
lifetimes Documentation
Release 0.11.2

Cameron Davidson-Pilon

Jul 06, 2020

Contents:

1 Introduction 3
1.1 Applications . 3
1.2 Specific Application: Customer Lifetime Value . 3

2 Installation 5

3 Documentation and tutorials 7

4 Questions? Comments? Requests? 9

5 More Information 11
5.1 Quickstart . 11
5.2 High Level Overview . 20
5.3 Saving and loading model . 25
5.4 More Examples and recipes . 25
5.5 lifetimes package . 27
5.6 Changelog . 63

6 Indices and tables 65

Python Module Index 67

Index 69

i

ii

lifetimes Documentation, Release 0.11.2

Contents: 1

https://badge.fury.io/py/Lifetimes
http://lifetimes.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/CamDavidsonPilon/lifetimes
https://coveralls.io/r/CamDavidsonPilon/lifetimes?branch=master

lifetimes Documentation, Release 0.11.2

2 Contents:

CHAPTER 1

Introduction

Lifetimes can be used to analyze your users based on a few assumption:

1. Users interact with you when they are “alive”.

2. Users under study may “die” after some period of time.

I’ve quoted “alive” and “die” as these are the most abstract terms: feel free to use your own definition of “alive” and
“die” (they are used similarly to “birth” and “death” in survival analysis). Whenever we have individuals repeating
occurrences, we can use Lifetimes to help understand user behaviour.

1.1 Applications

If this is too abstract, consider these applications:

• Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn’t
for them)

• Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient
moved to a new city, or became deceased.)

• Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die =
removed the app)

• Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with
your product)

• Predicting the lifetime value of your customers

1.2 Specific Application: Customer Lifetime Value

As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most
important part of your business’s sales efforts. And (apparently) everyone is doing it wrong. Lifetimes is a Python
library to calculate CLV for you.

3

https://www.youtube.com/watch?v=guj2gVEEx4s

lifetimes Documentation, Release 0.11.2

4 Chapter 1. Introduction

CHAPTER 2

Installation

pip install lifetimes

5

lifetimes Documentation, Release 0.11.2

6 Chapter 2. Installation

CHAPTER 3

Documentation and tutorials

Official documentation

7

http://lifetimes.readthedocs.io/en/latest/

lifetimes Documentation, Release 0.11.2

8 Chapter 3. Documentation and tutorials

CHAPTER 4

Questions? Comments? Requests?

Please create an issue in the lifetimes repository.

9

https://github.com/CamDavidsonPilon/lifetimes

lifetimes Documentation, Release 0.11.2

10 Chapter 4. Questions? Comments? Requests?

CHAPTER 5

More Information

1. Roberto Medri did a nice presentation on CLV at Etsy.

2. Papers, lots of papers.

3. R implementation is called BTYD (for, Buy ’Til You Die).

5.1 Quickstart

For the following examples, we’ll use a dataset from an ecommerce provider to analyze their customers’ repeat pur-
chases. The examples below are using the cdnow_customers.csv located in the datasets/ directory.

from lifetimes.datasets import load_cdnow_summary
data = load_cdnow_summary(index_col=[0])

print(data.head())
"""

frequency recency T
ID
1 2 30.43 38.86
2 1 1.71 38.86
3 0 0.00 38.86
4 0 0.00 38.86
5 0 0.00 38.86
"""

5.1.1 The shape of your data

For all models, the following nomenclature is used:

• frequency represents the number of repeat purchases the customer has made. This means that it’s one less
than the total number of purchases. This is actually slightly wrong. It’s the count of time periods the customer
had a purchase in. So if using days as units, then it’s the count of days the customer had a purchase on.

11

http://cdn.oreillystatic.com/en/assets/1/event/85/Case%20Study_%20What_s%20a%20Customer%20Worth_%20Presentation.pdf
http://mktg.uni-svishtov.bg/ivm/resources/Counting_Your_Customers.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf
http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf

lifetimes Documentation, Release 0.11.2

• T represents the age of the customer in whatever time units chosen (weekly, in the above dataset). This is equal
to the duration between a customer’s first purchase and the end of the period under study.

• recency represents the age of the customer when they made their most recent purchases. This is equal to the
duration between a customer’s first purchase and their latest purchase. (Thus if they have made only 1 purchase,
the recency is 0.)

• monetary_value represents the average value of a given customer’s purchases. This is equal to the sum of
all a customer’s purchases divided by the total number of purchases. Note that the denominator here is different
than the frequency described above.

If your data is not in the format (very common), there are utility functions in lifetimes to transform your data to look
like this.

5.1.2 Basic Frequency/Recency analysis using the BG/NBD model

We’ll use the BG/NBD model first. There are other models which we will explore in these docs, but this is the simplest
to start with.

from lifetimes import BetaGeoFitter

similar API to scikit-learn and lifelines.
bgf = BetaGeoFitter(penalizer_coef=0.0)
bgf.fit(data['frequency'], data['recency'], data['T'])
print(bgf)
"""
<lifetimes.BetaGeoFitter: fitted with 2357 subjects, a: 0.79, alpha: 4.41, b: 2.43,
→˓r: 0.24>
"""

bgf.summary
"""

coef se(coef) lower 95% bound upper 95% bound
r 0.242593 0.012557 0.217981 0.267205
alpha 4.413532 0.378221 3.672218 5.154846
a 0.792886 0.185719 0.428877 1.156895
b 2.425752 0.705345 1.043276 3.808229
"""

After fitting, we have lots of nice methods and properties attached to the fitter object, like param_ and summary.

For small samples sizes, the parameters can get implausibly large, so by adding an l2 penalty the likelihood, we can
control how large these parameters can be. This is implemented as setting as positive penalizer_coef in the
initialization of the model. In typical applications, penalizers on the order of 0.001 to 0.1 are effective.

Visualizing our Frequency/Recency Matrix

Consider: a customer bought from you every day for three weeks straight, and we haven’t heard from them in months.
What are the chances they are still “alive”? Pretty small. On the other hand, a customer who historically buys
from you once a quarter, and bought last quarter, is likely still alive. We can visualize this relationship using the
Frequency/Recency matrix, which computes the expected number of transactions an artificial customer is to make in
the next time period, given his or her recency (age at last purchase) and frequency (the number of repeat transactions
he or she has made).

12 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

from lifetimes.plotting import plot_frequency_recency_matrix

plot_frequency_recency_matrix(bgf)

fr_matrix

We can see that if a customer has bought 25 times from you, and their latest purchase was when they were 35 weeks
old (given the individual is 35 weeks old), then they are your best customer (bottom-right). Your coldest customers
are those that are in the top-right corner: they bought a lot quickly, and we haven’t seen them in weeks.

There’s also that beautiful “tail” around (5,25). That represents the customer who buys infrequently, but we’ve seen
him or her recently, so they might buy again - we’re not sure if they are dead or just between purchases.

Another interesting matrix to look at is the probability of still being alive:

from lifetimes.plotting import plot_probability_alive_matrix

plot_probability_alive_matrix(bgf)

5.1. Quickstart 13

lifetimes Documentation, Release 0.11.2

prob

Ranking customers from best to worst

Let’s return to our customers and rank them from “highest expected purchases in the next period” to lowest. Models
expose a method that will predict a customer’s expected purchases in the next period using their history.

t = 1
data['predicted_purchases'] = bgf.conditional_expected_number_of_purchases_up_to_
→˓time(t, data['frequency'], data['recency'], data['T'])
data.sort_values(by='predicted_purchases').tail(5)
"""

frequency recency T predicted_purchases
ID
509 18 35.14 35.86 0.424877
841 19 34.00 34.14 0.474738
1981 17 28.43 28.86 0.486526
157 29 37.71 38.00 0.662396
1516 26 30.86 31.00 0.710623
"""

Great, we can see that the customer who has made 26 purchases, and bought very recently from us, is probably going
to buy again in the next period.

14 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

Assessing model fit

Ok, we can predict and we can visualize our customers’ behaviour, but is our model correct? There are a few ways
to assess the model’s correctness. The first is to compare your data versus artificial data simulated with your fitted
model’s parameters.

from lifetimes.plotting import plot_period_transactions
plot_period_transactions(bgf)

model_fit_1

We can see that our actual data and our simulated data line up well. This proves that our model doesn’t suck.

Example using transactional datasets

Most often, the dataset you have at hand will be at the transaction level. Lifetimes has some utility functions to
transform that transactional data (one row per purchase) into summary data (a frequency, recency and age dataset).

from lifetimes.datasets import load_transaction_data
from lifetimes.utils import summary_data_from_transaction_data

transaction_data = load_transaction_data()
print(transaction_data.head())
"""

date id
0 2014-03-08 00:00:00 0

(continues on next page)

5.1. Quickstart 15

lifetimes Documentation, Release 0.11.2

(continued from previous page)

1 2014-05-21 00:00:00 1
2 2014-03-14 00:00:00 2
3 2014-04-09 00:00:00 2
4 2014-05-21 00:00:00 2
"""

summary = summary_data_from_transaction_data(transaction_data, 'id', 'date',
→˓observation_period_end='2014-12-31')

print(summary.head())
"""
frequency recency T
id
0 0.0 0.0 298.0
1 0.0 0.0 224.0
2 6.0 142.0 292.0
3 0.0 0.0 147.0
4 2.0 9.0 183.0
"""

bgf.fit(summary['frequency'], summary['recency'], summary['T'])
<lifetimes.BetaGeoFitter: fitted with 5000 subjects, a: 1.85, alpha: 1.86, b: 3.18,
→˓r: 0.16>

More model fitting

With transactional data, we can partition the dataset into a calibration period dataset and a holdout dataset. This is
important as we want to test how our model performs on data not yet seen (think cross-validation in standard machine
learning literature). Lifetimes has a function to partition our dataset like this:

from lifetimes.utils import calibration_and_holdout_data

summary_cal_holdout = calibration_and_holdout_data(transaction_data, 'id', 'date',
calibration_period_end='2014-09-01',
observation_period_end='2014-12-31')

print(summary_cal_holdout.head())
"""

frequency_cal recency_cal T_cal frequency_holdout duration_holdout
id
0 0.0 0.0 177.0 0.0 121
1 0.0 0.0 103.0 0.0 121
2 6.0 142.0 171.0 0.0 121
3 0.0 0.0 26.0 0.0 121
4 2.0 9.0 62.0 0.0 121
"""

With this dataset, we can perform fitting on the _cal columns, and test on the _holdout columns:

from lifetimes.plotting import plot_calibration_purchases_vs_holdout_purchases

bgf.fit(summary_cal_holdout['frequency_cal'], summary_cal_holdout['recency_cal'],
→˓summary_cal_holdout['T_cal'])
plot_calibration_purchases_vs_holdout_purchases(bgf, summary_cal_holdout)

16 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

holdout

Customer Predictions

Based on customer history, we can predict what an individuals future purchases might look like:

t = 10 #predict purchases in 10 periods
individual = summary.iloc[20]
The below function is an alias to `bfg.conditional_expected_number_of_purchases_up_
→˓to_time`
bgf.predict(t, individual['frequency'], individual['recency'], individual['T'])
0.0576511

Customer Probability Histories

Given a customer transaction history, we can calculate their historical probability of being alive, according to our
trained model. For example:

from lifetimes.plotting import plot_history_alive

id = 35
days_since_birth = 200
sp_trans = transaction_data.loc[transaction_data['id'] == id]
plot_history_alive(bgf, days_since_birth, sp_trans, 'date')

5.1. Quickstart 17

lifetimes Documentation, Release 0.11.2

history

5.1.3 Estimating customer lifetime value using the Gamma-Gamma model

For this whole time we didn’t take into account the economic value of each transaction and we focused mainly on
transactions’ occurrences. To estimate this we can use the Gamma-Gamma submodel. But first we need to create
summary data from transactional data also containing economic values for each transaction (i.e. profits or revenues).

from lifetimes.datasets import load_cdnow_summary_data_with_monetary_value

summary_with_money_value = load_cdnow_summary_data_with_monetary_value()
summary_with_money_value.head()
returning_customers_summary = summary_with_money_value[summary_with_money_value[
→˓'frequency']>0]

print(returning_customers_summary.head())
"""

frequency recency T monetary_value
customer_id
1 2 30.43 38.86 22.35
2 1 1.71 38.86 11.77
6 7 29.43 38.86 73.74
7 1 5.00 38.86 11.77
9 2 35.71 38.86 25.55
"""

If computing the monetary value from your own data, note that it is the mean of a given customer’s value, not the sum.
monetary_value can be used to represent profit, or revenue, or any value as long as it is consistently calculated
for each customer.

18 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

The Gamma-Gamma model and the independence assumption

The model we are going to use to estimate the CLV for our userbase is called the Gamma-Gamma submodel, which
relies upon an important assumption. The Gamma-Gamma submodel, in fact, assumes that there is no relationship
between the monetary value and the purchase frequency. In practice we need to check whether the Pearson correlation
between the two vectors is close to 0 in order to use this model.

returning_customers_summary[['monetary_value', 'frequency']].corr()
"""

monetary_value frequency
monetary_value 1.000000 0.113884
frequency 0.113884 1.000000
"""

At this point we can train our Gamma-Gamma submodel and predict the conditional, expected average lifetime value
of our customers.

from lifetimes import GammaGammaFitter

ggf = GammaGammaFitter(penalizer_coef = 0)
ggf.fit(returning_customers_summary['frequency'],

returning_customers_summary['monetary_value'])
print(ggf)
"""
<lifetimes.GammaGammaFitter: fitted with 946 subjects, p: 6.25, q: 3.74, v: 15.45>
"""

We can now estimate the average transaction value:

print(ggf.conditional_expected_average_profit(
summary_with_money_value['frequency'],
summary_with_money_value['monetary_value']

).head(10))
"""
customer_id
1 24.658619
2 18.911489
3 35.170981
4 35.170981
5 35.170981
6 71.462843
7 18.911489
8 35.170981
9 27.282408
10 35.170981
dtype: float64
"""

print("Expected conditional average profit: %s, Average profit: %s" % (
ggf.conditional_expected_average_profit(

summary_with_money_value['frequency'],
summary_with_money_value['monetary_value']

).mean(),
summary_with_money_value[summary_with_money_value['frequency']>0]['monetary_value

→˓'].mean()
))
"""

(continues on next page)

5.1. Quickstart 19

lifetimes Documentation, Release 0.11.2

(continued from previous page)

Expected conditional average profit: 35.2529588256, Average profit: 35.078551797
"""

While for computing the total CLV using the DCF method (https://en.wikipedia.org/wiki/Discounted_cash_flow) ad-
justing for cost of capital:

refit the BG model to the summary_with_money_value dataset
bgf.fit(summary_with_money_value['frequency'], summary_with_money_value['recency'],
→˓summary_with_money_value['T'])

print(ggf.customer_lifetime_value(
bgf, #the model to use to predict the number of future transactions
summary_with_money_value['frequency'],
summary_with_money_value['recency'],
summary_with_money_value['T'],
summary_with_money_value['monetary_value'],
time=12, # months
discount_rate=0.01 # monthly discount rate ~ 12.7% annually

).head(10))
"""
customer_id
1 140.096211
2 18.943467
3 38.180574
4 38.180574
5 38.180574
6 1003.868107
7 28.109683
8 38.180574
9 167.418216
10 38.180574
Name: clv, dtype: float64
"""

5.2 High Level Overview

This is intended to be a high-level documentation of how the code is structured. Whenever possible, UML is used.
Some of the standards applied in this documentation can be found here.

5.2.1 Workflow

The usual workflow of using the Lifetimes library is exemplified in the Quickstart page. It can also be represented
through the following fluxogram:

20 Chapter 5. More Information

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://www.lucidchart.com/pages/uml-class-diagram

lifetimes Documentation, Release 0.11.2

Basic
Workflow

Notice that the right-most branch of the fluxogram actually refers to monetary value modeling.

5.2.2 Fitters

The core fitter is the BaseFitter class is inside the __init__.py, which serves as a superclass for most of
the the other fitters. So far, only the ModifiedBetaGeoFitter is set on a higher layer, inheriting from the

5.2. High Level Overview 21

lifetimes Documentation, Release 0.11.2

BetaGeoFitter. The following image shows the simplified interaction of the main fitter classes.

Simplified
Fitters Fluxograms

Below is a more detailed fluxogram of the classes. The arrows with the empty arrowheads symbolize inheritance. If
the image is too small, you can find the source here.

22 Chapter 5. More Information

https://i.imgur.com/ZPHg36q.png

lifetimes Documentation, Release 0.11.2

Complete
UML Fluxogram

5.2. High Level Overview 23

lifetimes Documentation, Release 0.11.2

5.2.3 Graphs

Graphs are plotted with functions coming from the plotting.py file. The main functions are cited below, alongside
a brief description of how they are created.

plotting.py
functions

• plot_period_transactions : aggregation on how many purchases each customer has made in the cali-
bration period.

• plot_calibration_purchases_vs_holdout_purchases : aggregation over the conditional ex-
pected number of purchases.

• plot_frequency_recency_matrix : conditional expected number of purchases.

• plot_probability_alive_matrix : conditional probability of the customer being alive.

• plot_expected_repeat_purchases : expected number of purchases.

• plot_history_alive : resampling with the model with the specific parameters of the customer, using the
calculate_alive_path from the utils.py file.

• plot_cumulative_transactions : plot coming from the expected_cumulative_transactions
function.

• plot_incremental_transactions : decumulative sum over the
expected_cumulative_transactions function.

• plot_transaction_rate_heterogeneity : Gamma Distribution Histogram.

• plot_dropout_rate_heterogeneity : Beta Distribution Histogram.

5.2.4 The utils.py File

In the utils.py file we can find some useful functions that are used inside the library and/or can be accessed by the
end-user. Some of them are listed below:

• calibration_and_holdout_data : RFM data separated into calibration and holdout.

• _find_first_transactions : DataFrame with the first transactions.

• summary_data_from_transaction_data : RFM model for each customer coming from the transac-
tional data.

• calculate_alive_path : alive path (history) of a specified customer based on the fitted model.

• expected_cumulative_transactions : expected and actual repeated cumulative transactions.

24 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

5.3 Saving and loading model

When you have lots of data and training takes a lot of time option with saving and loading model could be useful. First
you need to fit the model, then save it and load.

5.3.1 Fit model

from lifetimes import BetaGeoFitter
from lifetimes.datasets import load_cdnow_summary

data = load_cdnow_summary(index_col=[0])
bgf = BetaGeoFitter()
bgf.fit(data['frequency'], data['recency'], data['T'])
bgf
"""<lifetimes.BetaGeoFitter: fitted with 2357 subjects, a: 0.79, alpha: 4.41, b: 2.43,
→˓ r: 0.24>"""

5.3.2 Saving model

Model will be saved with dill to pickle object. Optional parameters save_data and
save_generate_data_method are present to reduce final pickle object size for big dataframes. Optional
parameters:

• save_data is used for saving data from model or not (default: True).

• save_generate_data_method is used for saving generate_new_data method from model or not
(default: True)

bgf.save_model('bgf.pkl')

or to save only model with minumum size without data and generate_new_data:

bgf.save_model('bgf_small_size.pkl', save_data=False, save_generate_data_method=False)

5.3.3 Loading model

Before loading you should initialize the model first and then use method load_model

bgf_loaded = BetaGeoFitter()
bgf_loaded.load_model('bgf.pkl')
bgf_loaded
"""<lifetimes.BetaGeoFitter: fitted with 2357 subjects, a: 0.79, alpha: 4.41, b: 2.43,
→˓ r: 0.24>"""

5.4 More Examples and recipes

5.4.1 Example SQL statement to transform transactional data into RFM data

Let’s review what our variables mean:

5.3. Saving and loading model 25

https://github.com/uqfoundation/dill

lifetimes Documentation, Release 0.11.2

• frequency represents the number of repeat purchases the customer has made. This means that it’s one less
than the total number of purchases. This is actually slightly wrong. It’s the count of distinct time periods the
customer had a purchase in. So if using days as units, then it’s the count of distinct days the customer had a
purchase on.

• T represents the age of the customer in whatever time units chosen. This is equal to the duration between a
customer’s first purchase and the end of the period under study.

• recency represents the age of the customer when they made their most recent purchases. This is equal to the
duration between a customer’s first purchase and their latest purchase. (Thus if they have made only 1 purchase,
the recency is 0.)

Thus, executing a query against a transactional dataset, called orders, in a SQL-store may look like:

SELECT
customer_id,
COUNT(distinct date(transaction_at)) - 1 as frequency,
datediff('day', MIN(transaction_at), MAX(transaction_at)) as recency,
AVG(total_price) as monetary_value,
datediff('day', CURRENT_DATE, MIN(transaction_at)) as T

FROM orders
GROUP BY customer_id

5.4.2 Create table with RFM summary matrix with holdout

Variables frequency, T and recency have the same meaning as in previous section.

Two variables to set before executing:

• duration_holdout - holdout duration in days.

• CURRENT_DATE - current date, could be changed to final date of the transactional data.

select
a.*,
COALESCE(b.frequency_holdout, 0) as frequency_holdout,
duration_holdout as duration_holdout

from (
select

customer_id,
datediff(max(event_date), min(event_date)) as recency,
count(*) - 1 as frequency,
datediff(date_sub(CURRENT_DATE, duration_holdout), min(event_date)) as T

from orders
where event_date < date_sub(CURRENT_DATE, duration_holdout)
group by customer_id

) a
left join (

select
customer_id,
count(*) as frequency_holdout

from orders
where event_date >= date_sub(CURRENT_DATE, duration_holdout)

and event_date < CURRENT_DATE
group by customer_id

) b
on a.customer_id = b.customer_id

26 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

5.5 lifetimes package

5.5.1 lifetimes.fitters

lifetimes.fitters.beta_geo_beta_binom_fitter module

Beta Geo Beta BinomFitter.

class lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Also known as the Beta-Geometric/Beta-Binomial Model1.

Future purchases opportunities are treated as discrete points in time. In the literature, the model provides a better
fit than the Pareto/NBD model for a nonprofit organization with regular giving patterns.

The model is estimated with a recency-frequency matrix with n transaction opportunities.

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

1 Fader, Peter S., Bruce G.S. Hardie, and Jen Shang (2010), “Customer-Base Analysis in a Discrete-Time Noncontractual Setting,” Marketing
Science, 29 (6), 1086-1108.

5.5. lifetimes package 27

lifetimes Documentation, Release 0.11.2

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(m_periods_in_future,
frequency, recency,
n_periods)

Conditional expected purchases in future time period.

The expected number of future transactions across the next m_periods_in_future transaction opportunities
by a customer with purchase history (x, tx, n).

𝐸(𝑋(𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠 +𝑚𝑝𝑒𝑟𝑖𝑜𝑑𝑠𝑖𝑛𝑓𝑢𝑡𝑢𝑟𝑒)|𝛼, 𝛽, 𝛾, 𝛿, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑟𝑒𝑐𝑒𝑛𝑐𝑦, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠)

See (13) in Fader & Hardie 2010.

Parameters t (array_like) – time n_periods (n+t)

Returns array_like – predicted transactions

conditional_probability_alive(m_periods_in_future, frequency, recency, n_periods)
Conditional probability alive.

Conditional probability customer is alive at transaction opportunity n_periods + m_periods_in_future.

𝑃 (𝑎𝑙𝑖𝑣𝑒𝑎𝑡𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠+𝑚𝑝𝑒𝑟𝑖𝑜𝑑𝑠𝑖𝑛𝑓𝑢𝑡𝑢𝑟𝑒|𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, 𝑔𝑎𝑚𝑚𝑎, 𝑑𝑒𝑙𝑡𝑎, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑟𝑒𝑐𝑒𝑛𝑐𝑦, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠)

See (A10) in Fader and Hardie 2010.

Parameters m (array_like) – transaction opportunities

Returns array_like – alive probabilities

expected_number_of_transactions_in_first_n_periods(n)
Return expected number of transactions in first n n_periods.

Expected number of transactions occurring across first n transaction opportunities. Used by Fader and
Hardie to assess in-sample fit.

𝑃𝑟(𝑋(𝑛) = 𝑥|𝛼, 𝛽, 𝛾, 𝛿)

See (7) in Fader & Hardie 2010.

Parameters n (float) – number of transaction opportunities

Returns DataFrame – Predicted values, indexed by x

fit(frequency, recency, n_periods, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit the BG/BB model.

Parameters

• frequency (array_like) – Total periods with observed transactions

• recency (array_like) – Period of most recent transaction

• n_periods (array_like) – Number of transaction opportunities. Previously called
n.

28 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern. Previously called n_custs.

• verbose (boolean, optional) – Set to true to print out convergence diagnostics.

• tol (float, optional) – Tolerance for termination of the function minimization
process.

• index (array_like, optional) – Index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – Key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns BetaGeoBetaBinomFitter – fitted and with parameters estimated

lifetimes.fitters.beta_geo_fitter module

Beta Geo Fitter, also known as BG/NBD model.

class lifetimes.fitters.beta_geo_fitter.BetaGeoFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Also known as the BG/NBD model.

Based on [2]_, this model has the following assumptions:

1) Each individual, i, has a hidden lambda_i and p_i parameter

2) These come from a population wide Gamma and a Beta distribution respectively.

3) Individuals purchases follow a Poisson process with rate lambda_i*t .

4) After each purchase, an individual has a p_i probability of dieing (never buying again).

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

5.5. lifetimes package 29

lifetimes Documentation, Release 0.11.2

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly chosen individual from the
population, given they have purchase history (frequency, recency, T).

This function uses equation (10) from [2]_.

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

• T (array_like) – age of the customer.

Returns array_like

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

conditional_probability_alive(frequency, recency, T)
Compute conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

From http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf

Parameters

• frequency (array or scalar) – historical frequency of customer.

• recency (array or scalar) – historical recency of customer.

30 Chapter 5. More Information

http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf

lifetimes Documentation, Release 0.11.2

• T (array or scalar) – age of the customer.

Returns array – value representing a probability

conditional_probability_alive_matrix(max_frequency=None, max_recency=None)
Compute the probability alive matrix.

Uses the conditional_probability_alive() method to get calculate the matrix.

Parameters

• max_frequency (float, optional) – the maximum frequency to plot. Default is
max observed frequency.

• max_recency (float, optional) – the maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

Returns matrix – A matrix of the form [t_x: historical recency, x: historical frequency]

expected_number_of_purchases_up_to_time(t)
Calculate the expected number of repeat purchases up to time t.

Calculate repeat purchases for a randomly chosen individual from the population.

Equivalent to equation (9) of [2]_.

Parameters t (array_like) – times to calculate the expection for

Returns array_like

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

fit(frequency, recency, T, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit a dataset to the BG/NBD model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by
the number of customers with that pattern.

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

5.5. lifetimes package 31

lifetimes Documentation, Release 0.11.2

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns BetaGeoFitter – with additional properties like params_ and methods like predict

probability_of_n_purchases_up_to_time(t, n)
Compute the probability of n purchases.

𝑃 (𝑁(𝑡) = 𝑛|model)

where N(t) is the number of repeat purchases a customer makes in t units of time.

Comes from equation (8) of [2]_.

Parameters

• t (float) – number units of time

• n (int) – number of purchases

Returns float – Probability to have n purchases up to t units of time

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

lifetimes.fitters.gamma_gamma_fitter module

Gamma-Gamma Model.

class lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Fitter for the gamma-gamma model.

It is used to estimate the average monetary value of customer transactions.

This implementation is based on the Excel spreadsheet found in3. More details on the derivation and evaluation
can be found in4.

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type
3 http://www.brucehardie.com/notes/025/ The Gamma-Gamma Model of Monetary Value.
4 Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee (2005), “RFM and CLV: Using iso-value curves for customer base analysis”, Journal of

Marketing Research, 42 (November), 415-430.

32 Chapter 5. More Information

http://www.brucehardie.com/notes/025/

lifetimes Documentation, Release 0.11.2

obj OrderedDict

data
A DataFrame with the columns given in the call to fit

Type

obj DataFrame

References

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

conditional_expected_average_profit(frequency=None, monetary_value=None)
Conditional expectation of the average profit.

This method computes the conditional expectation of the average profit per transaction for a group of one
or more customers.

Equation (5) from: http://www.brucehardie.com/notes/025/

5.5. lifetimes package 33

http://www.brucehardie.com/notes/025/

lifetimes Documentation, Release 0.11.2

Parameters

• frequency (array_like, optional) – a vector containing the customers’ fre-
quencies. Defaults to the whole set of frequencies used for fitting the model.

• monetary_value (array_like, optional) – a vector containing the customers’
monetary values. Defaults to the whole set of monetary values used for fitting the model.

Returns array_like – The conditional expectation of the average profit per transaction

customer_lifetime_value(transaction_prediction_model, frequency, recency, T, mone-
tary_value, time=12, discount_rate=0.01, freq=’D’)

Return customer lifetime value.

This method computes the average lifetime value for a group of one or more customers.

Parameters

• transaction_prediction_model (model) – the model to predict future transac-
tions, literature uses pareto/ndb models but we can also use a different model like beta-geo
models

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (the recency vector of customers' purchases) – (denoted
t_x in literature).

• T (array_like) – customers’ age (time units since first purchase)

• monetary_value (array_like) – the monetary value vector of customer’s pur-
chases (denoted m in literature).

• time (float, optional) – the lifetime expected for the user in months. Default: 12

• discount_rate (float, optional) – the monthly adjusted discount rate. De-
fault: 0.01

• freq (string, optional) – {“D”, “H”, “M”, “W”} for day, hour, month, week.
This represents what unit of time your T is measure in.

Returns Series – Series object with customer ids as index and the estimated customer lifetime
values as values

fit(frequency, monetary_value, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, q_constraint=False, **kwargs)
Fit the data to the Gamma/Gamma model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• monetary_value (array_like) – the monetary value vector of customer’s pur-
chases (denoted m in literature).

• weights (None or array_like) – Number of customers with given fre-
quency/monetary_value, defaults to 1 if not specified. Fader and Hardie condense the in-
dividual RFM matrix into all observed combinations of frequency/monetary_value. This
parameter represents the count of customers with a given purchase pattern. Instead of
calculating individual loglikelihood, the loglikelihood is calculated for each pattern and
multiplied by the number of customers with that pattern.

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

34 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• q_constraint (bool, optional) – when q < 1, population mean will result in a
negative value leading to negative CLV outputs. If True, we penalize negative values of q
to avoid this issue.

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns GammaGammaFitter – fitted and with parameters estimated

lifetimes.fitters.modified_beta_geo_fitter module

class lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.beta_geo_fitter.BetaGeoFitter

Also known as the MBG/NBD model.

Based on5,6, this model has the following assumptions: 1) Each individual, i, has a hidden lambda_i and
p_i parameter 2) These come from a population wide Gamma and a Beta distribution

respectively.

3) Individuals purchases follow a Poisson process with rate 𝜆𝑖 * 𝑡 .

4) At the beginning of their lifetime and after each purchase, an individual has a p_i probability of dieing
(never buying again).

References

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

5 Batislam, E.P., M. Denizel, A. Filiztekin (2007), “Empirical validation and comparison of models for customer base analysis,” International
Journal of Research in Marketing, 24 (3), 201-209.

6 Wagner, U. and Hoppe D. (2008), “Erratum on the MBG/NBD Model,” International Journal of Research in Marketing, 25 (3), 225-226.

5.5. lifetimes package 35

lifetimes Documentation, Release 0.11.2

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population, given they have purchase history (frequency, recency, T) See Wagner, U. and Hoppe D. (2008).

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

• T (array_like) – age of the customer.

Returns array_like

conditional_probability_alive(frequency, recency, T)
Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.
From https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_
models_for_customer_base_analysis Appendix A, eq. (5)

Parameters

• frequency (array or float) – historical frequency of customer.

• recency (array or float) – historical recency of customer.

• T (array or float) – age of the customer.

Returns array – value representing probability of being alive

expected_number_of_purchases_up_to_time(t)
Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population.

Parameters t (array_like) – times to calculate the expectation for

36 Chapter 5. More Information

https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_models_for_customer_base_analysis
https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_models_for_customer_base_analysis

lifetimes Documentation, Release 0.11.2

Returns array_like

fit(frequency, recency, T, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit the data to the MBG/NBD model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns ModifiedBetaGeoFitter – With additional properties and methods like params_ and
predict

probability_of_n_purchases_up_to_time(t, n)
Compute the probability of n purchases up to time t.

𝑃 (𝑁(𝑡) = 𝑛|model)

where N(t) is the number of repeat purchases a customer makes in t units of time.

Parameters

• t (float) – number units of time

• n (int) – number of purchases

Returns float – Probability to have n purchases up to t units of time

lifetimes.fitters.pareto_nbd_fitter module

Pareto/NBD model.

class lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Pareto NBD fitter7.
7

David C. Schmittlein, Donald G. Morrison and Richard Colombo Management Science,Vol. 33, No. 1 (Jan., 1987), pp. 1-24
“Counting Your Customers: Who Are They and What Will They Do Next,”

5.5. lifetimes package 37

lifetimes Documentation, Release 0.11.2

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj OrderedDict

data
A DataFrame with the columns given in the call to fit

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population, given they have purchase history (frequency, recency, T).

This is equation (41) from: http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

• T (array_like) – age of the customer.

Returns array_like

conditional_probability_alive(frequency, recency, T)
Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

Section 5.1 from (equations (36) and (37)): http://brucehardie.com/notes/009/pareto_nbd_derivations_
2005-11-05.pdf

Parameters

• frequency (float) – historical frequency of customer.

• recency (float) – historical recency of customer.

• T (float) – age of the customer.

Returns float – value representing a probability

conditional_probability_alive_matrix(max_frequency=None, max_recency=None)
Compute the probability alive matrix.

Builds on the conditional_probability_alive() method.

38 Chapter 5. More Information

http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

lifetimes Documentation, Release 0.11.2

Parameters

• max_frequency (float, optional) – the maximum frequency to plot. Default is
max observed frequency.

• max_recency (float, optional) – the maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

Returns matrix – A matrix of the form [t_x: historical recency, x: historical frequency]

conditional_probability_of_n_purchases_up_to_time(n, t, frequency, recency, T)
Return conditional probability of n purchases up to time t.

Calculate the probability of n purchases up to time t for an individual with history frequency, recency and
T (age).

The main equation being implemented is (16) from: http://www.brucehardie.com/notes/028/pareto_nbd_
conditional_pmf.pdf

Parameters

• n (int) – number of purchases.

• t (a scalar) – time up to which probability should be calculated.

• frequency (float) – historical frequency of customer.

• recency (float) – historical recency of customer.

• T (float) – age of the customer.

Returns array_like

expected_number_of_purchases_up_to_time(t)
Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population.

Equation (27) from: http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

Parameters t (array_like) – times to calculate the expectation for.

Returns array_like

fit(frequency, recency, T, weights=None, iterative_fitting=1, initial_params=None, verbose=False,
tol=0.0001, index=None, fit_method=’Nelder-Mead’, maxiter=2000, **kwargs)
Pareto/NBD model fitter.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern.

5.5. lifetimes package 39

http://www.brucehardie.com/notes/028/pareto_nbd_conditional_pmf.pdf
http://www.brucehardie.com/notes/028/pareto_nbd_conditional_pmf.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

lifetimes Documentation, Release 0.11.2

• iterative_fitting (int, optional) – perform iterative_fitting fits over
random/warm-started initial params

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• fit_method (string, optional) – fit_method to passing to
scipy.optimize.minimize

• maxiter (int, optional) – max iterations for optimizer in scipy.optimize.minimize
will be overwritten if set in kwargs.

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns ParetoNBDFitter – with additional properties like params_ and methods like
predict

Base fitter for other classes.

class lifetimes.fitters.BaseFitter
Bases: object

Base class for fitters.

load_model(path)
Load model with dill package.

Parameters path (str) – From what path load model.

save_model(path, save_data=True, save_generate_data_method=True, values_to_save=None)
Save model with dill package.

Parameters

• path (str) – Path where to save model.

• save_data (bool, optional) – Whether to save data from fitter.data to pickle ob-
ject

• save_generate_data_method (bool, optional) – Whether to save gener-
ate_new_data method (if it exists) from fitter.generate_new_data to pickle object.

• values_to_save (list, optional) – Placeholders for original attributes for sav-
ing object. If None will be extended to attr_list length like [None] * len(attr_list)

summary
Summary statistics describing the fit.

Returns df (pd.DataFrame) – Contains columns coef, se(coef), lower, upper

See also:

print_summary

40 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

5.5.2 lifetimes.datasets

lifetimes.datasets.load_cdnow_summary(**kwargs)
Load cdnow customers summary pandas DataFrame.

lifetimes.datasets.load_transaction_data(**kwargs)
Return a Pandas dataframe of transactional data.

Looks like:

date id

0 2014-03-08 00:00:00 0 1 2014-05-21 00:00:00 1 2 2014-03-14 00:00:00 2 3 2014-04-09 00:00:00 2 4 2014-
05-21 00:00:00 2

The data was artificially created using Lifetimes data generation routines. Data was generated between 2014-
01-01 to 2014-12-31.

lifetimes.datasets.load_cdnow_summary_data_with_monetary_value(**kwargs)
Load cdnow customers summary with monetary value as pandas DataFrame.

lifetimes.datasets.load_donations(**kwargs)
Load donations dataset as pandas DataFrame.

5.5.3 lifetimes.generate_data module

lifetimes.generate_data.beta_geometric_beta_binom_model(N, alpha, beta, gamma,
delta, size=1)

Generate artificial data according to the Beta-Geometric/Beta-Binomial Model.

You may wonder why we can have frequency = n_periods, when frequency excludes their first order. When a
customer purchases something, they are born, _and in the next period_ we start asking questions about their
alive-ness. So really they customer has bought frequency + 1, and been observed for n_periods + 1

Parameters

• N (array_like) – Number of transaction opportunities for new customers.

• beta, gamma, delta (alpha,) – Parameters in the model. See [1]_

• size (int, optional) – The number of customers to generate

Returns DataFrame – with index as customer_ids and the following columns: ‘frequency’, ‘re-
cency’, ‘n_periods’, ‘lambda’, ‘p’, ‘alive’, ‘customer_id’

References

lifetimes.generate_data.beta_geometric_nbd_model(T, r, alpha, a, b, size=1)
Generate artificial data according to the BG/NBD model.

See [1] for model details

Parameters

• T (array_like) – The length of time observing new customers.

• alpha, a, b (r,) – Parameters in the model. See [1]_

• size (int, optional) – The number of customers to generate

Returns DataFrame – With index as customer_ids and the following columns: ‘frequency’, ‘re-
cency’, ‘T’, ‘lambda’, ‘p’, ‘alive’, ‘customer_id’

5.5. lifetimes package 41

lifetimes Documentation, Release 0.11.2

References

lifetimes.generate_data.beta_geometric_nbd_model_transactional_data(T, r, al-
pha, a, b,
observation_period_end=’2019-
1-1’,
freq=’D’,
size=1)

Generate artificial transactional data according to the BG/NBD model.

See [1] for model details

Parameters

• T (int, float or array_like) – The length of time observing new customers.

• alpha, a, b (r,) – Parameters in the model. See [1]_

• observation_period_end (date_like) – The date observation ends

• freq (string, optional) – Default ‘D’ for days, ‘W’ for weeks, ‘h’ for hours

• size (int, optional) – The number of customers to generate

Returns DataFrame – The following columns: ‘customer_id’, ‘date’

References

lifetimes.generate_data.modified_beta_geometric_nbd_model(T, r, alpha, a, b,
size=1)

Generate artificial data according to the MBG/NBD model.

See3,4 for model details

Parameters

• T (array_like) – The length of time observing new customers.

• alpha, a, b (r,) – Parameters in the model. See [1]_

• size (int, optional) – The number of customers to generate

Returns DataFrame – with index as customer_ids and the following columns: ‘frequency’, ‘re-
cency’, ‘T’, ‘lambda’, ‘p’, ‘alive’, ‘customer_id’

References

lifetimes.generate_data.pareto_nbd_model(T, r, alpha, s, beta, size=1)
Generate artificial data according to the Pareto/NBD model.

See [2]_ for model details.

Parameters

• T (array_like) – The length of time observing new customers.

• alpha, s, beta (r,) – Parameters in the model. See [1]_

• size (int, optional) – The number of customers to generate

3 http://www.brucehardie.com/notes/025/ The Gamma-Gamma Model of Monetary Value.
4 Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee (2005), “RFM and CLV: Using iso-value curves for customer base analysis”, Journal of

Marketing Research, 42 (November), 415-430.

42 Chapter 5. More Information

http://www.brucehardie.com/notes/025/

lifetimes Documentation, Release 0.11.2

Returns obj: DataFrame – with index as customer_ids and the following columns: ‘frequency’,
‘recency’, ‘T’, ‘lambda’, ‘mu’, ‘alive’, ‘customer_id’

References

5.5.4 lifetimes.plotting module

lifetimes.plotting.plot_period_transactions(model, max_frequency=7, title=’Frequency
of Repeat Transactions’, xlabel=’Number
of Calibration Period Transactions’, yla-
bel=’Customers’, **kwargs)

Plot a figure with period actual and predicted transactions.

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• max_frequency (int, optional) – The maximum frequency to plot.

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• kwargs – Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_calibration_purchases_vs_holdout_purchases(model,
calibra-
tion_holdout_matrix,
kind=’frequency_cal’,
n=7,
**kwargs)

Plot calibration purchases vs holdout.

This currently relies too much on the lifetimes.util calibration_and_holdout_data function.

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• calibration_holdout_matrix (pandas DataFrame) – DataFrame from cali-
bration_and_holdout_data function.

• kind (str, optional) –

x-axis :”frequency_cal”. Purchases in calibration period, ”recency_cal”. Age of cus-
tomer at last purchase, “T_cal”. Age of customer at the end of calibration period,
“time_since_last_purchase”. Time since user made last purchase

• n (int, optional) – Number of ticks on the x axis

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_frequency_recency_matrix(model, T=1, max_frequency=None,
max_recency=None, title=None,
xlabel="Customer’s Historical
Frequency", ylabel="Customer’s
Recency", **kwargs)

Plot recency frequecy matrix as heatmap.

5.5. lifetimes package 43

lifetimes Documentation, Release 0.11.2

Plot a figure of expected transactions in T next units of time by a customer’s frequency and recency.

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• T (fload, optional) – Next units of time to make predictions for

• max_frequency (int, optional) – The maximum frequency to plot. Default is max
observed frequency.

• max_recency (int, optional) – The maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• kwargs – Passed into the matplotlib.imshow command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_probability_alive_matrix(model, max_frequency=None,
max_recency=None, ti-
tle=’Probability Customer is Alive,
\nby Frequency and Recency of a Cus-
tomer’, xlabel="Customer’s Histori-
cal Frequency", ylabel="Customer’s
Recency", **kwargs)

Plot probability alive matrix as heatmap.

Plot a figure of the probability a customer is alive based on their frequency and recency.

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• max_frequency (int, optional) – The maximum frequency to plot. Default is max
observed frequency.

• max_recency (int, optional) – The maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• kwargs – Passed into the matplotlib.imshow command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_expected_repeat_purchases(model, title=’Expected Number of
Repeat Purchases per Customer’,
xlabel=’Time Since First Purchase’,
ax=None, label=None, **kwargs)

Plot expected repeat purchases on calibration period .

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• max_frequency (int, optional) – The maximum frequency to plot.

44 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ax (matplotlib.AxesSubplot, optional) – Using user axes

• label (str, optional) – Label for plot.

• kwargs – Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_history_alive(model, t, transactions, datetime_col, freq=’D’,
start_date=None, ax=None, **kwargs)

Draw a graph showing the probability of being alive for a customer in time.

Parameters

• model (lifetimes model) – A fitted lifetimes model.

• t (int) – the number of time units since the birth we want to draw the p_alive

• transactions (pandas DataFrame) – DataFrame containing the transactions his-
tory of the customer_id

• datetime_col (str) – The column in the transactions that denotes the datetime the
purchase was made

• freq (str, optional) – Default ‘D’ for days. Other examples= ‘W’ for weekly

• start_date (datetime, optional) – Limit xaxis to start date

• ax (matplotlib.AxesSubplot, optional) – Using user axes

• kwargs – Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_cumulative_transactions(model, transactions, datetime_col,
customer_id_col, t, t_cal, date-
time_format=None, freq=’D’,
set_index_date=False, title=’Tracking
Cumulative Transactions’, xla-
bel=’day’, ylabel=’Cumulative
Transactions’, ax=None, **kwargs)

Plot a figure of the predicted and actual cumulative transactions of users.

Parameters

• model (lifetimes model) – A fitted lifetimes model

• transactions (pandas DataFrame) – DataFrame containing the transactions his-
tory of the customer_id

• datetime_col (str) – The column in transactions that denotes the datetime the pur-
chase was made.

• customer_id_col (str) – The column in transactions that denotes the customer_id

• t (float) – The number of time units since the begining of data for which we want to
calculate cumulative transactions

• t_cal (float) – A marker used to indicate where the vertical line for plotting should be.

• datetime_format (str, optional) – A string that represents the timestamp for-
mat. Useful if Pandas can’t understand the provided format.

5.5. lifetimes package 45

lifetimes Documentation, Release 0.11.2

• freq (str, optional) – Default ‘D’ for days, ‘W’ for weeks, ‘M’ for
months. . . etc. Full list here: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#
dateoffset-objects

• set_index_date (bool, optional) – When True set date as Pandas DataFrame
index, default False - number of time units

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• ax (matplotlib.AxesSubplot, optional) – Using user axes

• kwargs – Passed into the pandas.DataFrame.plot command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_incremental_transactions(model, transactions, date-
time_col, customer_id_col, t,
t_cal, datetime_format=None,
freq=’D’, set_index_date=False,
title=’Tracking Daily Transactions’,
xlabel=’day’, ylabel=’Transactions’,
ax=None, **kwargs)

Plot a figure of the predicted and actual incremental transactions of users.

Parameters

• model (lifetimes model) – A fitted lifetimes model

• transactions (pandas DataFrame) – DataFrame containing the transactions his-
tory of the customer_id

• datetime_col (str) – The column in transactions that denotes the datetime the pur-
chase was made.

• customer_id_col (str) – The column in transactions that denotes the customer_id

• t (float) – The number of time units since the begining of data for which we want to
calculate cumulative transactions

• t_cal (float) – A marker used to indicate where the vertical line for plotting should be.

• datetime_format (str, optional) – A string that represents the timestamp for-
mat. Useful if Pandas can’t understand the provided format.

• freq (str, optional) – Default ‘D’ for days, ‘W’ for weeks, ‘M’ for
months. . . etc. Full list here: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#
dateoffset-objects

• set_index_date (bool, optional) – When True set date as Pandas DataFrame
index, default False - number of time units

• title (str, optional) – Figure title

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• ax (matplotlib.AxesSubplot, optional) – Using user axes

• kwargs – Passed into the pandas.DataFrame.plot command.

Returns axes (matplotlib.AxesSubplot)

46 Chapter 5. More Information

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#dateoffset-objects

lifetimes Documentation, Release 0.11.2

lifetimes.plotting.plot_transaction_rate_heterogeneity(model, supti-
tle=’Heterogeneity in
Transaction Rate’, xla-
bel=’Transaction Rate’,
ylabel=’Density’, supti-
tle_fontsize=14, **kwargs)

Plot the estimated gamma distribution of lambda (customers’ propensities to purchase).

Parameters

• model (lifetimes model) – A fitted lifetimes model, for now only for BG/NBD

• suptitle (str, optional) – Figure suptitle

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• kwargs – Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

lifetimes.plotting.plot_dropout_rate_heterogeneity(model, suptitle=’Heterogeneity
in Dropout Probability’, xla-
bel=’Dropout Probability
p’, ylabel=’Density’, supti-
tle_fontsize=14, **kwargs)

Plot the estimated beta distribution of p.

p - (customers’ probability of dropping out immediately after a transaction).

Parameters

• model (lifetimes model) – A fitted lifetimes model, for now only for BG/NBD

• suptitle (str, optional) – Figure suptitle

• xlabel (str, optional) – Figure xlabel

• ylabel (str, optional) – Figure ylabel

• kwargs – Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

5.5.5 lifetimes.utils module

Lifetimes utils and helpers.

lifetimes.utils.calibration_and_holdout_data(transactions, customer_id_col, date-
time_col, calibration_period_end, ob-
servation_period_end=None, freq=’D’,
freq_multiplier=1, datetime_format=None,
monetary_value_col=None, in-
clude_first_transaction=False)

Create a summary of each customer over a calibration and holdout period.

This function creates a summary of each customer over a calibration and holdout period (training and testing,
respectively). It accepts transaction data, and returns a DataFrame of sufficient statistics.

Parameters

• transactions – a Pandas DataFrame that contains the customer_id col and the datetime
col.

5.5. lifetimes package 47

lifetimes Documentation, Release 0.11.2

• customer_id_col (string) – the column in transactions DataFrame that denotes the
customer_id

• datetime_col (string) – the column in transactions that denotes the datetime the
purchase was made.

• calibration_period_end – a period to limit the calibration to, inclusive.

• observation_period_end – a string or datetime to denote the final date of the study.
Events after this date are truncated. If not given, defaults to the max ‘datetime_col’.

• freq (string, optional) – Default: ‘D’ for days. Possible values listed here: https:
//numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

• freq_multiplier (int, optional) – Default: 1. Useful for getting exact recency
& T. Example: With freq=’D’ and freq_multiplier=1, we get recency=591 and T=632 With
freq=’h’ and freq_multiplier=24, we get recency=590.125 and T=631.375

• datetime_format (string, optional) – a string that represents the timestamp
format. Useful if Pandas can’t understand the provided format.

• monetary_value_col (string, optional) – the column in transactions that de-
notes the monetary value of the transaction. Optional, only needed for customer lifetime
value estimation models.

• include_first_transaction (bool, optional) – Default: False By default the
first transaction is not included while calculating frequency and monetary_value. Can be set
to True to include it. Should be False if you are going to use this data with any fitters in
lifetimes package

Returns obj: DataFrame – A dataframe with columns frequency_cal, recency_cal, T_cal, fre-
quency_holdout, duration_holdout If monetary_value_col isn’t None, the dataframe will also
have the columns monetary_value_cal and monetary_value_holdout.

lifetimes.utils.summary_data_from_transaction_data(transactions, customer_id_col,
datetime_col, mone-
tary_value_col=None, date-
time_format=None, obser-
vation_period_end=None,
freq=’D’, freq_multiplier=1,
include_first_transaction=False)

Return summary data from transactions.

This transforms a DataFrame of transaction data of the form: customer_id, datetime [, monetary_value]

to a DataFrame of the form: customer_id, frequency, recency, T [, monetary_value]

Parameters

• transactions – a Pandas DataFrame that contains the customer_id col and the datetime
col.

• customer_id_col (string) – the column in transactions DataFrame that denotes the
customer_id

• datetime_col (string) – the column in transactions that denotes the datetime the
purchase was made.

• monetary_value_col (string, optional) – the columns in the transactions that
denotes the monetary value of the transaction. Optional, only needed for customer lifetime
value estimation models.

48 Chapter 5. More Information

https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

lifetimes Documentation, Release 0.11.2

• observation_period_end (datetime, optional) – a string or datetime to de-
note the final date of the study. Events after this date are truncated. If not given, defaults to
the max ‘datetime_col’.

• datetime_format (string, optional) – a string that represents the timestamp
format. Useful if Pandas can’t understand the provided format.

• freq (string, optional) – Default: ‘D’ for days. Possible values listed here: https:
//numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

• freq_multiplier (int, optional) – Default: 1. Useful for getting exact recency
& T. Example: With freq=’D’ and freq_multiplier=1, we get recency=591 and T=632 With
freq=’h’ and freq_multiplier=24, we get recency=590.125 and T=631.375

• include_first_transaction (bool, optional) – Default: False By default the
first transaction is not included while calculating frequency and monetary_value. Can be set
to True to include it. Should be False if you are going to use this data with any fitters in
lifetimes package

Returns obj: DataFrame: – customer_id, frequency, recency, T [, monetary_value]

lifetimes.utils.calculate_alive_path(model, transactions, datetime_col, t, freq=’D’)
Calculate alive path for plotting alive history of user.

Uses the conditional_probability_alive() method of the model to achieve the path.

Parameters

• model – A fitted lifetimes model

• transactions (DataFrame) – a Pandas DataFrame containing the transactions history
of the customer_id

• datetime_col (string) – the column in the transactions that denotes the datetime the
purchase was made

• t (array_like) – the number of time units since the birth for which we want to draw the
p_alive

• freq (string, optional) – Default: ‘D’ for days. Possible values listed here: https:
//numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

Returns obj: Series – A pandas Series containing the p_alive as a function of T (age of the customer)

lifetimes.utils.expected_cumulative_transactions(model, transactions, date-
time_col, customer_id_col,
t, datetime_format=None,
freq=’D’, freq_multiplier=1,
set_index_date=False)

Get expected and actual repeated cumulative transactions.

Uses the expected_number_of_purchases_up_to_time() method from the fitted model to predict
the cumulative number of purchases.

This function follows the formulation on page 8 of [1]_.

In more detail, we take only the customers who have made their first transaction before the specific date and then
multiply them by the distribution of the expected_number_of_purchases_up_to_time() for their
whole future. Doing that for all dates and then summing the distributions will give us the complete cumulative
purchases.

Parameters

• model – A fitted lifetimes model

5.5. lifetimes package 49

https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

lifetimes Documentation, Release 0.11.2

• transactions – a Pandas DataFrame containing the transactions history of the cus-
tomer_id

• datetime_col (string) – the column in transactions that denotes the datetime the
purchase was made.

• customer_id_col (string) – the column in transactions that denotes the customer_id

• t (int) – the number of time units since the begining of data for which we want to calculate
cumulative transactions

• datetime_format (string, optional) – a string that represents the timestamp
format. Useful if Pandas can’t understand the provided format.

• freq (string, optional) – Default: ‘D’ for days. Possible values listed here: https:
//numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

• freq_multiplier (int, optional) – Default: 1. Useful for getting exact recency
& T. Example: With freq=’D’ and freq_multiplier=1, we get recency=591 and T=632 With
freq=’h’ and freq_multiplier=24, we get recency=590.125 and T=631.375

• set_index_date (bool, optional) – when True set date as Pandas DataFrame in-
dex, default False - number of time units

Returns obj: DataFrame – A dataframe with columns actual, predicted

References

A Note on Implementing the Pareto/NBD Model in MATLAB. http://brucehardie.com/notes/008/

All fitters from fitters directory.

class lifetimes.BetaGeoFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Also known as the BG/NBD model.

Based on [2]_, this model has the following assumptions:

1) Each individual, i, has a hidden lambda_i and p_i parameter

2) These come from a population wide Gamma and a Beta distribution respectively.

3) Individuals purchases follow a Poisson process with rate lambda_i*t .

4) After each purchase, an individual has a p_i probability of dieing (never buying again).

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

50 Chapter 5. More Information

https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
http://brucehardie.com/notes/008/

lifetimes Documentation, Release 0.11.2

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly chosen individual from the
population, given they have purchase history (frequency, recency, T).

This function uses equation (10) from [2]_.

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

• T (array_like) – age of the customer.

Returns array_like

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

conditional_probability_alive(frequency, recency, T)
Compute conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

From http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf

5.5. lifetimes package 51

http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf

lifetimes Documentation, Release 0.11.2

Parameters

• frequency (array or scalar) – historical frequency of customer.

• recency (array or scalar) – historical recency of customer.

• T (array or scalar) – age of the customer.

Returns array – value representing a probability

conditional_probability_alive_matrix(max_frequency=None, max_recency=None)
Compute the probability alive matrix.

Uses the conditional_probability_alive() method to get calculate the matrix.

Parameters

• max_frequency (float, optional) – the maximum frequency to plot. Default is
max observed frequency.

• max_recency (float, optional) – the maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

Returns matrix – A matrix of the form [t_x: historical recency, x: historical frequency]

expected_number_of_purchases_up_to_time(t)
Calculate the expected number of repeat purchases up to time t.

Calculate repeat purchases for a randomly chosen individual from the population.

Equivalent to equation (9) of [2]_.

Parameters t (array_like) – times to calculate the expection for

Returns array_like

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

fit(frequency, recency, T, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit a dataset to the BG/NBD model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by
the number of customers with that pattern.

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

52 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns BetaGeoFitter – with additional properties like params_ and methods like predict

probability_of_n_purchases_up_to_time(t, n)
Compute the probability of n purchases.

𝑃 (𝑁(𝑡) = 𝑛|model)

where N(t) is the number of repeat purchases a customer makes in t units of time.

Comes from equation (8) of [2]_.

Parameters

• t (float) – number units of time

• n (int) – number of purchases

Returns float – Probability to have n purchases up to t units of time

References

“Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model,” Marketing Science,
24 (2), 275-84.

class lifetimes.ParetoNBDFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Pareto NBD fitter7.

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj OrderedDict

data
A DataFrame with the columns given in the call to fit

7

David C. Schmittlein, Donald G. Morrison and Richard Colombo Management Science,Vol. 33, No. 1 (Jan., 1987), pp. 1-24
“Counting Your Customers: Who Are They and What Will They Do Next,”

5.5. lifetimes package 53

lifetimes Documentation, Release 0.11.2

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population, given they have purchase history (frequency, recency, T).

This is equation (41) from: http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

• T (array_like) – age of the customer.

Returns array_like

conditional_probability_alive(frequency, recency, T)
Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

Section 5.1 from (equations (36) and (37)): http://brucehardie.com/notes/009/pareto_nbd_derivations_
2005-11-05.pdf

Parameters

• frequency (float) – historical frequency of customer.

• recency (float) – historical recency of customer.

• T (float) – age of the customer.

Returns float – value representing a probability

conditional_probability_alive_matrix(max_frequency=None, max_recency=None)
Compute the probability alive matrix.

Builds on the conditional_probability_alive() method.

Parameters

• max_frequency (float, optional) – the maximum frequency to plot. Default is
max observed frequency.

• max_recency (float, optional) – the maximum recency to plot. This also deter-
mines the age of the customer. Default to max observed age.

Returns matrix – A matrix of the form [t_x: historical recency, x: historical frequency]

conditional_probability_of_n_purchases_up_to_time(n, t, frequency, recency, T)
Return conditional probability of n purchases up to time t.

Calculate the probability of n purchases up to time t for an individual with history frequency, recency and
T (age).

54 Chapter 5. More Information

http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

lifetimes Documentation, Release 0.11.2

The main equation being implemented is (16) from: http://www.brucehardie.com/notes/028/pareto_nbd_
conditional_pmf.pdf

Parameters

• n (int) – number of purchases.

• t (a scalar) – time up to which probability should be calculated.

• frequency (float) – historical frequency of customer.

• recency (float) – historical recency of customer.

• T (float) – age of the customer.

Returns array_like

expected_number_of_purchases_up_to_time(t)
Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population.

Equation (27) from: http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

Parameters t (array_like) – times to calculate the expectation for.

Returns array_like

fit(frequency, recency, T, weights=None, iterative_fitting=1, initial_params=None, verbose=False,
tol=0.0001, index=None, fit_method=’Nelder-Mead’, maxiter=2000, **kwargs)
Pareto/NBD model fitter.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern.

• iterative_fitting (int, optional) – perform iterative_fitting fits over
random/warm-started initial params

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• fit_method (string, optional) – fit_method to passing to
scipy.optimize.minimize

5.5. lifetimes package 55

http://www.brucehardie.com/notes/028/pareto_nbd_conditional_pmf.pdf
http://www.brucehardie.com/notes/028/pareto_nbd_conditional_pmf.pdf
http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf

lifetimes Documentation, Release 0.11.2

• maxiter (int, optional) – max iterations for optimizer in scipy.optimize.minimize
will be overwritten if set in kwargs.

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns ParetoNBDFitter – with additional properties like params_ and methods like
predict

class lifetimes.GammaGammaFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Fitter for the gamma-gamma model.

It is used to estimate the average monetary value of customer transactions.

This implementation is based on the Excel spreadsheet found in3. More details on the derivation and evaluation
can be found in4.

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj OrderedDict

data
A DataFrame with the columns given in the call to fit

Type

obj DataFrame

References

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

56 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

conditional_expected_average_profit(frequency=None, monetary_value=None)
Conditional expectation of the average profit.

This method computes the conditional expectation of the average profit per transaction for a group of one
or more customers.

Equation (5) from: http://www.brucehardie.com/notes/025/

Parameters

• frequency (array_like, optional) – a vector containing the customers’ fre-
quencies. Defaults to the whole set of frequencies used for fitting the model.

• monetary_value (array_like, optional) – a vector containing the customers’
monetary values. Defaults to the whole set of monetary values used for fitting the model.

Returns array_like – The conditional expectation of the average profit per transaction

customer_lifetime_value(transaction_prediction_model, frequency, recency, T, mone-
tary_value, time=12, discount_rate=0.01, freq=’D’)

Return customer lifetime value.

This method computes the average lifetime value for a group of one or more customers.

Parameters

• transaction_prediction_model (model) – the model to predict future transac-
tions, literature uses pareto/ndb models but we can also use a different model like beta-geo
models

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (the recency vector of customers' purchases) – (denoted
t_x in literature).

• T (array_like) – customers’ age (time units since first purchase)

• monetary_value (array_like) – the monetary value vector of customer’s pur-
chases (denoted m in literature).

• time (float, optional) – the lifetime expected for the user in months. Default: 12

5.5. lifetimes package 57

http://www.brucehardie.com/notes/025/

lifetimes Documentation, Release 0.11.2

• discount_rate (float, optional) – the monthly adjusted discount rate. De-
fault: 0.01

• freq (string, optional) – {“D”, “H”, “M”, “W”} for day, hour, month, week.
This represents what unit of time your T is measure in.

Returns Series – Series object with customer ids as index and the estimated customer lifetime
values as values

fit(frequency, monetary_value, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, q_constraint=False, **kwargs)
Fit the data to the Gamma/Gamma model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• monetary_value (array_like) – the monetary value vector of customer’s pur-
chases (denoted m in literature).

• weights (None or array_like) – Number of customers with given fre-
quency/monetary_value, defaults to 1 if not specified. Fader and Hardie condense the in-
dividual RFM matrix into all observed combinations of frequency/monetary_value. This
parameter represents the count of customers with a given purchase pattern. Instead of
calculating individual loglikelihood, the loglikelihood is calculated for each pattern and
multiplied by the number of customers with that pattern.

• initial_params (array_like, optional) – set the initial parameters for the
fitter.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• q_constraint (bool, optional) – when q < 1, population mean will result in a
negative value leading to negative CLV outputs. If True, we penalize negative values of q
to avoid this issue.

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns GammaGammaFitter – fitted and with parameters estimated

class lifetimes.ModifiedBetaGeoFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.beta_geo_fitter.BetaGeoFitter

Also known as the MBG/NBD model.

Based on5,6, this model has the following assumptions: 1) Each individual, i, has a hidden lambda_i and
p_i parameter 2) These come from a population wide Gamma and a Beta distribution

respectively.

3) Individuals purchases follow a Poisson process with rate 𝜆𝑖 * 𝑡 .

5 Batislam, E.P., M. Denizel, A. Filiztekin (2007), “Empirical validation and comparison of models for customer base analysis,” International
Journal of Research in Marketing, 24 (3), 201-209.

6 Wagner, U. and Hoppe D. (2008), “Erratum on the MBG/NBD Model,” International Journal of Research in Marketing, 25 (3), 225-226.

58 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

4) At the beginning of their lifetime and after each purchase, an individual has a p_i probability of dieing
(never buying again).

References

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
Conditional expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population, given they have purchase history (frequency, recency, T) See Wagner, U. and Hoppe D. (2008).

Parameters

• t (array_like) – times to calculate the expectation for.

• frequency (array_like) – historical frequency of customer.

• recency (array_like) – historical recency of customer.

5.5. lifetimes package 59

lifetimes Documentation, Release 0.11.2

• T (array_like) – age of the customer.

Returns array_like

conditional_probability_alive(frequency, recency, T)
Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.
From https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_
models_for_customer_base_analysis Appendix A, eq. (5)

Parameters

• frequency (array or float) – historical frequency of customer.

• recency (array or float) – historical recency of customer.

• T (array or float) – age of the customer.

Returns array – value representing probability of being alive

expected_number_of_purchases_up_to_time(t)
Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the
population.

Parameters t (array_like) – times to calculate the expectation for

Returns array_like

fit(frequency, recency, T, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit the data to the MBG/NBD model.

Parameters

• frequency (array_like) – the frequency vector of customers’ purchases (denoted x
in literature).

• recency (array_like) – the recency vector of customers’ purchases (denoted t_x in
literature).

• T (array_like) – customers’ age (time units since first purchase)

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern.

• verbose (bool, optional) – set to true to print out convergence diagnostics.

• tol (float, optional) – tolerance for termination of the function minimization pro-
cess.

• index (array_like, optional) – index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns ModifiedBetaGeoFitter – With additional properties and methods like params_ and
predict

60 Chapter 5. More Information

https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_models_for_customer_base_analysis
https://www.researchgate.net/publication/247219660_Empirical_validation_and_comparison_of_models_for_customer_base_analysis

lifetimes Documentation, Release 0.11.2

probability_of_n_purchases_up_to_time(t, n)
Compute the probability of n purchases up to time t.

𝑃 (𝑁(𝑡) = 𝑛|model)

where N(t) is the number of repeat purchases a customer makes in t units of time.

Parameters

• t (float) – number units of time

• n (int) – number of purchases

Returns float – Probability to have n purchases up to t units of time

class lifetimes.BetaGeoBetaBinomFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Also known as the Beta-Geometric/Beta-Binomial Model [1]_.

Future purchases opportunities are treated as discrete points in time. In the literature, the model provides a better
fit than the Pareto/NBD model for a nonprofit organization with regular giving patterns.

The model is estimated with a recency-frequency matrix with n transaction opportunities.

Parameters penalizer_coef (float) – The coefficient applied to an l2 norm on the parame-
ters

penalizer_coef
The coefficient applied to an l2 norm on the parameters

Type float

params_
The fitted parameters of the model

Type

obj Series

data
A DataFrame with the values given in the call to fit

Type

obj DataFrame

variance_matrix_
A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

confidence_intervals_
A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

standard_errors_
A Series with the standard errors of the parameters

Type

obj Series

5.5. lifetimes package 61

lifetimes Documentation, Release 0.11.2

summary
A DataFrame containing information about the fitted parameters

Type

obj DataFrame

References

conditional_expected_number_of_purchases_up_to_time(m_periods_in_future,
frequency, recency,
n_periods)

Conditional expected purchases in future time period.

The expected number of future transactions across the next m_periods_in_future transaction opportunities
by a customer with purchase history (x, tx, n).

𝐸(𝑋(𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠 +𝑚𝑝𝑒𝑟𝑖𝑜𝑑𝑠𝑖𝑛𝑓𝑢𝑡𝑢𝑟𝑒)|𝛼, 𝛽, 𝛾, 𝛿, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑟𝑒𝑐𝑒𝑛𝑐𝑦, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠)

See (13) in Fader & Hardie 2010.

Parameters t (array_like) – time n_periods (n+t)

Returns array_like – predicted transactions

conditional_probability_alive(m_periods_in_future, frequency, recency, n_periods)
Conditional probability alive.

Conditional probability customer is alive at transaction opportunity n_periods + m_periods_in_future.

𝑃 (𝑎𝑙𝑖𝑣𝑒𝑎𝑡𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠+𝑚𝑝𝑒𝑟𝑖𝑜𝑑𝑠𝑖𝑛𝑓𝑢𝑡𝑢𝑟𝑒|𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, 𝑔𝑎𝑚𝑚𝑎, 𝑑𝑒𝑙𝑡𝑎, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑟𝑒𝑐𝑒𝑛𝑐𝑦, 𝑛𝑝𝑒𝑟𝑖𝑜𝑑𝑠)

See (A10) in Fader and Hardie 2010.

Parameters m (array_like) – transaction opportunities

Returns array_like – alive probabilities

expected_number_of_transactions_in_first_n_periods(n)
Return expected number of transactions in first n n_periods.

Expected number of transactions occurring across first n transaction opportunities. Used by Fader and
Hardie to assess in-sample fit.

𝑃𝑟(𝑋(𝑛) = 𝑥|𝛼, 𝛽, 𝛾, 𝛿)

See (7) in Fader & Hardie 2010.

Parameters n (float) – number of transaction opportunities

Returns DataFrame – Predicted values, indexed by x

fit(frequency, recency, n_periods, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit the BG/BB model.

Parameters

• frequency (array_like) – Total periods with observed transactions

• recency (array_like) – Period of most recent transaction

• n_periods (array_like) – Number of transaction opportunities. Previously called
n.

62 Chapter 5. More Information

lifetimes Documentation, Release 0.11.2

• weights (None or array_like) – Number of customers with given fre-
quency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individ-
ual RFM matrix into all observed combinations of frequency/recency/T. This parameter
represents the count of customers with a given purchase pattern. Instead of calculating
individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied
by the number of customers with that pattern. Previously called n_custs.

• verbose (boolean, optional) – Set to true to print out convergence diagnostics.

• tol (float, optional) – Tolerance for termination of the function minimization
process.

• index (array_like, optional) – Index for resulted DataFrame which is accessi-
ble via self.data

• kwargs – Key word arguments to pass to the scipy.optimize.minimize function as options
dict

Returns BetaGeoBetaBinomFitter – fitted and with parameters estimated

5.6 Changelog

5.6.1 0.11.1

• bump the Pandas requirements to >= 0.24.0. This should have been done in 0.11.0

• suppress some warnings from autograd.

5.6.2 0.11.0

• Move most models (all but Pareto) to autograd for automatic differentiation of their likelihood. This results in
faster (at least 3x) and more successful convergence, plus allows for some really exciting extensions (coming
soon).

• GammaGammaFitter, BetaGeoFitter, ModifiedBetaGeoFitter and
BetaGeoBetaBinomFitter have three new attributes: confidence_interval_,
variance_matrix_ and standard_errors_

• params_ on fitted models is not longer an OrderedDict, but a Pandas Series

• GammaGammaFitter can accept a weights argument now.

• customer_lifelime_value in GammaGamma now accepts a frequency argument.

• fixed a bug that was causing ParetoNBDFitter to generate data incorrectly.

5.6.3 0.10.1

• performance improvements to generate_data.py for large datasets #195

• performance improvements to summary_data_from_transaction_data, thanks @MichaelSchreier

• Previously, GammaGammaFitter would have an infinite mean when its q parameter was less than 1. This was
possible for some datasets. In 0.10.1, a new argument is added to GammaGammaFitter to constrain that q
is greater than 1. This can be done with q_constraint=True in the call to GammaGammaFitter.fit.
See issue #146. Thanks @vruvora

5.6. Changelog 63

lifetimes Documentation, Release 0.11.2

• Stop support of scipy < 1.0.

• Stop support of < Python 3.5.

5.6.4 0.10.0

• BetaGeoBetaBinomFitter.fit has replaced n_custs with the more appropriately named weights
(to align with other statisical libraries). By default and if unspecified, weights is equal to an array of 1s.

• The conditional_ methods on BetaGeoBetaBinomFitter have been updated to handle exogenously
provided recency, frequency and periods.

• Performance improvements in BetaGeoBetaBinomFitter. fit takes about 50% less time than previ-
ously.

• BetaGeoFitter, ParetoNBDFitter, and ModifiedBetaGeoFitter both have a new weights
argument in their fit. This can be used to reduce the size of the data (collapsing subjects with the same
recency, frequency, T).

5.6.5 0.9.1

• Added a data generation method, generate_new_data to BetaGeoBetaBinomFitter. @zscore

• Fixed a bug in summary_data_from_transaction_data that was casting values to int prematurely.
This was solved by including a new param freq_multiplier to be used to scale the resulting durations.
See #100 for the original issue. @aprotopopov

• Performance and bug fixes in utils.expected_cumulative_transactions. @aprotopopov

• Fixed a bug in utils.calculate_alive_path that was causing a difference in values compared to
summary_from_transaction_data. @DaniGate

5.6.6 0.9.0

• fixed many of the numpy warnings as the result of fitting

• added optional initial_params to all models

• Added conditional_probability_of_n_purchases_up_to_time to ParetoNBDFitter

• Fixed a bug in expected_cumulative_transactions and plot_cumulative_transactions

5.6.7 0.8.1

• adding new save_model and load_model functions to all fitters. This will save the model locally as a
pickle file.

• observation_period_end in summary_data_from_transaction_data and
calibration_and_holdout_data now defaults to the max date in the dataset, instead of current
time.

• improved stability of estimators.

• improve Runtime warnings.

• All fitters are now in a local file. This doesn’t change the API however.

64 Chapter 5. More Information

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

65

lifetimes Documentation, Release 0.11.2

66 Chapter 6. Indices and tables

Python Module Index

l
lifetimes, 50
lifetimes.datasets, 41
lifetimes.fitters, 40
lifetimes.fitters.beta_geo_beta_binom_fitter,

27
lifetimes.fitters.beta_geo_fitter, 29
lifetimes.fitters.gamma_gamma_fitter,

32
lifetimes.fitters.modified_beta_geo_fitter,

35
lifetimes.fitters.pareto_nbd_fitter, 37
lifetimes.generate_data, 41
lifetimes.plotting, 43
lifetimes.utils, 47

67

lifetimes Documentation, Release 0.11.2

68 Python Module Index

Index

B
BaseFitter (class in lifetimes.fitters), 40
beta_geometric_beta_binom_model() (in

module lifetimes.generate_data), 41
beta_geometric_nbd_model() (in module life-

times.generate_data), 41
beta_geometric_nbd_model_transactional_data()

(in module lifetimes.generate_data), 42
BetaGeoBetaBinomFitter (class in lifetimes), 61
BetaGeoBetaBinomFitter (class in life-

times.fitters.beta_geo_beta_binom_fitter),
27

BetaGeoFitter (class in lifetimes), 50
BetaGeoFitter (class in life-

times.fitters.beta_geo_fitter), 29

C
calculate_alive_path() (in module life-

times.utils), 49
calibration_and_holdout_data() (in module

lifetimes.utils), 47
conditional_expected_average_profit()

(lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter
method), 33

conditional_expected_average_profit()
(lifetimes.GammaGammaFitter method), 57

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.BetaGeoBetaBinomFitter method),
62

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.BetaGeoFitter method), 51

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
method), 28

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.fitters.beta_geo_fitter.BetaGeoFitter
method), 30

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

method), 36
conditional_expected_number_of_purchases_up_to_time()

(lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter
method), 38

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.ModifiedBetaGeoFitter method), 59

conditional_expected_number_of_purchases_up_to_time()
(lifetimes.ParetoNBDFitter method), 54

conditional_probability_alive() (life-
times.BetaGeoBetaBinomFitter method),
62

conditional_probability_alive() (life-
times.BetaGeoFitter method), 51

conditional_probability_alive() (life-
times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
method), 28

conditional_probability_alive() (life-
times.fitters.beta_geo_fitter.BetaGeoFitter
method), 30

conditional_probability_alive() (life-
times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
method), 36

conditional_probability_alive() (life-
times.fitters.pareto_nbd_fitter.ParetoNBDFitter
method), 38

conditional_probability_alive() (life-
times.ModifiedBetaGeoFitter method), 60

conditional_probability_alive() (life-
times.ParetoNBDFitter method), 54

conditional_probability_alive_matrix()
(lifetimes.BetaGeoFitter method), 52

conditional_probability_alive_matrix()
(lifetimes.fitters.beta_geo_fitter.BetaGeoFitter
method), 31

conditional_probability_alive_matrix()
(lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter
method), 38

conditional_probability_alive_matrix()
(lifetimes.ParetoNBDFitter method), 54

conditional_probability_of_n_purchases_up_to_time()

69

lifetimes Documentation, Release 0.11.2

(lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter
method), 39

conditional_probability_of_n_purchases_up_to_time()
(lifetimes.ParetoNBDFitter method), 54

confidence_intervals_ (life-
times.BetaGeoBetaBinomFitter attribute),
61

confidence_intervals_ (lifetimes.BetaGeoFitter
attribute), 51

confidence_intervals_ (life-
times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
attribute), 27

confidence_intervals_ (life-
times.fitters.beta_geo_fitter.BetaGeoFitter
attribute), 30

confidence_intervals_ (life-
times.fitters.gamma_gamma_fitter.GammaGammaFitter
attribute), 33

confidence_intervals_ (life-
times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
attribute), 36

confidence_intervals_ (life-
times.GammaGammaFitter attribute), 57

confidence_intervals_ (life-
times.ModifiedBetaGeoFitter attribute),
59

customer_lifetime_value() (life-
times.fitters.gamma_gamma_fitter.GammaGammaFitter
method), 34

customer_lifetime_value() (life-
times.GammaGammaFitter method), 57

D
data (lifetimes.BetaGeoBetaBinomFitter attribute), 61
data (lifetimes.BetaGeoFitter attribute), 50
data (lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter

attribute), 27
data (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter at-

tribute), 29
data (lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter

attribute), 33
data (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

attribute), 35
data (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter

attribute), 38
data (lifetimes.GammaGammaFitter attribute), 56
data (lifetimes.ModifiedBetaGeoFitter attribute), 59
data (lifetimes.ParetoNBDFitter attribute), 53

E
expected_cumulative_transactions() (in

module lifetimes.utils), 49
expected_number_of_purchases_up_to_time()

(lifetimes.BetaGeoFitter method), 52

expected_number_of_purchases_up_to_time()
(lifetimes.fitters.beta_geo_fitter.BetaGeoFitter
method), 31

expected_number_of_purchases_up_to_time()
(lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
method), 36

expected_number_of_purchases_up_to_time()
(lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter
method), 39

expected_number_of_purchases_up_to_time()
(lifetimes.ModifiedBetaGeoFitter method), 60

expected_number_of_purchases_up_to_time()
(lifetimes.ParetoNBDFitter method), 55

expected_number_of_transactions_in_first_n_periods()
(lifetimes.BetaGeoBetaBinomFitter method),
62

expected_number_of_transactions_in_first_n_periods()
(lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
method), 28

F
fit() (lifetimes.BetaGeoBetaBinomFitter method), 62
fit() (lifetimes.BetaGeoFitter method), 52
fit() (lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter

method), 28
fit() (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter

method), 31
fit() (lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter

method), 34
fit() (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

method), 37
fit() (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter

method), 39
fit() (lifetimes.GammaGammaFitter method), 58
fit() (lifetimes.ModifiedBetaGeoFitter method), 60
fit() (lifetimes.ParetoNBDFitter method), 55

G
GammaGammaFitter (class in lifetimes), 56
GammaGammaFitter (class in life-

times.fitters.gamma_gamma_fitter), 32

L
lifetimes (module), 50
lifetimes.datasets (module), 41
lifetimes.fitters (module), 40
lifetimes.fitters.beta_geo_beta_binom_fitter

(module), 27
lifetimes.fitters.beta_geo_fitter (mod-

ule), 29
lifetimes.fitters.gamma_gamma_fitter

(module), 32
lifetimes.fitters.modified_beta_geo_fitter

(module), 35

70 Index

lifetimes Documentation, Release 0.11.2

lifetimes.fitters.pareto_nbd_fitter
(module), 37

lifetimes.generate_data (module), 41
lifetimes.plotting (module), 43
lifetimes.utils (module), 47
load_cdnow_summary() (in module life-

times.datasets), 41
load_cdnow_summary_data_with_monetary_value()

(in module lifetimes.datasets), 41
load_donations() (in module lifetimes.datasets), 41
load_model() (lifetimes.fitters.BaseFitter method),

40
load_transaction_data() (in module life-

times.datasets), 41

M
modified_beta_geometric_nbd_model() (in

module lifetimes.generate_data), 42
ModifiedBetaGeoFitter (class in lifetimes), 58
ModifiedBetaGeoFitter (class in life-

times.fitters.modified_beta_geo_fitter), 35

P
params_ (lifetimes.BetaGeoBetaBinomFitter attribute),

61
params_ (lifetimes.BetaGeoFitter attribute), 50
params_ (lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter

attribute), 27
params_ (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter

attribute), 29
params_ (lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter

attribute), 32, 33
params_ (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

attribute), 35
params_ (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter

attribute), 38
params_ (lifetimes.GammaGammaFitter attribute), 56
params_ (lifetimes.ModifiedBetaGeoFitter attribute),

59
params_ (lifetimes.ParetoNBDFitter attribute), 53
pareto_nbd_model() (in module life-

times.generate_data), 42
ParetoNBDFitter (class in lifetimes), 53
ParetoNBDFitter (class in life-

times.fitters.pareto_nbd_fitter), 37
penalizer_coef (lifetimes.BetaGeoBetaBinomFitter

attribute), 61
penalizer_coef (lifetimes.BetaGeoFitter attribute),

50
penalizer_coef (life-

times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
attribute), 27

penalizer_coef (life-
times.fitters.beta_geo_fitter.BetaGeoFitter

attribute), 29
penalizer_coef (life-

times.fitters.gamma_gamma_fitter.GammaGammaFitter
attribute), 32, 33

penalizer_coef (life-
times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
attribute), 35

penalizer_coef (life-
times.fitters.pareto_nbd_fitter.ParetoNBDFitter
attribute), 38

penalizer_coef (lifetimes.GammaGammaFitter at-
tribute), 56

penalizer_coef (lifetimes.ModifiedBetaGeoFitter
attribute), 59

penalizer_coef (lifetimes.ParetoNBDFitter at-
tribute), 53

plot_calibration_purchases_vs_holdout_purchases()
(in module lifetimes.plotting), 43

plot_cumulative_transactions() (in module
lifetimes.plotting), 45

plot_dropout_rate_heterogeneity() (in
module lifetimes.plotting), 47

plot_expected_repeat_purchases() (in mod-
ule lifetimes.plotting), 44

plot_frequency_recency_matrix() (in mod-
ule lifetimes.plotting), 43

plot_history_alive() (in module life-
times.plotting), 45

plot_incremental_transactions() (in mod-
ule lifetimes.plotting), 46

plot_period_transactions() (in module life-
times.plotting), 43

plot_probability_alive_matrix() (in mod-
ule lifetimes.plotting), 44

plot_transaction_rate_heterogeneity()
(in module lifetimes.plotting), 46

probability_of_n_purchases_up_to_time()
(lifetimes.BetaGeoFitter method), 53

probability_of_n_purchases_up_to_time()
(lifetimes.fitters.beta_geo_fitter.BetaGeoFitter
method), 32

probability_of_n_purchases_up_to_time()
(lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
method), 37

probability_of_n_purchases_up_to_time()
(lifetimes.ModifiedBetaGeoFitter method), 60

S
save_model() (lifetimes.fitters.BaseFitter method),

40
standard_errors_ (life-

times.BetaGeoBetaBinomFitter attribute),
61

Index 71

lifetimes Documentation, Release 0.11.2

standard_errors_ (lifetimes.BetaGeoFitter at-
tribute), 51

standard_errors_ (life-
times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
attribute), 27

standard_errors_ (life-
times.fitters.beta_geo_fitter.BetaGeoFitter
attribute), 30

standard_errors_ (life-
times.fitters.gamma_gamma_fitter.GammaGammaFitter
attribute), 33

standard_errors_ (life-
times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter
attribute), 36

standard_errors_ (lifetimes.GammaGammaFitter
attribute), 57

standard_errors_ (life-
times.ModifiedBetaGeoFitter attribute),
59

summary (lifetimes.BetaGeoBetaBinomFitter attribute),
61

summary (lifetimes.BetaGeoFitter attribute), 51
summary (lifetimes.fitters.BaseFitter attribute), 40
summary (lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter

attribute), 27
summary (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter

attribute), 30
summary (lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter

attribute), 33
summary (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

attribute), 36
summary (lifetimes.GammaGammaFitter attribute), 57
summary (lifetimes.ModifiedBetaGeoFitter attribute),

59
summary_data_from_transaction_data() (in

module lifetimes.utils), 48

V
variance_matrix_ (life-

times.BetaGeoBetaBinomFitter attribute),
61

variance_matrix_ (lifetimes.BetaGeoFitter at-
tribute), 51

variance_matrix_ (life-
times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitter
attribute), 27

variance_matrix_ (life-
times.fitters.beta_geo_fitter.BetaGeoFitter
attribute), 29

variance_matrix_ (life-
times.fitters.gamma_gamma_fitter.GammaGammaFitter
attribute), 33

variance_matrix_ (life-
times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter

attribute), 35
variance_matrix_ (lifetimes.GammaGammaFitter

attribute), 56
variance_matrix_ (life-

times.ModifiedBetaGeoFitter attribute),
59

72 Index

	Introduction
	Applications
	Specific Application: Customer Lifetime Value

	Installation
	Documentation and tutorials
	Questions? Comments? Requests?
	More Information
	Quickstart
	High Level Overview
	Saving and loading model
	More Examples and recipes
	lifetimes package
	Changelog

	Indices and tables
	Python Module Index
	Index

