
LeanJS Documentation
Release 1.0.0

Romain Dorgueil

Sep 27, 2017

Contents

1 Goals 3

2 Quick start 5

3 Documentation 7
3.1 LeanJS . 7
3.2 Getting started . 8
3.3 Features . 8
3.4 Recipes . 11
3.5 Reference . 11
3.6 (Not So) Frequently Asked Questions . 19

4 Indices and tables 21

i

ii

LeanJS Documentation, Release 1.0.0

LeanJS is a clean, simple (yet featureful) opinionated NodeJS / React / Redux starter kit.

Contents 1

LeanJS Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Goals

• Setup a full-featured universal NodeJS / React / Redux project in a breaze.

• Don’t setup a hammer if you only need a screwdriver.

• Focus on value, get to code in seconds, not hours.

3

LeanJS Documentation, Release 1.0.0

4 Chapter 1. Goals

CHAPTER 2

Quick start

• Clone the repository:

git clone https://github.com/hartym/LeanJS.git
cd LeanJS

• Install the dependencies:

make install

• Run the development server:

make

• Open a browser at http://localhost:3000/.

• That’s it ! Start hacking.

5

http://localhost:3000/

LeanJS Documentation, Release 1.0.0

6 Chapter 2. Quick start

CHAPTER 3

Documentation

LeanJS

LeanJS is a clean, simple (yet featureful) opinionated NodeJS / React / Redux starter kit.

Goals

• Setup a full-featured universal NodeJS / React / Redux project in a breaze.

• Don’t setup a hammer if you only need a screwdriver.

• Focus on value, get to code in seconds, not hours.

Quick start

• Clone the repository:

git clone https://github.com/hartym/LeanJS.git
cd LeanJS

• Install the dependencies:

make install

• Run the development server:

make

• Open a browser at http://localhost:3000/.

• That’s it ! Start hacking.

7

http://localhost:3000/

LeanJS Documentation, Release 1.0.0

Getting started

Install

git clone https://github.com/hartym/LeanJS.git MyNextProject
cd MyNextProject
make install

Develop

• Launch the development server:

make

• Open http://localhost:3001/ in your browser.

• Code.

Test

make lint
make test

Release

• Without docker, you can build a vanilla node project, just release the build directory once you’ve run:

make build

• With docker, it’s even easier. Build a self-sufficient image with

make docker-build

Features

Included batteries

React

React is a modern templating engine that makes development of highly interractive user interfaces fun, fast, and
“reactive”.

In LeanJS, the library is used both browser-side and server-side, as our «isomorphic» rendering engine.

• https://facebook.github.io/react/

8 Chapter 3. Documentation

http://localhost:3001/
https://facebook.github.io/react/
https://facebook.github.io/react/

LeanJS Documentation, Release 1.0.0

Redux

Redux is a «predictable state container» for JavaScript applications. In ohter terms, it’s a library to manage the «state
of your application», and more importantly, how do your application transition from one state to another. The library
is very simple, but the underlying concepts are very powerful.

• http://redux.js.org/

• https://egghead.io/series/getting-started-with-redux

React Router

React Router is a complete routing solution for React. It works well in the «isomoprhic environment», abstracting the
concept of «history» and «location» to be able to manage it the same way in the browser and on a server.

• https://github.com/reactjs/react-router

• https://github.com/reactjs/react-router-tutorial

• https://github.com/reactjs/react-router/tree/master/docs

Express (see Server)

Express, not to be presented anymore, is a minimalist web application development framework.

• http://expressjs.com/

• https://github.com/senchalabs/connect/blob/master/Readme.md

Bootstrap 4 and Font Awesome (see Style)

Bootstrap 4 and Font Awesome are so popular nowadays for prototypes (and even production apps) that it felt logic
to package them in the boilerplate, pre-configured, ready to be extended and correctly setup to work both in dev and
prod mode.

Removing them from the base setup is way easier than adding it, only a few lines to remove.

Attention, we include the plain vanilla SCSS versions of those libraries, with no wrappers (no, we don’t ship with
Bootact-Restrap). If you want one of those low value libs, feel free to have fun in your project.

SASS (see Style)

SASS is our CSS preprocessor of choice. It is already used by bootstrap, font-awesome and other well enginered
fronted libraries, making it very easy to integrate and customize it.

Developer toolbox

On top of those features, that will be used the same way in development and in production mode, a few features are
also there in development mode only.

GNU Make (see Make)

Build automation tool from 1977, readable by computer scientists, and language agnostic. It is the reference and only
entry point of developer tools in LeanJS.

3.3. Features 9

http://redux.js.org/
http://redux.js.org/
https://egghead.io/series/getting-started-with-redux
https://github.com/reactjs/react-router
https://github.com/reactjs/react-router
https://github.com/reactjs/react-router-tutorial
https://github.com/reactjs/react-router/tree/master/docs
http://expressjs.com/
http://expressjs.com/
https://github.com/senchalabs/connect/blob/master/Readme.md
http://v4-alpha.getbootstrap.com/getting-started/introduction/
https://fortawesome.github.io/Font-Awesome/icons/
http://sass-lang.com/

LeanJS Documentation, Release 1.0.0

Docker (see Docker)

We use docker a lot to have reproductible builds of our apps. While it is not required that you use this feature, if you
do, you can to build and run production image running make docker-build docker-run.

Webpack (see Webpack)

In development mode, webpack is used via the webpack-dev-middleware, which basically is a connect middleware
that serve the always-hot version of your compiled assets.

In production mode, webpack is used to compile both frontend and backend javascript, into build. Just try to run make
build and you’ll get a clean and fresh production release in your build directory. You’re only a (cd build; npm install
–production && node server) away of running a lighting fast, pure, tool-free version of your project.

ESLint (see Testing)

make lint is your friend.

Help needed about the “right” coding standards for React/ES6/Node.

Karma, Tape and Istanbul (see Testing)

make test is your friend.

It will create a coverage directory with the matching reports.

Browsersync and Nodemon (see Server)

We use browser sync as a proxy for a few reasons.

• It allows to serve the vanilla express application on a different port and add the development tooling middlewares
only on this proxy, making easier to debug tedious problems with server output.

• It has nice features for both cross-platform development and simulating catastrophic network conditions, be-
cause you know, your customer won’t use your own laptop on this dual gigabit fiber channel directly plugged
on the EU to NA backbone.

Hot Module Reload (see reference/hot-module-reload)

This is trendy, this is hot, and yet it can fuck up your brain because it does not work as expected.

In short, HMR is a way to swap module instances hen you change the files on disk. Save Foo.js, a watcher will see
it, rebuild it with webpack, communicate that something changed to your browsers and try to hot swap the minimum
subset of the module dependency tree that is needed to have the new module versions show up in the browsers. Magic
happens, boom.

That’s the theory. Practical notes, though.

Caveats: won’t work with pure, stateless, function-based react components. won’t work with router.

When in doubt, refresh anyway.

10 Chapter 3. Documentation

LeanJS Documentation, Release 1.0.0

Recipes

Some commonly used code recipes.

• recipes/bootstrap

• recipes/font-awesome

Reference

Directory structure:

• bin: management and instrumentation scripts.

• build: production releases (out of version control).

• coverage: generated coverage data (out of version control).

• config: declarative configuration, including webpack configuration.

• src: application(s) source code.

• test: tests, using tape as a default.

(TODO: this is a work in progress, reference is lacking a lot of sections as of now).

Docker

Small helpers exist to help you build docker images from your project.

The docker image name that will get built is defined by the $DOCKER_IMAGE environment variable, and you can
change its default value in Makefile.

To build an image, run:

make docker-build

You can customize target image name on the fly:

DOCKER_IMAGE=acme/foobar make docker-build

To run the image, exposing the port on docker server machine:

make docker-run

Make

We use the old school GNU Make to manage shell entry points in LeanJS. You may prefer to use Gulp, Grunt, or some
other task manager, but we don’t see any feature that we need and that Make does not provide.

It has the advantage to be understandable by non-javascript persons, including ops, and we use it to provide a language
agnostic interface to our projects (we provide the same commands whether the project is written using javascript,
python, ruby, java, php, ...).

The pros may be not very important for you, feel free to change the way you manage this.

3.4. Recipes 11

LeanJS Documentation, Release 1.0.0

Targets

start (default)

Usage: make start or make

Throws up a development server (see Server).

.PHONY: start build doc docker-build docker-run docker-run-bash lint test

Start a development server.
You need to run "npm install" before that.

build

Usage: make build

Compiles a production ready build in the build folder.

npm run start

Builds a production-ready release, under /build.
It will be self contained, and it's the base of the docker image.

install

Usage: make install

Wraps npm install, installs all project dependencies under node_modules, including development dependencies.

npm run build

Install dependencies (dev + prod)

Server

Development

To run the development server, make sure the project dependencies, including development dependencies, are installed
(if in doubt, run make install), then fire up the development server by simply running make.

After a little while, you’ll have three different open ports listening for HTTP connections:

• On port 3080, the production-like express server will run. Thanks to nodemon, the server will be restarted
whenever you change a file. The webpack managed assets won’t be available though, so you should not try to
develop looking at this port, it should only be useful to debug server-side rendering issues.

• On port 3000, Browsersync will serve the real application, by proxying the express server above. It will add
some middlewares so your assets are available, and hot module replacement (HMR) will try to hot-swap frontend
components that you change. It is not always possible, but it will try its best.

• On port 3001, Browsersync will serve its management interface. Go ahead and explore the features, as it’s pretty
cool.

12 Chapter 3. Documentation

LeanJS Documentation, Release 1.0.0

Please note that if ports 3000-3001 are unavailable, browsersync will automatically choose another port, incrementally
(if port 3000 is unavailable, it will try port 3001, then 3002, etc...).

Production

On production, you’ll run the express server in a context where webpack precompiled all assets, making it effective.

To run it, you can (make build; cd build; node server). Otherwise, you can simply make build and use the release you
just build in the build directory to run it however you want. That could be docker (see Docker), but you can pretty
much do it any way you want.

Style

You want your application to be beautiful, as a default, right? You don’t want to spend huge amount of time setting it
up, right?

We chosed a few defaults for that:

• SASS

• Bootstrap 4

• Font Awesome

Those are defaults, not requirements, but it allows us to provide a base framework to develop your prototypes as
quickly as possible. Feel free to replace it with whatever you want as your project grows.

Testing

Tests are important. Even though you may want to deliberately skip some in your prototypes, knowing you can throw
out a solid testing architecture in a snap is always great.

make lint
make test

After a make test run, you’ll find coverage reports in the coverage folder.

Webpack

Webpack is a powerfull tool. We split the configuration (found in config/webpack) in three different files: default.js,
client.js and server.js.

Both client and server configurations extend default, and if more targets (cordova, electron, browser extensions, ...)
were to be added to the project, a similar file structure could be kept.

The loaders configuration has been split, for better readability and code reuse.

Default configuration

Default configuration define the common chunks of configuration that will be used whatever the target platform is.

3.5. Reference 13

LeanJS Documentation, Release 1.0.0

import path from 'path'
import config from '../index'
import loaders from './loaders'

const AUTOPREFIXER_BROWSERS = [
'Android 2.3',
'Android >= 4',
'Chrome >= 35',
'Firefox >= 31',
'Explorer >= 9',
'iOS >= 7',
'Opera >= 12',
'Safari >= 7.1'

]

const defaultWebpackConfig = {
// Input
context: path.resolve(__dirname, '../../src'),

// Output
output: {
path: path.resolve(__dirname, '../../build'),
publicPath: '/',
sourcePrefix: ' '

},

// Loaders
module: { loaders },

// is it the right place ? at least needed server side for HMR. Is it required if
→˓DEBUG == false?
recordsPath: path.resolve(__dirname, '../../build/_records'),

resolve: {
root: path.resolve(__dirname, '../../src'),
extensions: ['', '.webpack.js', '.web.js', '.js', '.jsx', '.json']

},

// Cache generated modules and chunks to improve performance for multiple
→˓incremental builds.
cache: config.DEBUG,

// Switch loaders to debug mode.
debug: config.DEBUG,

// TODO Use debug here to choose value?
devtool: 'source-map',

stats: {
colors: true,
reasons: config.DEBUG,
hash: config.VERBOSE,
version: config.VERBOSE,
timings: true,
chunks: config.VERBOSE,
chunkModules: config.VERBOSE,
cached: config.VERBOSE,
cachedAssets: config.VERBOSE

14 Chapter 3. Documentation

LeanJS Documentation, Release 1.0.0

},

plugins: [],

sassLoader: {
includePaths: [path.resolve(__dirname, '../node_modules')]

},

/* eslint-disable global-require */
postcss (bundler) {
return [
require('postcss-import')({ addDependencyTo: bundler }),
require('precss')(),
require('autoprefixer')({ browsers: AUTOPREFIXER_BROWSERS })

]
}
/* eslint-enable global-require */

}

export default defaultWebpackConfig

Client configuration

Client configuration (may be renamed to browser at some point, we’ll see) is in charge of transpiling the browser
javascript so it can run in modern browsers.

import path from 'path'
import webpack from 'webpack'
import AssetsPlugin from 'assets-webpack-plugin'
import CompressionPlugin from 'compression-webpack-plugin'
import ExtractTextPlugin from 'extract-text-webpack-plugin'
import config from '../index'
import defaultConfig from './default'

const clientConfig = {
...defaultConfig,

entry: './client.js',

output: {
...defaultConfig.output,
path: path.join(defaultConfig.output.path, 'public/'),
filename: config.DEBUG ? '[name].js?[chunkhash]' : '[name].[chunkhash].js',
chunkFilename: config.DEBUG ? '[name].[id].js?[chunkhash]' : '[name].[id].

→˓[chunkhash].js'
},

plugins: [
...defaultConfig.plugins,

new webpack.DefinePlugin({ ...config, 'process.env.BROWSER': true }),

// Emit a file with assets paths
// https://github.com/sporto/assets-webpack-plugin#options
new AssetsPlugin({

path: path.resolve(__dirname, '../../build'),

3.5. Reference 15

LeanJS Documentation, Release 1.0.0

filename: 'assets.js',
processOutput: (x) => `module.exports = ${JSON.stringify(x)};`

}),

// Add production plugins if we're doing an optimized build
...(!config.DEBUG ? [

new ExtractTextPlugin('[name].[chunkhash].css', { allChunks: true }),
new webpack.optimize.DedupePlugin(),
new webpack.optimize.UglifyJsPlugin({
compress: {
// jscs:disable requireCamelCaseOrUpperCaseIdentifiers
screw_ie8: true,
// jscs:enable requireCamelCaseOrUpperCaseIdentifiers
warnings: config.VERBOSE

}
}),
new webpack.optimize.AggressiveMergingPlugin(),
new CompressionPlugin()

] : [])
]

}

if (!config.DEBUG) {
// Production: Replace loaders with "ExtractTextPlugin"
const originalLoaders = clientConfig.module.loaders[1].loaders
delete clientConfig.module.loaders[1].loaders
clientConfig.module.loaders[1].loader = ExtractTextPlugin.extract(...

→˓originalLoaders)
}

export default clientConfig

Server configuration

Server configuration is in charge of transpiling code required to run the production-ready express server, to be directly
run by the Node interpreter.

import webpack from 'webpack'
import config from '../index'

import defaultConfig from './default'

/**
* This is Webpack configuration for server side javascript, aimed for a build

* without intrumentation (like dev middleware or hot module reload).

*
* Instrumentation will be added by the runServer script, if needed.

*/
const serverConfig = {

// Extends common configuration
...defaultConfig,

// Entry point
entry: './server.js',

// Output a single server.js, under the build directory

16 Chapter 3. Documentation

LeanJS Documentation, Release 1.0.0

output: {
...defaultConfig.output,
filename: 'server.js',
libraryTarget: 'commonjs2'

},

// This will be run by node. Also used by our scripts to detect it is
// the server-side configuration.
target: 'node',

// How do we take apart bundlable scripts and external dependencies that we
// can load from filesystem?
externals: [
/^\.\/assets$/,
function filter (context, request, cb) {

const isExternal = request.match(/^[@a-z][a-z\/\.\-0-9]*$/i)
cb(null, Boolean(isExternal))

}
],

node: {
console: false,
global: false,
process: false,
Buffer: false,
__filename: false,
__dirname: false

},

plugins: [
...defaultConfig.plugins,
new webpack.DefinePlugin({ ...config, 'process.env.BROWSER': false }),
new webpack.BannerPlugin('require("source-map-support").install();',

{ raw: true, entryOnly: false })
]

}

export default serverConfig

Loaders configuration

All loaders

import config from '../../index'
import javascriptLoader from './javascript'
import styleLoader from './style'

export default [
javascriptLoader,
styleLoader,
{ test: /\.json$/, loader: 'json-loader' },
{ test: /\.txt$/, loader: 'raw-loader' },
{
test: /\.(png|jpg|jpeg|gif|svg|woff|woff2)(\?v=[0-9]\.[0-9]\.[0-9])?$/,
loader: 'url-loader',
query: {

3.5. Reference 17

LeanJS Documentation, Release 1.0.0

name: config.DEBUG ? '[path][name].[ext]?[hash]' : '[hash].[ext]',
limit: 10000

}
},
{
test: /\.(ttf|eot|wav|mp3)(\?v=[0-9]\.[0-9]\.[0-9])?$/,
loader: 'file-loader',
query: {

name: config.DEBUG ? '[path][name].[ext]?[hash]' : '[hash].[ext]'
}

}
]

Javascript

import config from '../../index'
import path from 'path'

export default {
test: /\.jsx?$/,
loader: 'babel-loader',
include: [
path.resolve(__dirname, '../../../src'),
path.resolve(__dirname, '../../../config'),
path.resolve(__dirname, '../../../test'),
path.resolve(__dirname, '../../../build/assets')

],
query: {
// https://github.com/babel/babel-loader#options
cacheDirectory: config.DEBUG,

// https://babeljs.io/docs/usage/options/
babelrc: false,
presets: [

'react',
'es2015',
'stage-0'

],
plugins: [

'transform-runtime',
...config.DEBUG ? [] : [

'transform-react-remove-prop-types',
'transform-react-constant-elements',
'transform-react-inline-elements'

]
]

}
}

Style

import config from '../../index'

export default {

18 Chapter 3. Documentation

LeanJS Documentation, Release 1.0.0

test: /\.scss$/,
loaders: [
'style',
`css?${JSON.stringify({

// `sourceMap` is set to false because otherwise, there will be a problem with
→˓custom fonts

// when using the development proxy.
// See http://stackoverflow.com/questions/34133808/webpack-ots-parsing-error-

→˓loading-fonts
sourceMap: false,
// CSS Modules https://github.com/css-modules/css-modules
// modules: true,
localIdentName: config.DEBUG ? '[name]_[local]_[hash:base64:3]' :

→˓'[hash:base64:4]',
// CSS Nano http://cssnano.co/options/
minimize: !config.DEBUG

})}!sass?${JSON.stringify({
sourceMap: config.DEBUG

})}`
]

}

(Not So) Frequently Asked Questions

«Why is there no subdirectories, and no strong choices in directory structure like I
can find in insert something here?»

We think it’s up to you to make such kind of choices. For example, if you have a good reason to separate what you’d
call «components» and «containers» (a.k.a dumb components and presentation-less containers), you will for sure know
it, and thus you don’t need the boilerplate to do it for you.

We tryed to keed the base directory structure as simple as possible, and as unopinionated as possible.

I want to use CSS Modules, Relay, Passport, Firebase, Auth0, insert your own here,
why isn’t that included in the boilerplate?

We don’t want to include it in the base project, as it could be more harm than good.

If you want/need it, the best option would be to write an integration recipe in this document, so it takes only a few
minutes to add it to a blank project.

3.6. (Not So) Frequently Asked Questions 19

LeanJS Documentation, Release 1.0.0

20 Chapter 3. Documentation

CHAPTER 4

Indices and tables

• genindex

• search

21

	Goals
	Quick start
	Documentation
	LeanJS
	Getting started
	Features
	Recipes
	Reference
	(Not So) Frequently Asked Questions

	Indices and tables

