
Limelight Documentation
Release 1.0

Limelight

Jun 04, 2023

Getting Started

1 Mounting 2

2 Wiring 5

3 Imaging 7

4 Networking Setup 9

5 Basic Programming 12

6 Crosshair Calibration 15
6.1 Single Crosshair Mode . 15
6.2 Dual Crosshair Mode . 15

7 Status Lights and Blink Patterns 16
7.1 Green Status Light . 16
7.2 Yellow Status Light . 16
7.3 Green Illumination LEDs . 16

8 Using Multiple Pipelines 17

9 Best Practices 18
9.1 Before An Event . 18
9.2 During Event Calibration . 19
9.3 Pipeline Tuning . 19
9.4 Before Connecting to the Field . 19
9.5 Before Every Match . 20
9.6 Bandwidth . 20
9.7 Troubleshooting . 21

10 Building a Retroreflective/Color Pipeline 22
10.1 Input Tab . 22
10.2 Thresholding Tab . 24
10.3 Contour Filtering . 25
10.4 Output . 27
10.5 3D . 28

11 Additional Theory 30

i

11.1 Vision Targets . 30
11.2 Thresholding . 32
11.3 Contour Filtering . 33
11.4 From Pixels to Angles . 35

12 Tracking AprilTags 38
12.1 Quick Start for FRC AprilTags . 38
12.2 Tips . 39
12.3 Input Tab . 39
12.4 Standard Tab . 40

13 (ADVANCED) 3D AprilTags 41
13.1 Point-of-Interest Tracking . 41
13.2 Full 3D Tracking . 41
13.3 Robot Localization (botpose and MegaTag) . 42
13.4 Using WPILib’s Pose Estimator . 42
13.5 Configuring your Limelight’s Robot-Space Pose . 43

14 (ADVANCED) 3D Coordinate Systems 44
14.1 Limelight Camera Space . 44
14.2 Target Space . 44
14.3 Robot Space . 45
14.4 Field Space . 45

15 (ADVANCED) AprilTag Map Specification 46
15.1 AprilTag Map for FRC 2023 Charged Up . 46

16 Getting Started with Neural Networks 51
16.1 Neural Detector Pipeline . 51
16.2 Nerual Classifier Pipeline . 52

17 Training Your Own Neural Network 53
17.1 Training a Classifier . 53
17.2 Training a Detector . 53

18 Using Python to create Custom OpenCV Vision Pipelines 54
18.1 Minimal Limelight Python Script . 55

19 Python Examples 56

20 Using Grip to create Custom OpenCV Vision Pipelines 57
20.1 Accessing the Video Stream wthin GRIP . 58
20.2 How Limelight Handles Inputs to the Pipeline . 59
20.3 Generating output for the Limelight to use . 59
20.4 Code Generation for Limelight . 60

21 Running GRIP Pipelines on Limelight 61

22 Complete NetworkTables API 64
22.1 Basic Targeting Data . 64
22.2 AprilTag and 3D Data . 65
22.3 Camera Controls . 66
22.4 Python . 67
22.5 Corners . 68
22.6 Advanced Usage with Raw Contours . 68

ii

23 REST/HTTP and Websocket APIs 69
23.1 REST/HTTP (PORT 5807) API Summary: . 69
23.2 Websocket Results Server: . 70

24 JSON Dump Specification 71
24.1 Retroreflective Results . 71
24.2 AprilTag/Fiducial Results . 72
24.3 Neural Detector Results . 74
24.4 Neural Classifier Results . 75

25 Case Study: Estimating Distance 76
25.1 Using a Fixed Angle Camera . 76
25.2 Using Area to Estimate Distance . 78

26 Case Study: Aiming Using Vision 79

27 Case Study: Seeking 82

28 Case Study: Getting in Range 84

29 Case Study: Aiming and Range at the same time. 86

30 Case Study: 2017 Fuel Robot 88

31 Case Study: DEEP SPACE 2019 Examples 94

32 ChArUco Camera Calibration 102
32.1 Performing ChArUco Calibration . 102

33 Frequently Asked Questions 106
33.1 Why is limelight using a low (320x240) resolution? . 106
33.2 What if the game calls for a different tracking algorithm? . 106
33.3 Why is there an extra usb port? . 106
33.4 How do I view the video stream? . 106
33.5 Are the eight LEDs bright enough? . 107
33.6 Does Limelight support protocols other than NetworkTables? . 107
33.7 Does Limelight support Active PoE? . 107
33.8 Should I plug Limelight into our VRM (Voltage Regulator Module)? 107
33.9 My robot has extreme voltage swings while driving, will this damage my Limelight? 107
33.10 Will Limelight’s LEDs dim when our robot’s voltage drops? . 107

34 Additional Resources 108
34.1 Team 254 Vision Talk . 108
34.2 WPI Vision Processing Resources . 108
34.3 GRIP . 108

35 Software Change Log 109
35.1 2023.6 (4/18/23) . 109
35.2 2023.5.1 & 2023.5.2(3/22/23) . 109
35.3 2023.5.0 (3/21/23) . 110
35.4 2023.4.0 (2/18/23) . 110
35.5 2023.3.1 (2/14/23) . 111
35.6 2023.3 (2/13/23) . 111
35.7 2023.2 (1/28/23) . 112
35.8 2023.1 (1/19/23) . 113
35.9 2023.0.0 and 2023.0.1 (1/11/23) . 115

iii

35.10 2022.3.0 (4/13/22) . 117
35.11 2022.2.3 (3/16/22) . 118
35.12 2022.2.2 (2/23/22) . 118
35.13 2022.1 (1/25/22) . 119
35.14 2022.0 and 2022.0.3 (1/15/22) . 119
35.15 2020.4 (3/11/20) . 121
35.16 2020.3 (2/25/20) . 121
35.17 2020.2 (1/30/20) . 121
35.18 2020.1 (1/16/20) . 122
35.19 2019.7 (4/5/19) . 123
35.20 2019.6.1 Hotfix (3/14/19) . 124
35.21 2019.6 (3/12/19) . 124
35.22 2019.5 (2/9/19) . 125
35.23 2019.4 (1/26/19) . 126
35.24 2019.3 (1/19/19) . 126
35.25 2019.2 (1/7/19) . 127
35.26 2019.1 (12/18/18) . 127
35.27 2019.0 (12/10/18) . 128
35.28 2018.5 (3/28/18) . 128
35.29 2018.4 (3/19/18) . 128
35.30 2018.3 (2/28/18) . 129
35.31 2018.2 (2/10/18) . 129
35.32 2018.1 (1/8/18) . 131
35.33 2018.0 (1/3/18) . 131
35.34 2017.7 (11/21/17) . 133
35.35 2017.6 (11/13/17) . 133
35.36 2017.5 (11/9/17) . 133
35.37 2017.4 (10/30/17) . 134
35.38 2017.3 (10/25/17) . 134
35.39 2017.2 (10/23/17) . 134
35.40 2017.1 (10/21/17) . 134

iv

Limelight Documentation, Release 1.0

Fig. 1: FRC Team 2910, Jack In The Bot (Washington, USA)

Limelight is an easy-to-use smart camera for FRC.

Getting Started 1

CHAPTER 1

Mounting

Limelight 3

Use four 1 1/2” 10-32 screws and nylock nuts to mount your Limelight.

Note:

Q. What is the purpose of the status LEDs?

2

Limelight Documentation, Release 1.0

A. The green LED will blink quickly when a target has been acquired. The yellow LED will blink if the camera is set
to use a dynamic IP address, and will stay solid if the camera is using a static IP address.

Limelight 2

Use four 1 1/2” 10-32 screws and nylock nuts to mount your Limelight.

Note:

Q. What is the purpose of the status LEDs?

A. The green LED will blink quickly when a target has been acquired. The yellow LED will blink if the camera is set
to use a dynamic IP address, and will stay solid if the camera is using a static IP address.

Limelight 1

Use four 1 1/4” 10-32 screws and nylock nuts to mount your Limelight.

3

Limelight Documentation, Release 1.0

4

CHAPTER 2

Wiring

Limelight takes a 12V input, but is built to function down to 4.5V. Its LEDs have a constant brightness down to 7V.

Warning: Do not use the REV radio power module to power your Limelight

Credit - Christian Femia

Standard Wiring

• Do not run wires to your VRM.

• Run two wires from your limelight to a slot on your PDP (NOT your VRM).

• Add any breaker (5A, 10A, 20A, etc.) to the same slot on your PDP.

5

Limelight Documentation, Release 1.0

• Run an ethernet cable from your Limelight to your robot radio.

Power-over-Ethernet (PoE) Wiring

PoE allows you to add both power and network connectivity to your Limelight via an Ethernet cable.

Warning: This is not standard IEEE 802.3 (44V-48V) PoE - this is why you must use a passive injector with 12V.

• (LIMELIGHT 1 ONLY) Ensure that your Limelight’s power jumper is set to the “E” position.

• Connect a passive Passive PoE Injector to your PDP (NOT your VRM).

• Add any breaker (5A, 10A, 20A, etc.) to the same slot on your PDP.

• Run an ethernet cable from your Limelight to your passive POE injector.

6

http://www.revrobotics.com/rev-11-1210/

CHAPTER 3

Imaging

Follow this guide to update your Limelight Smart Camera to the latest version of LimelightOS.

Limelight 3

• Power off your limelight.

• Download the latest USB drivers, Limelight OS image, and Balena Flash tool from from the Downloads Page.

• Run a USB-USB-C cable from your laptop to your limelight. Your limelight wiill power on automatically

• Run “Balena Etcher” as an administrator.

• It may take up to 20 seconds for your machine to recognize the camera.

• Select the latest .zip image in your downloads folder

• Select a “Compute Module” device in the “Drives” menu

• Click “Flash”

• Once flashing is complete, remove the usb cable from your limelight.

Limelight 2

• Power off your Limelight.

• Download the latest USB drivers, Limelight OS image, and Balena Flash tool from from the Downloads Page.

• Run a USB-MicroUSB cable from your laptop to your limelight. Your limelight will power on automatically.

• Run “Balena Etcher” as an administrator.

• It may take up to 20 seconds for your machine to recognize the camera.

• Select the latest .zip image in your downloads folder

• Select a “Compute Module” device in the “Drives” menu

• Click “Flash”

• Once flashing is complete, remove the usb cable from your limelight.

7

https://limelightvision.io/pages/downloads
https://limelightvision.io/pages/downloads

Limelight Documentation, Release 1.0

Limelight 1

Warning: Some versions of Limelight 1 are electrostatically sensitive around the micro-usb port. To prevent
damaging the port, ground yourself to something metal before you connect to the micro usb port. This will ensure
your personal static charge has been discharged.

• Power off your Limelight.

• Download the latest USB drivers, Limelight OS image, and Balena Flash tool from from the Downloads Page.

• Run a USB-MicroUSB cable from your laptop to your limelight.

• Turn-on to your limelight.

• Run “Balena Etcher” as an administrator.

• It may take up to 20 seconds for your machine to recognize the camera.

• Select the latest .zip image in your downloads folder

• Select a “Compute Module” device in the “Drives” menu

• Click “Flash”

• Once flashing is complete, remove power from your limelight

Warning: Only connect the microUSB cable while imaging. Limelight enters a special flash mode while the
microUSB cable is connected. You will not be able to access the web interface while Limelight is in flash mode.

8

https://limelightvision.io/pages/downloads

CHAPTER 4

Networking Setup

We highly recommend following the static IP instructions for reliability during events.

Follow these steps before starting:

• Go to add/remove programs in windows, and search for “bonjour”

• How many items do you see?

– If there are two (2) items with “bonjour” in their names, uninstall “bonjour print services”

– If there are no (0) items with “bonjour” in their names, install bonjour from our Downloads page.

• Reboot your robot and computer.

• Download the Limelight Finder Tool

• Follow the steps listed below.

Static IP Address (Recommended)

• Follow the bonjour-related instructions above.

• Power-up your robot, and connect your laptop to your robot’s network.

• After your Limelight flashes its LED array, open the Limelight Finder Tool and search for your Limelight or
navigate to http://limelight.local:5801. This is the configuration panel.

• Navigate to the “Settings” tab on the left side of the interface.

• Enter your team number and press the “Update Team Number” button.

• Change your “IP Assignment” to “Static”.

• Set your Limelight’s IP address to “10.TE.AM.11”.

• NOTE: Teams with zeros need to pay special attention:

• Team 916 uses 10.9.16.xx,

• Team 9106 uses 10.91.6.xx

• Team 9016 uses 10.90.16.xx

9

https://limelightvision.io/pages/downloads
https://limelightvision.io/pages/downloads/
http://limelight.local:5801

Limelight Documentation, Release 1.0

• Set the Netmask to “255.255.255.0”.

• Set the Gateway to “10.TE.AM.1”.

• Click the “Update” button.

• Give your roboRIO the following static IP address: “10.TE.AM.2”

• Power-cycle your robot.

• You will now be access your config panel at http://10.TE.AM.11:5801, and your camera stream at http://10.TE.
AM.11:5800

Dynamic IP Address (Not recommended)

• Follow the bonjour-related instructions above.

• Power-up your robot, and connect your laptop to your robot’s network.

• After your Limelight flashes its LED array, open the Limelight Finder Tool and search for your Limelight or
navigate to http://limelight.local:5801. This is the configuration panel.

• Navigate to the “Settings” tab on the left side of the interface.

• Enter your team number and press the “Update Team Number” button.

• Change your “IP Assignment” to “Automatic”.

• Click the “Update” button.

• Power-cycle your robot.

• You can continue be access your config panel at http://limelight.local:5801, and your camera stream at http:
//limelight.local:5800

Note:

Q. Why do we recommend a static IP?

A. First, it shaves multiple seconds off Limelight’s boot time. Second, teams have historically had issues with
DHCP assignment and mDNS responders on actual FRC fields and with event radio firmware.

We recommend setting static IP addresses on your robo-rio and driverstation as well. The networking settings to use
on all of these devices can be found near the bottom half of this web page: https://docs.wpilib.org/en/stable/docs/
networking/networking-introduction/ip-configurations.html

Note:

Q. How do I reset the IP address?

A. After your Limelight has booted, hold the config button on the front face of the camera until the LEDs start
blinking. Power-cycle your robot, and your Limelight will have an automatically-assigned IP address.

10

http://10.TE.AM.11:5801
http://10.TE.AM.11:5800
http://10.TE.AM.11:5800
http://limelight.local:5801
http://limelight.local:5801
http://limelight.local:5800
http://limelight.local:5800
https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html
https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html

Limelight Documentation, Release 1.0

• If the above steps do not fix the problem, install Angry IP scanner and find the address for your limelight.

• Go to <limelightaddress>:5801, and give your limelight a .11 static IP.

• From this point onward, you can rely on the static IP to access the page.

11

CHAPTER 5

Basic Programming

For now, we just need to get data from the camera to your robot. Limelight posts targeting data to Network Tables at
100hz. The default update rate for NetworkTables is 10hz, but Limelight automatically overwrites it to allow for more
frequent data transfer.

To get started, we recommend reading four values from the “limelight” Network Table as frequently as possible. Our
code samples will show you exactly how to do this. The offsets to your target (in degrees) are sent as “tx” and “ty”.
These can be used to turn your robot, turn a turret, etc. The target’s area, sent as “ta”, may be used a rough indicator
of distance to your target. Area is a value between 0 and 100, where 0 means that your target’s hull area is 0% of the
total image area, and 100 means that your target’s hull fills the entire image. The rotation or “skew” of your target is
returned as “ts”. If all values are equal to zero, no targets exist.

In addition, you may control certain features by setting values in NetworkTables. See the complete NT API here:
Complete NetworkTables API

Read the following from the “limelight” table

tv Whether the limelight has any valid targets (0 or 1)
tx Horizontal Offset From Crosshair To Target (-27 degrees to 27 degrees)
ty Vertical Offset From Crosshair To Target (-20.5 degrees to 20.5 degrees)
ta Target Area (0% of image to 100% of image)

Write the following to the “limelight” table

ledMode Sets limelight’s LED state
0 use the LED Mode set in the current pipeline
1 force off
2 force blink
3 force on

12

Limelight Documentation, Release 1.0

camMode Sets limelight’s operation mode
0 Vision processor
1 Driver Camera (Increases exposure, disables vision processing)

pipeline Sets limelight’s current pipeline
0 .. 9 Select pipeline 0..9

Java

Don’t forget to add these imports:

import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableEntry;
import edu.wpi.first.networktables.NetworkTableInstance;

NetworkTable table = NetworkTableInstance.getDefault().getTable("limelight");
NetworkTableEntry tx = table.getEntry("tx");
NetworkTableEntry ty = table.getEntry("ty");
NetworkTableEntry ta = table.getEntry("ta");

//read values periodically
double x = tx.getDouble(0.0);
double y = ty.getDouble(0.0);
double area = ta.getDouble(0.0);

//post to smart dashboard periodically
SmartDashboard.putNumber("LimelightX", x);
SmartDashboard.putNumber("LimelightY", y);
SmartDashboard.putNumber("LimelightArea", area);

LabView

13

Limelight Documentation, Release 1.0

C++

Don’t forget to add these #include directives:

#include "frc/smartdashboard/Smartdashboard.h"
#include "networktables/NetworkTable.h"
#include "networktables/NetworkTableInstance.h"
#include "networktables/NetworkTableEntry.h"
#include "networktables/NetworkTableValue.h"
#include "wpi/span.h"

std::shared_ptr<nt::NetworkTable> table = nt::NetworkTableInstance::GetDefault().
→˓GetTable("limelight");
double targetOffsetAngle_Horizontal = table->GetNumber("tx",0.0);
double targetOffsetAngle_Vertical = table->GetNumber("ty",0.0);
double targetArea = table->GetNumber("ta",0.0);
double targetSkew = table->GetNumber("ts",0.0);

Python

from networktables import NetworkTables

table = NetworkTables.getTable("limelight")
tx = table.getNumber('tx',None)
ty = table.getNumber('ty',None)
ta = table.getNumber('ta',None)
ts = table.getNumber('ts',None)

14

CHAPTER 6

Crosshair Calibration

• Single Crosshair Mode

• Dual Crosshair Mode

Limelight’s crosshairs turn calibration into a seamless process. Rather than storing offsets in their code, teams can
line-up their robots perfectly by hand (or by joystick), and click the “calibrate” button.

Calibrating a crosshair moves the “zero” of your targeting data. This is very useful if your Limelight isn’t perfectly
centered on your robot.

6.1 Single Crosshair Mode

Line-up your robot at its ideal scoring location+rotation, and click “calibrate”. Now a tx and ty of “zero” equate to a
perfectly aligned robot. If your robot needs to be recalibrated for a new field, simply take a practice match to find the
perfect alignment for your robot, and click “calibrate” during your match.

6.2 Dual Crosshair Mode

Imagine a robot with an off-axis camera or shooter that needs to shoot gameobjects into a goal from many positions
on the field. As the robot approaches the goal, its crosshair must adjust in real-time to compensate. Dual crosshair
mode is built for this functionality. Line-up your robot at its closest scoring position+rotation, and calibrate crosshair
“A”. Line-up your robot at its farthest scoring position+rotation, and calibrate crosshair “B”. When you calibrate in
dual-crosshair mode, crosshairs also store an area value. You will notice that as your robot moves between its min and
max scoring distances, the crosshair moves between crosshair “A” and crosshair “B”. This is done by checking the
area of the target, and comparing it to the two target areas seen during calibration.

15

CHAPTER 7

Status Lights and Blink Patterns

7.1 Green Status Light

The green status light will blink slowly if no targets are detected by the current pipeline. It will blink quickly if any
targets are detected by the current pipeline.

7.2 Yellow Status Light

The yellow status light will blink when a static IP address has not been assigned. If a static IP address is assigned, the
light will remain either consistently on or off, without any blinking.

7.3 Green Illumination LEDs

The green illumination LEDs are controllable via the web interface and various APIs, but there are a few special blink
patterns that are designed to help troubleshoot hardware and software issues:

• Left/Right or Top/Bottom alternating blink: The internal camera cable has become unseated, or the image sensor
has suffered damage.

• Fast Blink (all leds): The networking reset button has been held for at least 10 seconds.

• Repeated Startup Sequence (three blinks, or multiple fade-in fade-out blinks): The software is crashing, possibly
due to hardware damage.

16

CHAPTER 8

Using Multiple Pipelines

Limelight can store up to ten unique vision pipelines for different goals, different fields, or different robots. Change
pipelines mid-match by changing the “pipeline” value in NetworkTables.

To edit multiple pipelines, you must first check the “Ignore NetworkTables Index” checkbox in the web interface. This
will force the robot to temporarily allow you to change the pipline index through the webinterface rather than through
NetworkTables.

To download your pipelines for backups and sharing, simply click the “download” button next to your pipeline’s name.
To upload a pipeline, click the “upload” button.

Here’s an example of a robot that utilizes two pipelines:

The first pipeline is tuned to target single vertical stripes. The second pipeline is tuned to find a combo of two horizontal
stripes. The code for this robot is available in the “Aim and Range” case study.

Notice that when the robot switches pipelines, the web interface auto-loads the new pipeline.

17

CHAPTER 9

Best Practices

9.1 Before An Event

• Download and backup all pipelines to your programming laptop.

• Download a copy of the latest Limelight image to your programming laptop.

• Record a list of your pipelines and their indices.

– 1 - Dual Target Low

– 2 - Dual Target High Cargo

• Add strain reliefs to all power and ethernet cables going to your LL.

• Consider hot-gluing all connections.

• Make sure you are using a dashboard (Smartdashboard, Shuffleboard) and not a web browser to view the stream
while practicing and during events. Default web controls don’t have the ability to auto-reconnect to streams after
spurious disconnections, but SmartDashboard and Shuffleboard both have auto-reconnection built-in by default.

• Add a network switch to your robot to enable ethernet tethering while at an event and to avoid the second radio
port. We recommend the Branboxes SW-005 5 port Switch

• Use twisted Cat6 cables with stranded wires. We do not recommend the use of flat ethernet cables.

• We do not recommend use of the second radio port. Route all devices through your network switch if possible.

• Setup Port Forwarding to enable Limelight communication while tethered to your robot over USB.

– Forward ports 5800, 5801, 5802, 5803, 5804, and 5805

Java

import edu.wpi.first.wpiutil.net.PortForwarder;
@Override
public void robotInit()
{

(continues on next page)

18

https://www.amazon.com/BRAINBOXES-SW-005-Brainboxes-Unmanaged-Ethernet/dp/B07PRZ2R1P/
https://docs.wpilib.org/en/latest/docs/networking/networking-utilities/portforwarding.html

Limelight Documentation, Release 1.0

(continued from previous page)

// Make sure you only configure port forwarding once in your robot code.
// Do not place these function calls in any periodic functions
for (int port = 5800; port <= 5805; port++) {

PortForwarder.add(port, "limelight.local", port);
}

}

C++

#include <wpi/PortForwarder.h>
void Robot::RobotInit
{

for (int port = 5800; port <= 5805; port++) {
wpi::PortForwarder::GetInstance().Add(port, "limelight.local", port);

}
}

9.2 During Event Calibration

• Roll your robot to each target on the field.

– Make sure your thresholding is working properly. Switch to the “threshold” view during this process
(located under the image stream).

– Roll your robot close to the target, and far away from the target. Ensure crosshairs are calibrated
properly.

– While far away from the target, rotate your robot left and right ~ 30 degrees to ensure that other targets
will not be erroneously tracked.

– See the tuning section below for more tuning tips.

– Ensure no other field / arena elements are being accidentally tracked. Check your area and aspect ratio
filters if you are picking up arena lights.

– Take snapshots of all targets and erroneous targeting. You can use these to tune your pipelines in the
pits.

9.3 Pipeline Tuning

• Use the lowest exposure possible, and increase black level offset until field lights and LED reflections are
removed from the image.

• Test your thresholding while far away and angled away from your target.

• Use 2019.7’s “Smart Speckle Rejection” to filter unwanted LED reflections

9.4 Before Connecting to the Field

• Give your laptop a static IP configuration.

– IP: 10.TE.AM.5

9.2. During Event Calibration 19

Limelight Documentation, Release 1.0

– Subnet Mask: 255.0.0.0

– Gateway: 10.TE.AM.1

• Give your RIO a static IP configuration.

– IP: “10.TE.AM.2”

– Subnet Mask: 255.255.255.0 <- NOTE THE DIFFERENCE HERE

– Gateway: 10.TE.AM.1

• Give your Limelights unique hostnames (if using multiple).

• Give your Limelights unique static IP configurations.

– Always start with “.11” addresses and go upward. (10.9.87.11, etc.)

– The use of other addresses may cause your units to malfunction when connected to the FMS.

– IP: “10.TE.AM.11”

– Subnet mask: 255.255.255.0

– Gateway: “10.TE.AM.1”

NOTE: Teams with zeros need to pay special attention:

• Team 916 uses 10.9.16.xx,

• Team 9106 uses 10.91.6.xx

• Team 9016 uses 10.90.16.xx

Additional information: https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.
html

9.5 Before Every Match

• Check all power and Ethernet cables going to your Limelights.

• Check all electrical connections for looseness and frayed wires.

• Check all mounting screws / zipties / tape.

• Observe ESD precautions at all times.

9.6 Bandwidth

• Some teams run two Limelights with two USB cameras while staying well under under the bandwidth limit.
Follow the steps below to reduce bandwidth.

• Rather than using driver mode, create a “driver” pipeline. Turn down the exposure to reduce stream bandwidth.

• Using a USB camera? Use the “stream” NT key to enable picture-in-picture mode. This will dramatically
reduce stream bandwidth.

• Turn the stream rate to “low” in the settings page if streaming isn’t critical for driving.

• Use the 160x120 stream option introduced in 2019.7.

9.5. Before Every Match 20

https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html
https://docs.wpilib.org/en/stable/docs/networking/networking-introduction/ip-configurations.html

Limelight Documentation, Release 1.0

9.7 Troubleshooting

• Try to access the stream at <IP>:5800 with a web browser. This should help you determine the root of your
issues.

• Restart your dashboard

• Reboot your computer

• Reboot your robot if the field has been reset

• Broken Ethernet cables can be the cause of intermittent networking issues.

• Always use static IP configurations on the field.

9.7. Troubleshooting 21

CHAPTER 10

Building a Retroreflective/Color Pipeline

To configure a retroreflective/color vision pipeline, you must first access the web interface at <http://IPADDRESS:
5801> or http://10.te.am.11:5801 for FRC teams.

The “Tracking” page is comprised of five tuning tabs:

• Input Tab

• Thresholding Tab

• Contour Filtering

• Output

• 3D

10.1 Input Tab

The Input Tab hosts controls to change the raw camera image before it is passed through the processing pipeline.

10.1.1 Pipeline Type

Controls the desired pipeline type. Change this option to utilize GRIP or Python Pipelines.

10.1.2 Source Image

Controls the source of the image that is passed through the pipeline. Switch to “Snapshot” to test your vision pipelines
on stored Snapshots.

This control auto-resets to “Camera” when the GUI is closed.

22

http://IPADDRESS:5801
http://IPADDRESS:5801
http://10.te.am.11:5801

Limelight Documentation, Release 1.0

10.1.3 Resolution + Zoom

Controls the resolution of the camera and vision pipeline. We recommend using the 320x240 pipeline unless you are
utilizing 3D functionality.

320x240 pipelines execute at 90fps, while 960x720 pipelines execute at 22 fps. In 2020, 2x and 3x Hardware Zoom
options were added to this field. The zoom options are not digital and use 100% real sensor pixels.

10.1.4 LEDs

Controls the default LED mode for this pipeline. This may be overridden during a match with the “LED” network
table option.

Limelight 2+ users have access to an “LED Brightness” Slider which allows for LED dimming.

10.1.5 Orientation

Controls the orientation of incoming frames. Set it to “inverted” if your camera is mounted upside-down.

10.1.6 Exposure

Controls the camera’s exposure setting in .01 millisecond intervals. Think of a camera as a grid of light-collecting
buckets - exposure time controls how long your camera’s “buckets” are open per frame. Lowering the exposure time
will effectively darken your image. Low and fixed exposure times are crucial in FRC, as they black-out the bulk of
incoming image data. Well-lit retroreflective tape will stand out in a mostly black image, turning vision processing
into a straightforward process.

10.1.7 Black Level Offset

Increasing the black level offset can significantly darken your camera stream. This should be increased to further
remove arena lights and bright spots from your image. This is a sensor-level setting, and not a fake digital brightness
setting.

10.1.8 Red Balance, Blue Balance

Controls the intensity of Red and Blue color components in your image. These collecively control your Limelight’s
white balance. We recommend leaving these at their default values of

10.1. Input Tab 23

Limelight Documentation, Release 1.0

10.2 Thresholding Tab

Thresholding is a critical component of most FRC vision tracking algorithms. It is the act of taking an image, and
throwing away any pixels that aren’t in a specific color range. The result of thresholding is generally a one-dimensional
image in which a pixel is either “on” or “off.

10.2.1 Video Feed (Located beneath stream)

Controls which image is streamed from the mjpeg server. You should switch to the “threshold” image if you need to
tune your HSV thresholding.

10.2.2 Thresholding Wands

Wands enable users to click on Limelights’s video stream to perform automatic HSV thresholding.

• The “Eyedropper” wand centers HSV parameters around the selected pixel

• The “Add” wand adjusts HSV parameters to include the selected pixel

• The “Subtract” wand adjust HSV parameters to ignore the selected pixel

10.2.3 Hue

Describes a “pure” color. A Hue of “0” describes pure red, and a hue of 1/3 (59 on the slider) describes pure green.
Hue is useful because it doesn’t change as a pixel “brightens” or “darkens”. This is the most important parameter to
tune. If you make your hue range as small as possible, you will have little if any trouble transitioning to an actual FRC
field.

10.2.4 Saturation

Describes the extent to which a color is “pure”. Another way to think of this is how washed-out a color appears, that
is, how much “white” is in a color. Low saturation means a color is almost white, and high saturation means a color is
almost “pure”.

10.2. Thresholding Tab 24

Limelight Documentation, Release 1.0

10.2.5 Value

Describes the darkness of a color, or how much “black” is in a color. A low value corresponds to a near-black
color. You should absolutely increase the minimum value from zero, so that black pixels are not passed through the
processing pipeline.

10.2.6 Erosion and Dilation

Erosion slightly erodes the result of an HSV threshold. This is useful if many objects are passing through a tuned HSV
threshold. Dilation slightly inflates the result of an HSV threshold. Use this to patch holes in thresholding results.

10.2.7 Hue Inversion

Use hue inversion to track red targets, as red exists at both the beginning and the end of the hue range.

10.3 Contour Filtering

After thresholding, Limelight generates a list of contours. After that, each contour is wrapped in a bounding rectangle
an unrotated rectangle, and a “convex hull”. These are passed through a series of filters to determine the “best” contour.
If multiple contours pass through all filters, Limelight chooses the best contour using the “Sort Mode” Control.

10.3.1 Sort Mode

Controls how contours are sorted after they are passed through all other filters.

In 2019, the “closest” sort mode was added. This mode will select the target that is closest to the configurable crosshair.

10.3.2 Target Area

Controls the range of acceptable bounding-rectangle areas, as percentages of the screen. You can increase the minimum
area to help filter-out stadium lights, and decrease the maximum value to help filter-out things like large displays near
the field.

Note: The area slider is not linearly scaled, but quarticly scaled. This is done to provide extra precision near the
lower-end of area values, where many FRC targets lie. The area of a square scales quadratically with its side length,
but x^4 scaling provides even greater precision where it is needed.

10.3. Contour Filtering 25

Limelight Documentation, Release 1.0

10.3.3 Target Fullness

Fullness is the percentage of “on” pixels in the chosen contour’s bounding rectangle. A solid rectangle target will have
a near-1.0 fullness, while a U-shaped target will have a low fullness.

10.3.4 Target Aspect Ratio

Aspect ratio is defined by the width of the bounding rectangle of the chosen contour divided by its height. A low
aspect ratio describes a “tall” rectangle, while a high aspect ratio describes a “wide” rectangle.

Note: The aspect ratio slider is also quadratically scaled.

10.3.5 Direction Filter

Rejects contours on the basis of their orientation.

10.3.6 Smart Speckle Rejection

Rejects relatively small (as opposed to absolutely small w/ the area filter) contours that have passed through all other
filters. This is essential if a target must remain trackable from short-range and long-range. This feature was introduced
in the 2019 season to reject Limelight’s LED reflections when robots were very close to targets.

10.3.7 Target Grouping

Controls target “grouping”. Set to dual mode to look for “targets” that consist of two shapes, or tri mode to look for
targets that consist of three shapes.

Smart Target Grouping can group a variable number of targets and reject outliers. It was added in 2022 to help track
the upper hub target.

10.3.8 Intersection Filter (Dual Targets Only)

Rejects groups of contours based on how they would intersect if extended to infinity.

10.3. Contour Filtering 26

Limelight Documentation, Release 1.0

10.3.9 Smart Target Grouping

Automatically group targets that pass all individual target filters.

• Will dynamically group any number of targets between -group size slider minimum- and -group size slider
maximum-

Outlier Rejection

• While group targets are more challenging than normal targets, they provide more information and oppor-
tunities for filtering. If you know that a goal is comprised of multiple targets that are close to each other,
you can actually reject outlier targets that stand on their own.

• You should rely almost entirely on good target filtering, and only use outlier rejection if you see or expect
spurious outliers in your camera stream. If you have poor standard target filtering, outlier detection could
begin to work against you!

10.4 Output

This tab controls what happens during the last stage of the vision pipeline

10.4.1 Targeting Region

Controls the point of interest of the chosen contour’s bounding rectangle. By default, the tracking parameters tx and
ty represent the offsets from your crosshair to the center of the chosen rectangle. You can use another option if a target
changes in size, or is comprised of two targets that sometimes blend together.

10.4.2 Send Raw Corners?

Set this control to “yes” to submit raw corners over network tables. Tune the number of corners submitted by adjusting
the “Contour Simplification” value in the “Contour Filtering” page.

10.4.3 Send Raw Contours?

Set this control to “yes” to submit raw contours over network tables. The top 3 passing contours will be submitted.

10.4.4 Crosshair Calibration

Controls the “origin” of your targeting values. Let’s say a shooter on your robot needs to be calibrated such that it
always points a bit left-of-center. You can line up your robot, click “calibrate,” and all of your targeting values will be
sent relative to your new crosshair. See the calibration page for more details!

10.4. Output 27

Limelight Documentation, Release 1.0

10.5 3D

Experiment with PnP point-based pose estimation here.

10.5.1 Compute 3D

Controls whether pose estimation is enabled. You must enable the 960x720 high-res mode for this to work.

10.5.2 Force Convex

Use this option to select only the “outermost” corners of a target for SolvePnP.

10.5.3 Contour Simplification

Use this option to remove small, noisy edges from the target.

10.5.4 Acceptable Error

Limelight will only return a target if it passes a reprojection test with a certain score in pixels.

10.5.5 Goal Z-Offset

Automatically the 3D Depth value of your target (Z-Axis).

10.5.6 Camera Matricies (Advanced Users)

Limelight 2 960x720

cameraMatrix = cv::Matx33d(
772.53876202, 0., 479.132337442,
0., 769.052151477, 359.143001808,
0., 0., 1.0);

distortionCoefficient = std::vector<double> {
2.9684613693070039e-01, -1.4380252254747885e+00,-2.

→˓2098421479494509e-03,
-3.3894563533907176e-03, 2.5344430354806740e+00};

focalLength = 2.9272781257541; //mm

Limelight 1 960x720

10.5. 3D 28

Limelight Documentation, Release 1.0

cameraMatrix = cv::Matx33d(
8.8106888208290547e+02, 0., 4.8844767170376019e+02,
0., 8.7832357838726318e+02, 3.5819038625928994e+02,
0., 0., 1.);

distortionCoefficient = std::vector<double> {
1.3861168261860063e-01, -5.4784067711324946e-01,
-2.2878279907387667e-03, -3.8260257487769065e-04,
5.0520158005588123e-01 };

focalLength = 3.3385168390258093; //mm

10.5. 3D 29

CHAPTER 11

Additional Theory

• Vision Targets

• Thresholding Tab

• Contour Filtering

• Output

11.1 Vision Targets

The FRC game designers often place reflective “vision targets” on the field in strategic locations. These vision targets
are usually made out of retro-reflective tape. Major scoring elements generally have vision targets that can be used
to automatically aim. Below you can see two examples of some of the vision targets from the 2016 and 2017 FRC
games.

30

Limelight Documentation, Release 1.0

These retro-reflective vision targets have a very useful property: when light is shined at them, it will reflect directly
back to the light source. This is why Limelight has bright green LEDs surrounding its camera lens. By setting the
camera exposure very low while emitting a bright green light toward the target, we can acquire an image that is mostly
black with a bright green vision target. This makes the job of acquiring the target relatively easy.

Here you can see an example of the ideal of image. Notice how almost all of the detail in the image is gone due to the
low exposure setting but the retro-reflective tape stands out brightly.

11.1. Vision Targets 31

Limelight Documentation, Release 1.0

11.2 Thresholding

Thresholding is the next critical component of most FRC vision tracking algorithms. It is the act of taking an image,
and throwing away any pixels that aren’t in a specific color range. The result of thresholding is generally a one-
dimensional image in which a pixel is either “on” or “off. Thresholding works very well on images that are captured
using the above strategy (low exposure, very dark image with a brightly illuminated vision target)

Limelight does thresholding in the HSV (Hue-Saturation-Value) colorspace. You may be used to thinking of colors
in the RGB (Red-Green-Blue) colorspace. HSV is just another way of representing color similar to the way cartesian
coordinates or polar coordinates can be used to describe positions. The reason we use the HSV colorspace is that the
Hue can be used to very tightly select the green color that Limelight’s leds output.

It is critical to adjust your thresholding settings to eliminate as much as you can from the image. You will get the best
results if you optimize each stage of your vision pipeline before moving to the next stage. The following image depicts
the difference between improper and proper thresholding:

11.2. Thresholding 32

Limelight Documentation, Release 1.0

Sometimes things like ceiling lights or windows in an arena can be difficult to remove from the image using thresh-
olding, which brings us to the next stage.

11.3 Contour Filtering

After thresholding, Limelight’s vision pipeline generates a set of contours for the image. A contour in is a curve
surrounding a contiguous set of pixels. Sometimes things like ceiling lights, arena scoreboards, windows and other
things can make it past the thresholding step. This is where contour filtering becomes useful. The goal is to eliminate
any contours which we know are not the target we are interested in.

The first and easiest countour filter is to ignore any contours which are smaller than what our vision target looks like
from our scoring distance. Anything smaller than that size is obviously something farther away and should be ignored.
This is called area filtering.

The FRC vision targets often have some geometric property that can be exploited to help us filter contours. For
example, if the vision target has a wide aspect ratio, we can filter out any contours that are not wide:

11.3. Contour Filtering 33

Limelight Documentation, Release 1.0

However, keep in mind that your camera may be looking at the target from an odd angle. This can drastically affect
the aspect ratio of its contour. Be sure to test your settings from a variety of angles to ensure that you do not filter too
aggressively and end up ignoring the vision target!

This next image target is very interesting. It is one of the best designed vision targets in FRC (in our opinion).
Limelight automatically calculates a value called the fullness of a contour. Fullness is the ratio between the pixel area
of the contour to its convex area. This particular shape has a very low fullness and you almost never see any ceiling
lights, windows, etc with such a low fullness. So you can very effectively filter out the unwanted contours if your
vision target looks like this one.

11.3. Contour Filtering 34

Limelight Documentation, Release 1.0

Limelight has many options for filtering contours. You can use these options along with what you know about the
geometry properties of the particular vision target you are trying to track.

Currently, if multiple contours pass through your filtering options, the largest contour is chosen. In addition, the
pipeline prefers to “lock” onto contours using hysteresis. This is a feature that helps prevent flickering between similar
targets.

11.4 From Pixels to Angles

The end result of the vision pipeline is a pixel location of the best contour in the image. For most games, we can just
aim at the center of the contour. Sometimes it is also useful to aim at the top-center or some other point but essentially
we have a pixel coordinate for where we want to aim. In order to compute the angles to this target, we need to use a
little bit of trigonometry.

First we assume that we have a perfect “pinhole” camera. In practice this can be far from the truth but the limelight’s
camera is very close. (A fisheye lens would be far from this ideal as a counter-example.)

The limelight camera has a horizontal field of view of 54 degrees and a vertical field of view of 41 degrees. It captures
images at 320x240 resolution. We assume the center of the image is the optical axis of the camera (so the x and y
angles for that location are 0,0). Given these known values, we can use a little trigonometry to compute the angles for
any pixel in the image.

The below diagram shows an example target point which we want to compute angles for. Pixel coordinates start at the
upper left corner of the image and are positive to the right and down.

Our first step will be to convert from pixel coordinates to normalized 2D coordinates where 0,0 is the center of the
image and 1.0:

(px,py) = pixel coordinates, 0,0 is the upper-left, positive down and to the right

(nx,ny) = normalized pixel coordinates, 0,0 is the center, positive right and up

nx = (1/160) * (px - 159.5)

ny = (1/120) * (119.5 - py)

11.4. From Pixels to Angles 35

Limelight Documentation, Release 1.0

Next we define an imaginary view plane and compute its size. For simplicity, we can choose to place this plane 1.0
unit in front of the camera location. Here is a view looking down on the camera. Our goal is to compute the view
plane width and height as those values will be used to compute the angles later:

Given a distance of 1.0 unit and a known horizontal and vertical fov, we can compute the size of the view plane
rectangle the following formulas:

vpw = 2.0*tan(horizontal_fov/2)

vph = 2.0*tan(vertical_fov/2)

Using these two values, we can now convert between normalized pixel coordinates and view plane coordinates using
a simple multiply.

x = vpw/2 * nx;

y = vph/2 * ny;

Remember that we chose our view plane to be positioned at a distance of 1.0. Now we have everything we need to
compute the angles to the target point.

11.4. From Pixels to Angles 36

Limelight Documentation, Release 1.0

tan(ax) = x / 1

tan(ay) = y / 1

ax = atan2(1,x)

ay = atan2(1,y)

11.4. From Pixels to Angles 37

CHAPTER 12

Tracking AprilTags

AprilTags are tracked using the “tx”, “ty”, and “ta” values in NetworkTables, just like standard retroreflective targets!
No code changes are required to upgrade a retroreflective tracking robot to apriltags. “botpose” and “campose” may
also be used for field-space and target-space 3D tracking.

For more advanced usage with multiple tags, the JSON results dump may be used.

Do not feel pressured to use the more advanced features in the “Advanced” pages unless you know you need them.
Many of the very best teams in FRC use the simplest techniques available to maximize reliability and speed. If you
frequent Discord, CD, and regionals with elite teams, you may get the impression that you need the most advanced
software possible to win events, but this is simply not true.

Our message to many of the teams we help is “It’s ok to do the simple thing.”

To configure an AprilTag pipeline, first access the Limelight web interface at <http://IPADDRESS:5801> or http:
//10.te.am.11:5801 for FRC teams. Use the Limelight Finder tool from our Downloads page to find your Limelight’s
IP address.

12.1 Quick Start for FRC AprilTags

• Input Tab - Change “Pipeline Type” to “Fiducial Markers”

• Standard Tab - Make sure “family” is set to “AprilTag Classic 16h5”

• Input Tab - Set “Black Level” to zero

• Input Tab - Set “Gain” to 15

• Input Tab - Reduce exposure to reduce motion blur. Stop reducing once tracking reliability decreases.

• Standard Tab - If would like to increase your framerate, increase the “Detector Downscale”

• Input Tab - For increased range and/or accuracy, increase the capture resolution.

• If you’re seeing spurious tag detections, add the ID’s you want to track to the “filter” control or increase the
“Quality Threshold” value.

38

http://IPADDRESS:5801
http://10.te.am.11:5801
http://10.te.am.11:5801

Limelight Documentation, Release 1.0

• Click the “Gear” Icon, and make sure your team number is set and that a static IP is configured.

• Click “Change Team Number” and “Change IP Settings” if you changed their corresponding settings. Power-
cycle your robot.

• You’re done! Use “tx” and “ty” from networktables. Copy the code sample on the “getting started” page.

12.2 Tips

For ideal tracking, consider the following:

• Your tags should be as flat as possible.

• Your Limelight should be mounted above or below tag height and angled up/down such that the target is centered.
Your target should look as trapezoidal as possible from your camera’s perspective. You don’t want your camera
to ever be completely “head-on” with a tag if you want to avoid tag flipping.

There is an interplay between the following variables for AprilTag Tracking:

• Increasing capture resolution will always increase 3D accuracy and increase 3d stability. This will also reduce
the rate of ambiguity flipping from most perspectives. It will usually increase range. This will reduce pipeline
framerate.

• Increasing detector downscale will always increase pipeline framerate. It will decrease effective range, but in
some cases this may be negligible. It will not affect 3D accuracy, 3D stability, or decoding accuracy.

• Reducing exposure will always improve motion-blur resilience. This is actually really easy to observe. This
may reduce range.

• Reducing the brightness and contrast of the image will generally improve pipeline framerate and reduce range.

• Increasing Sensor gain allows you to increase brightness without increasing exposure. It may reduce 3D stability,
and it may reduce tracking stability.

12.3 Input Tab

The Input Tab hosts controls to change the raw camera image before it is passed through the processing pipeline. See
the “Building a retroreflective/color pipeline” page for more details.

To track AprilTags:

• Change “Pipeline Type” to “Fiducial Markers”

• Set “Black Level” to zero

At this point, it is a matter of balancing sensor gain and exposure time. You want to be able to see the tags with the
smallest exposure possible to minimize motion blur. This usually calls for a high sensor gain setting. For simple 2D
tracking, it is often advisable to max-out your sensor gain, and then increase your exposure from zero until targets are
sufficiently tracked. Make sure the correct family is selected in the “Standard” tab if tracking isn’t working.

12.2. Tips 39

Limelight Documentation, Release 1.0

12.4 Standard Tab

12.4.1 Family

Selects the fiducial/AprilTag family type. For FRC, you should selection “AprilTag Classic 16h5 (30 tags)”

12.4.2 Marker Size

Sets the expected size of the tags your robot will encounter in mm. For FRC, this should be set to 152.4

12.4.3 Detector Downscale

Increasing this number will result in significant performance boosts. This this will sometimes result in reduced range,
but the cost is usually minimal.

12.4.4 ID Filters

ID Filters allow you specify exactly which tags you care about. For most FRC teams, each pipeline should be config-
ured to track exactly one tag ID. This is a comma-separated list of numbers (eg. “0,1”). This feature is important for
eliminating the vast majority of false-positives.

12.4.5 Cropping

Cropping removes content from the image for huge performance boosts. Use the NT “crop” key to crop dynamically
during matches

12.4.6 Multi-Target Sorting and Grouping

This allows for the exact grouping functionality seen in standard retroreflective pipelines. In most games, the only
feature to modify is the “Area” filter, which will allow you to filter-out small tags.

12.4. Standard Tab 40

CHAPTER 13

(ADVANCED) 3D AprilTags

There are three levels of 3D AprilTag tracking in Limelight OS:

• Point of interest tracking (Easy to use, requires zero code changes, compatible with “tx” and “ty”)

• Full 3D Tracking

• Robot Localization

• All 3D data is accessible via direct NetworkTables or JSON.

13.1 Point-of-Interest Tracking

Point-of-Interest tracking allows you to define a 3D point of interest relative to an AprilTag.

Let’s say you are trying to target a field feature that is 6 inches to the left and 2 inches behind an AprilTag. You can
simply define that point of interest in the web interface (in meters), and then track this 3D point using tx and ty as if it
existed as a real-world target.

13.2 Full 3D Tracking

Full 3D tracking is accessible though the “campose” networktables array and through the json results output. In the
“visualizer” section on the “Advanced” tab, you will find several different visualizers that will help you understand
the purpose of each of the available transforms in the json dump. In general, the most useful transforms will be
“Camera Transform in Target Space”, and “Robot Transform in Target Space”. See the coordinate system doc for
more details.(DOCS WIP)

41

Limelight Documentation, Release 1.0

13.3 Robot Localization (botpose and MegaTag)

If your Limelight’s robot-space pose has been configured in the web ui, and a field map has been uploaded via the web
ui, then the robot’s location in field space will be available via the “botpose” networktables array (x,y,z in meters, roll,
pitch, yaw in degrees).

Our implementation of botpose is called MegaTag. If more than one tag is in view, it is resilient to individual tag
ambiguities and noise in the image. If all keypoints are coplanar, there is still some risk of ambiguity flipping.

• Green Cylinder: Individual per-tag bot pose

• Blue Cylinder: Old BotPose

• White Cylinder: MegaTag Botpose

Notice how the new botpose (white cylinder) is extremely stable compared to the old botpose (blue cylinder). You can
watch the tx and ty values as well.

This is not restricted to planar tags. It scales to any number of tags in full 3D and in any orientation. Floor tags and
ceiling tags work perfectly.

Here’s a diagram demonstrating one aspect of how this works with a simple planar case. The results are actually better
than what is depicted, as the MegaTag depicted has a significant error applied to three points instead of one point. As
the 3D combined MegaTag increases in size and in keypoint count, its stability increases.

13.4 Using WPILib’s Pose Estimator

The latest images for LImelight publish targeting latency and capture latency in milliseconds. You can
access them with the “tl” and “cl” NT keys, or with LimelightHelpers.getLatency_Pipeline() and Lime-
lightHelpers.getLatency_Capture() if you are using Limelight Lib. You can also get the combined latency by accessing
the 7th value in the botpose array.

pseudocode for the “latency” component of WPILib’ addVisionMeasurement():

13.3. Robot Localization (botpose and MegaTag) 42

Limelight Documentation, Release 1.0

Timer.getFPGATimestamp() - (tl/1000.0) - (cl/1000.0) or Timer.getFPGATimestamp() - (botpose[6]/1000.0)

13.5 Configuring your Limelight’s Robot-Space Pose

LL Forward, LL Right, and LL Up represent distances along the Robot’s forward, right, and up vectors if you were
to embody the robot. (in meters). LL Roll, Pitch, and Yaw represent the rotation of your Limelight in degrees. You
can modify these values and watch the 3D model of the Limelight change in the 3D viewer. Limelight uses this
configuration internally to go from the target pose in camera space -> robot pose in field space.

13.5. Configuring your Limelight’s Robot-Space Pose 43

CHAPTER 14

(ADVANCED) 3D Coordinate Systems

14.1 Limelight Camera Space

3d Cartesian Coordinate System with (0,0,0) at the camera lens.

X+ → Pointing to the right (if you were to embody the camera)

Y+ → Pointing downward

Z+ → Pointing out of the camera

14.2 Target Space

3d Cartesian Coordinate System with (0,0,0) at the center of the target.

X+ → Pointing to the right of the target (If you are looking at the target)

Y+ → Pointing downward

Z+ → Pointing out of the target (orthogonal to target’s plane).

44

Limelight Documentation, Release 1.0

14.3 Robot Space

3d Cartesian Coordinate System with (0,0,0) located at the center of the robot’s frame projected down to the floor.

X+ → Pointing forward (Forward Vector)

Y+ → Pointing toward the robot’s right (Right Vector)

Z+ → Pointing upward (Up Vector)

14.4 Field Space

3d Cartesian Coordinate System with (0,0,0) located at the center of the field

X+ → Points along the long side of the field

Y+ → Points up the short side of the field

Z+ → Points towards the sky

Right-handed. Positive theta results in counterclockwise rotation from positive outside perspective

14.3. Robot Space 45

CHAPTER 15

(ADVANCED) AprilTag Map Specification

Limelight’s field-space localization feature uses .fmap files to compute a robot pose for use by WPILIB’s pose estima-
tors. Our fmap files support maps comprised of different target sizes and different families.

You can use fmaps to define “environments” such as FRC fields, or “objects” such as objects that have several attached
AprilTags. To use an fmap, all you need to do is upload it to your Limelight using the interface or one of the upload
APIs (coming soon).

The .fmap file is a JSON file containing a single “fiducial” array. Each entry in the fiducial array has the following
structure:

family AprilTag/Fiducial family
id Tag ID
size Tag size in mm
transform 4x4 Matrix Transform of the target. Row-Major, SI units.
unique Specifies whether the target is unique in this map or featured multiple times

15.1 AprilTag Map for FRC 2023 Charged Up

{
"fiducials": [

{
"family": "apriltag3_16h5_classic",
"id": 1,
"size": 152.4,
"transform": [

-1,
0,
0,
7.24310,
0,

(continues on next page)

46

Limelight Documentation, Release 1.0

(continued from previous page)

-1,
0,
-2.93659,
0,
0,
1,
0.46272,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 2,
"size": 152.4,
"transform": [

-1,
0,
0,
7.24310,
0,
-1,
0,
-1.26019,
0,
0,
1,
0.46272,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 3,
"size": 152.4,
"transform": [

-1,
0,
0,
7.24310,
0,
-1,
0,
0.41621,
0,
0,
1,
0.46272,
0,
0,

(continues on next page)

15.1. AprilTag Map for FRC 2023 Charged Up 47

Limelight Documentation, Release 1.0

(continued from previous page)

0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 4,
"size": 152.4,
"transform": [

-1,
0,
0,
7.90832,
0,
-1,
0,
2.74161,
0,
0,
1,
0.695452,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 5,
"size": 152.4,
"transform": [

1,
0,
0,
-7.90832,
0,
1,
0,
2.74161,
0,
0,
1,
0.695452,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 6,
"size": 152.4,

(continues on next page)

15.1. AprilTag Map for FRC 2023 Charged Up 48

Limelight Documentation, Release 1.0

(continued from previous page)

"transform": [
1,
0,
0,
-7.24310,
0,
1,
0,
0.41621,
0,
0,
1,
0.46272,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 7,
"size": 152.4,
"transform": [

1,
0,
0,
-7.24310,
0,
1,
0,
-1.26019,
0,
0,
1,
0.46272,
0,
0,
0,
1

],
"unique": 1
},
{
"family": "apriltag3_16h5_classic",
"id": 8,
"size": 152.4,
"transform": [

1,
0,
0,
-7.24310,
0,
1,
0,
-2.93659,

(continues on next page)

15.1. AprilTag Map for FRC 2023 Charged Up 49

Limelight Documentation, Release 1.0

(continued from previous page)

0,
0,
1,
0.46272,
0,
0,
0,
1

],
"unique": 1
}

]
}

15.1. AprilTag Map for FRC 2023 Charged Up 50

CHAPTER 16

Getting Started with Neural Networks

With Limelight’s neural network pipelines, once-impossible computer vision challenges are now trivial. Learning-
based vision already plays an enormous role in bleeding-edge robots and self-driving vehicles, so we are excited to
bring this technology to FIRST students.

Check out 2023 World Champion 1323’s use of Limelight’s Neural Network pipeline:

Download pretrained neural networks from our downloads page.

In FRC, teams have always wanted to track game pieces on the field during the autonomous and teleoperated periods.
Using Limelight’s “Neural Detector” pipeline, teams are able to track pieces just like any other target with zero tuning.

“Neural Classifier” pipelines, on the other hand, allow teams to add advanced sensing capabilities to their robots. Let’s
say a team wanted to determine whether their robot was in possession of a Red ball, a Blue ball, or not in possession
of a ball. A Limelight pointed inside a robot could run a classifier trained to determine one of these three cases. A
classifier could also count the number of objects in a hopper, determine the state of a field feature, etc.

Neural Detector and Classifier networks require the addition of a Google Coral USB accelerator. The Google Coral
Accelerator is an ASIC (application specific integrated circuit) that is purpose-built for neural network inference. You
can think of the term “inference” as “execution” or “running data through the neural network and producing an output”.

If you are interested in building a deeper understanding of machine learning, we recommend starting with this video
from 3blue1brown: https://www.youtube.com/watch?v=aircAruvnKk

Programmers can learn more in a hands-on fashion with the following book: https://www.amazon.com/
Deep-Learning-Python-Francois-Chollet/dp/1617294438

16.1 Neural Detector Pipeline

To get started, ensure your Google Coral is plugged into the USB-A port on your Limelight.

51

https://limelightvision.io/pages/downloads
https://www.youtube.com/watch?v=aircAruvnKk
https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438
https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

Limelight Documentation, Release 1.0

Change “Pipeline Type” to “Neural Detector” to start running inference on the built-in test model. Download pre-
trained neural networks from our downloads page, and upload it to begin tracking game pieces.

Change the “confidence threshold” slider to adjust the required confidence for a successful detection. All results are
posted over JSON, but we recommend using the built-in sorting interface to optimize for a single target which will be
represented by networktables values “tx,” “ty,” “ta,” and “tclass.”

Change the crop window to easily ignore objects outside of the desired detection zone.

16.2 Nerual Classifier Pipeline

To get started, ensure your Google Coral is plugged into the USB-A port on your Limelight.

Change “Pipeline Type” to “Neural Classifier” to start running inference on the built-in test model. You can train your
own classifier models using the method documented in the “Training” section.

The “Crop” window will allow you to better control the image used for neural network inference. While classifier
models are capable of incredible levels of generalization in diverse environments, you will see greater success by
minimizing the number of variables in your image.

16.2. Nerual Classifier Pipeline 52

https://limelightvision.io/pages/downloads

CHAPTER 17

Training Your Own Neural Network

While it is possible to train custom object detection models, we don’t believe students should spend a single second
labelling training data by drawing boxes around objects. We have set up all the infrastructure necessary quickly train
new models for teams, including a cloud GPU cluster and a human data labelling team.

Classifier models, on the other hand, can be trained with Teachable Machine by Google. It’s as easy as dragging-and
dropping images into your browser.

https://teachablemachine.withgoogle.com/

17.1 Training a Classifier

Navigate to https://teachablemachine.withgoogle.com/

Click “Getting Started” and “Standard image model”

Add as many classes as necessary, but remember to keep it simple.

Upload a broadly diverse set of images per class, click the “Train Model” button.

Test the model using your laptop’s webcam.

Once satisfied export the model as a Tensorflow Lite EdgeTPU Model.

Limelight OS 2023.1 will enable the “upload” button for custom models!

17.2 Training a Detector

53

https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/

CHAPTER 18

Using Python to create Custom OpenCV Vision Pipelines

Limelight has successfully exposed a large number of students to some of the capabilities of computer vision in
robotics. With python scripting, teams can now take another step forward by writing their own image processing
pipelines.

Limelight handles the hardware, camera interfacing, networking, streaming, and basic image pre-processing. All you need to do is write one python function called runPipeline().

• One of the most important features we offer is the one-click crosshair. The crosshair, dual crosshair, tx, ty,
ta, ts, tvert, and all other standard limelight NetworkTables readings will automatically latch to the contour
you return from the python runPipeline() function.

• Write your own real-time visualizations, thresholding, filtering, and bypass our backend entirely if desired.

– Limelight’s python scripting has access to the full OpenCV and numpy libraries.

– Beyond access to the image, the runPipeline() function also has access to the “llrobot” Network-
Tables number array. Send any data from your robots to your python scripts for visualization or
advanced applications (One might send IMU data, pose data, robot velocity, etc. for use in python
scripts)

– The runPipeline function also outputs a number array that is placed directly into the “llpython”
networktables number array. This means you can bypass Limelight’s crosshair and other func-
tionality entirely and send your own custom data back to your robots.

– Python scripts are sandboxed within our c++ environment, so you don’t have to worry about
crashes. Changes to scripts are applied instantly, and any error messages are printed directly to
the web interface.

54

Limelight Documentation, Release 1.0

18.1 Minimal Limelight Python Script

import cv2
import numpy as np

runPipeline() is called every frame by Limelight's backend.
def runPipeline(image, llrobot):

convert the input image to the HSV color space
img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
convert the hsv to a binary image by removing any pixels
that do not fall within the following HSV Min/Max values
img_threshold = cv2.inRange(img_hsv, (60, 70, 70), (85, 255, 255))

find contours in the new binary image
contours, _ = cv2.findContours(img_threshold,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

largestContour = np.array([[]])

initialize an empty array of values to send back to the robot
llpython = [0,0,0,0,0,0,0,0]

if contours have been detected, draw them
if len(contours) > 0:

cv2.drawContours(image, contours, -1, 255, 2)
record the largest contour
largestContour = max(contours, key=cv2.contourArea)

get the unrotated bounding box that surrounds the contour
x,y,w,h = cv2.boundingRect(largestContour)

draw the unrotated bounding box
cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,255),2)

record some custom data to send back to the robot
llpython = [1,x,y,w,h,9,8,7]

#return the largest contour for the LL crosshair, the modified image, and custom
→˓robot data

return largestContour, image, llpython

18.1. Minimal Limelight Python Script 55

CHAPTER 19

Python Examples

WIP

56

CHAPTER 20

Using Grip to create Custom OpenCV Vision Pipelines

1. You can use GRIP to grapically design custom vision pipelines.

2. Your custom vision pipeline can be loaded into a limelight and run in hardware.

Grip is a program developed by WPI for developing vision pipelines. We have added a new export option to grip
which allows you to export your custom vision pipeline and run it on a limelight camera with no extra programming
needed. Carefully designed Grip pipelines can run at the full 90fps framerate of the limelight camera.

The first step in using GRIP is to download our build of Grip. It can be downloaded from our downloads page. When
you run GRIP, you should see a screen like this:

57

https://limelightvision.io/pages/downloads

Limelight Documentation, Release 1.0

You can learn more about GRIP on this web page: https://docs.wpilib.org/en/stable/docs/software/vision-processing/
grip/introduction-to-grip.html

20.1 Accessing the Video Stream wthin GRIP

Limelight has an additional video stream on port 5802 which can be accessed primarily for use with GRIP or other
applications like it. This video stream is uncompressed (or very lightly compressed) and has no cross-hair or other
overlays drawn on the image. It is important to use this video stream for developing your GRIP pipeline because the
normal Limelight video feed is optimized for very low bandwidth and latency which causes the image to be relatively
low quality and can have significant compression artefacts. So to get your grip pipeline started, add an IP Camera
input which uses the limelight as its input:

20.1. Accessing the Video Stream wthin GRIP 58

https://docs.wpilib.org/en/stable/docs/software/vision-processing/grip/introduction-to-grip.html
https://docs.wpilib.org/en/stable/docs/software/vision-processing/grip/introduction-to-grip.html

Limelight Documentation, Release 1.0

20.2 How Limelight Handles Inputs to the Pipeline

It is important to understand how your limelight camera interfaces with the inputs to your vision pipeline. Once your
pipeline is loaded into the limelight camera, its inputs will be scanned. The first input is always assumed to be the
video feed from the camera so it is important that you structure your pipeline in this way. Any additional inputs to the
pipeline will receive upload buttons in the limelight UI which will allow you to upload additional images or data files
as needed by your pipeline. For now it is important to realize that the video stream should be the first input in your
Grip Pipeline.

20.3 Generating output for the Limelight to use

When your grip pipeline is loaded onto the limelight, it will also be scanned for output data in the form of contours,
blobs, or rectangles. If any of these outputs are found, the last one in the pipeline will be used as the ‘results’ of
your vision pipeline. The outputs of your pipeline will be passed through the built-in contour filtering system on the
limelight. If you want to do your own contour filtering within your GRIP pipeline, just set the limelight options to
essentially accept any contour. In the example shown below, the output of the block highlighted in red would be passed
on to the limelight targeting system. Notice that this example pipline produces contours at an intermediate step and
then filters them. Only the final set of contours (or blobs or rectangles) will be passed on to the limelight targeting
system.

20.2. How Limelight Handles Inputs to the Pipeline 59

Limelight Documentation, Release 1.0

20.4 Code Generation for Limelight

When you are ready to try running your pipeline in hardware on the limelight, it is time to use the code-generation
function of GRIP. We have added a new “Limelight” code generation target to the GRIP application. Using this option
will produce a <pipeline>.ll file which can be loaded into the limelight camera.

20.4. Code Generation for Limelight 60

CHAPTER 21

Running GRIP Pipelines on Limelight

1. Upload your custom GRIP pipeline into a limelight pipeline.

2. Upload any additional inputs to your pipeline.

3. Observe the behavior of your GRIP pipeline.

Once you have used GRIP to design a custom vision pipeline and exported your pipeline to a .LL file, it is time to run
it on the limelight camera hardware. The first step is to select which limelight pipeline you’d like to load your grip
pipeline into. In order to do this, you use the UI at the top of the limelight interface to select a pipeline. Normally your
robot (through network-tables) controls the currently active pipeline. Our first step is to disable that functionality so
that we can select the pipeline to edit:

Next, change the currently active pipeline using the dropdown box highlighted below.

Next use the ‘Upload’ button to load your .LL file into this limelight pipeline.

And finally, change the pipeline mode from “LimeLight Standard” to “GRIP”.

61

Limelight Documentation, Release 1.0

Once you have loaded a Grip pipeline, the UI changes slightly. In place of the ‘Thresholding’ tab, you will have a
‘GRIP’ tab. If your GRIP pipeline uses more than just the video feed as an input, you will have a list of additional
inputs as shown below with upload buttons for uploading images or other data into them.

In addition, the video feed will have new options for displaying any intermediate images generated by your GRIP
pipeline.

62

Limelight Documentation, Release 1.0

When you are using a GRIP pipeline, the settings on the Input, ContourFiltering, and Output tabs are still fully
functional. If you would prefer to do your contour filtering within GRIP, you can simply “open up” all of the limelight
contour filtering options to allow all contours to pass through.

63

CHAPTER 22

Complete NetworkTables API

22.1 Basic Targeting Data

Use the following code:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").
→˓getDouble(0);

LabView

C++

nt::NetworkTableInstance::GetDefault().GetTable("limelight")->GetNumber("
→˓<variablename>",0.0);

Python

NetworkTables.getTable("limelight").getNumber('<variablename>');

to retrieve this data:

64

Limelight Documentation, Release 1.0

tv Whether the limelight has any valid targets (0 or 1)
tx Horizontal Offset From Crosshair To Target (LL1: -27 degrees to 27 degrees | LL2: -29.8 to 29.8 degrees)
ty Vertical Offset From Crosshair To Target (LL1: -20.5 degrees to 20.5 degrees | LL2: -24.85 to 24.85

degrees)
ta Target Area (0% of image to 100% of image)
tl The pipeline’s latency contribution (ms). Add to “cl” to get total latency.
cl Capture pipeline latency (ms). Time between the end of the exposure of the middle row of the sensor to

the beginning of the tracking pipeline.
tshort Sidelength of shortest side of the fitted bounding box (pixels)
tlong Sidelength of longest side of the fitted bounding box (pixels)
thor Horizontal sidelength of the rough bounding box (0 - 320 pixels)
tvert Vertical sidelength of the rough bounding box (0 - 320 pixels)
get-
pipe

True active pipeline index of the camera (0 .. 9)

json Full JSON dump of targeting results
tclass Class ID of primary neural detector result or neural classifier result

tc Get the average HSV color underneath the crosshair region as a NumberArray

22.2 AprilTag and 3D Data

Use the following code:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").
→˓getDoubleArray(new double[6]);

C++

nt::NetworkTableInstance::GetDefault().GetTable("limelight")->GetNumberArray("
→˓<variablename>",std::vector<double>(6));

to retrieve this data:

22.2. AprilTag and 3D Data 65

Limelight Documentation, Release 1.0

botpose Robot transform in field-space. Translation (X,Y,Z) Rotation(Roll,Pitch,Yaw), total latency
(cl+tl)

botpose_wpiblue Robot transform in field-space (blue driverstation WPILIB origin). Translation (X,Y,Z) Rota-
tion(Roll,Pitch,Yaw), total latency (cl+tl)

botpose_wpired Robot transform in field-space (red driverstation WPILIB origin). Translation (X,Y,Z) Rota-
tion(Roll,Pitch,Yaw), total latency (cl+tl)

camera-
pose_targetspace

3D transform of the camera in the coordinate system of the primary in-view AprilTag (array
(6))

target-
pose_cameraspace

3D transform of the primary in-view AprilTag in the coordinate system of the Camera (array
(6))

target-
pose_robotspace

3D transform of the primary in-view AprilTag in the coordinate system of the Robot (array (6))

bot-
pose_targetspace

3D transform of the robot in the coordinate system of the primary in-view AprilTag (array (6))

camera-
pose_robotspace

3D transform of the camera in the coordinate system of the robot (array (6))

tid ID of the primary in-view AprilTag

22.3 Camera Controls

Use the following code:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").
→˓setNumber(<value>);

LabView

C++

nt::NetworkTableInstance::GetDefault().GetTable("limelight")->PutNumber("
→˓<variablename>",<value>);

Python

NetworkTables.getTable("limelight").putNumber('<variablename>',<value>)

to set this data:

22.3. Camera Controls 66

Limelight Documentation, Release 1.0

ledMode Sets limelight’s LED state
0 use the LED Mode set in the current pipeline
1 force off
2 force blink
3 force on

camMode Sets limelight’s operation mode
0 Vision processor
1 Driver Camera (Increases exposure, disables vision processing)

pipeline Sets limelight’s current pipeline
0 .. 9 Select pipeline 0..9

stream Sets limelight’s streaming mode
0 Standard - Side-by-side streams if a webcam is attached to Limelight
1 PiP Main - The secondary camera stream is placed in the lower-right corner of the primary camera stream
2 PiP Secondary - The primary camera stream is placed in the lower-right corner of the secondary camera

stream

snapshot Allows users to take snapshots during a match
0 Reset snapshot mode
1 Take exactly one snapshot

crop Sets the crop rectangle. The pipeline must utilize the default crop rectangle in the web interface. The array
must have exactly 4 entries.

[0] X0 - Min or Max X value of crop rectangle (-1 to 1)
[1] X1 - Min or Max X value of crop rectangle (-1 to 1)
[2] Y0 - Min or Max Y value of crop rectangle (-1 to 1)
[3] Y1 - Min or Max Y value of crop rectangle (-1 to 1)

Java

double[] cropValues = new double[4];
cropValues[0] = -1.0;
cropValues[1] = 1.0;
cropValues[2] = -1.0;
cropValues[3] = 1.0;
NetworkTableInstance.getDefault().getTable("limelight").getEntry("crop").
→˓setDoubleArray(cropValues);

C++

wip

22.4 Python

Python scripts allow for arbitrary inbound and outbound data.

22.4. Python 67

Limelight Documentation, Release 1.0

llpython NumberArray sent by python scripts. This is accessible from robot code.
llrobot NumberArray sent by the robot. This is accessible from python scripts.

22.5 Corners

Enable “send contours” in the “Output” tab to stream corner coordinates:

tcornxy Number array of corner coordinates [x0,y0,x1,y1.]

22.6 Advanced Usage with Raw Contours

Raw Targets:

Limelight posts three raw contours to NetworkTables that are not influenced by your grouping mode. That is, they are
filtered with your pipeline parameters, but never grouped. X and Y are returned in normalized screen space (-1 to 1)
rather than degrees.

tx0 Raw Screenspace X
ty0 Raw Screenspace Y
ta0 Area (0% of image to 100% of image)
ts0 Skew or rotation (-90 degrees to 0 degrees)
tx1 Raw Screenspace X
ty1 Raw Screenspace Y
ta1 Area (0% of image to 100% of image)
ts1 Skew or rotation (-90 degrees to 0 degrees)
tx2 Raw Screenspace X
ty2 Raw Screenspace Y
ta2 Area (0% of image to 100% of image)
ts2 Skew or rotation (-90 degrees to 0 degrees)

Raw Crosshairs:

If you are using raw targeting data, you can still utilize your calibrated crosshairs:

cx0 Crosshair A X in normalized screen space
cy0 Crosshair A Y in normalized screen space
cx1 Crosshair B X in normalized screen space
cy1 Crosshair B Y in normalized screen space

22.5. Corners 68

CHAPTER 23

REST/HTTP and Websocket APIs

23.1 REST/HTTP (PORT 5807) API Summary:

Note: e.g. http://<limelight-ip-address>:5807/results

69

http:/

Limelight Documentation, Release 1.0

METHOD ROUTE DESCRIPTION
GET /results Retrieve full JSON dump of current

targeting results

GET /capturesnapshot Capture a snapshot. Include a
“snapname” string header to name
the snapshot

POST /uploadsnapshot Upload a named snapshot. Include a
“snapname” header. Include an im-
age in the body of the request

GET /snapshotmanifest Returns a list of snapshot file names
GET /deletesnapshots Deletes all snapshots

POST /uploadnn Upload a neural network. Include
a “type” header set to “detector” or
“classifier”

GET /hwreport Returns a JSON array of full hard-
ware reports. A hardware report
is derived from a calibration result
and contains human-readable infor-
mation such as FOV, principal off-
set, etc.

GET /cal-default Returns default calibration result
GET /cal-file Returns custom calibration result

(file system)
GET /cal-eeprom Returns custom calibration result

(eeprom)
GET /cal-latest Returns latest custom calibration re-

sult. This result is not used unless
it is saved to the file system or the
eeprom

POST /cal-eeprom Update the eeprom calibration result
POST /cal-file Update the filesystem calibration re-

sult
DEL /cal-latest Delete latest calibration result
DEL /cal-eeprom Delete eeprom calibration result
DEL /cal-file Delete filesystem calibration result

23.2 Websocket Results Server:

ws://<IPADDRESS>:5806 Websocket server streaming full JSON dump of current targeting results at full fram-
erate

See JSON Dump Specification for more information.

23.2. Websocket Results Server: 70

https://docs.limelightvision.io/en/latest/json_dump.html

CHAPTER 24

JSON Dump Specification

Limelight’s JSON results output is a collection of arrays containing targeting results. Separate arrays exist for retrore-
flective, fiducial, neural classifier, and neural detector results. JSON is human-readable and easy to parse in any
language on any platform, so it is perfect for most use-cases. The same JSON dump may be retrieved using the
REST/HTTP, Websocket, and NetworkTables APIs. Parsing this JSON output is incredibly easy with our FRC li-
braries.

Limelightlib has built-in functionality that parses the JSON Dump into a LimelightResults object.

https://github.com/LimelightVision/limelightlib-wpijava

https://github.com/LimelightVision/limelightlib-wpicpp

Every JSON result contains the following entries:

pID Current pipeline index
tl Targeting latency (milliseconds consumed by tracking loop this frame)
cl Capture latency (milliseconds between the end of the exposure of the middle row to the beginning

of the tracking loop)
ts Timestamp in milliseconds from boot.
v Validity indicator. 1 = valid targets, 0 = no valid targets
botpose Botpose (MegaTag): x,y,z, roll, pitch, yaw (meters, degrees)
bot-
pose_wpired

Botpose (MegaTag, WPI Red driverstation): x,y,z, roll, pitch, yaw (meters, degrees)

bot-
pose_wpiblue

Botpose (MegaTag, WPI Blue driverstation): x,y,z, roll, pitch, yaw (meters, degrees)

24.1 Retroreflective Results

The “Retro” array contains entries with the following structure:

71

https://github.com/LimelightVision/limelightlib-wpijava
https://github.com/LimelightVision/limelightlib-wpicpp

Limelight Documentation, Release 1.0

pts Individual corner points as an array of {x,y} in pixels. Center-zero, positive right and down. Must be
enabled.

t6c_ts Camera Pose in target space as computed by solvepnp (x,y,z,rx,ry,rz)
t6r_fs Robot Pose in field space as computed by solvepnp (x,y,z,rx,ry,rz)
t6r_ts Robot Pose in target space as computed by solvepnp (x,y,z,rx,ry,rz)
t6t_cs Target Pose in camera space as computed by solvepnp (x,y,z,rx,ry,rz)
t6t_rs Target Pose in robot space as computed by solvepnp (x,y,z,rx,ry,rz)
ta The size of the target as a percentage of the image (0-1)
tx X-coordinate of the center of the target in degrees. Positive-right, center-zero
txp X-coordinate of the center of the target in pixels. Positive-right, center-zero
ty Y-coordinate of the center of the target in degrees. Positive-down, center-zero
typ Y-coordinate of the center of the target in pixels. Positive-down, center-zero

{
"Results": {

"Classifier": [],
"Detector": [],
"Fiducial": [],
"Retro": [
{

"pts": [],
"t6c_ts": [],
"t6r_fs": [],
"t6r_ts": [],
"t6t_cs": [],
"t6t_rs": [],
"ta": 0.028124958276748657,
"tx": -6.858895301818848,
"txp": 125.89512634277344,
"ty": 8.712546348571777,
"typ": 79.79258728027344

}
],
"pID": 0,
"tl": 4.795886039733887,
"ts": 4524421.206346,
"v": 1

}
}

24.2 AprilTag/Fiducial Results

The “Fiducial” array contains entries with the following structure:

24.2. AprilTag/Fiducial Results 72

Limelight Documentation, Release 1.0

fid Fiducial tag ID
fam Fiducial Family (16H5C, 25H9C, 36H11C, etc)
pts Return individual corner points. Must be enabled.
skew Currently unused
t6c_ts Camera Pose in target space as computed by this fiducial (x,y,z,rx,ry,rz)
t6r_fs Robot Pose in field space as computed by this fiducial (x,y,z,rx,ry,rz)
t6r_ts Robot Pose in target space as computed by this fiducial (x,y,z,rx,ry,rz)
t6t_cs Target Pose in camera space as computed by this fiducial (x,y,z,rx,ry,rz)
t6t_rs Target Pose in robot space as computed by this fiducial (x,y,z,rx,ry,rz)
ta The size of the target as a percentage of the image (0-1)
tx X-coordinate of the center of the target in degrees. Positive-right, center-zero
txp X-coordinate of the center of the target in pixels. Positive-right, center-zero
ty Y-coordinate of the center of the target in degrees. Positive-down, center-zero
typ Y-coordinate of the center of the target in pixels. Positive-down, center-zero

{
"Results": {

"Classifier": [],
"Detector": [],
"Fiducial": [
{

"fID": 2,
"fam": "16H5C",
"pts": [],
"skew": [],
"t6c_ts": [
0.33247368976801916,
-0.05672695778305914,
-2.5042031405987144,
-4.680849607956358,
-5.171154989721864,
4.528697946312339
],
"t6r_fs": [
4.738896418276903,
-1.5926603672041666,
0.5194469577830592,
4.522658587661256,
4.258580454853879,
5.5236539893713275
],
"t6r_ts": [
0.33247368976801916,
-0.05672695778305914,
-2.5042031405987144,
-4.680849607956358,
-5.171154989721864,
4.528697946312339
],
"t6t_cs": [
-0.09991902572799474,
-0.1234042720218289,
2.5218203039582496,
4.278368708252767,

(continues on next page)

24.2. AprilTag/Fiducial Results 73

Limelight Documentation, Release 1.0

(continued from previous page)

5.508508005282244,
-4.1112864453027775
],
"t6t_rs": [
-0.09991902572799474,
-0.1234042720218289,
2.5218203039582496,
4.278368708252767,
5.508508005282244,
-4.1112864453027775
],
"ta": 0.005711808800697327,
"tx": -2.0525293350219727,
"txp": 149.4874725341797,
"ty": 2.7294836044311523,
"typ": 107.14710235595703

}
],
"Retro": [],
"pID": 0,
"tl": 19.78130340576172,
"ts": 3284447.910569,
"v": 1

}
}

24.3 Neural Detector Results

The “Detector” array contains entries with the following structure:

class Human-readable class name string
clas-
sID

ClassID integer

conf Confidence of the predicition
pts Individual corner points as an array of {x,y} in pixels. Center-zero, positive right and down. Must be

enabled.
ta The size of the target as a percentage of the image (0-1)
tx X-coordinate of the center of the target in degrees. Positive-right, center-zero
txp X-coordinate of the center of the target in pixels. Positive-right, center-zero
ty Y-coordinate of the center of the target in degrees. Positive-down, center-zero
typ Y-coordinate of the center of the target in pixels. Positive-down, center-zero

{
"Results": {

"Classifier": [],
"Detector": [
{

"class": "person",
"classID": 0,
"conf": 0.83984375,

(continues on next page)

24.3. Neural Detector Results 74

Limelight Documentation, Release 1.0

(continued from previous page)

"pts": [],
"ta": 0.2608712911605835,
"tx": -2.45949649810791,
"txp": 147.5,
"ty": -10.066887855529785,
"typ": 165.5

}
],
"Fiducial": [],
"Retro": [],
"pID": 0,
"tl": 63.50614547729492,
"ts": 4932985.266867,
"v": 1

}
}

24.4 Neural Classifier Results

The “Classifier” array contains entries with the following structure:

class Human-readable class name string
classID ClassID integer
conf Confidence of the predicition

{
"Results": {

"Classifier": [
{

"class": "digital clock",
"classID": 531,
"conf": 0.16796875

}
],
"Detector": [],
"Fiducial": [],
"Retro": [],
"pID": 0,
"tl": 16.704740524291992,
"ts": 4751332.7542280005,
"v": 1

}
}

24.4. Neural Classifier Results 75

CHAPTER 25

Case Study: Estimating Distance

• Using a Fixed Angle Camera

• Using Area to Estimate Distance

25.1 Using a Fixed Angle Camera

If your vision tracking camera is mounted on your robot such that the angle between the ground plane and its line of
sight does not change, then you can use this technique to very accurately calculate the distance to a target. You can
then use this distance value to either drive your robot forward and back to get into the perfect range or adjust the power
of a launching mechanism.

See the below diagram. In this context, all of the variables are known: the height of the target (h2) is known because
it is a property of the field. The height of your camera above the floor (h1) is known and its mounting angle is known
(a1). The limelight (or your vision system) can tell you the y angle to the target (a2).

76

Limelight Documentation, Release 1.0

We can solve for d using the following equation:

tan(a1+a2) = (h2-h1) / d

d = (h2-h1) / tan(a1+a2)

The tan function usually expects an input measured in radians. To convert an angle measurement from degrees to
radians, multiply the angle measurement by (3.14159/180.0). See the full code example below.

Java

NetworkTable table = NetworkTableInstance.getDefault().getTable("limelight");
NetworkTableEntry ty = table.getEntry("ty");
double targetOffsetAngle_Vertical = ty.getDouble(0.0);

// how many degrees back is your limelight rotated from perfectly vertical?
double limelightMountAngleDegrees = 25.0;

// distance from the center of the Limelight lens to the floor
double limelightLensHeightInches = 20.0;

// distance from the target to the floor
double goalHeightInches = 60.0;

double angleToGoalDegrees = limelightMountAngleDegrees + targetOffsetAngle_Vertical;

(continues on next page)

25.1. Using a Fixed Angle Camera 77

Limelight Documentation, Release 1.0

(continued from previous page)

double angleToGoalRadians = angleToGoalDegrees * (3.14159 / 180.0);

//calculate distance
double distanceFromLimelightToGoalInches = (goalHeightInches -
→˓limelightLensHeightInches)/Math.tan(angleToGoalRadians);

C++

std::shared_ptr<NetworkTable> table = nt::NetworkTableInstance::GetDefault().GetTable(
→˓"limelight");
double targetOffsetAngle_Vertical = table->GetNumber("ty",0.0);

// how many degrees back is your limelight rotated from perfectly vertical?
double limelightMountAngleDegrees = 25.0;

// distance from the center of the Limelight lens to the floor
double limelightLensHeightInches = 20.0;

// distance from the target to the floor
double goalHeightInches = 60.0;

double angleToGoalDegrees = limelightMountAngleDegrees + targetOffsetAngle_Vertical;
double angleToGoalRadians = angleToGoalDegrees * (3.14159 / 180.0);

//calculate distance
double distanceFromLimelightToGoalInches = (goalHeightInches -
→˓limelightLensHeightInches)/tan(angleToGoalRadians);

When using this technique it is important to choose the mounting angle of your camera carefully. You want to be able
to see the target both when you’re too close and too far away. You also do not want this angle to change, so mount it
securely and avoid using slots in your mounting geometry.

If you are having trouble figuring out what the angle a1 is, you can also use the above equation to solve for a1. Just
put your robot at a known distance (measuring from the lens of your camera) and solve the same equation for a1.

In the case where your target is at nearly the same height as your camera, this technique is not useful.

25.2 Using Area to Estimate Distance

Another simple way to estimate distance is to use the area of the contour you are tracking. This is a very simple
method to implement but it does not give you extremely accurate results. All you do is point your vision camera at the
target from a known distance and take note of the area of the blob. Make sure you’re using an accurate representation
of the real field’s vision target and make sure you’re pointing at it from your desired shooting location. You can then
do this from a few different distances and make a table out of these values. In 2016 we used this method to adjust the
aim of our 2-axis turret based on how far from the goal we were.

25.2. Using Area to Estimate Distance 78

CHAPTER 26

Case Study: Aiming Using Vision

1. You can accurately and quickly aim your robot using only a limelight and your drivetrain.

2. We added the limelight to a robot, implemented the code and tuned it in less than 1hr.

Using high-framerate vision tracking, it is now possible to use the vision pipeline directly as the “sensor” in a PID
control loop to guide your robot or turret. In order to test this idea we added a limelight to our 2017 FRC robot and
made it aim at vision targets using nothing more than the drivetrain and the networks table data being reported by the
limelight.

In this example, our test candidate was a 2017 FRC robot which uses a 6-wheel drivetrain with colson wheels. Here is
a picture of us adding a limelight onto the robot in order to do this test.

79

Limelight Documentation, Release 1.0

Next we added some code to the robot which would run whenever the driver holds a button on the joystick. This
robot used “tank” style driving so the OperatorControl function was generating a ‘left_command’ value and a
‘right_command’ value to control the left and right sides of the drivetrain. After the normal control code, we added a
block of code like this:

float Kp = -0.1f; // Proportional control constant

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");

if (joystick->GetRawButton(9))
{

float heading_error = tx;
steering_adjust = Kp * tx;

left_command+=steering_adjust;
right_command-=steering_adjust;

}

Right off the bat, this mostly worked. The robot turns in the direction of the target automatically whenever you are
holding the button. If you move the target around, the robot turns to follow the target. However, using the live video
feed on the dashboard, we could see that there was one big problem: The robot wasn’t always making it all the way to
perfectly align with the target. In some games with small targets, (like 2016 and 2017) this wouldn’t be good enough.

What we have implemented so far is a simple proportional control loop. We calculated the error in heading and
multiplied that by a constant, thus making a motor command which is proportional to the error. As the error goes to

80

Limelight Documentation, Release 1.0

zero, our command will go to zero. The problem is that there is a lot of friction involved when the robot tries to turn.
Very small commands will not turn the robot at all. At small angles, the command can become too small to actually
move the robot. You might find that your robot reaches its target well when you start out with a large targeting error
but it just can’t aim at all if you start out really close.

There are a few ways to solve this problem but here is a really simple solution. We used a concept the “minimum
command”. If the error is larger than some threshold, just add a constant to your motor command which roughly
represents the minimum amount of power needed for the robot to actually move (you actually want to use a little bit
less than this). The new code looks like this:

float Kp = -0.1f;
float min_command = 0.05f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");

if (joystick->GetRawButton(9))
{

float heading_error = -tx;
float steering_adjust = 0.0f;

if (Math.abs(heading_error) > 1.0)
{

if (heading_error < 0)
{

steering_adjust = Kp*heading_error + min_command;
}
else
{

steering_adjust = Kp*heading_error - min_command;
}

}
left_command += steering_adjust;
right_command -= steering_adjust;

}

Beware, if you set Kp or min_command too high, your robot can become unstable and can oscillate back and forth as
it overshoots the target:

After some tuning on Kp and min_command should get your robot aiming directly at the target very accurately and
quickly.

81

CHAPTER 27

Case Study: Seeking

1. Use a seeking behavior to find a target that is not initially visible to the camera.

Implementing a seeking behavior can be useful in a few situations. In some games, the goal you are trying to score
into may not be in a predictable location so you can’t rely on dead-reconing autonomous code to get “close enough”.
In 2009 for example, the goals were attached to the opponents robots which also driving around. Another reason you
might want to implement seeking is if your robot’s drivetrain is not reliable/repeatable enough to put you in exactly the
location you want. Sometimes swerve drives or omni-directional drives can have trouble driving to presice locations
(this is not a knock on swerve or omni-directional drivetrains; it is just more challenging to get them to drive to
repeatable locations). Some games have even allowed robot-robot interaction during autonomous mode. In 2006 we
often engaged in autonomous duels where the defense robots would try to knock the offense robots out of scoring
position. In this case you can’t be sure of anything! Hopefully this gets you thinking about some ways that having
your robot automatically seek for a goal that it can’t initially see might be useful.

Luckily, adding seeking logic to your robot is very easy. To implement seeking, you simply have your robot scan for
a target and once it finds it, start running the aiming code. We will use the ‘tv’ or ‘target valid’ value reported by
limelight to know if we see a target or not.

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tv = table->GetNumber("tv");
float tx = table->GetNumber("tx");

float steering_adjust = 0.0f;
if (tv == 0.0f)
{

// We don't see the target, seek for the target by spinning in place at a
→˓safe speed.

steering_adjust = 0.3f;
}
else
{

// We do see the target, execute aiming code
float heading_error = tx;
steering_adjust = Kp * tx;

}

(continues on next page)

82

Limelight Documentation, Release 1.0

(continued from previous page)

left_command+=steering_adjust;
right_command-=steering_adjust;

Note that if your aiming code includes correcting the distance to the target, the robot behavior will be seeking followed
by driving to the shooting distance as it aligns with the target. All of this can be achieved with the very simple code
shown above.

83

CHAPTER 28

Case Study: Getting in Range

1. Have your robot automatically drive to a desired distance from the target.

2. A very simple trick using a calibrated cross-hair.

FRC robots often need to be positioned a specific distance from a scoring goal in order for their scoring mechanism to
work well. You can use a simple proportional control loop along with limelight’s calibrated cross-hair to very easily
have your robot drive to a specific distance from the goal.

For this example, you should make sure that your robot is aimed at the goal. Later we will combine aiming and
distance adjust into one function but for this example we are focusing only on the code that drives the robot to the
correct distance.

Similar to the aiming example, here we show a function which can be run in your robot’s update loop.

float KpDistance = -0.1f; // Proportional control constant for distance
float current_distance = Estimate_Distance(); // see the 'Case Study: Estimating
→˓Distance'

if (joystick->GetRawButton(9))
{

float distance_error = desired_distance - current_distance;
driving_adjust = KpDistance * distance_error;

left_command += distance_adjust;
right_command += distance_adjust;

}

With some tuning of the KpDistance setting, your robot should very quickly and accurately drive to the desired
distance. Compared to aiming, driving to the correct distance is usually easier because most robots drive forward and
backward much easier than they turn in place.

Next we’ll describe a simple trick to make driving to the correct distance even easier. Instead of actually calculating
the distance, you can use the limelight cross-hair. Just position your robot at your idea distance from the target and
calibrate the y-position of the cross-hair. Now your y-angle will report as 0.0 when your robot is at the correct distance.
Using this trick, you don’t ever have to actually calculate the actual distance and your code can look something like
this:

84

Limelight Documentation, Release 1.0

float KpDistance = -0.1f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float distance_error = table->GetNumber("ty");

if (joystick->GetRawButton(9))
{

driving_adjust = KpDistance * distance_error;

left_command += distance_adjust;
right_command += distance_adjust;

}

If you need to change the shooting distance, just move your robot to the new distance and re-calibrate the limelight
crosshair.

Here is an example of a robot using the above idea. Note how it backs up to the correct range automatically when the
driver stops driving and presses the “aim” button:

85

CHAPTER 29

Case Study: Aiming and Range at the same time.

1. Put aiming and range adjustment into one function.

This example uses code from the aiming and range adjustment examples and puts everything together into one simple
function. Using this, you can get your robot “close” and then use code to automatically aim and drive to the correct
distance.

float KpAim = -0.1f;
float KpDistance = -0.1f;
float min_aim_command = 0.05f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");
float ty = table->GetNumber("ty");

if (joystick->GetRawButton(9))
{

float heading_error = -tx;
float distance_error = -ty;
float steering_adjust = 0.0f;

if (tx > 1.0)
{

steering_adjust = KpAim*heading_error - min_aim_command;
}
else if (tx < -1.0)
{

steering_adjust = KpAim*heading_error + min_aim_command;
}

float distance_adjust = KpDistance * distance_error;

left_command += steering_adjust + distance_adjust;

(continues on next page)

86

Limelight Documentation, Release 1.0

(continued from previous page)

right_command -= steering_adjust + distance_adjust;
}

87

CHAPTER 30

Case Study: 2017 Fuel Robot

1. Entire c++ robot program which implements 2017 fuel scoring.

In this example, we present a complete robot program which implements the 2017 boiler goal. We tested this program
on the 987 steamworks robot and were able to easily score fuel in the boiler. For this example we aim and move into
range using the robot’s drivetrain. One thing that was immediately apparent to us is that limelight let us implement
this feature in a tiny fraction of the amount of code and time compared to our real 2017 robot.

There are also a couple of other features in the code below such as the ability to blink the LEDs and dynamically
toggle between multiple vision pipelines. This example also shows how to use a Talon SRX speed controller along
with a magnetic encoder to control the RPM of the shooter wheel.

#include <iostream>
#include <string>

#include <Drive/DifferentialDrive.h>
#include <Joystick.h>
#include <SampleRobot.h>
#include <SmartDashboard/SendableChooser.h>
#include <SmartDashboard/SmartDashboard.h>
#include <Spark.h>
#include <Victor.h>
#include <Timer.h>
#include "ctre/phoenix/MotorControl/CAN/TalonSRX.h"

//
#define Vic_Drive_Left_1 0
#define Vic_Drive_Left_2 1
#define Vic_Drive_Right_1 2
#define Vic_Drive_Right_2 3

#define Tal_Shooter_Wheel 21
#define Tal_Shooter_Wheel_2 2
#define Tal_Intake 3
#define Tal_Uptake 9

(continues on next page)

88

Limelight Documentation, Release 1.0

(continued from previous page)

class Robot : public frc::SampleRobot
{
public:

Robot() :
LeftDrive(Vic_Drive_Left_1),
RightDrive(Vic_Drive_Right_1),
LeftDrive2(Vic_Drive_Left_2),
RightDrive2(Vic_Drive_Right_2),
Shooter(Tal_Shooter_Wheel),
Shooter_2(Tal_Shooter_Wheel_2),
Intake(Tal_Intake),
Uptake(Tal_Uptake)

{
// This code sets up two Talons to work together and implement PID RPM control
Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kSpeed);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kFollower);
Shooter_2.Set(Tal_Shooter_Wheel);
Shooter.SetClosedLoopOutputDirection(false);
Shooter.

→˓SetStatusFrameRateMs(CTRE::MotorControl::CAN::TalonSRX::StatusFrameRateAnalogTempVbat,
→˓10);

Shooter.SetFeedbackDevice(CTRE::MotorControl::CAN::TalonSRX::CtreMagEncoder_
→˓Relative);

SetShooterConstants(.0002f, .00009f, .0000f, .000006f); // P,I,D,F constants
→˓for the shooter wheel

Shooter.SetAllowableClosedLoopErr(10);
Shooter.ConfigNominalOutputVoltage(+0.f,-0.f);
Shooter.ConfigPeakOutputVoltage(+12.f,-12.f);
Shooter.SelectProfileSlot(0);
Shooter.SetSensorDirection(true);
Shooter.SetVoltageRampRate(100);
Shooter.SetIzone(300);
Shooter_2.SetVoltageRampRate(100);

}

void RobotInit()
{
}

void Autonomous()
{
}

/*
* Operator Control

*/
void OperatorControl() override
{

while (IsOperatorControl() && IsEnabled())
{

// Read the joysticks!
float left_command = m_stickLeft.GetY();
float right_command = m_stickRight.GetY();

// Get limelight table for reading tracking data
(continues on next page)

89

Limelight Documentation, Release 1.0

(continued from previous page)

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable(
→˓"limelight");

float KpAim = 0.045;
float KpDist = 0.0f; //0.09;
float AimMinCmd = 0.095f;

float targetX = table->GetNumber("tx", 0);
float targetY = table->GetNumber("ty", 0);
float targetA = table->GetNumber("ta", 0);

// Aim error and distance error based on calibrated limelight cross-
→˓hair

float aim_error = targetX;
float dist_error = targetY;

// Steering adjust with a 0.2 degree deadband (close enough at 0.2deg)
float steeringAdjust = KpAim*aim_error;
if (targetX > .2f) steeringAdjust += AimMinCmd;
else if (targetX < -.2f) steeringAdjust -= AimMinCmd;

// Distance adjust, drive to the correct distance from the goal
float drivingAdjust = KpDist*dist_error;
bool doTarget = false;

if(m_stickLeft.GetRawButton(3)) // Aim using pipeline 0
{

doTarget = true;
table->PutNumber("pipeline", 0);

}
else if (m_stickLeft.GetRawButton(2)) // Aim using pipeline 1
{

doTarget = true;
table->PutNumber("pipeline", 1);

}

if(doTarget) // If auto-aiming, adjust
→˓drive and steer

{
ShooterSetRPM(3300);
left_command += drivingAdjust - steeringAdjust;
right_command += drivingAdjust + steeringAdjust;

}
else
{

ShooterOff();
}

// Tank drive, send left and right drivetrain motor commands
StandardTank(left_command,right_command);

if(m_stickRight.GetRawButton(3)) // Suck in and shoot balls
{

IntakeIn();
UptakeUp();

}
else if(m_stickRight.GetRawButton(2)) // Spit out balls

(continues on next page)

90

Limelight Documentation, Release 1.0

(continued from previous page)

{
IntakeIn();
UptakeDown();

}
else // Leave the balls alone!
{

IntakeOff();
UptakeOff();

}
if(m_stickLeft.GetRawButton(5)) // Joystick Button 5 = Flash

→˓the LEDs
{

table->PutNumber("ledMode", 2); //flash the lights
}
else
{

table->PutNumber("ledMode", 0); //turn the lights on
}

// wait for a motor update time
frc::Wait(0.005);

}
}

/*
* Runs during test mode

*/
void Test() override {}

void StandardTank(float left, float right)
{

LeftDrive.Set(-left);
LeftDrive2.Set(-left);
RightDrive.Set(right);
RightDrive2.Set(right);

}

//
// Shooter Functions - uses talon PID to control shooter wheel RPM
// Set the P,I,D,F constants in the Talon, these values depend heavily on your
→˓mechanism
//
void SetShooterConstants(float p,float i,float d,float f)
{

p *= 1024.f;
i *= 1024.f;
d *= 1024.f;
f *= 1024.f;

Shooter.SetP(p);
Shooter.SetI(i);
Shooter.SetD(d);
Shooter.SetF(f);

}

//
(continues on next page)

91

Limelight Documentation, Release 1.0

(continued from previous page)

// Tell the talons our desired shooter wheel RPM
//
void ShooterSetRPM(float desrpm)
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kSpeed);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kFollower);
Shooter_2.Set(Tal_Shooter_Wheel);
Shooter.Set(desrpm);

}

//
// Just set the power -1..+1, not currently using this now that RPM control is set up
//
void ShooterSetPower(float power)
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.Set(power);
Shooter.Set(power);

}

//
// Turn off the shooter wheel
//
void ShooterOff()
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter.Set(0.0f);
Shooter_2.Set(0.0f);

}

//
// Intake Functions
//
void IntakeIn()
{

Intake.Set(-.8f);
}
void IntakeOut()
{

Intake.Set(.8f);
}
void IntakeShooting()
{

Intake.Set(-1.0f);
}

void IntakeOff()
{

Intake.Set(0);
}

//
// Uptake Functions
//
void UptakeUp()

(continues on next page)

92

Limelight Documentation, Release 1.0

(continued from previous page)

{
Uptake.Set(-1.0f);

}
void UptakeDown()
{

Uptake.Set(1.0f);
}
void UptakeOff()
{

Uptake.Set(0);
}

private:

// Robot drive system
frc::Victor LeftDrive;
frc::Victor RightDrive;
frc::Victor LeftDrive2;
frc::Victor RightDrive2;

// shooter wheel
CTRE::MotorControl::CAN::TalonSRX Shooter;
CTRE::MotorControl::CAN::TalonSRX Shooter_2;
CTRE::MotorControl::CAN::TalonSRX Intake;
CTRE::MotorControl::CAN::TalonSRX Uptake;

// Joystick inputs
frc::Joystick m_stickLeft{0};
frc::Joystick m_stickRight{1};

};

START_ROBOT_CLASS(Robot)

93

CHAPTER 31

Case Study: DEEP SPACE 2019 Examples

1. Example programs in C++, Java and Labview for using a limelight camera to drive up to a goal in Deep Space.

The 2019 FRC game Deep Space has vision targets above many of the goals that you need to drive up to. Below you
can find complete example programs in C++, Java, and Labview which implement a simple method for automatically
driving a differential drive robot to a goal in Deep Space.

These are very simple programs and only meant to show the concept of using limelight tracking data to control your
robot. In each program, you can drive your robot with a gamepad. If you hold the ‘A’ button down, and the limelight
sees a valid target (depending on the settings in your pipeline) then the robot will automatically drive towards the
target. Be careful to tune the various constants in the code for your particular robot. Some robots turn or drive more
easily than others so tuning the proportional control constants must be done on a case-by-case basis. Also make sure
the robot drives correctly using the gamepad controller before enabling the limelight seeking behavior. You may need
to invert some of your motor controllers.

Java

package frc.robot;

import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import edu.wpi.first.wpilibj.VictorSP;
import edu.wpi.first.wpilibj.SpeedControllerGroup;
import edu.wpi.first.wpilibj.XboxController;
import edu.wpi.first.wpilibj.GenericHID.Hand;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;
import edu.wpi.first.networktables.*;

/**
* The VM is configured to automatically run this class, and to call the

* functions corresponding to each mode, as described in the TimedRobot

* documentation. If you change the name of this class or the package after

* creating this project, you must also update the build.gradle file in the

* project.

*/
(continues on next page)

94

Limelight Documentation, Release 1.0

(continued from previous page)

public class Robot extends TimedRobot {

private static final String kDefaultAuto = "Default";
private static final String kCustomAuto = "My Auto";
private String m_autoSelected;
private final SendableChooser<String> m_chooser = new SendableChooser<>();

private VictorSP m_Left0 = new VictorSP(0);
private VictorSP m_Left1 = new VictorSP(1);
private VictorSP m_Right0 = new VictorSP(2);
private VictorSP m_Right1 = new VictorSP(3);
private SpeedControllerGroup m_LeftMotors = new SpeedControllerGroup(m_Left0,m_

→˓Left1);
private SpeedControllerGroup m_RightMotors = new SpeedControllerGroup(m_Right0,m_

→˓Right1);
private DifferentialDrive m_Drive = new DifferentialDrive(m_LeftMotors,m_

→˓RightMotors);

private XboxController m_Controller = new XboxController(0);

private boolean m_LimelightHasValidTarget = false;
private double m_LimelightDriveCommand = 0.0;
private double m_LimelightSteerCommand = 0.0;

/**
* This function is run when the robot is first started up and should be

* used for any initialization code.

*/
@Override
public void robotInit() {

m_chooser.setDefaultOption("Default Auto", kDefaultAuto);
m_chooser.addOption("My Auto", kCustomAuto);
SmartDashboard.putData("Auto choices", m_chooser);

}

/**
* This function is called every robot packet, no matter the mode. Use

* this for items like diagnostics that you want ran during disabled,

* autonomous, teleoperated and test.

*
* <p>This runs after the mode specific periodic functions, but before

* LiveWindow and SmartDashboard integrated updating.

*/
@Override
public void robotPeriodic() {
}

/**
* This autonomous (along with the chooser code above) shows how to select

* between different autonomous modes using the dashboard. The sendable

* chooser code works with the Java SmartDashboard. If you prefer the

* LabVIEW Dashboard, remove all of the chooser code and uncomment the

* getString line to get the auto name from the text box below the Gyro

*
* <p>You can add additional auto modes by adding additional comparisons to

* the switch structure below with additional strings. If using the

* SendableChooser make sure to add them to the chooser code above as well.
(continues on next page)

95

Limelight Documentation, Release 1.0

(continued from previous page)

*/
@Override
public void autonomousInit() {

m_autoSelected = m_chooser.getSelected();
}

/**
* This function is called periodically during autonomous.

*/
@Override
public void autonomousPeriodic() {
}

/**
* This function is called periodically during operator control.

*/
@Override
public void teleopPeriodic() {

Update_Limelight_Tracking();

double steer = m_Controller.getX(Hand.kRight);
double drive = -m_Controller.getY(Hand.kLeft);
boolean auto = m_Controller.getAButton();

steer *= 0.70;
drive *= 0.70;

if (auto)
{

if (m_LimelightHasValidTarget)
{

m_Drive.arcadeDrive(m_LimelightDriveCommand,m_LimelightSteerCommand);
}
else
{

m_Drive.arcadeDrive(0.0,0.0);
}

}
else
{

m_Drive.arcadeDrive(drive,steer);
}

}

@Override
public void testPeriodic() {
}

/**
* This function implements a simple method of generating driving and steering

→˓commands

* based on the tracking data from a limelight camera.

*/
public void Update_Limelight_Tracking()
{

// These numbers must be tuned for your Robot! Be careful!
(continues on next page)

96

Limelight Documentation, Release 1.0

(continued from previous page)

final double STEER_K = 0.03; // how hard to turn toward
→˓the target

final double DRIVE_K = 0.26; // how hard to drive fwd
→˓toward the target

final double DESIRED_TARGET_AREA = 13.0; // Area of the target when
→˓the robot reaches the wall

final double MAX_DRIVE = 0.7; // Simple speed limit so we
→˓don't drive too fast

double tv = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"tv").getDouble(0);

double tx = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"tx").getDouble(0);

double ty = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"ty").getDouble(0);

double ta = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"ta").getDouble(0);

if (tv < 1.0)
{
m_LimelightHasValidTarget = false;
m_LimelightDriveCommand = 0.0;
m_LimelightSteerCommand = 0.0;
return;

}

m_LimelightHasValidTarget = true;

// Start with proportional steering
double steer_cmd = tx * STEER_K;
m_LimelightSteerCommand = steer_cmd;

// try to drive forward until the target area reaches our desired area
double drive_cmd = (DESIRED_TARGET_AREA - ta) * DRIVE_K;

// don't let the robot drive too fast into the goal
if (drive_cmd > MAX_DRIVE)
{
drive_cmd = MAX_DRIVE;

}
m_LimelightDriveCommand = drive_cmd;

}
}

C++ Header

#pragma once

#include <string>

#include <frc/TimedRobot.h>
#include <frc/smartdashboard/SendableChooser.h>
#include <frc/VictorSP.h>
#include <frc/SpeedControllerGroup.h>
#include <frc/XboxController.h>
#include <frc/drive/DifferentialDrive.h>

(continues on next page)

97

Limelight Documentation, Release 1.0

(continued from previous page)

class Robot : public frc::TimedRobot {
public:
Robot();

void RobotInit() override;
void RobotPeriodic() override;
void AutonomousInit() override;
void AutonomousPeriodic() override;
void TeleopInit() override;
void TeleopPeriodic() override;
void TestPeriodic() override;

void Update_Limelight_Tracking();

private:
frc::SendableChooser<std::string> m_chooser;
const std::string kAutoNameDefault = "Default";
const std::string kAutoNameCustom = "My Auto";
std::string m_autoSelected;

frc::VictorSP m_Left0;
frc::VictorSP m_Left1;
frc::VictorSP m_Right0;
frc::VictorSP m_Right1;

frc::SpeedControllerGroup m_LeftMotors { m_Left0,m_Left1 };
frc::SpeedControllerGroup m_RightMotors { m_Right0,m_Right1 };
frc::DifferentialDrive m_Drive{ m_LeftMotors, m_RightMotors };
frc::XboxController m_Controller;

bool m_LimelightHasTarget;
double m_LimelightTurnCmd;
double m_LimelightDriveCmd;

};

C++ Source

#include "Robot.h"
#include <iostream>
#include <frc/smartdashboard/SmartDashboard.h>
#include <networktables/NetworkTable.h>
#include <networktables/NetworkTableInstance.h>

double clamp(double in,double minval,double maxval)
{

if (in > maxval) return maxval;
if (in < minval) return minval;
return in;

}

Robot::Robot() :
m_Left0(0),
m_Left1(1),
m_Right0(2),

(continues on next page)

98

Limelight Documentation, Release 1.0

(continued from previous page)

m_Right1(3),
m_Controller(0)

{
m_LeftMotors.SetInverted(false);
m_RightMotors.SetInverted(false);

}

void Robot::RobotInit() {
m_chooser.SetDefaultOption(kAutoNameDefault, kAutoNameDefault);
m_chooser.AddOption(kAutoNameCustom, kAutoNameCustom);
frc::SmartDashboard::PutData("Auto Modes", &m_chooser);

}

void Robot::RobotPeriodic() {}

void Robot::AutonomousInit() {}

void Robot::AutonomousPeriodic() {}

void Robot::TeleopInit() {}

void Robot::TeleopPeriodic()
{

Update_Limelight_Tracking();

bool do_limelight = m_Controller.GetAButton();
if (do_limelight)
{

if (m_LimelightHasTarget)
{
m_Drive.ArcadeDrive(m_LimelightDriveCmd,m_LimelightTurnCmd);

}
else
{
m_Drive.ArcadeDrive(0.0,0.0);

}
}
else
{

// Tank Drive
//double left = -m_Controller.GetY(frc::GenericHID::JoystickHand::kLeftHand);
//double right = -m_Controller.

→˓GetY(frc::GenericHID::JoystickHand::kRightHand);
//m_Drive.TankDrive(left,right);

// Arcade Drive
double fwd = -m_Controller.GetY(frc::GenericHID::JoystickHand::kLeftHand);
double turn = m_Controller.GetX(frc::GenericHID::JoystickHand::kRightHand);
fwd *= 0.7f;
turn *= 0.7f;
m_Drive.ArcadeDrive(fwd,turn);

}
}

void Robot::TestPeriodic() {}

(continues on next page)

99

Limelight Documentation, Release 1.0

(continued from previous page)

void Robot::Update_Limelight_Tracking()
{

// Proportional Steering Constant:
// If your robot doesn't turn fast enough toward the target, make this number bigger
// If your robot oscillates (swings back and forth past the target) make this

→˓smaller
const double STEER_K = 0.05;

// Proportional Drive constant: bigger = faster drive
const double DRIVE_K = 0.26;

// Area of the target when your robot has reached the goal
const double DESIRED_TARGET_AREA = 13.0;
const double MAX_DRIVE = 0.65;
const double MAX_STEER = 1.0f;

std::shared_ptr<NetworkTable> table = nt::NetworkTableInstance::GetDefault().
→˓GetTable("limelight");
double tx = table->GetNumber("tx",0.0);
double ty = table->GetNumber("ty",0.0);
double ta = table->GetNumber("ta",0.0);
double tv = table->GetNumber("tv",0.0);

if (tv < 1.0)
{

m_LimelightHasTarget = false;
m_LimelightDriveCmd = 0.0;
m_LimelightTurnCmd = 0.0;

}
else
{

m_LimelightHasTarget = true;

// Proportional steering
m_LimelightTurnCmd = tx*STEER_K;
m_LimelightTurnCmd = clamp(m_LimelightTurnCmd,-MAX_STEER,MAX_STEER);

// drive forward until the target area reaches our desired area
m_LimelightDriveCmd = (DESIRED_TARGET_AREA - ta) * DRIVE_K;
m_LimelightDriveCmd = clamp(m_LimelightDriveCmd,-MAX_DRIVE,MAX_DRIVE);

}
}

#ifndef RUNNING_FRC_TESTS
int main() { return frc::StartRobot<Robot>(); }
#endif

LabView

Here is a block diagram for a LabView VI which reads tracking data from a Limelight and generates drive and steer
commands. This image is a “LabView Snippet”. Just save the image file to your computer and then drag it into a
labview VI and the block diagram will be reproduced.

100

Limelight Documentation, Release 1.0

You can also download the entire labview source code from this link:

<https://www.mediafire.com/file/f35w3wllbmj9yt7/DeepSpaceLabviewExample.zip/file/>‘_

101

https://www.mediafire.com/file/f35w3wllbmj9yt7/DeepSpaceLabviewExample.zip/file/

CHAPTER 32

ChArUco Camera Calibration

• Performing ChArUco Calibration

32.1 Performing ChArUco Calibration

ChArUco calibration with Limelight was designed to be as seamless and bullet-proof as possible. Read the following
steps, and then watch the video below to learn how to calibrate your camera for increased accuracy.

Note: You only need to calibrate at one resolution (we recommend 1280x960). Intrinsics are auto-scaled to match
your pipeline’s chosen resolution, and distortion coefficents are resolution-invariant given a fixed aspect ratio and FOV.
Hardware zoom pipelines 5 megapixel pipelines are the only pipelines that will not make use of custom calibrations.

102

Limelight Documentation, Release 1.0

32.1.1 Preparing the Board

1. Print a ChArUco Calibration Board. Use our board from the downloads page, or generate your own

2. Find the “width” of the grid by adding the total number of black squares and total number of ArUco markers in
one row (11 for the default Limelight calibration board).

3. Find the “height” of the grid by adding the total number of black squares and total number of ArUco markers in
one column (8 for the default Limelight calibration board).

4. Confirm the “square size” and “marker size” measurements by measuring the side lengths of a square and a
marker in millimeters.

• The square size and marker size measurements are critical, so use calipers.

5. Note the dictionary type. The default board from the downloads page uses the 5x5_100 dictionary.

32.1.2 Capturing Calibration Images

1. Ensure your board is as flat as possible.

• You should not perform calibration if your board is not flat. You may purchase special boards from
calib.io, or fix your printed board to a clipboard.

2. Turn on your robot and access the Limelight web UI.

3. Make a 1280x960 AprilTag pipeline

32.1. Performing ChArUco Calibration 103

https://downloads.limelightvision.io/models/calib.io_charuco_200x150_8x11_15_12_DICT_5X5.pdf
https://calib.io/pages/camera-calibration-pattern-generator

Limelight Documentation, Release 1.0

4. Delete all saved snapshots by changing the “input” source type from “Camera” to “Snapshot” and clicking
“Delete all snapshots”

5. Change the “input” source type back to “Camera”

6. Capture at least 25 snapshots of the ChArUco board to begin. Once you’re familiar with the process, you’ll want
to go back to capture a total of at least 50 images.

7. The main advantage of ChArUco calibration over standard checkerboard calibration is that it works even if only
part of the board is visible to the camera. It is important to utilize this advantage.

8. Your images should have a good mix of the following qualities:

• Your board spans large regions of the image

• Your board extands past at least one edge or corner of the image (This will help compute distortion
around the edges of the images)

• Your board is often positioned such that it has perspective warp (The board should not be parallel to
the image plane)

• Aim for broad diversity in board positions, perspectives, and coverage.

32.1. Performing ChArUco Calibration 104

Limelight Documentation, Release 1.0

32.1.3 Calibrating

1. Navigate to the “Calibration” tab. It’s the third tab in the vertical sidebar.

2. Enter the five values found in the “Preparing the Board” step.

3. Click the “Calibrate with Snapshots” button. The process may take a minute or two to complete.

4. Upon success, the “Latest Calibration Result” card will show the latest calibration result.

5. Check the “Latest Calibration Result” card for a reasonable result with a low reprojection error (ideally less than
1)

6. Download the latest calibration result and upload it to the “custom - file” calibration slot.

7. You should now see three populated calibration result cards.

8. Change your “preferred calibration” to “custom - file” to utilize your custom calibration result. All pipelines
will use your calibration result.

9. Consider capturing more screenshots and recalibrating once you are familiar with the process.

32.1. Performing ChArUco Calibration 105

CHAPTER 33

Frequently Asked Questions

33.1 Why is limelight using a low (320x240) resolution?

Using a lower resolution allows us to run the vision pipeline at a high framrate. Limelight provides tracking data fast
enough to use its outputs to directly drive a PID loop on your robot. This makes integrating vision into your robot
extremely simple; limelight is just another sensor! Additionally, we have used even lower resolutions for the past two
years in FRC. In our final event (China), our 2016 robot never mis-aimed a shot while using 160x120 resolution and
aiming at one of the most difficult targets FRC has used to-date (the high goal in stronghold). All of its shots were
auto-aimed; it was impossible to manually aim that robot.

33.2 What if the game calls for a different tracking algorithm?

We believe that Limelight will give you the tools to solve the vision tracking challenge for any FRC game. However
if some challenge comes up which we have not anticipated, we will add the features needed for you to track the new
type of target.

33.3 Why is there an extra usb port?

You can add a usb camera to limelight to act as a secondary driver or backup camera. The second camera stream will
automatically appear alongside the primary camera stream. Limelight’s video stream uses very little bandwidth so you
can safely use this feature for a competitive advantage.

33.4 How do I view the video stream?

The video stream exists at http://<Limelight’s IP address or limelight.local>:5800. Stream info is also posted to
network tables so SmartDashbaord and Shuffleboard (test LV dashboard) will automatically find it.

106

http:/

Limelight Documentation, Release 1.0

33.5 Are the eight LEDs bright enough?

The total light output of the LEDs is 400 lumens, and the LED cones actually increase the illuminance (functional
light) of the device. To compare, the common two-ring setup has a total output of roughly 250 lumens.

33.6 Does Limelight support protocols other than NetworkTables?

Limelight also streams tx, ty, ta, and ts over the Serial (UART) pins at the back of the enclosure.

33.7 Does Limelight support Active PoE?

Limelight only supports passive PoE. Active POE requires a handshake between the sending and receiving POE
devices. Limelight is designed to work with a passive POE injector. Just supply 12V by wiring the passive POE
injector right into your PDP.

33.8 Should I plug Limelight into our VRM (Voltage Regulator Mod-
ule)?

Limelight is designed to be connected to the main robot battery. It contains its own voltage regulators.

33.9 My robot has extreme voltage swings while driving, will this
damage my Limelight?

We specifically designed Limelight to handle the “noisy” power available on a typical FRC robot. It contains the
voltage regulators needed to generate the voltages it needs to operate as long its input voltage is above 6V.

33.10 Will Limelight’s LEDs dim when our robot’s voltage drops?

We designed the LED array on Limelight to produce a consistent brightness all the way down to 7.5V. So your tracking
should remain consistent even when your robot motors are putting a heavy load on the battery. This can be an important
feature for robots with high-traction drivetrains that aim by turning in place.

33.5. Are the eight LEDs bright enough? 107

CHAPTER 34

Additional Resources

34.1 Team 254 Vision Talk

Team 254 gave an this excellent talk on how to do vision tracking using an android phone! Their talk is packed
with very good information on the theory and implementation of vision tracking. https://www.youtube.com/watch?v=
rLwOkAJqImo

34.2 WPI Vision Processing Resources

These pages are loaded with information on various ways to implement your own vision processing pipeline. https:
//docs.wpilib.org/en/stable/docs/software/vision-processing/index.html

34.3 GRIP

Grip is a tool that lets you build OpenCV pipelines using a drag-and-drop GUI. https://docs.wpilib.org/en/stable/docs/
software/vision-processing/grip/introduction-to-grip.html

108

https://www.youtube.com/watch?v=rLwOkAJqImo
https://www.youtube.com/watch?v=rLwOkAJqImo
https://docs.wpilib.org/en/stable/docs/software/vision-processing/index.html
https://docs.wpilib.org/en/stable/docs/software/vision-processing/index.html
https://docs.wpilib.org/en/stable/docs/software/vision-processing/grip/introduction-to-grip.html
https://docs.wpilib.org/en/stable/docs/software/vision-processing/grip/introduction-to-grip.html

CHAPTER 35

Software Change Log

Contact us or post to CD to suggest upgrades for Limelight!

35.1 2023.6 (4/18/23)

35.1.1 Easy ChArUco Calibration & Calibration Visualizers

• ChArUco calibration is considered to be better than checkerboard calibration because it handles occlusions, bad
corner detections, and does not require the entire board to be visible. This makes it much easier to capture
calibration board corners close to the edges and corners of your images. This is crucial for distortion coefficient
estimation.

• Limelight’s calibration process provides feedback at every step, and will ensure you do all that is necessary for
good calibration results. A ton of effort has gone into making this process as bulletproof as possible.

• Most importantly, you can visualize your calibration results right next to the default calibration. At a glance,
you can understand whether your calibration result is reasonable or not.

• You can also use the calibration dashboard as a learning tool. You can modify downloaded calibration results
files and reupload them to learn how the intrinsics matrix and distortion coefficients affect targeting results, FOV,
etc.

• Take a look at this video:

35.2 2023.5.1 & 2023.5.2(3/22/23)

Fixed regression introduced in 2023.5.0 - While 2023.5 fixed megatag for all non-planar layouts, it reduced the per-
formance of single-tag pose estimates. This has been fixed. Single-tag pose estimates use the exact same solver used
in 2023.4.

Snappier snapshot interface. Snapshot grid now loads low-res 128p thumbnails.

Limeilght Yaw is now properly presented in the 3d visualizers. It is ccw-positive in the visualizer and internally

109

Limelight Documentation, Release 1.0

Indicate which targets are currently being tracked in the field space visualizer

35.3 2023.5.0 (3/21/23)

35.3.1 Breaking Changes

Fixed regression - Limelight Robot-Space “Yaw” was inverted in previous releases. Limelight yaw in the web ui is
now CCW-Positive internally.

35.3.2 Region Selection Update

• Region selection now works as expected in neural detector pipelines.

• Add 5 new region options to select the center, top, left, right, top, or bottom of the unrotated target rectangle.

35.3.3 “hwreport” REST API

• :5807/hwreport will return a JSON response detailing camera intrinsics and distortion information

35.3.4 MegaTag Fix

• Certain non-coplanar apriltag layouts were broken in MegaTag. This has been fixed, and pose estimation is now
stable with all field tags. This enables stable pose estimation at even greater distances than before.

35.3.5 Greater tx and ty accuracy

• TX and TY are more accurate than ever. Targets are fully undistorted, and FOV is determined wholly by camera
intrinsics.

35.4 2023.4.0 (2/18/23)

35.4.1 Neural Detector Class Filter

Specify the classes you want to track for easy filtering of unwanted detections.

35.4.2 Neural Detector expanded support

Support any input resolution, support additional output shapes to support other object detection architectures.
EfficientDet0-based models are now supported.

35.3. 2023.5.0 (3/21/23) 110

Limelight Documentation, Release 1.0

35.5 2023.3.1 (2/14/23)

35.5.1 AprilTag Accuracy Improvements

Improved intrinsics matrix and, most importantly, improved distortion coefficients for all models. Noticeable single
AprilTag Localization improvements.

35.5.2 Detector Upload

Detector upload fixed.

35.6 2023.3 (2/13/23)

35.6.1 Capture Latency (NT Key: “cl”, JSON Results: “cl”)

The new capture latency entry represents the time between the end of the exposure of the middle row of Limelight’s
image sensor and the beginning of the processing pipeline.

Capture latency replaces the estimated “11ms” value we have recommended in the past. For each capture mode, we
profiled the best-case image pipeline time (sensor, ISP, driver, memory transfer), and added slightly less than half the
total sensor readout time to arrive at the values posted to “cl”. Our profiling procedure captures photons-to-memory
latency with an LED Rig and a lot of profiling software.

35.6.2 New Quality Threshold for AprilTags

Spurious AprilTags are now more easily filtered out with the new Quality Threshold slider. The default value set in
2023.3 should remove most spurious detections.

35.6.3 Camera Pose in Robot Space Override (NT Keys: “camera-
pose_robotspace_set”, “camerapose_robotspace”)

Your Limelight’s position in robot space may now be adjusted on-the-fly. If the key is set to an array of zeros, the
pose set in the web interface is used. The current camera pose may now be read with “camerapose_robotspace” in
networktables or “t6c_rs” in the top-level of the JSON results.

Here’s an example of a Limelight on an elevator:

35.6.4 Increased Max Exposure

The maximum exposure time is now 33ms (up from 12.5 ms). High-fps capture modes are still limited to (1/fps)
seconds. 90hz pipelines, for example, will not have brighter images past 11ms exposure time.

35.6.5 Botpose updates

All three botpose arrays in networktables have a seventh entry representing total latency (capture latency + targeting
latency).

35.5. 2023.3.1 (2/14/23) 111

Limelight Documentation, Release 1.0

35.6.6 Bugfixes

• Fix LL3 MJPEG streams in shuffleboard

• Fix camMode - driver mode now produces bright, usable images.

• Exposure label has been corrected - each “tick” represents 0.01ms and not 0.1 ms

• Fix neural net detector upload

35.7 2023.2 (1/28/23)

Making 3D easier than ever.

35.7.1 WPILib-compatible Botposes

Botpose is now even easier to use out-of-the-box.

• New NetworkTables Key “botpose_wpired” - botpose, but with the origin at the right-hand side of the driversta-
tion on the red side of the field.

• New NetworkTables Key “botpose_wpiblue” - botpose, but with the origin at the right-hand side of the driver-
station on the blue side of the field.

• New Json arrays - botpose_wpired, and botpose_wpiblue

These match the WPILib Coordinate systems. Here’s an example:

All botposes are printed directly in the field-space visualizer in the web interface, making it easy to confirm at a glance
that everything is working properly.

35.7.2 Easier access to 3D Data (Breaking Changes)

RobotPose in TargetSpace is arguably the most useful data coming out of Limelight with repsect to AprilTags. Using
this alone, you can perfectly alighn a drivetrain with an AprilTag on the field. Until now, this data has been buried in

35.7. 2023.2 (1/28/23) 112

Limelight Documentation, Release 1.0

the JSON dump. In 2023.2, all 3D data for the primary in-view AprilTag is accessible over NT.

• NetworkTables Key “campose” is now “camerapose_targetspace”

• NetworkTables Key “targetpose” is now “targetpose_cameraspace”

• New NetworkTables Key - “targetpose_robotspace”

• New NetworkTables Key - “botpose_targetspace”

35.7.3 Neural Net Upload

Upload teachable machine models to the Limelight Classifier Pipeline. Make sure they are Tensorflow Lite EdgeTPU
compatible models. Upload .tflite and .txt label files separately.

35.8 2023.1 (1/19/23)

MegaTag and Performance Boosts

35.8.1 Correcting A Mistake

The default marker size parameter in the UI has been corrected to 152.4mm (down from 203.2mm). This was the root
of most accuracy issues. While it is sometimes acceptable to measure tags by their outermost border, the Limelight
interface uses the detection corner distance (black box side length).

35.8.2 Increased Tracking Stability

There are several ways to tune AprilTag detection and decoding. We’ve improved stability across the board, especially
in low light / low exposure environments.

35.8.3 Ultra Fast Grayscaling

Grayscaling is 3x-6x faster than before. Teams will always see a gray video stream while tracking AprilTags. While
grayscaling was never very expensive, we want to squeeze as much performance out of the hardware as possible.

35.8.4 Cropping For Performance

AprilTag pipelines now have crop sliders. Cropping your image will result in improved framerates at any resolution.
AprilTag pipelines also support the dynamic “crop” networktables key. In case you missed it last year, dynamic
cropping with the “Crop” NT key was added at the request of one of the best teams in the world in 2022 to improve
shoot-on-the-move reliability. Note the framerate increase from ~55fps to ~80fps.

35.8.5 Easier Filtering

There is now a single “ID filter” field in AprilTag pipelines which filters JSON output, botpose-enabled tags, and
tx/ty-enabled tags. The dual-filter setup was buggy and confusing.

35.8. 2023.1 (1/19/23) 113

Limelight Documentation, Release 1.0

35.8.6 Breaking Change

The NT Key “camtran” is now “campose”

35.8.7 JSON update

“botpose” is now a part of the json results dump

35.8.8 Field Space Visualizer Update

The Field-space visualizer now shows the 2023 FRC field. It should now be easier to judge botpose accuracy at a
glance.

35.8.9 Limelight MegaTag (new botpose)

My #1 priority has been rewriting botpose for greater accuracy, reduced noise, and ambiguity resilience. Limelight’s
new botpose implementation is called MegaTag. Instead of computing botpose with a dumb average of multiple
individual field-space poses, MegaTag essentially combines all tags into one giant 3D tag with several keypoints. This
has enormous benefits.

The following GIF shows a situation designed to induce tag flipping: Green Cylinder: Individual per-tag bot pose Blue
Cylinder: 2023.0.1 BotPose White Cylinder: New MegaTag Botpose

Notice how the new botpose (white cylinder) is extremely stable compared to the old botpose (blue cylinder). You can
watch the tx and ty values as well.

Here’s the full screen, showing the tag ambiguity:

Here are the advantages:

Botpose is now resilient to ambiguities (tag flipping) if more than one tag is in view (unless they are close and coplanar.
Ideally the keypoints are not coplanar). Botpose is now more resilient to noise in tag corners if more than one tag is
in view. The farther away the tags are from each other, the better. This is not restricted to planar tags. It scales to any
number of tags in full 3D and in any orientation. Floor tags and ceiling tags would work perfectly.

Here’s a diagram demonstrating one aspect of how this works with a simple planar case. The results are actually better
than what is depicted, as the MegaTag depicted has a significant error applied to three points instead of one point. As
the 3D combined MegaTag increases in size and in keypoint count, its stability increases.

35.8. 2023.1 (1/19/23) 114

Limelight Documentation, Release 1.0

Nerual Net upload is being pushed to 2023.2!

35.9 2023.0.0 and 2023.0.1 (1/11/23)

Introducing AprilTags, Robot localization, Deep Neural Networks, a rewritten screenshot interface, and more.

35.9.1 Features, Changes, and Bugfixes

• New sensor capture pipeline and Gain control

– Our new capture pipeline allows for exposure times 100x shorter than what they were in 2022. The new
pipeline also enables Gain Control. This is extremely important for AprilTags tracking, and will serve to
make retroreflective targeting more reliable than ever. Before Limelight OS 2023, Limelight’s sensor gain
was non-deterministic (we implemented some tricks to make it work anyways).

– With the new “Sensor Gain” slider, teams can make images darker or brighter than ever before without
touching the exposure slider. Increasing gain will increase noise in the image.

– Combining lower gain with the new lower exposure times, it is now possible to produce nearly completely
black images with full-brightness LEDs and retroreflective targets. This will help mitigate LED and sun-
light reflections while tracking retroreflective targets.

– By increasing Sensor Gain and reducing exposure, teams will be able to minimize the effects of motion
blur due to high exposure times while tracking AprilTags.

– We have managed to develop this new pipeline while retaining all features - 90fps, hardware zoom, etc.

• More Resolution Options

– There two new capture resolutsions for LL1, LL2, and LL2+: 640x480x90fps, and 1280x960x22fps

• Optimized Web Interface

– The web gui will now load and initialize up to 3x faster on robot networks.

• Rewritten Snapshots Interface

– The snapshots feature has been completely rewritten to allow for image uploads, image downloads, and
image deletion. There are also new APIs for capturing snapshots detailed in the documentation.

• SolvePnP Improvements

35.9. 2023.0.0 and 2023.0.1 (1/11/23) 115

Limelight Documentation, Release 1.0

– Our solvePnP-based camera localization feature had a nasty bug that was seriously limiting its accuracy
every four frames. This has been addressed, and a brand new full 3D canvas has been built for Retroreflec-
tive/Color SolvePNP visualizations.

• Web Interface Bugfix

– There was an extremely rare issue 2022 that caused the web interface to permanently break during the first
boot after flashing, which would force the user to re-flash. The root cause was found and fixed for good.

• New APIs

– Limelight now include REST and Websocket APIs. REST, Websocket, and NetworkTables APIs all sup-
port the new JSON dump feature, which lists all data for all targets in a human readable, simple-to-parse
format for FRC and all other applications.

35.9.2 Zero-Code Learning-Based Vision & Google Coral Support

• Google Coral is now supported by all Limelight models. Google Coral is a 4TOPs (Trillions-of-Operations /
second) USB hardware accelerator that is purpose built for inference on 8-bit neural networks.

• Just like retroreflective tracking a few years ago, the barrier to entry for learning-based vision on FRC robots
has been too high for the average team to even make an attempt. We have developed all of the infrastructure
required to make learning-based vision as easy as retroreflective targets with Limelight.

• We have a cloud GPU cluster, training scripts, a dataset aggregation tool, and a human labelling team ready to
go. We are excited to bring deep neural networks to the FRC community for the first time.

• We currently support two types of models: Object Detection models, and Image classification models.

– Object detection models will provide “class IDs” and bounding boxes (just like our retroreflective targets) for all detected objects. This is perfect for real-time game piece tracking.

* Please contribute to the first-ever FRC object detection model by submitting images here: https:
//datasets.limelightvision.io/frc2023

* Use tx, ty, ta, and tclass networktables keys or the JSON dump to use detection networks

– Image classification models will ingest an image, and produce a single class label.

* To learn more and to start training your own models for Limelight, check out Teachable Ma-
chine by google.

* https://www.youtube.com/watch?v=T2qQGqZxkD0

* Teachable machine models are directly compatible with Limelight.

* Image classifiers can be used to classify internal robot state, the state of field features, and so
much more.

* Use the tclass networktables key to use these models.

• Limelight OS 2023.0 does not provide the ability to upload custom models. This will be enabled shortly in
2023.1

35.9.3 Zero-Code AprilTag Support

• AprilTags are as easy as retroreflective targets with Limelight. Because they have a natural hard filter in the
form of an ID, there is even less of a reason to have your roboRIO do any vision-related filtering.

• To start, use tx, ty, and ta as normal. Zero code changes are required. Sort by any target characteristic, utilize
target groups, etc.

35.9. 2023.0.0 and 2023.0.1 (1/11/23) 116

https://datasets.limelightvision.io/frc2023
https://datasets.limelightvision.io/frc2023
https://www.youtube.com/watch?v=T2qQGqZxkD0

Limelight Documentation, Release 1.0

• Because AprilTags both always square and always uniquely identifiable, they provide the perfect platform for
full 3D pose calculations.

• The feedback we’ve received for this feature in our support channels has been extremely positive. We’ve made
AprilTags as easy as possible, from 2D tracking to a full 3D robot localization on the field

• Check out the Field Map Specification and Coordinate System Doc for more detailed information.

• There are four ways to use AprilTags with Limelight:

• AprilTags in 2D

– Use tx, ty, and ta. Configure your pipelines to seek out a specific tag ID.

– <gif>

• Point-of-Interest 3D AprilTags

– Use tx and ty, ta, and tid networktables keys. The point of interest offset is all most teams will need
to track targets do not directly have AprilTags attached to them.

– <gif>

• Full 3D

– Track your LL, your robot, or tags in full 3D. Use campose or json to pull relevant data into your
roboRio.

– <gif>

• Field-Space Robot Localization

– Tell your Limelight how it’s mounted, upload a field map, and your LL will provide the field pose of
your robot for use with the WPILib Pose Estimator.

– Our field coordinate system places (0,0) at the center of the field instead of a corner.

– Use the botpose networktables key for this feature.

– <gif>

35.10 2022.3.0 (4/13/22)

Bugfixes and heartbeat.

35.10.1 Bugfixes

• Fix performance, stream stability, and stream lag issues related to USB Camera streams and multiple stream
instances.

35.10.2 Features and Changes

• “hb” Heartbeat NetworkTable key

– The “hb” value increments once per processing frame, and resets to zero at 2000000000.

35.10. 2022.3.0 (4/13/22) 117

Limelight Documentation, Release 1.0

35.11 2022.2.3 (3/16/22)

Bugfixes and robot-code crop filtering.

35.11.1 Bugfixes

• Fix “stream” networktables key and Picture-In-Picture Modes

• Fix “snapshot” networktables key. Users must set the “snapshot” key to “0” before setting it to “1” to take a
screenshot.

• Remove superfluous python-related alerts from web interface

35.11.2 Features and Changes

• Manual Crop Filtering

– Using the “crop” networktables array, teams can now control crop rectangles from robot code.

– For the “crop” key to work, the current pipeline must utilize the default, wide-open crop rectangle (-1
for minX and minY, +1 for maxX and +1 maxY).

– In addition, the “crop” networktable array must have exactly 4 values, and at least one of those values
must be non-zero.

35.12 2022.2.2 (2/23/22)

Mandatory upgrade for all teams based on Week 0 and FMS reliability testing.

35.12.1 Bugfixes

• Fix hang / loss of connection / loss of targeting related to open web interfaces, FMS, FMS-like setups, Multiple
viewer devices etc.

35.12.2 Features and Changes

• Crop Filtering

– Ignore all pixels outside of a specified crop rectangle

– If your flywheel has any sweet spots on the field, you can make use of the crop filter to ignore the
vast majority of pixels in specific pipelines. This feature should help teams reduce the probability of
tracking non-targets.

– If you are tracking cargo, use this feature to look for cargo only within a specific part of the image.
Consider ignoring your team’s bumpers, far-away targets, etc.

–

• Corners feature now compatible with smart target grouping

– This one is for the teams that want to do more advanced custom vision on the RIO

– “tcornxy” corner limit increased to 64 corners

35.11. 2022.2.3 (3/16/22) 118

Limelight Documentation, Release 1.0

– Contour simplification and force convex features now work properly with smart target grouping and
corner sending

–

• IQR Filter max increased to 3.0

• Web interface live target update rate reduced from 30fps to 15fps to reduce bandwidth and cpu load while the
web interface is open

35.13 2022.1 (1/25/22)

35.13.1 Bugfixes

• We acquired information from one of our suppliers about an issue (and a fix!) that affects roughly 1/75 of the
CPUs specifically used in Limelight 2 (it may be related to a specific batch). It makes sense, and it was one of
the only remaining boot differences between the 2022 image and the 2020 image.

• Fix the upload buttons for GRIP inputs and SolvePNP Models

35.13.2 Features

• Hue Rainbow

– The new hue rainbow makes it easier to configure the hue threshold. Here’s an example of filtering
for blue pixels:

–

• Hue Inversion

– The new hue inversion feature is a critical feature if you want to track red objects, as red is at both the
beginning and the end of the hue range:

– If you’re trying to track cargo, the aspect ratio filter (set a tight range around “1”) and the fullness
filter (you want above 70%) should work quite well. Explicit “circle” filtering is relatively slow and
won’t work as well as people assume.

–

• New Python Libraries

– Added scipy, scikit-image, pywavelets, pillow, and pyserial to our python sandbox.

35.14 2022.0 and 2022.0.3 (1/15/22)

This is a big one. Here are the four primary changes:

35.14.1 Features

• Smart Target Grouping

– Automatically group targets that pass all individual target filters.

– Will dynamically group any number of targets between -group size slider minimum- and -group size
slider maximum-

35.13. 2022.1 (1/25/22) 119

Limelight Documentation, Release 1.0

–

• Outlier Rejection

– While this goal is more challenging than other goals, it gives us more opportunities for filtering.
Conceptually, this goal is more than a “green blob.” Since we know that the goal is comprised of
multiple targets that are close to each other, we can actually reject outlier targets that stand on their
own.

– You should rely almost entirely on good target filtering for this year’s goal, and only use outlier
rejection if you see or expect spurious outliers in your camera stream. If you have poor standard
target filtering, outlier detection could begin to work against you!

–

• Limelight 2022 Image Upgrades We have removed hundreds of moving parts from our software. These are
the results:

– Compressed Image Size: 1.3 GB in 2020 → 76MB for 2022 (Reduced by a factor of 17!)

– Download time: 10s of minutes in 2020 → seconds for 2022

– Flash time: 5+ minutes in 2020 → seconds for 2022

– Boot time: 35+ seconds in 2020 → 14 seconds for 2022 (10 seconds to LEDS on)

• Full Python Scripting Limelight has successfully exposed a large number of students to some of the capabil-
ities of computer vision in robotics. With python scripting, teams can now take another step forward by
writing their own image processing pipelines.

–

– Limelight handles the hardware, camera interfacing, networking, streaming, and basic image pre-
processing. All you need to do is write one python function called runPipeline().

– One of the most important features we offer is the one-click crosshair. The crosshair, dual crosshair,
tx, ty, ta, ts, tvert, and all other standard limelight NetworkTables readings will automatically latch to
the contour you return from the python runPipeline() function.

– Write your own real-time visualizations, thresholding, filtering, and bypass our backend entirely if desired.

* Limelight’s python scripting has access to the full OpenCV and numpy libraries.

* Beyond access to the image, the runPipeline() function also has access to the “llrobot” Net-
workTables number array. Send any data from your robots to your python scripts for visualiza-
tion or advanced applications (One might send IMU data, pose data, robot velocity, etc. for use
in python scripts)

* The runPipeline function also outputs a number array that is placed directly into the “llpython”
networktables number array. This means you can bypass Limelight’s crosshair and other func-
tionality entirely and send your own custom data back to your robots.

* Python scripts are sandboxed within our c++ environment, so you don’t have to worry about
crashes. Changes to scripts are applied instantly, and any error messages are printed directly to
the web interface.

• This update is compatible with all Limelight Hardware, including Limelight 1.

• Known issues: Using hardware zoom with python will produce unexpected results.

• 2022.0.3 restores the 5802 GRIP stream, and addresses boot issues on some LL2 units by reverting some of the
boot time optimizations. Boot time is increased to 16 seconds.

35.14. 2022.0 and 2022.0.3 (1/15/22) 120

Limelight Documentation, Release 1.0

35.15 2020.4 (3/11/20)

2020.4 is another critical update that eliminates the intermittent 2-4 second crash that could occur during an abrupt
mjpeg stream disconnection. This often happened at the very end of the match, and in some cases could happen during
matches.

35.16 2020.3 (2/25/20)

2020.3 is a critical update that addresses intermittent networking-related software restarts, and addresses a crash that
would occur upon USB camera disconnection.

35.17 2020.2 (1/30/20)

2020.2 pushes Limelight’s hardware even further by adding the ability to pan and zoom to any point. It also adds a
brand new video mode and important bug fixes. Let us know what features you would like to see in future updates!

35.17.1 Features

• 3x Hardware Zoom at 60 FPS

– Our last update added 2x Hardware Zoom for all Limelight models at no cost whatsoever. We’ve managed
to push our hardware zoom even further with 3x Hardware Zoom. All Limelight models are now capable
of 3x Hardware Zoom at 60fps. This makes full-court tracking even easier for every team.

– The following gif shows 1x, 2x, and 3x Hardware Zoom from the sector line (full court shot line):

–

– This gif shows only 1x and 3x Hardware Zoom from the full-court sector line shot location:

–

• Hardware Panning

– Robots capable of shooting from both long and short distances in 2020 would have found it difficult to use
Hardware Zoom on their Limelights without the use of an active, adjustable Limelight mount. We have
incorporated Hardware Panning to solve this problem.

– This gif shows Hardware Panning while using 3x Hardware Zoom. This should simplify mounting for
teams who wish to use Hardware Zoom:

–

– Hardware Panning on the X and Y axes at 3x Hardware Zoom

–

35.17.2 Bugfixes

• Address driver issues that were breaking the color balance sliders

• Revert all networking-related drivers to 2019 season variants to address a small number of network performance
reports from teams

35.15. 2020.4 (3/11/20) 121

Limelight Documentation, Release 1.0

35.18 2020.1 (1/16/20)

2020.1 adds one of Limelight’s coolest features yet: 2x Hardware Zoom. This is not digital zoom, and it is now
enabled for all Limelight versions.

35.18.1 Features

• 2x Hardware Zoom

– Not Digital zoom

– Enable 2x Hardware zoom to achieve vastly improved tracking at long range, and stable tracking at full-
court distances.

– This feature comes with absolutely no latency or framerate cost - tracking continues to execute at 90fps
with no additional overhead.

– Zoom from the autonomous starting line (~127” away):

–

– Zoom from the front of the trench run (~210” away):

–

– Zoom from the front of the color wheel (~310” away):

–

– Zoom from the very back of the trench run (~420” away):

–

– Zoom from the sector line (nearly full-court):

–

• Manual Crosshairs

– Manually adjust single and dual crosshair locations with sliders in the web interface

–

• New SolvePNP / 3D features (Still experimental)

– We have added the “Force Convex” option to use only the outermost points of a target - this is necessary
in 2020 due to the thin tape used for the hexagonal target.

–

– The “bind target” option has been added. This feature binds “tx” and “ty” to the 3D target. This is required
to guide robots to score using 3D targets.

–

– Finally, add the “Goal Z-Offset” option to automatically offset your desired target location in 3D space on
the Z-axis.

– In Infinite Recharge, the “Goal Z-Offset” would be used to track the center of the small, circular goal
behind the hexagonal goal.

–

– SolvePnP is still an experimental feature! We believe there are creative ways to play this game without
SolvePnP, but we will continue to improve this feature.

35.18. 2020.1 (1/16/20) 122

Limelight Documentation, Release 1.0

• Color sensing with “tc”

– Read the new “tc” array in Network Tables to obtain Red, Green, and Blue values at the crosshair’s location.
Adjust “Blue Balance” and “Red Balance” on the input tab to achieve perfect color sensing.

35.18.2 Bugfixes

• USB Camera functionality broken in 2020.0 is now fixed in 2020.1

• SolvePnP functionality broken in 2020.0 is now fixed in 2020.1

• SolvePnP properly uses the model center as the axis visualization center

35.19 2019.7 (4/5/19)

2019.7 adds two new features.

35.19.1 Features

• 160x120 30fps streaming

– Smoother, lower-bandwidth streaming for teams that use wide-angle USB cameras. Our 180-degree cam-
era stream bandwidth dropped from ~3.7mbps to ~1.8 mbps.

– Change the stream resolution in the settings tab.

– Changing the stream resolution on a Limelight with a wide-angle USB camera attached. No Picture-in-Picture, and normal stream rate.

*

• Smart Speckle Rejection

– Teams that have mounted their cameras in-line with the target this year have had to deal with unwanted
LED reflections.

– The area slider does not always solve this problem, as teams want to track small vision targets at large
distances.

– This new feature will automatically reject relatively small contours that have passed through all other
filters.

– As a robot moves away from a vision target (decreasing its size), SSR will automatically adjust to only
reject relatively small contours.

–

35.19. 2019.7 (4/5/19) 123

Limelight Documentation, Release 1.0

35.19.2 Changes

• Tooltips

– Tooltips are now available on some Limelight controls

–

35.20 2019.6.1 Hotfix (3/14/19)

2019.6.1 fixes Grip uploads.

35.21 2019.6 (3/12/19)

2019.6 is all about reliability.

35.21.1 Bugfixes

• USB Cameras

– Address issue that could cause some USB cameras to fail on boot.

• FMS

– Make Limelight more (if not completely) resistant to FMS restarts and field / laptop networking changes.

– Limelight will no longer hang after a sudden client networking change.

• Raw Contour Sorting (BREAKING CHANGE)

– Intersection filters no longer affect raw contour sorting.

• Smartdashboard auto-posting

*LL auto-posts certain pieces of information to SmartDashboard (IP Address, Interface url, etc.).
The names of these values now contain the hostname.

35.21.2 Features & Changes

• Significantly increase precision and stability of the compute3d feature. Translation and rotation measurements
are stable at larger distances.

• Max Black Level Offset increased to 40 (from 25) for even darker images.

• New “Closest” sort options in the “Output” tab while “Dual Crosshair” mode is enabled.

– Standard - Current “closest” sorting implementation with “Dual Crosshair” mode.

– Standard V2 - Experimental, smart “closest” sorting implementation with “Dual Crosshair” mode.

– Average of Crosshairs - “Closest” sort origin with “Dual Crosshair” mode is the average of the two
crosshairs.

– Crosshair A - “Closest” sort origin with “Dual Crosshair” mode is crosshair A.

– Crosshair B - “Closest” sort origin with “Dual Crosshair” mode is crosshair B.

• New “LED Mode” pipeline options: “Left Half”, “Right Half”

35.20. 2019.6.1 Hotfix (3/14/19) 124

Limelight Documentation, Release 1.0

• Floating-point raw corner values while compute3D is enabled.

• Hide image decorations while using magic wands

• Larger stream in web interface

35.22 2019.5 (2/9/19)

With 2019.5 we are introducing the brand new compute3D camera localization feature. Only a handful of teams have
ever attempted to add this feature to their vision systems, and now it is available to all Limelight 1 and Limelight 2
users.

This is not a silver bullet for this year’s game. We highly recommend thinking of creative ways to use the standard
high-speed 90 fps tracking unless this feature is absolutely necessary.

All example gifs were created with an LL2 mounted on the side of a kitbot. This is why you will see slight changes in
translation during turns.

35.22.1 Features

• High-Precision Mode and PnP

– In the following gif, a Limelight 2 was placed 37 inches behind and 14.5 inches to the right of the target.

*

– The Limelight was later turned by hand. Notice how the distances remain mostly unchanged:

*

– With 2019.4, we introduced corner sending. This allowed advanced teams to write their own algorithms
using OpenCV’s solvePNP(). With 2019.5, this is all done on-board.

– Upload a plain-text csv file with a model of your target. We have pre-built models of 2019 targets hosted
on our website. All models must have a centered origin, and use counter-clockwise point ordering with
inch scaling.

– Enable the new high-res 960x720 mode, and then enable “Solve 3D” to acquire the position and rotation
of your Limelight relative to your target.

– Corner numbers are now displayed on the image for easier model creation and threshold tuning.

– Read all 6 dimensions of your camera’s transform (x,y,z,pitch,yaw,roll) by reading the “camtran” network-
table number array.

• Black Level

– With the new black level slider, thresholding is even easier. Increase the black level offset to further darken
your images.

–

35.22.2 Breaking Changes

• The reported vertical FOV for LL2 has been fixed to match the listed value of 49.7 degrees. This will change
your “ty” values

35.22. 2019.5 (2/9/19) 125

Limelight Documentation, Release 1.0

35.22.3 Bug Fixes

• Fix stream-only crash that could occur when fisheye USB cameras were attached.

• Fix rare hang caused by networking-related driver.

• Corner approximation is now always active.

35.23 2019.4 (1/26/19)

We believe all critical bug reports are covered with this release.

35.23.1 Features

• Corners

– Send the corners of your target as two arrays (tcornx, tcorny) *NOW tcornxy by enabling “send corners”
in the “Output” tab. This will further enable teams that are interested in advanced pipelines with methods
like solvePNP().

– Adjust corner approximation with the “corner approximation” slider in the “Output” tab.

35.23.2 Bug Fixes

• Fix hang + rare crash that would occur when two targets had exactly the same area, x coordinate, or y coordinate.

• Fix area calculation in dual- and tri-target modes.

• Optimize contour sorting for better performance.

35.24 2019.3 (1/19/19)

2019.3 addresses a number of bugs and feature requests.

35.24.1 Features

• Stream Rate (bandwidth reduction)

– Set the stream rate to “low” in the settings page for a lower-bandwidth 15fps video stream.

• Raw Contours disabled in NetworkTables (bandwidth reduction)

– Raw contours are now disabled by default. This will further reduce Limelight’s overall bandwidth.

– There are now ~180 fewer networktables entries submitted per second by default.

– See the new “Raw Contours” pipeline option in the “Output” tab to re-enable raw contours.

• Active Pipeline Index

– Read the networktable key “getpipe” to get the true active pipeline index of the camera. This is updated at
90hz.

– The active pipeline index is now written to the videostream underneath the FPS display.

35.23. 2019.4 (1/26/19) 126

Limelight Documentation, Release 1.0

• Left and Right Intersection Filters

– Teams may now choose between “left” and “right” dual-contour intersection filters. The “above” and
“below” intersection filters were added in 2019.2.

35.24.2 Bug Fixes

• Fix LabView Dashboard streaming bug introduced in 2019.2

• The webpage no longer requests icon fonts from a the internet. All fonts are stored locally. This should speed
up interface loading.

• Reduce “driver mode” exposure.

• Fix “Distance Transform” GRIP implementation

• Fix 20-second communication delays caused by changing the hostname.

35.25 2019.2 (1/7/19)

2019.2 adds new features to better equip teams for the 2019 season.

• Intersection Filter

–

– The all-new intersection filter will allow teams to better distinguish between different groups of contours.
The filter extends contours to infinity, and checks where they would intersect.

• Direction Filter

–

– The new direction filter will allow teams to better distinguish between contours of different orientations.

• Additional Changes and Fixes

– IP Address is auto-posted to SmartDashboard/Shuffleboard for easier event troubleshooting. We have had
almost no reports of this being an issue, but this serves as another contingency feature.

– Pipeline name is auto-posted to SmartDashboard/Shuffleboard

– Access the width and height of the rough bounding box in pixels with new networktables keys.

– Access the longest side and shortest side of the perfect bounding box in pixels with new networktables
keys.

– “Sort Mode” now applies to dual-contours

– “Sort Mode” is now fixed

– 5802 stream is less taxing on the camera

35.26 2019.1 (12/18/18)

2019.1 fixes all major bugs reported during the beta

• Performance is back to a steady 90fps. A driver issue was the root cause of our performance problems during
beta

35.25. 2019.2 (1/7/19) 127

Limelight Documentation, Release 1.0

• IP and hostname settings actually apply and “stick”

• Magic Wands have been re-ordered to match those of Limelight 2018 software

• We now support Grip inputs like masks through the web interface

• NetworkTables freeze fixed

35.27 2019.0 (12/10/18)

With 2019, we are introducing GRIP support, a brand-new interface, and a cleaner flashing procedure.

• Grip Support

– Build pipelines with GRIP For Limelight, and export “LL Script” files to upload to your camera.

– Masks and NetworkTables support will be added in a future update

– Expose a bare video stream at http://<limelighturl>:5802 for testing in grip

• All-new web interface

– Smaller controls

– More tooltips

– Add the ability to turn off the LEDs from the interface

– Move display combobox underneath stream for easier display switching

– Faster communication to Limelight. New web tech allowed us to simplify other parts of our code.

• Flashing

– We have migrated to “Balena Etcher”

– Etcher is twice as fast and works on all platforms

– Flash popups are fixed with the migration.

• Other

– The LED Mode has been modified to allow for pipeline-specific LED Modes. LED MODE 0 is now
“pipeline mode”, while mode 1 is “force off”

– Faster boot times in automatic IP assignment mode.

– Optimizations and minor bug fixes

35.28 2018.5 (3/28/18)

2018.5 fixes a critical issue that would prevent users from tuning pipelines on snapshots.

35.29 2018.4 (3/19/18)

2018.4 adds new contour sorting options. These are fairly important for cube tracking this year, as teams don’t
necessarily want to track the largest cube in view. In many cases, teams want to track the cube that is closest to their
intakes. Many users have had to use the raw contours feature to implement their own sorting, so we want to make this
as easy as possible.

35.27. 2019.0 (12/10/18) 128

http:/

Limelight Documentation, Release 1.0

• Contour Sort Mode

– Select between “largest”, “smallest”, “highest”, “lowest”, “leftmost”, “rightmost”, and “closest” sort op-
tions.

– We feel that many teams will make use of the “closest” option for cube tracking.

–

35.30 2018.3 (2/28/18)

2018.3 fixes a major networktables reconnection bug which would cause NetworkTables settings changes to not prop-
agate to Limelight. Thanks to Peter Johnson and the WPILib team for pinpointing and fixing the underlying NT bug.
This was (as far as we know) the last high-priority bug facing Limelight.

Settings changes such as ledMode, pipeline, and camMode should always apply to Limelight. You should no longer
need workarounds to change Limelight settings while debugging, after restarting robot code, and after rebooting the
roborio.

35.30.1 Changes

• Fix major NT syncing issue which broke settings changes (ledMode, pipeline, and camMode) during LabView
debugging, and after a reset/reboot of the roborio.

• Eye-dropper wand:

– The eye dropper wand uses the same 10 unit window for Hue, but now uses a 30 unit window for saturation
and value. This means that thresholding is more often a one-click operation, rather than a multi-step
process.

• Snapshots

– Setting the snapshot value to “1” will only take a single snapshot and reset the value to 0. Snapshotting is
throttled to 2 snapshots per second.

– Snapshot limit increased to 100 images.

– Snapshot selector area is now scrollable to support 100 images.

–

35.31 2018.2 (2/10/18)

2018.2 fixes all known streaming bugs with various FRC dashboards. It also makes Limelight easier to tune and more
versatile during events.

35.31.1 Features

• Thresholding wands

– Setup HSV threshold parameters in a matter of clicks

– The “Set” wand centers HSV parameters around the selected pixel

– The “Add” wand adjusts HSV parameters to include the selected pixel

35.30. 2018.3 (2/28/18) 129

Limelight Documentation, Release 1.0

–

– The “Subtract” wand adjusts HSV parameters to ignore the selected pixel

–

• Snapshots

–

– Snapshots allow users to save what Limelight is seeing during matches or event calibration, and tune
pipelines while away from the field.

– Save a snapshot with the web interface, or by posting a “1” to the “snapshot” NetworkTables key

– To view snapshots, change the “Image Source” combo box on the input tab. This will allow you to test
your pipelines on snapshots rather than Limelight’s camera feed

– Limelight will store up to 32 snapshots. It will automatically delete old snapshots if you exceed this limit.

• New Streaming options

– We’ve introduced the “stream” NetworkTables key to control Limelight’s streaming mode. We’ve received
requests for PiP (Picture-in-Picture) modes to better accommodate certain dashboards.

– 0 - Standard - Side-by-side streams if a webcam is attached to Limelight

– 1 - PiP Main - The secondary camera stream is placed in the lower-right corner of the primary camera
stream.

– 2 - PiP Secondary - The primary camera stream is placed in the lower-right corner of the secondary camera
stream.

• Increase streaming framerate to 22fps

– Look out for faster streams in an upcoming update

• Erosion and Dilation

– Enable up to one iteration of both erosion and dilation.

– Erosion will slightly erode the result of an HSV threshold. This is useful if many objects are passing
through a tuned HSV threshold.

– Dilation will slightly inflate the result of an HSV threshold. Use this to patch holes in thresholding results.

• Restart Button

– Restart Limelight’s vision tracking from the web interface. This is only useful for teams that experience
intermittent issues while debugging LabView code.

35.31.2 Optimizations

• Drop steady-state pipeline execution time to 3.5-4ms.

35.31.3 Bug Fixes

• Fix Shuffleboard streaming issues

• Fix LabView dashboard streaming issues

35.31. 2018.2 (2/10/18) 130

Limelight Documentation, Release 1.0

35.32 2018.1 (1/8/18)

• Red-Balance slider

• Blue-Balance slider

• Better default color balance settings

• Increased max exposure setting

35.33 2018.0 (1/3/18)

On top of a ton of new case studies, more detailed documentation, and a full example program for an autonomous
STEAMWORKS shooter, the software has received a major upgrade.

35.33.1 Features

• New Vision Pipeline interface:

–

– Add up to 10 unique vision pipelines, each with custom crosshairs, thresholding options, exposure, filtering
options, etc.

– Name each vision pipeline.

– Mark any pipeline as the “default” pipeline.

– Instantly switch between pipelines during a match with the new “pipeline” NetworkTables value. This is
useful for games that have multiple vision targets (eg. the gear peg and boiler from 2017). This is also
useful for teams that need to use slightly different crosshair options per robot, field, alliance, etc.

– Download vision pipelines from Limelight to backup or share with other teams.

– Upload vision pipelines to any “slot” to use downloaded pipelines.

• Target “Grouping” option:

– Instantly prefer targets that consist of two shapes with the “dual” grouping mode”. “Single” and “Tri”
options are also available

–

• New Crosshair Calibration interface:

– “Single” and “Dual” crosshair modes.

– “Single” mode is what Limelight utilized prior to this update. Teams align their robots manually, and
“calibrate” to re-zero targeting values about the crosshair.

– “Dual” mode is an advanced feature for robots that need a dynamic crosshair that automatically adjusts
as a target’s area / distance to target changes. We’ve used this feature on some of our shooting robots,
as some of them shot with a slight curve. This feature will also be useful for robots with uncentered
andor misaligned Limelight mounts.

– Separate X and Y calibration.

• Add Valid Target “tv” key to Network Tables.

• Add Targeting Latency “tl” key to Network Tables. “tl” measures the vision pipeline execution time. Add at
least 11 ms for capture time.

35.32. 2018.1 (1/8/18) 131

Limelight Documentation, Release 1.0

• Draw additional rectangle to help explain aspect ratio calculation.

• Remove throttling feature, and lock Limelight to 90fps.

• Disable focusing on most web interface buttons. Fixes workflow problem reported by teams who would calibrate
their crosshairs, then press “enter” to enable their robots.

• Post three “raw” contours and both crosshairs to Network Tables.

– Access a raw contour with tx0, tx1, ta0, ta1, etc.

– Access both raw crosshairs with cx0, cy0, cx1, cy1.

– All x/y values are in normalized screen space (-1.0 to 1.0)

• Add “suffix” option to web interface. Allows users to add a suffix to their Limelights’ hostnames and Network-
Tables (e.g. limelight-boiler). This feature should only be utilized if teams intend to use multiple Limelights on
a single robot.

• Display image version on web interface

35.33.2 Optimizations

• Decrease networking-related latency to ~0.2 ms from ~10ms (Thanks Thad House)

• Move stream encoding and jpg compression to third core, eliminating 10ms hitch (25 - 30ms hitch with two
cameras) seen every six frames.

• Drop steady-state pipeline execution time to 5ms with SIMD optimizations.

• New Latency testing shows 22 ms total latency from photons to targeting information.

• Upgrade Network Tables to v4 (Thanks Thad House)

• Optimize contour filtering step. Latency no longer spikes when many contours exist.

• Much improved hysterisis tuning.

• Significantly improve responsiveness of webinterface<->limelight actions.

35.33.3 Bugfixes

• Fix minor area value inaccuracy which prevented value from reaching 100% (maxed ~99%).

• Fix half-pixel offset in all targeting calculations

• Fix camera stream info not populating for NT servers started after Limelight’s boot sequence. Regularly refresh
camera stream info.

35.33. 2018.0 (1/3/18) 132

Limelight Documentation, Release 1.0

• Fix bug which caused aspect ratio to “flip” occasionally.

• Force standard stream output (rather than thresholded output) in driver mode.

• Fix bug which prevented LEDs from blinking after resetting Networking information

35.34 2017.7 (11/21/17)

• Improved contour sorting. Was favoring small contours over larger contours.

• New Coordinate system: Center is (0,0). ty increases as the target moves “up” the y-axis, and tx increases as the
target moves “right” along the x-axis.

• More accurate angle calculations (Pinhole camera model).

• Display targeting info (tx, ty, ta, and ts) on webpage

• Default targeting values are zeros. This means zeros are returned if no target is in view.

• New side-by-side webpage layout. Still collapses to single column on small devices.

• Continuous slider updates don’t hurt config panel performance.

• Aspect ratio slider scaled such that 1:1 is centered.

35.35 2017.6 (11/13/17)

• New Imaging tool. Tested on Win7, Win8 and Win10.

• Post camera stream to cameraserver streams. Works with smart dashboard camera streams, but shuffleboard has
known bugs here

• Quartic scaling on area sliders, quadratic scaling on aspect ratio sliders. This makes tuning much easier

• Organize controls into “input”, “threshold”, “filter”, and “output” tabs

• Continuous updates while dragging sliders

• Area sent to NT as a percentage (0-100)

• Image size down to 700MB from 2.1GB

35.36 2017.5 (11/9/17)

• Image size down to 2.1GB from 3.9GB

• Add driver mode and led mode apis

• Set ledMode to 0, 1, or 2 in the limelight table.

• Set camMode to 0 or 1 in the limelight table.

• Add ability to toggle between threshold image and raw image via web interface (will clean up in later release)

• Post camera stream to network tables under CameraPublishing/limelight/streams (will need a hotfix)

• Add skew to targeting information (“ts” in limelight table)

• Add base “CommInterface” in anticipation of more protocols

35.34. 2017.7 (11/21/17) 133

Limelight Documentation, Release 1.0

35.37 2017.4 (10/30/17)

• Lots of boot and shutdown bullet-proofing

35.38 2017.3 (10/25/17)

• Hue range is 0-179 from 0-255

• Decrease max log size, clear logs, clear apt cache

35.39 2017.2 (10/23/17)

• Manual ISO sensitivity

• Minimum exposure increased to 2

35.40 2017.1 (10/21/17)

• Optimizations

• “Convexity” changed to “Fullness”

• Exposure range set to 0-128 ms from 0-255 ms

• Support two cameras

• Fully support single-point calibration

35.37. 2017.4 (10/30/17) 134

	Mounting
	Wiring
	Imaging
	Networking Setup
	Basic Programming
	Crosshair Calibration
	Single Crosshair Mode
	Dual Crosshair Mode

	Status Lights and Blink Patterns
	Green Status Light
	Yellow Status Light
	Green Illumination LEDs

	Using Multiple Pipelines
	Best Practices
	Before An Event
	During Event Calibration
	Pipeline Tuning
	Before Connecting to the Field
	Before Every Match
	Bandwidth
	Troubleshooting

	Building a Retroreflective/Color Pipeline
	Input Tab
	Thresholding Tab
	Contour Filtering
	Output
	3D

	Additional Theory
	Vision Targets
	Thresholding
	Contour Filtering
	From Pixels to Angles

	Tracking AprilTags
	Quick Start for FRC AprilTags
	Tips
	Input Tab
	Standard Tab

	(ADVANCED) 3D AprilTags
	Point-of-Interest Tracking
	Full 3D Tracking
	Robot Localization (botpose and MegaTag)
	Using WPILib’s Pose Estimator
	Configuring your Limelight’s Robot-Space Pose

	(ADVANCED) 3D Coordinate Systems
	Limelight Camera Space
	Target Space
	Robot Space
	Field Space

	(ADVANCED) AprilTag Map Specification
	AprilTag Map for FRC 2023 Charged Up

	Getting Started with Neural Networks
	Neural Detector Pipeline
	Nerual Classifier Pipeline

	Training Your Own Neural Network
	Training a Classifier
	Training a Detector

	Using Python to create Custom OpenCV Vision Pipelines
	Minimal Limelight Python Script

	Python Examples
	Using Grip to create Custom OpenCV Vision Pipelines
	Accessing the Video Stream wthin GRIP
	How Limelight Handles Inputs to the Pipeline
	Generating output for the Limelight to use
	Code Generation for Limelight

	Running GRIP Pipelines on Limelight
	Complete NetworkTables API
	Basic Targeting Data
	AprilTag and 3D Data
	Camera Controls
	Python
	Corners
	Advanced Usage with Raw Contours

	REST/HTTP and Websocket APIs
	REST/HTTP (PORT 5807) API Summary:
	Websocket Results Server:

	JSON Dump Specification
	Retroreflective Results
	AprilTag/Fiducial Results
	Neural Detector Results
	Neural Classifier Results

	Case Study: Estimating Distance
	Using a Fixed Angle Camera
	Using Area to Estimate Distance

	Case Study: Aiming Using Vision
	Case Study: Seeking
	Case Study: Getting in Range
	Case Study: Aiming and Range at the same time.
	Case Study: 2017 Fuel Robot
	Case Study: DEEP SPACE 2019 Examples
	ChArUco Camera Calibration
	Performing ChArUco Calibration

	Frequently Asked Questions
	Why is limelight using a low (320x240) resolution?
	What if the game calls for a different tracking algorithm?
	Why is there an extra usb port?
	How do I view the video stream?
	Are the eight LEDs bright enough?
	Does Limelight support protocols other than NetworkTables?
	Does Limelight support Active PoE?
	Should I plug Limelight into our VRM (Voltage Regulator Module)?
	My robot has extreme voltage swings while driving, will this damage my Limelight?
	Will Limelight’s LEDs dim when our robot’s voltage drops?

	Additional Resources
	Team 254 Vision Talk
	WPI Vision Processing Resources
	GRIP

	Software Change Log
	2023.6 (4/18/23)
	2023.5.1 & 2023.5.2(3/22/23)
	2023.5.0 (3/21/23)
	2023.4.0 (2/18/23)
	2023.3.1 (2/14/23)
	2023.3 (2/13/23)
	2023.2 (1/28/23)
	2023.1 (1/19/23)
	2023.0.0 and 2023.0.1 (1/11/23)
	2022.3.0 (4/13/22)
	2022.2.3 (3/16/22)
	2022.2.2 (2/23/22)
	2022.1 (1/25/22)
	2022.0 and 2022.0.3 (1/15/22)
	2020.4 (3/11/20)
	2020.3 (2/25/20)
	2020.2 (1/30/20)
	2020.1 (1/16/20)
	2019.7 (4/5/19)
	2019.6.1 Hotfix (3/14/19)
	2019.6 (3/12/19)
	2019.5 (2/9/19)
	2019.4 (1/26/19)
	2019.3 (1/19/19)
	2019.2 (1/7/19)
	2019.1 (12/18/18)
	2019.0 (12/10/18)
	2018.5 (3/28/18)
	2018.4 (3/19/18)
	2018.3 (2/28/18)
	2018.2 (2/10/18)
	2018.1 (1/8/18)
	2018.0 (1/3/18)
	2017.7 (11/21/17)
	2017.6 (11/13/17)
	2017.5 (11/9/17)
	2017.4 (10/30/17)
	2017.3 (10/25/17)
	2017.2 (10/23/17)
	2017.1 (10/21/17)

