
LIME Documentation

Christian Brinch

Aug 03, 2018

Contents

1 LIME user manual 3
1.1 Introduction . 3
1.2 Setting up LIME . 5
1.3 The inner workings of LIME . 6
1.4 Command line options . 6
1.5 Setting up models . 7
1.6 Model functions . 17
1.7 Output from LIME . 27
1.8 Post-processing . 29
1.9 Converting between old and new grid formats . 31
1.10 Ideas for LIME 2.0 . 32
1.11 Appendix: Bibliography . 32

2 Python flavours of LIME 35
2.1 1. Flavour ‘pylime’ . 35
2.2 2. Flavour ‘pyshared’ . 36
2.3 3. Flavour ‘casalime’ . 37

i

ii

LIME Documentation

Contents:

Contents 1

LIME Documentation

2 Contents

CHAPTER 1

LIME user manual

Note: This document can be read as a text file, but the markup format makes that a little annoying. The *.rst
files are intended as sources for eventual HTML pages. The latter can be built via the command ‘make doc’. The
resulting start page can be found at doc/_html/index.html. The HTML version is also available online at the
https://readthedocs.org/projects/lime/ website. The present file is only intended to be a summary.

1.1 Introduction

1.1.1 Disclaimer

We, the authors and maintainers of LIME, do not guarantee that results given by LIME are correct, nor can we be held
responsible for erroneous results. We do not claim that LIME is perfect or free of bugs and therefore the user should
always take utmost care when drawing scientific conclusions based on results obtained with LIME. It is very important
that the user performs tests and sanity checks whenever working with the LIME code to make sure that the results are
reasonable and reliable. In particular, care needs to be taken when extending the runtime parameters into regimes for
which the code was not designed.

1.1.2 The LIME code

LIME (Line Modelling Engine) is an excitation and radiation transfer code that can be used to predict line and contin-
uum radiation from an astronomical source model. The code uses unstructured 3D Delaunay grids for photon transport
and accelerated Lambda Iteration for population calculations.

LIME was developed for the purpose of predicting the emission signature of low-mass young stellar objects, including
molecular envelopes and protoplanetary disks. In principle the method should work for similar environments such as
(giant) molecular clouds, atmospheres around evolved stars, high mass stars, molecular outflows, etc. As opposed to
most other line radiation transfer codes which are constrained by cylindrical or spherical symmetry, LIME, being a
3D code, does not impose any such geometrical constraints. The main limitation therefore to what can be done with
LIME is the availability of input models.

3

https://readthedocs.org/projects/lime/

LIME Documentation

LIME is distributed under a Gnu General Public License.

Any publication that contains results obtained with the LIME code should cite the publication Brinch & Hogerheijde,
A&A, 523, A25, 2010.

1.1.3 Development history

The initial LIME code was written by Christian Brinch between 2006 and 2010, with version 1.0 appearing in early
2010. LIME derives from the radiation transfer code RATRAN developed by Michiel R. Hogerheijde and Floris van
der Tak (Hogerheijde & van der Tak, 2000), although after several rewrites, the shared codebase is very small. The
photon transport method is a direct implementation of the SimpleX algorithm (Ritzerveld & Icke, 2006).

Subsequent to the creation of the package by Christian Brinch, contributors to LIME have included:

• Marc Evans

• Tuomas Lunttila

• Sébastien Maret

• Marco Padovani

• Sergey Parfenov

• Reinhold Schaaf

• Anika Schmiedeke

• Ian Stewart

• Miguel de Val-Borro

• Mathieu Westphal

LIME is at present in a somewhat awkward phase of development in which many new ways to do things have been
added to the code, while still making every effort to preserve backward compatibility - i.e. to allow users not only
to run LIME with their old model files, but also to obtain output from that which is as near as possible the same as
previously (except for corrections to errors and bugs). At some point however we will have to abandon backward
compatibility, but that will also give us the opportunity to put the parameter interface on a more systematic and less
idiosyncratic basis. So, watch this space. . .

1.1.4 Obtaining LIME

The LIME code can be obtained from gitHub at https://github.com/lime-rt/lime. The available files include the source
code, this documentation, and an example model.

Warning: We recommend that you obtain the latest numbered release from https://github.com/lime-rt/lime/
releases rather than the master track version. The latter is development code, i.e. it is not stable, and it is more
likely to contain unresolved bugs.

In the remainder of this documentation the directory into which LIME was unpacked will be designated <LIME base
dir>.

4 Chapter 1. LIME user manual

https://github.com/lime-rt/lime
https://github.com/lime-rt/lime/releases
https://github.com/lime-rt/lime/releases

LIME Documentation

1.1.5 Requirements

LIME runs on any platform with an ANSI C compiler. Most modern operating systems are equipped with the GNU gcc
compiler, but if it is not already present, it can be obtained from the GNU website (http://www.gnu.org). Furthermore,
LIME needs a number of libraries to be present, including ncurses, GNU scientific Library (GSL), cfitsio, and qhull.
Please refer to the README.md file for details on how to obtain and install these libraries on various systems.

Although it is not strictly needed for LIME to run, it is useful to have some kind of software that can process FITS
files (IDL, CASA, MIRIAD, etc.) in order to be able to extract science results from the model images.

There are no specific hardware requirements for LIME to run. A fast computer is recommended (>2 GHz) with a
reasonable amount of memory (>1 GB), but less will do as well. LIME can be run in multi-threaded (parallel) mode,
if several CPUs are available. It is also possible to run several instances of LIME simultaneously on a multi-processor
machine with enough memory.

1.1.6 Flavours of LIME

In addition to the old-style LIME which requires a model file written in C, there are now three alternate ‘flavours’
available, all of which interact with python in various ways. All of these use the LIME engine, as well as the same set
of input parameters, but they are compiled and accessed in different ways. These additional flavours are described in
the page Python flavours of LIME.

1.2 Setting up LIME

We added a configure script with LIME version 1.9 to avoid the necessity to set extra environment variables or hack
the Makefile etc in order to deal with different names for cfitsio/qhull headers and libraries on different systems. You
should run this script once after you install LIME on your machine, viz:

cd <path to lime>
./configure

This will set up LIME with libraries and include files appropriate to your computer. If you forget to do this after
unpacking the code, when you try to run LIME, or make any other LIME-associated target, you will see the error:

Makefile:8: Makefile.defs: No such file or directory
make: *** No rule to make target 'Makefile.defs'. Stop.

1.2.1 Compiling and running LIME:

In the ‘traditional’ flavour, LIME is compiled at run time. There is a script called lime in the package directory which
compiles the code plus the C-language model file you provide it, then runs the code. If you don’t want to invoke this
script with its full path name, you will need to add the LIME package directory to your PATH environment variable.
Once the PATH variable is set, LIME can be run from the command line as

lime [options...] <model file>

where options are discussed below and model file is the C module containing the model description. This will cause
the code to be compiled and run. The terminal window should change and display the progress of the calculations.

1.2. Setting up LIME 5

http://www.gnu.org
https://github.com/lime-rt/lime/blob/master/README.md

LIME Documentation

1.3 The inner workings of LIME

The first thing that happens after compilation is that LIME allocates memory for the grid and the molecular data based
on the parameter settings in the model file. All user defined settings are checked for sanity and, in the case that there
are inconsistencies, LIME will abort with an error message. It then goes on to generate the grid (unless a predefined
grid is provided) by picking and evaluating random points until enough points have been chosen to form the grid. It
is desirable to avoid oddly-shaped Delaunay triangles, and this is accomplished in one of two ways, depending on the
setting chosen for the parameter par->samplingAlgorithm. With choice 1, the initial grid points are selected using a
quasi-random algorithm which avoids too-close pairs of points; no further grid processing is necessary after this is
done. With choice 0, the initial, random grid is iteratively smoothed. Because the grid needs to be re-triangulated at
each iteration, the smoothing process may take a while. After smoothing, a number of grid properties (e.g. velocity
samples along the point-to-point links) are pre-calculated for later use. Once this stage is complete, the grid is written
to file.

When the grid is ready, LIME decides whether to calculate populations or not, depending on the user’s choice of
output images and LTE options (see chapter 2). If one or more non-LTE line images are asked for, LIME will proceed
to calculate the level populations. This too is an iterative process in which the radiation field and the populations
are recalculated repeatedly. The radiation field is obtained by propagating photons through the grid, a fixed number
for each grid point; using the resulting radiation field, the code enters a minor iteration loop where a set of linear
equations, determining the statistical equilibrium, are iterated in order to converge upon a set of populations. This is
done for each grid point in turn. Once all the grid points have new populations, the process is repeated.

When the solution has converged (actually there is no convergence testing active in present LIME: all it does is run
through the number of iterations specified via the par->nSolveIters parameter), the code will ray-trace the model to
obtain an image. Ray-tracing is done for each user-defined image in turn. At the end of the ray-tracing, FITS-format
image files are written to the disk, after which the code will clean up the memory and terminate.

1.4 Command line options

Note: Starting with LIME 1.5, command line options can be used to change LIME default behaviour without editing
the source code.

LIME accepts several command line options:

-V
Display version information

-h
Display help message

-f
Use fast exponential computation. When this option is set, LIME uses a lookup-table replacement for the
exponential function, which however (due to cunning use of the properties of the function) returns a value with
full floating-point precision, indeed with better precision than that for much of the range. Use of this option
reduces the run time by 25%.

-s
Suppresses output messages.

-n
Sets LIME to produce normal output rather than the default ncurses output style. This is useful when running
LIME in a non-interactive way.

6 Chapter 1. LIME user manual

LIME Documentation

-t
This runs LIME in a test mode, in which it is compiled with the debugging flag set; fixed random seeds are also
employed in this mode, so the results of any two runs with the same model should be identical.

-p nthreads
Run in parallel mode with nthreads. The default is a single thread, i.e. serial execution.

Note: The number of threads may also be set with the par->nThreads parameter. This will override the value set via
the -p option.

1.5 Setting up models

1.5.1 The C model file

All basic setup of a model is done in a single file which we refer to as the model file. The model file has two
separate functions: to supply a list of parameter values to LIME (described in Parameters), and to provide functions
for calculating various values at each of the grid points (described in Model functions).

The model file is C source code which is compiled together with LIME at runtime. It must therefore conform to the
ANSI C standard. Setting up a model however requires only a little knowledge of the C programming language. There
is a template file <LIME base dir>/example/model.c which may serve as a starting point. For an in-depth
introduction to C the user is referred to “The C Programming Language 2nd ed.” by Kernighan and Ritchie; numerous
tutorials and introductions can also be found on the Internet. The file lime_cs.pdf, contained in the <LIME base
dir> directory, is a quick reference for setting up models for LIME. Please note that all physical numbers in the
model file should be given in SI units. A number of macros are available in the src/constants.h file for easier
expression of some quantities: e.g. PI, PC (= the number of metres in a parsec) and AU (= 1 Astronomical Unit in
metres).

In most common cases, everything about a model should be described within the model file. However, the model
file can be set up as a wrapper that will call other files containing parts of the model or even call external codes or
subroutines. Examples of such usage are given below in the section Advanced Setup.

The model file should always begin with the following inclusion

#include "lime.h"

to make the model file aware of the global LIME variable structures. Other header files may be included in the model
file if needed, although you may need to modify the Makefile accordingly.

Following the preprocessor commands, the main model function should appear as

void input(inputPars *par, image *img){
// Define the needed parts of par and img

}

This function should contain the parameter and image settings.

1.5.2 Parameters

A structure named inputPars is defined in src/inpars.h. This structure contains all basic settings such as
number of grid points, model radius, input and output filenames, etc. Some of these parameters always need to be
set by the user, while others are optional with preset default values. There is an exception to this rule, namely when
restarting LIME with previously calculated populations. In that case, none of the non-optional parameters are required.

1.5. Setting up models 7

LIME Documentation

(double) par->radius (required)

This value sets the outer radius of the computational domain. It should be set large enough to cover the entire spatial
extend of the model. In particular, if a cylindrical input model is used (e.g., the input file for the RATRAN code) one
should not use the radius of the cylinder but rather the distance from the centre to the corner of the (r,z)-plane.

(double) par->minScale (required)

par->minScale is the smallest spatial scale sampled by the code. Structures smaller than par->minScale will
not be sampled properly. If one uses spherical sampling (see below) this number can also be thought of as the inner
edge of the grid. This number should not be set smaller than needed, because that will cause an undesirably large
number of grid points to end up near the centre of the model.

(integer) par->pIntensity (required)

This number is the number of model grid points. The more grid points that are used, the longer the code will take to
run. Too few points however, will cause the model to be under-sampled with the risk of getting wrong results. Useful
numbers are between a few thousands up to about one hundred thousand.

(integer) par->sinkPoints (required)

The sink points are grid points that are distributed randomly at par->radius forming the surface of the model. As
a photon from within the model reaches a sink point it is said to escape and is not tracked any longer. The number of
sink points is a user-defined quantity since the exact number may affect the resulting image as well as the running time
of the code. One should choose a number that gives a surface density large enough not to cause artifacts in the image
and low enough not to slow down the gridding too much. Since this is model dependent, a global best value cannot be
given, but a useful range is between a few thousands and about ten thousand.

(integer) par->samplingAlgorithm (optional)

If this is left at the default value of 0, grid point sampling is performed according to the LIME<1.7 algorithm, as
governed by parameter par->sampling. If 1 is chosen, a new algorithm is employed which can quickly generate points
with a distribution which accurately follows any feasible gridDensity function - including with sharp step-changes.
This algorithm also incorporates a quasi-random choice of point candidates which avoids the requirement for the
relatively time-consuming post-gridding smoothing phase.

A user who selects par->samplingAlgorithm=1 and constructs their own gridDensity function obtains full
control over the distribution of points. With this control however come some hazards. LIME still relies on 3rd-party
software called qhull to triangulate the points after they are chosen, and qhull is a little flaky. It is prone to failing
silently if it doesn’t like the set of points one gives it. We have tried to trap these instances, to at least head off
segmentation faults, but it is hard to guess all the ways in which somebody else’s package may fail. If you have
problems, try to smooth out any steps in your gridDensity function. If that doesn’t fix things, you may have to go back
to par->samplingAlgorithm=0.

(integer) par->sampling (optional)

The par->sampling parameter is only read if par->samplingAlgorithm==0. It can take values 0, 1 or
2. par->sampling=0 is used for uniform sampling in Log(radius) which is useful for models with a central
condensation (i.e., envelopes, disks), whereas par->sampling=1 gives uniform-biased sampling in x, y, and z.
The latter is useful for models with no central condensation (molecular clouds, galaxies, slab geometries).

The value par->sampling=2 was added because the routine for 0 was found not to generate grid points with exact
spherical rotational symmetry. The 2 setting implements this now properly; par->sampling=0 has, however, been
retained for purposes of backward compatibility. In practice there is little obvious difference between the outputs from
0 versus 2.

The default value is now par->sampling=2.

8 Chapter 1. LIME user manual

LIME Documentation

(double) par->gridDensMaxLoc[i][j] (optional)

This parameter, which is only read if par->samplingAlgorithm==1, allows the user to provide LIME with the
location of maxima in the grid point number density function. This is not required, but if the GPNDF is varies over
the model field by very many orders of magnitude, it may speed the gridding process if provided.

The parameter is a 2D array: the first index is the number of the maximum, the second is the spatial coordinate. Thus
par->gridDensMaxLoc[2][0] refers to the X coordinate (coordinate 0) of the 3rd maximum (remember that C
always counts from zero!)

(double) par->gridDensMaxValues[i] (optional)

This (vector) parameter is only read if par->samplingAlgorithm==1. It must be provided if
par->gridDensMaxLoc is set, and the number of entries must be the same as the number of maxima described by
par->gridDensMaxLoc.

(double) par->tcmb (optional)

This parameter is the temperature of the cosmic microwave background. This parameter defaults to 2.725K which
is the value at zero redshift (i.e., the solar neighbourhood). One should make sure to set this parameter properly
when calculating models at a redshift larger than zero: TCMB = 2.725(1+z) K. It should be noted that even though
LIME can in this way take the change in CMB temperature with increasing z into account, it does not (yet) take
cosmological effects into account when ray-tracing (such as stretching of the frequencies when using Jansky as unit).
This is currently under development.

(string) par->moldatfile[i] (optional)

Path to the i’th molecular data file. This must be be provided if any line images are specified (or if
par->doSolveRTE is set). It is not read if only continuum images are required.

Molecular data files contain the energy states, Einstein coefficients, and collisional rates which are needed by LIME to
solve the excitation. These files must conform to the standard of the LAMDA database (http://www.strw.leidenuniv.
nl/~moldata). Data files can be downloaded from the LAMDA database but from LIME version 1.23, LIME can also
download these files automatically. If a data file name is give that cannot be found locally, LIME will try and download
the file instead. When downloading data files, the filename can be give both with and without the surname .dat (i.e.,
“co” or “co.dat”). moldatfile is an array, so multiple data files can be used for a single LIME run. There is no default
value.

Note: A lot of work has been done on the multi-molecule parts of the LIME code for the 1.7 release, and we can say
for certain that this facility did not work previously; whether it works now is a bit of an open question. There is a lot
of testing here which still needs to be done.

(string) par->dust (optional)

Path to a dust opacity table. This must be provided if any continuum images are specified - it is fully optional if only
line images are required.

This table should be a two column ascii file with wavelength in the first column and opacity in the second column.
Currently LIME uses the same tables as RATRAN from Ossenkopf and Henning (1994), and so the wavelength should
be given in microns (1e-6 meters) and the opacity in cm^2/g. This is the only place in LIME where SI units are not
used. There is no default value. A future version of LIME may allow spatial variance of the dust opacities, so that
opacities can be given as function of x, y, and z.

(string) par->outputfile (optional)

1.5. Setting up models 9

http://www.strw.leidenuniv.nl/~moldata
http://www.strw.leidenuniv.nl/~moldata

LIME Documentation

This is the file name of the output file that contains the level populations. If this parameter is not set, LIME will not
output the populations. There is no default value.

(string) par->binoutputfile (optional)

This is the file name of the output file that contains the grid, populations, and molecular data in binary format. This
file is used to restart LIME with previously calculated populations. Once the populations have been calculated and the
binoutputfile has been written, LIME can re-raytrace for a different set of image parameters without re-calculating the
populations. There is no default value.

(string) par->restart (optional)

This is the file name of a binoutputfile that will be used to restart LIME. If this parameter is set, all other parameter
statements will be ignored and can safely be left out of the model file. There is no default value.

Note that this option is DEPRECATED and may disappear in a future version of LIME. You can get the same result
in a much more robust and debugged form by using the par->gridOutFiles and par->gridInFile parameters. If we get
rid of par->restart we will provide a utility to convert any such files you may have into hdf5 or fits format.

(string) par->gridfile (optional)

This is the file name of the output file that contains the grid. If this parameter is not set, LIME will not output the grid.
The grid file is written out as a VTK file. This is a formatted ascii file that can be read with a number of 3D visualizing
tools (Visualization Tool Kit, Paraview, and others). There is no default value.

(string) par->pregrid (optional)

A file containing an ascii table with predefined grid point positions. If this option is used, LIME will not generate its
own grid, but rather use the grid defined in this file. The file needs to contain all physical properties of the grid points,
i.e., density, temperature, abundance, velocity etc. There is no default value.

Note that this option is DEPRECATED and may disappear in a future version of LIME. You can get the same result
in a much more robust and debugged form by using the par->gridOutFiles and par->gridInFile parameters. If we get
rid of par->pregrid we will provide a utility to convert any such files you may have into hdf5 or fits format.

(integer) par->lte_only (optional)

If non-zero, LIME performs a direct LTE calculation rather than solving for the populations iteratively. This facility is
useful for quick checks. The default is par->lte_only=0, i.e., full non-LTE calculation.

(integer) par->init_lte (optional)

If non-zero, LIME solves for the level populations as usual, but LTE values are used for the starting values instead of
the T=0 values normally used.

(integer) par->blend (optional)

If non-zero, LIME takes line blending into account, however, only if there are any overlapping lines among the
transitions found in the moldatfile(s). LIME will print a message on screen if it finds overlapping lines. Switching
line blending on will slow the code down considerably, in particular if there is more than one molecular data file. The
default is par->blend=0 (no line blending).

Note: A great deal of work has been done on the blending code for 1.7. We can say for certain that it did not work
before; but whether it works now is a bit of an open question. This is another aspect of LIME which needs both testing
and line-by-line code checking.

10 Chapter 1. LIME user manual

LIME Documentation

(integer) par->antialias (optional)

This parameter is no longer used, although it is retained for the present for purposes of backward compatibility.

(integer) par->polarization (optional)

If non-zero, LIME will calculate the polarized continuum emission. This parameter only has an effect for continuum
images. The resulting image cube will have three channels containing the Stokes I, Q, and U of the continuum emission
(theory says there is zero V component). In order for the polarization to work, a magnetic field needs to be defined
(see below). When polarization is switched on, LIME is identical to the DustPol code (Padovani et al., 2012), except
that the expression Padovani et al. give for sigma2 has been shown by Ade et al. (2015) to be too small by a factor of
2. This correction has now been included in LIME.

The next four (optional) parameters are linked to the density function you provide in your model file. All four pa-
rameters are vector quantities, and should therefore be indexed, the same as par->moldatfile or img. If you choose
to make use of any or all of the four (which is recommended though not mandatory), you must supply, for each one
you use, the same number of elements as your density function returns. As described below in the relevant section,
the density function can return multiple values per call, 1 for each species which is present in significant quantity. The
contribution of such species to the physics of the situation is most usually via collisional excitation or quenching of
levels of the radiating species of interest, and for this reason they are known in LIME as collision partners (CPs).

Because there are 2 independent sources of information about these collision partners, namely via the density function
on the one hand and via any collisional transition-rate tables present in the moldata file on the other, we have to be
careful to match up these sources properly. That is the intent of the parameter

(integer) par->collPartIds[i] (optional)

The integer values are the codes given in http://home.strw.leidenuniv.nl/~moldata/molformat.html. Currently rec-
ognized values range from 1 to 7 inclusive. E.g if the only colliding species of interest in your model is H2,
your density function should return a single value, namely the density of molecular hydrogen, and (if you supply
a par->collPartIds value at all) you should set par->collPartIds[0]=1 (the LAMDA code for H2).
However, if you use collisional partners that are not one of LAMDA partners, it is fine to use any of the values be-
tween 1 and 7 to match the density function with collisional information in the datafiles. Some of the messages in
LIME will refer to the default LAMDA partner molecules, but this does not affect the calculations. In future we will
introduce a better mechanism to allow the user to specify non-LAMDA collision partners.

In order to allow the use of collision partners outside the LAMDA set, the parameter

(string) par->collPartNames[i] (optional)

has been provided. If the user does not set this, LAMDA names are assumed.

LIME calculates the number density of each of its radiating species, at each grid point, by multiplying the abundance
of the species (returned via the function of that name) by a weighted sum of the density values. The next parameter
allows the user to specify the weights in that sum.

(double) par->nMolWeights[i] (optional)

An example of when this might be useful is if a density for electrons is provided, they being of collisional importance,
but it is not desired to include electrons in the sum when calculating nmol values. In that case one would set the
appropriate value of nMolWeights to zero.

The final one of the density-linked parameters controls how the dust mass density and hence opacity is calculated.

(double) par->collPartMolWeights[i] (optional)

1.5. Setting up models 11

http://home.strw.leidenuniv.nl/~moldata/molformat.html

LIME Documentation

Note: The calculation of dust mass density in LIME<1.6 made use of a hard-wired average gas density value of 2.4,
appropriate to a mix of 90% molecular hydrogen and 10% helium. This older formula will be used if none of the
current four parameters are set.

If none of the four density-linked parameters are provided, LIME will attempt to guess the information, in a manner
as close as possible to the way it was done in version 1.5 and earlier. This is safe enough when a single density value
is returned, and only H2 provided as collision partner in the moldata file(s), but more complicated situations can very
easily result in the code guessing wrongly. For this reason we encourage users to make use of these four parameters,
although in order to preserve backward compatibility with old model.c files, we have not (yet) made them mandatory.

(integer) par->traceRayAlgorithm (optional)

This parameter specifies the algorithm used by LIME to solve the radiative-transfer equations during ray-tracing. The
default value of zero invokes the algorithm used in LIME<1.6; a value of 1 invokes a new algorithm which is much
more time-consuming but which produces much smoother images, free from step-artifacts.

Note: Note also that there have been additional modifications to the raytracing algorithm which have significant
effects on the output images since LIME-1.5. Image-plane interpolation is now employed in areas of the image where
the grid point spacing is larger than the image pixel spacing. This leads both to a smoother image and a shorter
processing time.

(integer) par->nThreads (optional)

If set, LIME will perform the most time-consuming sections of its calculations in parallel, using the specified number
of threads. Serial operation is the default. This parameter overrides any value supplied to LIME on the command line.

(integer) par->nSolveIters (optional)

This defines the number of solution iterations LIME should perform when solving non-LTE level populations. The
default is currently 17. Note that it is now possible to run LIME in an incremental fashion. If the results of solving
the RTE through N iterations are stored in a grid file via setting par->gridOutFiles[4], then a second run of LIME,
reading the grid file via par->gridInFile, with par->nSolveIters=M>N, will continue the RTE iterations starting
at iteration N. (If you do this, your results will be slightly different, in a random way, than if you go to M iterations in
one go, because the random seeds will be different.)

(integer) par->resetRNG (optional)

If this is set non-zero, LIME will use the same random number seeds at the start of each solution iteration. This
has the effect of choosing the same photon directions and frequencies for each iteration (although the directions and
frequencies change randomly from one grid point to the next). This has the effect of decoupling any oscillation
or wandering of the level populations as they relax towards convergence from the intrinsic Monte Carlo noise of the
discrete solution algorithm. Best practice might involve alternating episodes with par->resetRNG=0 and 1, storing
the intermediate populations via the I/O interface. Very little experience has been accumulated as yet with this facility.

The default value is 0.

(integer) par->doSolveRTE (optional)

It is now possible to run LIME in two sessions: the first to solve the RTE and save the results to file, the second to
read the file and create raytraced images from it. For a session of the first type you should set the number of images
you specify via the img parameter to zero, and give a value for one of the elements of par->gridOutFiles; for one of
the second type you set par->gridInFile to the name of the file you just wrote, and include >0 image specifications in
img. There is a problem however for sessions of the first type: if you eventually want full-spectrum cubes then you

12 Chapter 1. LIME user manual

LIME Documentation

will need some way to tell LIME to solve the RTE. In the past LIME has figured out if you want this from the presence
of spectrum-type images in your img list. To replace this capability we have added the present parameter. Thus, for
first-stage sessions (supposing you choose to run LIME in that way rather than in the previous single-pass style) when
you know that you will eventually want spectral cubes, you should set the present parameter. For all other cases it may
be ignored.

The default value is 0.

(string) par->gridOutFiles[i] (optional)

Up to 5 file names can be provided to this parameter, which allows LIME to write the entire grid information to file
at each of four defined stages of completeness. Broadly speaking these stages are (i) grid points chosen, (ii) Delaunay
tetrahedra calculated, (iii) density and temperature functions sampled, (iv) the remaining user-provided functions
sampled, (v) populations solved. Any of these files can be read in again via the par->gridInFile parameter:
LIME will calculate the stage from the information present in the file.

The default file format is FITS, but HDF5 is now also available. This can be accessed by adding USEHDF5="yes"
to the make command.

(string) par->gridInFile (optional)

This file should conform to the format described in the header of src/grid2fits.c for FITS files or src/grid2hdf5.c
for HDF5 files. (Files written by LIME to one of the recognized five par->gridOutFiles stages auto-
matically conform to this format.) LIME will not recalculate any information it finds in the file. The user
may, for example, perform several iterations of population solution, store this information by providing a file
name to par->gridOutFiles[3] (remember that C counts from zero!), then read it back in again via
par->gridInFile without going through the gridding stage again. This allows solution to be decoupled from
raytracing.

These last two parameters mostly replace the functionality of the older par->outputfile,
par->binoutputfile, par->pregrid, par->restart parameters. These may be abolished in a
future version of LIME. Note that par->gridfile is still however of use.

(string) par->girdatfile[i] (optional)

Path to the i’th data file containing the effective IR pumping rate coefficients that can be determined by the contribution
of cascading rotational levels within vibration bands as in Bensch & Bergin 2004. This effect is relevant for cometary
coma exposed to solar radiation. girdatfile is an array, so a different data file can be used for each radiating species. If
this parameter is not supplied the effect will be ignored.

1.5.3 Images

LIME can output a number of images per run. The information about each image is contained in a structure array
called img. The images defined in the image array can be either line or continuum images or both. All definitions
of an image may be different between images (i.e., distance, resolution, inclination, etc.) so that a number of images
with varying source distance or image resolution can be made in one go. In the following, i should be replaced by the
image number (0, 1, 2, . . .).

(integer) img[i]->pxls (required)

This is the number of pixels per spatial dimension of the FITS file. The total amount of pixels in the image is thus the
square of this number.

(double) img[i]->imgres (required)

1.5. Setting up models 13

LIME Documentation

The image resolution or size of each pixel. This number is given in arc seconds. The image field of view is therefore
pxls x imgres.

(double) img[i]->distance (required)

The source distance in meters. LIME predefines macros PC and AU which express respectively the sizes of the parsec
and the Astronomical Unit in meters, so it is valid to write the distance as 100*PC for example. If the source is located
at a cosmological distance, this parameter is the luminosity distance.

Note that LIME assumes far-field geometry - you will get a distorted image if img[i]->distance is not much
greater than the model radius.

(integer) img[i]->unit (semi-optional)

The unit of the image. This variable can take values between 0 and 4. 0 for Kelvin, 1 for Jansky per pixel, 2 for SI
units, and 3 for Solar luminosity per pixel. The value 4 is a special option that will create an optical depth image cube
(dimensionless).

(string) img[i]->units (semi-optional)

A comma-separated list of unit integers, provided as a single string. If this parameter is provided instead of
img[i]->unit (one or the other must be provided), then as many images as there are units will be created.

(string) img[i]->filename (required)

This variable is the name of the output FITS file. It has no default value.

(double) img[i]->source_vel (optional)

The source velocity is an optional parameter that gives the spectra a velocity offset (receding velocities are positive-
valued). This parameter is useful when comparing the model to an astronomical source with a known relative line-of-
sight velocity.

(integer) img[i]->nchan (semi optional)

nchan is the number of velocity channels in a spectral image cube. See the note below for additional information.

(double) img[i]->velres (semi optional)

The velocity resolution of the spectral dimension of the FITS file (the width of a velocity channel). This number is
given in m/s. See the note below for additional information.

(double) img[i]->bandwidth (semi optional)

Width of the spectral axis in Hz. See the note below for additional information.

(integer) img[i]->trans (semi optional)

The transition number, used to determine the image frequency when ray-tracing line images. This number refers to the
transition number in the molecular data files. Contrary to the numbers in the data files, trans is zero-index, meaning
that the first transition is labelled 0, the second transition 1, and so on. For linear rotor molecules without fine structure
transition in their data files (CO, CS, HCN, etc.) the trans parameter is identified by the lower level of the transition.
For example, for CO J=1-0 the trans label would be zero and for CO J=6-5 the trans label would be 5. For molecules
with a complex level configuration (e.g., H2O), the user needs to refer to the datafile to find the correct label for a
given transition. See the note below for additional information.

14 Chapter 1. LIME user manual

LIME Documentation

(integer) img[i]->molI (optional)

If img[i]->trans is set, this parameter will also be read, although to preserve backward compatibility it is not at
present required. This refers to the molecule whose transition should be used. Its default value is zero.

(double) img[i]->freq (semi optional)

Centre frequency of the spectral axis in Hz. This parameter can be used for both line and continuum images. See the
note below for additional information.

(boolean) img[i]->doInterpolateVels (optional)

This should be set non-zero (i.e. True) to replace calls to the velocity() function with a second-order in-cell interpola-
tion during raytracing.

1.5.4 Note on semi-optional image parameters

The interaction between image parameters is complicated and potentially confusing. The key to understanding which
of the image parameters you have to supply under what circumstances is to realize that LIME has to deduce three
things from the image parameters: (i) whether the desired image is line or continuum, (ii) the image frequency, (iii)
(for line images) the number and width of spectral channels.

1. If the user sets either img[i]->nchan or img[i]->velres, LIME will assume they want a line image.
Img fields nchan, trans, molI, velres and bandwidth are ignored for a continuum image.

2. img[i]->freq is the only way a user can set image frequency for a continuum image. For a line image,
LIME looks first for img[i]->trans, and will obtain the image frequency from that (in conjunction with the
mol data) if set; if not, it needs img[i]->freq.

3. To calculate the channel number and spacing, LIME needs 2 out of the 3 parameters img[i]->bandwidth,
img[i]->velres or img[i]->nchan to be set. If all three are set, img[i]->nchan will be overwritten
by a calculation using the other 2.

Fig. 1.1: The cartesian coordinate system used by LIME, showing the di-
rection of the observer (red arrow) and the relation to the axes of the user-
specifiable angles theta and phi.

1.5.5 Image rotation param-
eters

There are now two ways to specify
the desired orientation of the model
at the raytracing step: we have re-
tained the old theta/phi angles, but
have now added a new triplet: az-
imuth/inclination/PA. None of these
five parameters is now mandatory. If
none are provided, theta=phi=0 will be
assumed. If you provide all three az-
imuth/inclination/PA values, these will
be used instead of theta/phi, regardless
if you also set either or both of theta/phi.

Note that all of these angles should be
given in radians. You can however use
the predefined PI macro for this: e.g. to
express 𝜋/2, write PI/2.0 in your model
file.

1.5. Setting up models 15

LIME Documentation

The rotation parameters in detail:

(double)
→˓img[i]->theta (optional)

Theta is the vertical viewing angle (the
vertical angle between the model z axis
and the ray-tracer’s line of sight). A
face-on view (of models where this term
is applicable) is 0 and edge-on view is
𝜋/2. The default value is 0.

(double)
→˓img[i]->phi (optional)

Phi is the horizontal viewing angle (the
horizontal angle between the model z
axis and the ray-tracer’s line of sight). A
face-on view (of models where this term
is applicable) is 0 and edge-on view is
𝜋/2. The default value is 0.

If theta/phi are applied, for zero values
of both the model X axis points to the
left, Y points upward and Z points in
the direction of gaze of the observer (i.e.
away from the observer).

(double)
→˓img[i]->azimuth (optional)

Azimuth rotates the model from Y to-
wards X.

(double)
→˓img[i]->incl (optional)

Inclination rotates the model from Z to-
wards X.

(double)
→˓img[i]->posang (optional)

Position angle rotates the model from Y
towards X.

If azimuth/incl/posang are applied (i.e.
if all three values are supplied in your
model file), for zero values of all the
model X axis points downward, Y
points toward the right and Z towards
the observer.

16 Chapter 1. LIME user manual

LIME Documentation

1.6 Model functions

The second part of the model file con-
tains the actual model description. This
is provided as eight subroutines: den-
sity, molecular abundance, temperature,
systematic velocities, random veloci-
ties, magnetic field, gas-to-dust ratio,
and grid-point number density. The user
only needs to provide the functions that
are relevant to a particular model, e.g.,
for continuum images only, the user
need not include the abundance func-
tion or any of the velocity functions.
The magnetic field function needs only
be included for continuum polarization
images.

Note that you should avoid singularities
in these functions - i.e., places where
LIME might attempt to divide by zero,
or in some other way generate an over-
flow.

1.6.1 Density

The density subroutine contains a user-
defined description of the 3D density
profile of the collision partner(s).

void
density(double x, double y,
→˓double z, double *density){
density[0] = f(x,y,z);
density[1] = f(x,y,z);
...
density[n] = f(x,y,z);

}

LIME can at present deal with 20 colli-
sion partners (CPs). (Note that there are
only 7 listed in the LAMDA database.)
In most cases, a single density profile
will suffice. Note that the number of re-
turned density function values no longer
has to be the same as the number of CPs
listed in the moldata file(s) so long as
the user sets values for the collPartIds
parameter; but if this parameter is not
supplied, and the numbers are differ-
ent, LIME may not be able to match the
CPs associated with each density value
to those in the moldata file(s). Note also

1.6. Model functions 17

LIME Documentation

that moldata CPs for which there is no
matching density will be ignored.

The density is a number density, that is,
the number of molecules of the respec-
tive CP per unit volume (in cubic me-
ters, not cubic centimeters).

1.6.2 Molecular abundance

The abundance subroutine contains de-
scriptions of the molecular abundance
profiles of the radiating species in the
input model. The number of abundance
profiles should match exactly the num-
ber of molecular data files defined in
par->moldatfile.

void
abundance(double
→˓x, double y, double
→˓z, double *abundance){
abundance[0] = f0(x,y,z);
abundance[1] = f1(x,y,z);
...
abundance[n] = fn(x,y,z);

}

The abundance is the fractional abun-
dance with respect to a weighted sum of
the densities supplied for the collision
partners. If the user does not supply the
weights via the nMolWeights parame-
ter, the code will try to guess them.

Abundances are dimensionless.

1.6.3 Molecular number
density

As an alternative to the abundance func-
tion, the user is now able to supply
a function which specifies directly the
number density of each of the radiating
species.

void
molNumDensity(double
→˓x, double
→˓y, double z, double *nmol){
nmol[0] = f0(x,y,z);
nmol[1] = f1(x,y,z);
...
nmol[n] = fn(x,y,z);

}

18 Chapter 1. LIME user manual

LIME Documentation

The densities are number densities, that
is, the number of molecules per unit vol-
ume (in cubic meters, not cubic cen-
timeters).

1.6.4 Temperature

The temperature subroutine contains
the descriptions of the gas, and option-
ally, the dust temperature.

void
temperature(double
→˓x, double y, double
→˓z, double *temperature){
temperature[0] = f(x,y,z);
temperature[1] = f(x,y,z);

}

The entry 0 in the temperature array is
the kinetic gas temperature. This value
is required for LIME to run. The en-
try 1 is the optional dust temperature.
Both are in Kelvin. If there is no ex-
plicit dust temperature given in the tem-
perature subroutine, LIME will assume
that the dust temperature equals the gas
temperature.

1.6.5 Random velocities

This subroutine contains a scalar field
which describes the velocity dispersion
of the random macroscopic (i.e. turbu-
lent) motions of the gas. When added
in quadrature to the thermal Doppler
broadening specific to each molecule,
this number gives the Doppler b-
parameter which is the 1/e half-width of
the line profile. The doppler subroutine
differs from the other model subroutine
in that the return type is a scalar, and
not an array. The doppler value should
be given in m/s.

void
doppler(double x, double y,
→˓double z, double *doppler){

*doppler = f(x,y,z);
}

Because the return type is a scalar, the
asterisk in front of the variable name

1.6. Model functions 19

LIME Documentation

needs to be present. doppler[0] does not
work.

1.6.6 Velocity field

The velocity field subroutine contains
the systematic velocity field of the gas.
The return type of this subroutine is a
three component vector, with compo-
nents for the x, y, and z axis.

void
velocity(double
→˓x, double y, double
→˓z, double *velocity){
velocity[0] = f(x,y,z);
velocity[1] = f(x,y,z);
velocity[2] = f(x,y,z);

}

In LIME 1.7 the previous ‘spline’ esti-
mation (which was actually a polyno-
mial interpolation) of velocities along
the links between grid points has been
replaced by a simpler system in which
the velocity is sampled at (currently
3) equally-spaced intervals along each
link, as well as at the grid cells. These
link values are stored and used to esti-
mate the average line amplitude per link
via an error-function lookup. Ideally we
would not need to call the velocity func-
tion again, but would be able to restrict
calls of it (as is the case with all the
other functions) purely to the gridding
section. However it is found that lin-
ear interpolation of velocity within De-
launay cells at the raytracing is insuffi-
cient to produce accurate images; thus
velocity is still called during the ray-
tracing. In the near future we will try
a 2nd-order in-cell interpolation, and if
that proves adequate, we will have suc-
ceeded in relegating velocity calls to the
gridding section alone.

1.6.7 Magnetic field

This is an optional function which con-
tains a description of the magnetic field.
The return type of this subroutine is a
three component vector, with compo-
nents for the x, y, and z axis. The mag-

20 Chapter 1. LIME user manual

LIME Documentation

netic field only has an effect for contin-
uum polarization calculations, that is, if
par->polarization is set.

void
magfield(double x, double
→˓y, double z, double *B){
B[0] = f(x,y,z);
B[1] = f(x,y,z);
B[2] = f(x,y,z);

}

1.6.8 Gas-to-dust ratio

The gas-to-dust ratio is an optional
function which the user can choose to
include in the model.c file. If this func-
tion is left out, LIME defaults to a dust-
to-gas ratio of 100 everywhere. This
number only has an effect if the contin-
uum is included in the calculations.

void
gasIIdust(double x, double
→˓y, double z, double *gtd){

*gtd = f(x,y,z);
}

1.6.9 Grid point number
density

In LIME 1.5 and earlier, the number
density of the random grid points was
tied directly to the density of the first
collision partner. The newly introduced
function gridDensity now gives the user
the ability to option this link and spec-
ify the grid point distribution as they
please. Note that LIME defaults to the
previous algorithm if the function is not
supplied.

double
gridDensity(configInfo
→˓*par, double *r){
double fracDensity;
fracDensity = f(r);
return fracDensity;

}

Notes:

1. The returned variable is a scalar.

1.6. Model functions 21

LIME Documentation

2. This is the only function which includes
the input parameters among the argu-
ments. You cannot write to these, they
are only supplied so that you can use
their values if you wish to.

3. Note that fracDensity is interpreted
as a relative value. LIME will scale
the integral of the gridDensity func-
tion to the desired number of internal
points set by the user via the parameter
par->pIntensity.

4. If you leave
par->samplingAlgorithm at
its default of 0, but wish nevertheless to
define a non-default gridDensity func-
tion, be aware that these two algorithms
are a poor match, since they are built on
different assumptions. You will need
to make sure that gridDensity()
returns fracDensity=1 for at
least one location in the model
space in this case. Functions with-
out steps are also recommended for
par->samplingAlgorithm==0.

1.6.10 Other settings

A number of additional settings can
be found in the file <LIME base
dir>/src/lime.h. These settings
should in general not be changed by the
user, unless there is an explicit need to
do so. A few of them however could
be useful to some users. The keyword
silent which is by default set to zero
can be set to one. This will cause LIME
to run completely silent with no output
to the screen at all. This can be useful
for running LIME in batch mode in the
background.

1.6.11 Advanced setup

Standard use of LIME requires the user
to formulate the model in the model
functions described above as either an
analytical expression or a look-up table
of values. As input models increase in
complexity however, analytical descrip-
tions may no longer be possible and
with model dimensionality higher than

22 Chapter 1. LIME user manual

LIME Documentation

one, look-up tables become difficult to
manage within the model.c functions.
In the following we will explain how to
use complex numerical models and pre-
gridded models as input for LIME.

1.6.12 Using numerical in-
put models

Numerical input model can roughly be
divided into two groups: those where
the model properties are described as
cell averages and those where the model
properties are described at cell nodes
(see figure). In either case, LIME will
send a coordinate to the model functions
and expect a value back. It is then up to
the user to write an interface that will
look up the appropriate return value.

In the simplest case where the numeri-
cal model is described as cell averaged
values, the user needs to loop through
the cells and find the cell in which the
LIME point falls and return the value of
that particular cell. In the case where
the model is described on cell nodes,
the user must loop through the nodes
to find the node which lies closest to
the LIME point and return that node
value. This approach obviously lim-
its the LIME model smoothness to the
input model resolution since all LIME
points which fall within an input model
grid cell (or within a certain distance
from a grid node) get the same value.
One way to get around this is to interpo-
late in the input grid, which in principle
can be done in either case, although this
may be highly non-trivial if the model is
described on unstructured grid nodes or
is of a dimensionality greater than one.
An example of linear interpolation in a
one dimensional table can be found in
the example model.c file below.

In the special case where the input
model is described on unstructured grid
nodes (e.g., Smoothed Particle Hydro-
dynamics simulations) the input grid
can be used directly in LIME. This re-
quires the user to set the par->pregrid
parameter.

1.6. Model functions 23

LIME Documentation

If the user is more comfortable writing
code in the FORTRAN language, it is
possible to use the model subroutines
as wrappers to call FORTRAN func-
tions which then carry out any neces-
sary calculations and return the values
to model.c. This can be done the fol-
lowing way:

void
density(double x, double y,
→˓double z, double *density){
fortransub_

→˓(&x, &y, &z, &density[0]);
}

SUBROUTINE
→˓fortransub(x,y,z,temp)
DOUBLE x,y,z,temp
temp=f(x,y,z)
RETURN
END

In order for this to work the file contain-
ing the FORTRAN function needs to
be compiled by a FORTRAN compiler
and the resulting object file needs to be
linked with LIME. This only works if
the linking is also done with the FOR-
TRAN compiler, so some modification
to the Makefile is needed. Notice that
the underscore after the name of the
FORTRAN subroutine in the C function
call has to be present. Please note that
the example above is untested and may
need modification in order to work.

If the input model file consist of a ta-
ble of values, for instance as when us-
ing the output of another code as input
for LIME, the idea is look up the input
grid point (or cell) which is closest to
the LIME grid point in question (or for
cell based tables, the cell in which the
LIME point falls). The way to deal with
this is to make a column formatted ascii
file with the input model:

x_1 y_1 z_1
→˓ density_1 temperature_
→˓1 any_other_stuff_1 ...
x_2 y_2 z_2
→˓ density_2 temperature_
→˓2 any_other_stuff_2 ...
...

(continues on next page)

24 Chapter 1. LIME user manual

LIME Documentation

(continued from previous page)

x_n y_n z_n
→˓ density_n temperature_
→˓n any_other_stuff_n ...

The idea is to find the i’th entry in
that list where minimum((x_i-x)2+(y_i-
y)2+(z_i-z)2) is true, or in other words
which entry in the list lies closest to a
given LIME point (x,y,z). One way to
solve this would be as follows (example
in pseudocode)

density(x,y,z){
mindist=very_large_number
open(
→˓"model_input_file",read)
while not end-of-file{
read_one_line(x_

→˓i,y_i,z_i,density_i,...)
calculate

→˓distance from (x,y,
→˓z) to (x_i,y_i,z_i) == dist

if dist < mindist then {
mindist = dist
bestdensity = density_i

}
}
close(file)
return bestdensity

}

and similarly for the temperature and
other properties. This is potentially a
slow process, opening and closing a
file for every grid point. To speed up
the process, it is useful to make the
model columns available as arrays in
model.c. This can be done by format-
ting the columns using proper C-syntax
as arrays and putting them in a “header”
file that can be included in model.c

int size=numer_
→˓of_lines_in_model_file;
double model_
→˓x[size]={x1,x2,...,xn};
double model_
→˓y[size]={y1,y2,...,yn};
double model_
→˓z[size]={z1,z2,...,zn};
double model_
→˓density[size]={density1,
→˓density2,...,densityn};
...

The pseudocode example from above

1.6. Model functions 25

LIME Documentation

now reads:

density(x,y,z){
mindist=very_large_number
for i from 0 to size by 1

→˓calculate distance from (x,
→˓y,z) to (model_x[i],model_
→˓y[i],model_z[i]) == dist

if dist < mindist then {
mindist = dist
bestdensity

→˓= model_densiy[i]
}

}
return bestdensity

}

1.6.13 RATRAN models as
input for LIME

It is possible to use existing 1D or 2D
model files from the RATRAN code in
LIME. This is done with ratranInput()
subroutine. The .mdl file has to com-
ply with the RATRAN standard and the
header (everything above the @ sign) of
the file needs to be intact. The functions
in model.c look like this

void
density(double x, double y,
→˓double z, double *density){
density[0]=ratranInput(

→˓"model.
→˓mdl", "nh", x,y,z)*1e6;
}

and

void
temperature(double
→˓x, double y, double
→˓z, double *temperature){
temperature[0]=ratranInput(

→˓"model.mdl", "te", x,y,z);
}

for the density and temperature respec-
tively. Notice that the density is mul-
tiplied by 1e6 to convert the cgs units
from RATRAN into LIMEs SI units.
The calls to the subroutine for the
doppler velocity, systemic velocity, dust
temperature, and abundance are similar,

26 Chapter 1. LIME user manual

LIME Documentation

using the appropriate keywords to iden-
tify the column in the RATRAN .mdl
file. Since RATRAN uses molecular
density and not abundance, the abun-
dance function should read

void
abundance(double
→˓x, double y, double
→˓z, double *abundance){
abundance[0]=ratranInput(

→˓"model.mdl
→˓","nh",x,y,z)/ratranInput(
→˓"model.mdl","nm", x,y,z);
}

Obviously it is possible to mix RA-
TRAN input, that is, using differ-
ent .mdl files for the different func-
tions. All parameters in model.c still
need to be set, ie., par->radius,
even though this information is con-
tained in the RATRAN header. If the
RATRAN grid is not logarithmically
spaced, it may be advantageous to set
par->sampling=1.

1.7 Output from LIME

Besides the FITS images, which are the
main output, LIME produces other out-
put that can be used not only for diag-
nostics but also science results. This
chapter describes the various output
files and how to work with them.

1.7.1 The grid

Once the Delaunay grid has been cre-
ated by LIME, a VTK file with the
grid and grid properties are written (if
the parameter par->gridfile is set,
see chapter 2). The VTK (Visualization
Tool Kit) format is a formatted ascii file
that are used to handle geometrical ob-
jects, in our case an unstructured grid.
VTK files can be read by several visu-
alization software packages. In partic-
ular we advocate the use of paraview
(http://www.paraview.org) which is an
open source program available for sev-
eral platforms.

1.7. Output from LIME 27

http://www.paraview.org

LIME Documentation

The grid file contains the (x,y,z)-
coordinate of each grid point, as well
as a reference to the neighbors of each
grid point. From this information the
Delaunay triangulation can be recon-
structed. The file also holds three scalar
fields and a vector field for the H2
density, temperature, molecular density
and the velocity field. Other prop-
erties could be written out as well,
but that will require the user to edit
the write_VTK_unstructured_Points()
function in grid.c.

Inspecting the grid using paraview can
be a useful way to make sure that the
model indeed behaves as expected. It
makes for impressive visualizations that
can be included in presentations. How-
ever, paraview does a poor job when it
comes to publication quality plots.

1.7.2 Populations

The level populations are written out
in a separate file if LIME is set up
to calculate the level populations, that
is, if at least one molecular data file
is defined in model.c (and if the pa-
rameter par->outputfile is set).
Currently, LIME can only write out
populations from the first molecule
(par->moldatfile[0]). The pop-
ulations output file contains the x, y,
and z coordinates for each grid point
as well as the H2 density, temperature,
and molecular density besides the level
populations. Contrary to the grid file, it
does not, however, contain information
about the neighbors of the grid points
and therefore, the Delaunay triangula-
tion cannot be reconstructed from this
file (unless the points are re-triangulated
with qhull or a similar tool). The infor-
mation in the population file allows the
user to plot projections and slices of the
model properties including the popula-
tions. This is the best way to directly
compare the LIME model and the result
of the excitation calculation with the re-
sults obtained by other codes. One par-
ticularly interesting property to plot is

28 Chapter 1. LIME user manual

LIME Documentation

the excitation temperature

𝑛𝑢

𝑛𝑙
=

𝑔𝑢
𝑔𝑙

exp

(︂
− ∆𝐸

𝑘𝐵 𝑇𝑒𝑥

)︂
which is obtained from the level populations. u and l refers to the upper and lower level and g are the statistical
weights. Calculating the excitation temperature is the best way to check for masering in the model since the excitation
temperature turns negative in the case of population inversion. If, and only if, the gas is in local thermodynamic equi-
librium (LTE) the excitation temperature equals the kinetic temperature, so plotting the ratio of kinetic gas temperature
to the excitation temperature gives a measure of the deviation from LTE.

1.7.3 Images

Image cubes are the main output from
LIME. LIME produces model images in
the FITS file format only.

1.8 Post-processing

In order to make direct comparisons be-
tween LIME models and observations,
some kind of post-processing of the im-
ages will be needed in almost all cases.
In this chapter we will give some hints
and tricks to how this can be done using
readily available software packages.

1.8.1 Convolution

In order to compare LIME results to sin-
gle dish observations, the image cube
needs to be convolved with a beam pro-
file that corresponds to the instrument
beam at the frequency in question. Be-
fore convolving am image it is impor-
tant to make sure that the image is larger
that the beam size and that the beam
is resolved by the pixels (pixel size <<
beam size). The reason that the image
needs to be bigger that the beam is to
avoid artificial edge effects at the cor-
ners of the image. This is not very im-
portant if only the spectrum toward the
center of the image is of interest, but
if the image is being used as a model
of a single dish map, edge effects be-
come important. In general, it is rec-
ommended that the image is made large
enough that the emission has dropped
sufficiently close to zero at the edges of
the image.

1.8. Post-processing 29

LIME Documentation

If the beam size is small, it may be an
issue that the beam is not sufficiently
resolved by pixels.This is important to
make sure that structures that are picked
up by the telescope beam is sufficiently
sampled by the ray-tracer in LIME. In
general it is a good idea to calculate the
image in a considerably higher resolu-
tion than what is needed, because arti-
facts in the image that are due to the ran-
domness of the grid are then smoothed
out. In order to compare a convolved
model spectrum to a single observed
spectrum toward the source center, the
spectrum at the center pixel should be
used without additional averaging of
pixels.

When comparing model images to in-
terferometric observations, there is no
need to convolve the image with a
beam profile. In this case, model and
data is compared in frequency space
in which case the model image needs
to be Fourier transformed or in image
space in which case the model should be
sampled with the (u,v)-spacing from the
dataset and inverted and cleaned using
the same process as the observed data
has gone through. When Fourier trans-
forming the model image, one should
be careful to avoid aliasing effects that
are caused by the regularity of the pixel
grid. Such effects are model depen-
dent and difficult to prevent entirely. On
the other hand, comparing the model to
interferometric data in image space is
dangerous as well, because of the non-
uniqueness of the de-convolved image.

Both convolution and Fourier trans-
forming can be done using the MIRIAD
tasks convolve and fft after converting
the FITS file into MIRIAD format using
the MIRIAD task fits. Both convolution
and Fourier transformation can be done
in IDL or Python.

1.8.2 Plotting the model

The LIME data cubes can be visualized
in numerous ways, both in one and two
dimensions. One dimensional plots in-
clude the spectrum of a single pixel and

30 Chapter 1. LIME user manual

LIME Documentation

the brightness profile along either spa-
tial direction a a specific frequency or
summed over a range of frequencies.
The two dimensional (contour) plots are
images when done in the plane spanned
by the two spatial axis, and position-
velocity (PV) diagrams when done in
the frequency and any one of the spatial
axis.

When plotting images, it is often use-
ful to sum over a range of frequencies.
This results in, what is know as, mo-
ment maps. These can be made to any
order, but zero and first moments are
most often used. The nth moment is de-
fined as

𝜇𝑛 (𝑥, 𝑦) =

∫︁ ∞

−∞
(𝑣 − 𝑣source)

𝑛
𝐼 (𝑥, 𝑦, 𝑧) 𝑑𝑣

Sometimes the first moment (and also
higher order moments) is normalized by
the zero moment.

1.9 Converting be-
tween old and new grid
formats

Since LIME 1.7 the user has been able
to store grid information corresponding
to a number of different stages of pro-
cessing in FITS-format files. This fa-
cility has been improved and tidied up
for version 1.8; an HDF5 alternative
has also been provided. Since the early
days of LIME however the program has
offered two ways to read in at least
partial grid information, activated re-
spectively by the parameters par.pregrid
and par.restart. These pathways have
been entirely superseded by the com-
prehensive FITS/HDF5 implementation
but have been retained for the present
to support backward compatibility. Be
warned however that we intend even-
tually to dispense with them. To pre-
pare for this situation, a new utility has
been added to the LIME package: grid-
convert. You will need to compile this
yourself as a one-off, since no run-time
compilation script is provided. Viz:

1.9. Converting between old and new grid formats 31

LIME Documentation

cd <LIME root directory>
make gridconvert

On the make line you can include the
additional argument USEHDF5=yes if
you prefer write/read to/from HDF5 in-
stead of FITS. To clean up object files
and other junk afterwards, do

make objclean

To clean everything away and restore
the package to its status at download, do

make distclean

Running LIME in the usual way
will not delete or otherwise affect
gridconvert.

1.10 Ideas for LIME 2.0

In the following we list a number of new
features which are being considered for
the next major release of LIME. Users
should feel free to contact the maintain-
ers with suggestions, improvements,
new functionalities or bugs needing to
be fixed.

• Line polarization

• Visibility output

• Tau images

• User-defined, function based grid sam-
ple weights

• Basecol/Vamdc support

• etc. . .

1.11 Appendix: Bibli-
ography

• Ade et al., A&A 576, A105 (2015)

• Bensch & Bergin, ApJ, 615, 531, 2004

• Brinch & Hogerheijde, A&A, 523,
A25, 2010; see also http://www.nbi.dk/
~brinch/lime.php

32 Chapter 1. LIME user manual

http://www.nbi.dk/~brinch/lime.php
http://www.nbi.dk/~brinch/lime.php

LIME Documentation

• Hogerheijde & van der Tak, A&A,
362,697, 2000

• Ritzerveld & Icke, PhysRevE, 74,
26704, 2006

• Ossenkopf & Henning, A&A, 291, 943,
1994

• Kernighan & Ritchie, “The C Program-
ming Language 2nd ed.”, Prentice Hall,
1988, ISBN-13: 978-0131103627

• Padovani et al., A&A, 543, A16, 2012

1.11. Appendix: Bibliography 33

LIME Documentation

34 Chapter 1. LIME user manual

CHAPTER 2

Python flavours of LIME

2.1 1. Flavour ‘pylime’

This flavour was developed to allow the user to write their model file in python. For this, we have to compile and run
in separate steps.

2.1.1 Compiling

Go to the package directory <LIME base dir> and type

./configure # if you haven't already done so.
make pylime

If this completes ok without errors, the next thing to do is to add some directories to your PYTHONPATH environment
variable. A script to do this is provided for your convenience. If your shell is bash, do

. ./pylimerc.sh

Alternatively, if you use cshell, do

source ./pylimerc.csh

The compiled executable is called pylime and will also be found in the <LIME base dir> directory.

Note: Running the pylimerc script also adds <LIME base dir> to your PATH environment variable - you
don’t have to do this as an extra step.

To run pylime, do

pylime [options...] <model file>

35

LIME Documentation

2.1.2 Command-line options

-s
Suppresses output messages.

-t
This runs LIME in a test mode, in which it is compiled with the debugging flag set; fixed random seeds are also
employed in this mode, so the results of any two runs with the same model should be identical.

-p nthreads
Run in parallel mode with nthreads. The default is a single thread, i.e. serial execution.

Note: The number of threads may also be set with the par->nThreads parameter. This will override the value set via
the -p option.

Note: Curses-style output is not available for pylime.

2.1.3 The model file

This is written in python, but it follows a very similar format to the C-language file in original use with LIME. A
template model file can be found at <LIME base dir>/example/model.py.

Note that it is not necessary to recompile pylime every time you make a change to the model file.

2.2 2. Flavour ‘pyshared’

The purpose of this flavour is to emulate some features of the package ARTIST. The make target for this flavour is
pyshared. The result is two so-called shared objects, <LIME base dir>/liblime.so and <LIME base
dir>/libmodellib.so, which can be imported into python, either in a python script or in an interactive python
session. (Wrapper modules to provide a richer interface are located in <LIME base dir>/python/.) After doing

cd <LIME base dir>
./configure # if you haven't already done so.
make pyshared
source ./pylimerc.csh # or the bash equivalent

you should be able to cd to anywhere else, run python, and do

>>> import lime
>>> import modellib

The available functions can be examined via python’s help() function. A test script is available at <LIME base
dir>/tests/pyshared_test.py. This may also serve as a template for proper use of these modules from
within python.

2.2.1 Modellib

This repeats the functionality of the module of the same name in ARTIST. I.e., it offers a library of model templates,
each of which can be tailored both by choice of parameters and by augmenting their grid-value functions.

36 Chapter 2. Python flavours of LIME

LIME Documentation

Warning: The library of bespoke models in LIME has undergone very little testing. The ARTIST code was
written by various people of varying ability; all that has been done here is to port that C++ code to C. Until
someone gives it a thorough testing and bug-cleaning it should be regarded with suspicion.

As well as the bespoke models from the ARTIST version, you can also supply your own grid-value functions via
a python file, in similar fashion to both traditional lime and pylime. The call which directs modellib to use
this is modellib.setUserModel("<name of the model file>"). A template model file is available at
<LIME base dir>/example/model_pyshared.py.

Note: If you supply such a model file, you should only include grid-value functions, not parameters. You will see
e.g. that the template file <LIME base dir>/example/model_pyshared.py has no input() function.
For this flavour of LIME, parameters should be set from within python. See the test script <LIME base dir>/
tests/pyshared_test.py for examples of how this is done.

The library of model templates:

• allen03a: from ‘Allen et al. 2003, ApJ, 599, 351’.

• BonnorEbert56: from ‘Bonnor 1956, MNRAS, 116, 351 ; Ebert 1955, ZA (Zeitschrift fuer Astrophysik), 37,
217’.

• CG97: from ‘Chiang & Goldreich 1997, ApJ, 490, 368’.

• DDN01: from ‘Dullemond & Dominik 2001, ApJ, 560, 957’.

• LiShu96: from ‘Li & Shu 1996, ApJ, 472, 211’.

• Mamon88: from ‘Mamon et al. 1988, ApJ 328, 797’.

• Mendoza09: from ‘Mendoza, Tejeda & Nagel, 2009, MNRAS, 393, 579’.

• Shu77: from ‘Shu 1977, ApJ, 214, 488’.

• Ulrich76: from ‘Ulrich 1976, ApJ, 210, 377’.

2.3 3. Flavour ‘casalime’

The final flavour of LIME offers similar functionality to pyshared, but is designed to be used from the CASA
command line. Originally the pyshared modules were used for this, but due to stupid clashes in threading and
cfitsio, it was decided to redesign the CASA interface so that it launched LIME in a new process.

2.3.1 Compiling

cd <LIME base dir>
make casalime

This generates an executable called casalime. As with lime and pylime flavours, you will want to make sure
that <LIME base dir> is in your PATH environment variable, so CASA can find this executable. Also do

source ./pylimerc.csh # or the bash equivalent

2.3. 3. Flavour ‘casalime’ 37

LIME Documentation

2.3.2 Testing

There is a test script <LIME base dir>/tests/casalime_test.py for checking that the tasks built ok.

2.3.3 CASA-specific compilation

The actual tasks which you run on the CASA command-line are called limesolver and raytrace. More on how
to use those below. For the moment we just want to get them running.

You will find the following four files under <LIME base dir>/casa:

limesolver.xml
raytrace.xml
task_limesolver.py
task_raytrace.py

You can leave them there for the next step, but it is neater if you copy them somewhere else, to some convenient
working directory. Suppose you have done that. CD to that working directory and invoke buildmytasks from the
CASA distro you plan to use. That should generate the following new files:

limesolver_cli.py
limesolver.py
mytasks.py
raytrace_cli.py
raytrace.py

The final step is to make sure that CASA can find these files when you start it up. If you don’t already have a file
~/.casa/init.py, create one. Add the following line to it:

execfile("<location of your task_* etc modules>/mytasks.py")

Once you’ve done that, you should be able to start CASA from anywhere and run the tasks limesolver and
raytrace successfully.

2.3.4 CASA tasks

The CASA interface for setting task parameter values is not a very good tool for expressing the complicated and
interrelated set of LIME parameters. Mostly for this reason, two simplifications have been made to flavour casalime:
the LIME functionality has been split between two tasks limesolver and raytrace, and only 1 image at a time
can be produced.

limesolver

This generates the grid and solves the radiative transfer equations. It’s not the job of limesolver to make images.

CASA tasks store parameter values via INP files. A template INP file is available at <LIME base dir>/casa/
limesolver.template. If you copy this, together with the files

hco+@xpol.dat
jena_thin_e6.tab
model_pyshared.py

from <LIME base dir>/example to the directory you want to run CASA from, then you should be able from
the CASA command line to do

38 Chapter 2. Python flavours of LIME

LIME Documentation

execfile('limesolver.template')
go

for a nominal run of limesolver. The output will be found in the same directory in the FITS file
grid_5_mymodel.ds. This conforms in format to the description in the header of the module <LIME base
dir>/src/grid2fits.c.

You will recognize most of the early parameters from LIME but those following modelID all pertain to modellib.

raytrace

This task reads the grid file created by limesolver and makes a (single) image.

Once again there is a template INP file available: <LIME base dir>/casa/raytrace.template. Perusal
of this shows that the parameters are similar to the LIME ones, but two boolean parameters rotationStyle and
doLine have been added.

2.3. 3. Flavour ‘casalime’ 39

LIME Documentation

40 Chapter 2. Python flavours of LIME

Index

Symbols
-V

command line option, 6
-f

command line option, 6
-h

command line option, 6
-n

command line option, 6
-p nthreads

command line option, 7, 36
-s

command line option, 6, 36
-t

command line option, 6, 36

C
command line option

-V, 6
-f, 6
-h, 6
-n, 6
-p nthreads, 7, 36
-s, 6, 36
-t, 6, 36

41

	LIME user manual
	Introduction
	Setting up LIME
	The inner workings of LIME
	Command line options
	Setting up models
	Model functions
	Output from LIME
	Post-processing
	Converting between old and new grid formats
	Ideas for LIME 2.0
	Appendix: Bibliography

	Python flavours of LIME
	1. Flavour ‘pylime’
	2. Flavour ‘pyshared’
	3. Flavour ‘casalime’

