubuntu/Debian

sudo apt install -y make cmake build-essential python

Centos/Fedora/AWS Linux:

sudo yum install -y make cmake3 python

2.8.2 Install

sudo su -

npm install -g pm2

npm install -g @liquidapps/dsp —--unsafe-perm=true
exit

2.8.3 Configure Settings

Any changes to the config.toml file will require setup-dsp to be run again.

sudo su -

mkdir ~/.dsp

cp $(readlink —-f “which setup-dsp | xargs dirname)/sample-config.toml ~/.dsp/config.
—toml

nano ~/.dsp/config.toml

exit

2.8.4 Launch DSP Services

sudo su -

setup-dsp

systemctl stop dsp
systemctl start dsp
systemctl enable dsp
exit

2.8. DSP Node 29

LiquidApps

2.8.5 Check logs

sudo su -
pm2 logs
exit

Output sample:

/root/.pm2/logs/readfn-dapp-service-node-error.log last 15 lines:
/root/.pm2/logs/dapp-services-node-out.log last 15 lines:

0|dapp-ser | 2019-06-03T00:46:49: services listening on port 3115!

Oldapp-ser | 2019-06-03T00:46:49: service node webhook listening on port 8812!

/root/.pm2/logs/demux-out.log last 15 lines:
1| demux | 2019-06-05T14:41:12: count 1

/root/.pm2/logs/ipfs—dapp-service-node-out.log last 15 lines:
2|ipfs—-dap | 2019-06-04T19:03:04: commited to: ipfs://
—zb2rhXKc8zSVppFhKm8pHLBUyGb7vPeCnpZgcmjFnDLA9LLBb

/root/.pm2/logs/log—dapp-service-node-out.log last 15 lines:

3llog-dapp | 2019-06-03T00:46:49: log listening on port 13110!

3llog-dapp | 2019-06-03T00:46:52: LOG SVC NODE 2019-06-03T00:46:52.413Z INFO index.
—Jjs:global:0 Started Service

/root/.pm2/logs/vaccounts—-dapp-service-node-out.log last 15 lines:
4 |vaccount | 2019-06-03T00:46:50: vaccounts listening on port 13129!

/root/.pm2/logs/oracle—dapp-service-node-out.log last 15 lines:
5|oracle-d | 2019-06-03T00:46:50: oracle listening on port 13112!

/root/.pm2/logs/cron-dapp-service—-node-out.log last 15 lines:
6|cron-dap | 2019-06-03T00:46:50: cron listening on port 13131!

/root/.pm2/logs/readfn-dapp-service-node-out.log last 15 lines:
7]readfn-d | 2019-06-03T00:46:50: readfn listening on port 13141!

2.9 Packages

2.9.1 Register

Prepare and host dsp.json

"name": "acme DSP",
"website": "https://acme-dsp.com",
"code_of_conduct":"https://...",
"ownership_disclosure" : "https://...",
"email":"dsplacme-dsp.com",
"branding": {
"logo_256":"https://....",
"logo_1024":"https://....",

(continues on next page)

30 Chapter 2. DSPs

LiquidApps

(continued from previous page)

"logo_svg":"https://...."
3y

"location": {
"name": "Atlantis",
"country": "ATL",

"latitude": 2.082652,
"longitude": 1.781132

}I

"social": {
"steemit": "",
"twitter": "",
"youtube": "",
"facebook": "",
"github":"",
"reddit": "",
"keybase": "",
"telegram": "",
"wechat":""

Prepare and host dsp-package.json

"name": "Package 1",
"description": "Best for low vgrabs",
"dsp_json_uri": "https://acme-dsp.com/dsp
"logo": {
"logo_256":"https://....",
"logo_1024":"https://....",
"logo_svg":"https://...."
}I
"service_level_agreement": {
"availability":{
"uptime 9s": 5
}I
"performance": {
"95": 500

}I
"pinning" : {
"ttl": 2400,
"public": false
}I
"locations": [
{
"name": "Atlantis",
"country": "ATL",
"latitude": 2.082652,
"longitude": 1.781132

.json",

2.9. Packages

31

LiquidApps

Register Package

Warning: packages are read only and can’t be removed yet.
* Mainnet DSP packages
» Kylin DSP packages

npm install -g Q@liquidapps/zeus-cmd

the package must be chosen from the following list:

packages: (ipfs, cron, log, oracle, readfn, vaccounts)

export PACKAGE=ipfs

export DSP_ACCOUNT=

active key to sign package creation trx

export DSP_PRIVATE_KEY=

customizable and unique name for your package

export PACKAGE_ ID=packagel

export EOS_CHAIN=mainnet

or

export EOS_CHAIN=kylin

the minimum stake quantity is the amount of DAPP and/or DAPPHDL that must be staked,
—~to meet the package's threshold for use

export MIN_STAKE_QUANTITY="10.0000"

package period is in seconds, so 86400 = 1 day, 3600 = 1 hour

export PACKAGE_PERIOD=86400

QUOTA is the measurement for total actions allowed within the package period to be_
—processed by the DSP. 1.0000 QUOTA = 10,000 actions. 0.0001 QUOTA = 1 action
export QUOTA="1.0000"

export DSP_ENDPOINT=https://acme-dsp.com

package json uri is the link to your package's information, this is customizable_
—without a required syntax

export PACKAGE_JSON_URI=https://acme-dsp.com/packagel.dsp-package. json

cd $(readlink -f “which setup-dsp’ | xargs dirname)
zeus register dapp-service-provider-package \
SPACKAGE S$DSP_ACCOUNT S$SPACKAGE_ID \
—--key $DSP_PRIVATE_KEY \
—-min-stake—quantity SMIN_STAKE_QUANTITY \
—-package-period SPACKAGE_PERIOD \
—-—quota SQUOTA \
——network S$SEOS_CHAIN \
——api-endpoint S$DSP_ENDPOINT \
—--package-json-uri S$SPACKAGE_ JSON_URT

output should be:

registering package:packagel
v package:packagel registered successfully

For more options:

zeus register dapp-service-provider-package —--help

Don’t forget to stake CPU/NET to your DSP account:

cleos —u $DSP_ENDPOINT system delegatebw S$SDSP_ACCOUNT $DSP_ACCOUNT "5.000 EOS"™ "95.
000 EOS" -p $SDSP_ACCOUNTRactive

32 Chapter 2. DSPs

https://bloks.io/account/dappservices?loadContract=true&tab=Tables&account=dappservices&scope=dappservices&limit=100&table=package
https://kylin.bloks.io/account/dappservices?loadContract=true&tab=Tables&account=dappservices&scope=dappservices&limit=100&table=package

LiquidApps

Modify Package metadata:

Currently only package_json_uri and api_endpoint are modifyable. To signal to DSP Portals / Developers
that your package is no longer in service, set your api_endpoint to null.

To modify package metadata: use the “modifypkg” action of the dappservices contract.

Using cleos:

cleos —-u $DSP_ENDPOINT push action dappservices modifypkg "[\"SDSP_ACCOUNT\",\"
—SPACKAGE_ID\",\"ipfsservicel\",\"S$SDSP_ENDPOINT\",\"https://acme-dsp.com/modified-
—packagel .dsp-package.json\"]" -p S$SDSP_ACCOUNT@active

2.10 Testing

2.10.1 Test your DSP with vRAM

Please note, if you wish to test on the mainnet, this will require the purchase of DAPP tokens or the use of DAPPHDL
tokens (Air-HODL). In the case of Kylin, we provide a DAPP token faucet.

Create Mainnet or Kylin Account:

* Kylin

¢ Mainnet

Install Zeus:

npm install -g Q@liquidapps/zeus-cmd

Unbox coldtoken contract:

zeus unbox coldtoken
cd coldtoken

Compile and deploy contract for testing:

your DSP's API endpoint

export DSP_ENDPOINT=

a new account to deploy your contract to

export ACCOUNT=

your new account's active public key

export ACTIVE_PUBLIC_KEY=

compile coldtoken contract

zeus compile

cd contracts/eos

set eosio.code permission

cleos —u $DSP_ENDPOINT set account permission SACCOUNT active "{\"threshold\":1,\
—"keys\": [{\"weight\":1,\"key\":\"SACTIVE_PUBLIC_KEY\"}],\"accounts\": [{\"permission\
<" {\"actor\":\"SACCOUNT\", \"permission\":\"eosio.code\"},\"weight\":1}11}" owner -p

 SACCOUNTQact ive (continues on next page)

2.10. Testing 33

https://liquidapps.io/auction
https://medium.com/@liquidapps/air-hodl-dapp-network-tokens-for-eos-holders-f879412f2e49
https://medium.com/@liquidapps/air-hodl-dapp-network-tokens-for-eos-holders-f879412f2e49
https://kylin-dapp-faucet.liquidapps.io/
https://www.eosx.io/guides/how-to-create-account

LiquidApps

(continued from previous page)

set contract
cleos —u $DSP_ENDPOINT set contract S$SACCOUNT ./coldtoken

Select and stake to DSP:

your DSP's account

export DSP_ACCOUNT=

your DSP's service

export DSP_SERVICE=

your DSP's package

export DSP_PACKAGE=

your DSP's minimum stake quantity in DAPP or DAPPHDL (example: 10.0000 DAPP or 10.
—~ 0000 DAPPHDL)

export MIN_STAKE_QUANTITY=

select DSP package

cleos —u $SDSP_ENDPOINT push action dappservices selectpkg "{\"owner\":\"SACCOUNT\",6\
—"provider\":\"$DSP_ACCOUNT\",\"service\":\"$SDSP_SERVICE\", \"package\":\"$DSP_
—PACKAGE\"}" -p $SACCOUNT

stake to DSP package with DAPP

cleos —u $DSP_ENDPOINT push action dappservices stake "{\"owner\":\"SACCOUNT\",\
—"provider\":\"$DSP_ACCOUNT\",\"service\":\"$DSP_SERVICE\", \"quantity\":\"SMIN_STAKE_
—QUANTITY\"}" -p $ACCOUNT

stake to DSP package with DAPPHDL, only available on mainnet

cleos —u SDSP_ENDPOINT push action dappairhodll stake "{\"owner\":\"SACCOUNT\",\
—"provider\":\"$DSP_ACCOUNT\",\"service\":\"$DSP_SERVICE\", \"quantity\":\"SMIN_STAKE_
—QUANTITY\"}" —-p SACCOUNT

Run test commands:

create coldtoken

cleos —u $SDSP_ENDPOINT push action SACCOUNT create "{\"issuer\":\"SACCOUNT\",\
—"maximum_supply\":\"1000000000 TEST\"}" -p S$SACCOUNT

issue some TEST

cleos —u $DSP_ENDPOINT push action S$SACCOUNT issue "{\"to\":\"SACCOUNT\",\"quantity\":\
—"1000 TEST\",\"memo\":\"Testing issue\"}" —-p SACCOUNT

Test VRAM get table row:

you must be in the root of the box to run this command

cd ../../

zeus get-table-row SACCOUNT "accounts" SACCOUNT "TEST" --endpoint $DSP_ENDPOINT |,
—python -m json.tool

with curl:

curl http://SDSP_ENDPOINT/dsp/ipfsservicel/get_table_row —-d '{"contract":"CONTRACT__
—ACCOUNT", "scope":"SCOPE", "table":"TABLE_NAME", "key":"TABLE_PRIMARY_KEY"}' | python -
—m json.tool

34 Chapter 2. DSPs

LiquidApps

Transfer:

cleos —u SDSP_ENDPOINT push action SACCOUNT transfer "{\"from\":\"SACCOUNT\",\"to\":\
—"natdeveloper\", \"quantity\":\"1000 TEST\",\"memo\":\"Testing transfer\"}" -p
—~$SACCOUNT

zeus get-table-row SACCOUNT "accounts" "natdeveloper" "TEST" --endpoint S$DSP_ENDPOINT,,
— | python -m json.tool

Check logs on your DSP Node

pm2 logs

VRAM related actions to look for in a block explorer:

Look for “xcommit” and “xcleanup” actions on your contract: https://bloks.io/

* xcommit - The commit request instructs a DSP to write new data to their local IPFS cluster node. A developer
can utilize the setData function from within their smart contract to first hash the new data in order to return a URI,
before dispatching a commit request which is caught by the DSP node. In a similar way the getData function
can be utilized in order to fetch the data for the smart contract or request a Warmup in case it is missing.

* xcleanup - A cleanup request sends a request to the DSP to evict a file from the cache. This is an asynchronous
request.

More information on VRAM related actions can be found here: https://medium.com/@liquidapps/vram-guide-for-
experts-f809c8f82a27

2.11 Claim Rewards

2.11.1 Claim your DAPP daily rewards:

’cleos push action dappservices claimrewards " [\"SDSP_ACCOUNT\"]" -p $SDSP_ACCOUNT

2.11.2 With Bloks.io:

Claim

2.12 Upgrade DSP Node

Ensure no new updates to the sample-config.toml file are present, if so, update your config.toml accordingly.

Link: sample-config.toml

sudo su -

systemctl stop dsp

systemctl stop ipfs

systemctl stop nodeos

1f changes to sample-config.toml syntax:

(continues on next page)

2.11. Claim Rewards 35

https://bloks.io/account/dappservices?tab=Actions&action=claimrewards&loadContract=true&provider=YOUR_ACCOUNT_HERE
https://raw.githubusercontent.com/liquidapps-io/zeus-sdk/master/boxes/groups/dapp-network/dapp-services-deploy/sample-config.toml

LiquidApps

(continued from previous page)

nano ~/.dsp/config.toml

pm2 del all

pm2 kill

npm uninstall -g @liquidapps/dsp
exit

as USER
sudo chown ubuntu:ubuntu /home/ubuntu/.pm2/rpc.sock /home/ubuntu/.pm2/pub.sock
npm uninstall -g @liquidapps/dsp

sudo su -

npm install -g @ligquidapps/dsp --unsafe-perm=true
setup-dsp

systemctl start nodeos

systemctl start ipfs

systemctl start dsp

exit

¢ search

36 Chapter 2. DSPs

CHAPTER 3

Services

3.1 LiquidAuthenticator Service

3.1.1 Overview

Authentication of offchain APIs and services using EOSIO permissions and contract

3.1.2 Stage

WIP

3.1.3 Contract

authfndspsvc

3.1.4 Box

auth-dapp-service

3.1.5 Service Commands

authusage

3.1.6 Tests

e auth-client.spec.js

* authenticator.spec.js

37

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/auth-dapp-service/test/auth-client.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/auth-dapp-service/test/authenticator.spec.js

LiquidApps

3.1.7 Implementation

3.2 LiquidScheduler Service

3.2.1 Overview

Scheduled Transactions

3.2.2 Stage

Alpha

3.2.3 Contract

cronservices

3.2.4 Box

cron-dapp-service

3.2.5 Service Commands
schedule

3.2.6 Tests

* Cron.spec.js

* Consumer Contract Example

3.2.7 Implementation
3.3 LiquidDNS Service

3.3.1 Overview

DSP Hosted DNS Service

3.3.2 Stage

WIP

3.3.3 Contract

dnsservicesl

38

Chapter 3. Services

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/cron-dapp-service/test/cron.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/cron-dapp-service/contracts/eos/cronconsumer/cronconsumer.cpp

LiquidApps

3.3.4 Box

dns-dapp-service

3.3.5 Service Commands
dnsq

3.3.6 Tests

* dnsconsumer.spec.js

¢ Consumer Contract Example

3.3.7 Implementation

3.4 LiquidArchive Service

3.4.1 Overview

History API Provisioning

3.4.2 Stage

WIP

3.4.3 Contract

historyservc

3.4.4 Box

history-dapp-service

3.4.5 Service Commands
hststore

hsthold

hstserve

hstreg

3.4.6 Tests

* history.spec.js

3.4. LiquidArchive Service

39

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/dns-dapp-service/test/dnsconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/dns-dapp-service/contracts/eos/dnsconsumer/dnsconsumer.cpp
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/history-dapp-service/test/history.spec.js

LiquidApps

3.4.7 Implementation

3.5 LiquidVRAM Service

3.5.1 Overview

Virtual Memory Service

3.5.2 Stage

Stable

3.5.3 Contract

ipfsservicel

3.5.4 Box

ipfs-dapp-service

3.5.5 Service Commands

commit
cleanup

warmup

3.5.6 Tests

* dappservices.spec.js
* ipfsconsumer.spec.js

e Consumer Contract Example

3.5.7 Implementation
3.6 LiquidLog Service

3.6.1 Overview

Log Service

3.6.2 Stage

Beta

40

Chapter 3. Services

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/ipfs-dapp-service/test/dappservices.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/ipfs-dapp-service/test/ipfsconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/ipfs-dapp-service/contracts/eos/ipfsconsumer/ipfsconsumer.cpp

LiquidApps

3.6.3 Contract

logservicesl

3.6.4 Box

log-dapp-service

3.6.5 Service Commands
logevent

logclear

3.6.6 Tests

* logconsumer.spec.js

* Consumer Contract Example

3.6.7 Implementation

3.7 LiquidOracle Service

3.7.1 Overview

Web/IBC/XIBC Oracle Service

3.7.2 Stage

Beta

3.7.3 Contract

oracleservic

3.7.4 Box

oracle-dapp-service

3.7. LiquidOracle Service

41

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/log-dapp-service/test/logconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/log-dapp-service/contracts/eos/logconsumer/logconsumer.cpp

LiquidApps

3.7.5 Service Commands

geturi

orcclean

3.7.6 Tests

* oracleconsumer.spec.js

¢ Consumer Contract Example

3.7.7 Implementation

3.8 LiquidLens Service

3.8.1 Overview

Read Functions Service

3.8.2 Stage

Alpha

3.8.3 Contract

readfndspsvc

3.8.4 Box

readfn-dapp-service

3.8.5 Service Commands

rfnuse

3.8.6 Tests

* readfnconsumer.spec.js

¢ Consumer Contract Example

42

Chapter 3. Services

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/oracle-dapp-service/test/oracleconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/oracle-dapp-service/contracts/eos/oracleconsumer/oracleconsumer.cpp
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/readfn-dapp-service/test/readfnconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/readfn-dapp-service/contracts/eos/readfnconsumer/readfnconsumer.cpp

LiquidApps

3.8.7 Implementation

3.9 LiquidLink Service

3.9.1 Overview

IBC MultiSig Service

3.9.2 Stage

Alpha

3.9.3 Contract

signfndspsvc

3.9.4 Box

sign-dapp-service

3.9.5 Service Commands
signtrx

sgcleanup

3.9.6 Tests
* sign.spec.js
3.9.7 Implementation

3.10 LiquidStorage Service

3.10.1 Overview

Distributed storage and hosting

3.10.2 Stage

WIP

3.10.3 Contract

liquidstorag

3.9. LiquidLink Service

43

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/sign-dapp-service/test/sign.spec.js

LiquidApps

3.10.4 Box

storage-dapp-service

3.10.5 Service Commands

strstore
strhold

strserve

3.10.6 Tests

* storage.spec.js

3.10.7 Implementation

3.11 LiquidAccounts Service

3.11.1 Overview

Allows interaction with contract without a native EOS Account

3.11.2 Stage

Alpha

3.11.3 Contract

accountlessl

3.11.4 Box

vaccounts-dapp-service

3.11.5 Service Commands

vexec

3.11.6 Tests

* vaccountsconsumer.spec.js

* Consumer Contract Example

44

Chapter 3. Services

https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/storage-dapp-service/test/storage.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/vaccounts-dapp-service/test/vaccountsconsumer.spec.js
https://github.com/liquidapps-io/zeus-sdk/tree/master/boxes/groups/services/vaccounts-dapp-service/contracts/eos/vaccountsconsumer/vaccountsconsumer.cpp

LiquidApps

3.11.7 Implementation

e search

3.11. LiquidAccounts Service

45

LiquidApps

46

Chapter 3. Services

CHAPTER 4

DAPP Tokens

4.1 DAPP Token Overview

The DAPP token is a multi-purpose utility token that grants access to the DAPP Network. It is designed to power an
ecosystem of utilities, resources, and services specifically serving the needs of dApp developers building user-centric
dApps.

4.1.1 Videos

* EOS Weekly - The LiquidApps Game-Changer
¢ EOS Weekly - Unlimited DSP Possibilities

4.1.2 Have questions?

* Join our Telegram channel

4.1.3 Want more information?

* Read our whitepaper and subscribe to our Medium posts.

4.2 DAPP Tokens Tracks

Link to auction: https://liquidapps.io/auction

47

https://www.youtube.com/watch?v=C30kJ7p33wg
https://www.youtube.com/watch?v=g9x-M67iEFA
https://t.me/LiquidAppsOfficial
https://liquidapps.io/DAPP%20Network%20and%20DAPP%20Token%20Whitepaper%20v2.0.pdf
https://medium.com/@liquidapps/
https://liquidapps.io/auction

LiquidApps

4.2.1 Instant Track

Users wishing to purchase DAPP with EOS tokens can do so through the instant track. Simply send EOS to the Instant
Registration Track Vendor Smart Contract and you will receive your DAPP tokens at the end of the current cycle (see
“Claiming DAPP Tokens” for further information about the claiming process).

4.2.2 Regular Track

The Regular Registration Track provides flexibility in purchasing DAPP tokens. You can use EOS tokens for any
desired purchase amount. For amounts exceeding 15,000 Swiss Franc (CHF) you may also purchase with ETH, BTC
or Fiat.

In order to open up the opportunity to all potential purchasers the DAPP Generation Event includes a verified track for
buyers who wish to use their ETH, BTC, FIAT or EOS to purchase DAPP tokens.

If you wish to participate in the DAPP Generation Event through the Regular Registration Track, you must complete
a KYC (Know Your Customer) verification process, facilitated by Altcoinomy, a Swiss-based licensed KYC operator.

4.3 Claiming DAPP Tokens

4.3.1 Automatic

The auto claim mechanism does not require participants to push an action themselves to claim the tokens. This is
handled by the website automatically at the end of each cycle.

4.3.2 Manual

The manual claim function is always available and participants can claim their DAPP Tokens immediately after the
cycle ends by sending an explicit action depending on the track they selected.

Instant Registration Track
Regular Registration Track

Login with the wallet of your choice and enter your account in the “payer” field (YOUR_ACCOUNT_HERE) and
hit “Push Transaction”.

4.4 DAPP Tokens Distribution

The year-long DAPP token Generation Event began on February 26th, 2019 and will last until January 2020, for a total
of 333 days. These 333 days will be split into 444 18-hour cycles, with each cycle receiving an allocation of 1,127,127
tokens.

The DAPP tokens are distributed through two unique independent purchase tracks—the Instant Registration Track
and the Regular Registration Track. At the end of each cycle, each one of the two Registration Tracks distributes
563,063.0630 DAPP tokens amongst that cycle’s participants, proportional to the amount of EOS sent by each pur-
chaser in that cycle.

48 Chapter 4. DAPP Tokens

https://www.altcoinomy.com/
https://bloks.io/account/instanttrack?tab=Actions&action=claim&loadContract=true&payer=YOUR_ACCOUNT_HERE
https://bloks.io/account/regulartrack?tab=Actions&action=claim&loadContract=true&payer=YOUR_ACCOUNT_HERE

LiquidApps

4.4.1 Integrity is Our Priority

Blockchain technology has the potential to enable a more free and fair economy to emerge by introducing an un-
precedented level of transparency and accountability to markets. At LiquidApps, we are firm proponents of the free
market ethos. Maintaining the integrity of the DAPP Generation Event is of the utmost importance to us, and, as such,
LiquidApps hereby commits to abstaining from participation in the DAPP Token Generation Event.

More information may be found in our whitepaper

4.5 Air-HODL

A total amount of 100,000,000 DAPP will be allocated and divided between all the accounts that hold EOS at block
#36,568,000 (“Pioneer Holders”) and distributed via our unique Air-HODL mechanism.

You can view all snapshot information here.

The Air-HODLed DAPP tokens will be distributed on a block by block basis, matching up to a maximum of 3 million
EOS per account. The tokens will be continuously vested on a block to block basis over a period of 2 years, so
the complete withdrawal will only be possible at the end of this period. These 2 years began as soon as the DAPP
Generation Event was launched. Any Pioneer Holder choosing to withdraw the Air-HODLed tokens before the end
of those 2 years will only receive the vested portion (i.e. 50% of the distributed DAPP tokens will be vested after 1
year). The remainder of their unvested DAPP tokens will be distributed to Pioneer Holders who are still holding their
Air-HODL DAPP tokens.

HODLers are allowed to stake their vested Air-HODLed tokens immediately using our new staking mechanics. With-
drawing the tokens will transfer the vested tokens to their DAPP account, forfeiting the unvested portion to be redis-
tributed amongst remaining eligible participants.

You can get more information on the Air-HODL and view your balance at: https://liquidapps.io/air-hodl

e search

4.5. Air-HODL 49

https://liquidapps.io/DAPP%20Network%20and%20DAPP%20Token%20Whitepaper%20v2.0.pdf
https://docs.google.com/spreadsheets/d/1qR6RLOU7n9ccNBcWXLz8K9QjDbjkT0Up2sUFZn0T_Hs/edit#gid=130748530
https://liquidapps.io/air-hodl

LiquidApps

50

Chapter 4. DAPP Tokens

CHAPTER B

FAQs

5.1 Frequently Asked Questions The DAPP Token

» What is the DAPP token?

» What is the supply schedule of DAPP token?

e How are DAPP tokens distributed?

* Why do you need to use DAPP Token and not just EOS?
o Why is the sale cycle 18 hours?

* What is an airHODL?

Is this an EOS fork?

5.1.1 What is the DAPP token?

The DAPP token is a multi-purpose utility token designed to power an ecosystem of utilities, resources, & services
specifically serving the needs of dApp developers building user-centric dApps.

5.1.2 What is the supply schedule of DAPP token?

DAPP will have an intial supply of 1 billion tokens. The DAPP Token Smart Contract generates new DAPP Tokens
on an ongoing basis, at an annual inflation rate of 1-5%.

5.1.3 How are DAPP tokens distributed?

50% of the DAPP tokens will be distributed in a year-long token sale, while 10% will be Air-Hodl’d to EOS holders.
The team will receive 20% of the DAPP tokens, of which 6.5% is unlocked and the rest continuously vested (on a
block-by-block basis) over a period of 2 years. Our partners and advisors will receive 10% of the DAPP tokens, with
the remaining 10% designated towards our grant and bounty programs.

51

LiquidApps

5.1.4 Why do you need to use DAPP Token and not just EOS?

While we considered this approach at the beginning of our building journey, we decided against it for a number of
reasons:

* We look forward to growing the network exponentially and will require ever more hardware to provide quick
handling of large amounts of data accessible through a high-availability API. It is fair to assume that this kind
of service would require significant resources to operate and market, thus it would not be optimal for a BP to
take on this as a “side-job” (using a “free market” model that allows adapting price to cost).

* The BPs have a special role as trusted entities in the EOS ecosystem. DSPs are more similar to a cloud service
in this respect, where they are less reputational and more technical. Anyone, including BPs, corporate entities,
and private individuals, can become a DSP.

* Adding the DAPP Network mechanism as an additional utility of the EOS token would not only require a
complete consensus between all BPs, but adoption by all API nodes as well. Lack of complete consensus to
adopt this model as an integral part of the EOS protocol would result in a hard fork. (Unlike a system contract
update, this change would require everyone’s approval, not only 15 out of 21).

* Since the DAPP Network’s mechanism does not require the active 21 BPs’ consensus, it doesn’t require every BP
to cache ALL the data. Sharding the data across different entities enables true horizontal scaling. By separating
the functions and reward mechanisms of BPs and DSPs, The DAPP Network creates an incentive structure that
makes it possible for VRAM to scale successfully.

* We foresee many potential utilities for vVRAM. One of those is getting VRAM to serve as a shared memory
solution between EOS side-chains when using IBC (Inter-Blockchain Communication). This can be extended
to chains with a different native token than EOS, allowing DAPP token to be a token for utilizing cross-chain
resources.

* We believe The DAPP Network should be a separate, complementary ecosystem (economy) to EOS. While the
EOS Mainnet is where consensus is established, the DAPP Network is a secondary trustless layer. DAPP token,
as the access token to the DSPs, will potentially power massive scaling of dApps for the first time.

5.1.5 Why is the sale cycle 18 hours?

An 18 hour cycle causes the start and end time to be constantly changing, giving people in all time zones an equal
opportunity to participate.

5.1.6 What is an airHODL?

An Air-HODL is an airdrop with a vesting period. EOS token holders on the snapshot block receive DAPP tokens on
a pro-rata basis every block, with the complete withdrawal of funds possible only after 2 years. Should they choose to
sell their DAPP tokens, these holders forfeit the right to any future airdrop, increasing the share of DAPP tokens for
the remaining holders.

5.1.7 Is this an EOS fork?

The DAPP Network is not a fork nor a side-chain but a trustless service layer (with an EOSIO compatible interface
to the mainnet), provided by DSPs (DAPP Service providers). This layer potentially allows better utilization of the
existing resources (the RAM and CPU resources provided to you as an EOS token holder). It does not require a
change in the base protocol (hard fork) nor a change in the system contract. DSPs don’t have to be active BPs nor
trusted/elected entities and can price their own services.

52 Chapter 5. FAQs

LiquidApps

5.2 Frequently Asked Questions DAPP Service Providers (DSPs)

e What is a DSP?
* Who can be a DSP?
* Are DSPs required to run a full node?

e How are DSPs incentivized?

5.2.1 What is a DSP?

DSPs are individuals or entities who provide external storage capacity, communication services, and/or utilities to
dApp developers building on the blockchain, playing a crucial role in the DAPP network.

5.2.2 Who can be a DSP?

DSPs can be BPs, private individuals, corporations, or even anonymous entities. The only requirement is that each
DSP must meet the minimum specifications for operating a full node on EOS.

5.2.3 Are DSPs required to run a full node?

While DSPs could use a third-party node, this would add latency to many services, including VRAM. In some cases,
this latency could be significant. LiquidApps does not recommend running a DSP without a full node.

5.2.4 How are DSPs incentivized?

DSPs receive 1-5% of token inflation proportional to the total amount of DAPP tokens staked to their service packages.

5.3 Frequently Asked Questions vVRAM

* Why do I need vRAM?
* How is vRAM different from RAM?
* How can we be sure that data cached with DSPs is not tampered with?

e How much does vRAM cost?

5.3.1 Why do | need vVRAM?

RAM is a memory device used to store smart contract data on EOS. However, its limited capacity makes it difficult
to build and scale dApps. VRAM provides dApp developers with an efficient and affordable alternative for their data
storage needs.

5.2. Frequently Asked Questions DAPP Service Providers (DSPs) 53

LiquidApps

5.3.2 How is vRAM different from RAM?

VRAM is a complement to RAM. It is an alternative storage solution for developers building EOS dApps that are
RAM-compatible, decentralized, and enables storing & retrieving of potentially unlimited amounts of data affordably
and efficiently. It allows dApp developers to cache all relevant data in RAM to distributed file storage systems (IPFS,
BitTorent, HODLONG) hosted by DAPP Service Providers (DSPs), utilizing RAM to store only the data currently in
use. VRAM transactions are still stored in chain history and so are replayable even if all DSPs go offline.

5.3.3 How can we be sure that data cached with DSPs is not tampered with?

DSPs cache files on IPFS, a decentralized file-storage system that uses a hash function to ensure the integrity of the
data. You can learn more about IPFS here: https://www.youtube.com/watch?time_continue=2&v=8CMxDNuuAiQ

5.3.4 How much does vRAM cost?

Developers who wish to use the VRAM System do so by staking DAPP tokens to their chosen DSP for the amount
specified by the Service Package they’ve chosen based on their needs. By staking DAPP, they receive access to the
DSP services, VRAM included.

¢ search

e search

54 Chapter 5. FAQs

	Developers
	Getting Started
	Overview
	Zeus Getting Started
	vRAM Getting Started
	vRAM Getting Started - without zeus
	Packages and Staking
	Zeus Boxes

	DSPs
	Getting started
	Overview
	Architecture
	Demux Backend
	Account
	EOSIO Node
	IPFS
	DSP Node
	Packages
	Testing
	Claim Rewards
	Upgrade DSP Node

	Services
	LiquidAuthenticator Service
	LiquidScheduler Service
	LiquidDNS Service
	LiquidArchive Service
	LiquidVRAM Service
	LiquidLog Service
	LiquidOracle Service
	LiquidLens Service
	LiquidLink Service
	LiquidStorage Service
	LiquidAccounts Service

	DAPP Tokens
	DAPP Token Overview
	DAPP Tokens Tracks
	Claiming DAPP Tokens
	DAPP Tokens Distribution
	Air-HODL

	FAQs
	Frequently Asked Questions The DAPP Token
	Frequently Asked Questions DAPP Service Providers (DSPs)
	Frequently Asked Questions vRAM

