
LayeredConfig Documentation
Release 0.3.4.dev1

Staffan Malmgren

Nov 11, 2019

Contents

1 Introduction 3

2 Usage 5
2.1 Precedence . 6
2.2 Config sources . 6
2.3 Typing . 7
2.4 Subsections . 7
2.5 Cascading . 7
2.6 Modification and persistance . 7

3 Using LayeredConfig with argparse 9

4 Embedding configuration in python files 13

5 API reference 15

6 Available sources 17
6.1 Hardcoded defaults . 17
6.2 Environment variables . 17
6.3 Command-line parameters . 18
6.4 INI files . 20
6.5 JSON files . 21
6.6 YAML files . 22
6.7 PList files . 22
6.8 Python files . 23
6.9 etcd stores . 24

7 Implementing custom ConfigSource classes 27

Index 31

i

ii

LayeredConfig Documentation, Release 0.3.4.dev1

LayeredConfig compiles configuration from files, environment variables, command line arguments, hard-coded default
values, or other backends, and makes it available to your code in a simple way.

Contents 1

LayeredConfig Documentation, Release 0.3.4.dev1

2 Contents

CHAPTER 1

Introduction

LayeredConfig compiles configuration from files, environment variables, command line arguments, hard-coded default
values, or other backends, and makes it available to your code in a simple way:

from layeredconfig import (LayeredConfig, Defaults, INIFile,
Environment, Commandline)

This represents four different way of specifying the value of the
configuration option "hello":

1. hard-coded defaults
defaults = {"hello": "is it me you're looking for?"}

2. INI configuration file
with open("myapp.ini", "w") as fp:

fp.write("""
[__root__]
hello = kitty
""")

3. enironment variables
import os
os.environ['MYAPP_HELLO'] = 'goodbye'

4.command-line arguments
import sys
sys.argv = ['./myapp.py', '--hello=world']

Create a config object that gets settings from these four
sources.
config = LayeredConfig(Defaults(defaults),

INIFile("myapp.ini"),
Environment(prefix="MYAPP_"),
Commandline())

(continues on next page)

3

LayeredConfig Documentation, Release 0.3.4.dev1

(continued from previous page)

Prints "Hello world!", i.e the value provided by command-line
arguments. Latter sources take precedence over earlier sources.
print("Hello %s!" % config.hello)

• A flexible system makes it possible to specify the sources of configuration information, including which source
takes precedence. Implementations of many common sources are included and there is a API for writing new
ones.

• Included configuration sources for INI files, YAML files, JSON file, PList files, etcd stores (read-write), Python
source files, hard-coded defaults, command line options, environment variables (read-only).

• Configuration can include subsections (ie. config.downloading.refresh) and if a subsection does not
contain a requested setting, it can optionally be fetched from the main configuration (if config.module.
retry is missing, config.retry can be used instead).

• Configuration settings can be changed by your code (i.e. to update a “lastmodified” setting or similar), and
changes can be persisted (saved) to the backend of your choice.

• Configuration settings are typed (ie. if a setting should contain a date, it’s made available to your code as a
datetime.date object, not a str). If settings are fetched from backends that do not themselves provide
typed data (ie. environment variables, which by themselves are strings only), a system for type coercion makes
it possible to specify how data should be converted.

4 Chapter 1. Introduction

CHAPTER 2

Usage

To use LayeredConfig in a project:

from __future__ import print_function
from layeredconfig import LayeredConfig

Also, import any Configuration sources you want to use. It’s common to have one source for code defaults, one
configuration file (INI file in this example), one using environment variables as source, and one using command lines:

from layeredconfig import Defaults, INIFile, Environment, Commandline

Each configuration source must be initialized in some way. The Defaults source takes a dict, possibly nested:

from datetime import date, datetime
mydefaults = Defaults({'home': '/tmp/myapp',

'name': 'MyApp',
'dostuff': False,
'times': 4,
'duedate': date(2014, 10, 30),
'things': ['Huey', 'Dewey', 'Louie'],
'submodule': {

'retry': False,
'lastrun': datetime(2014, 10, 30, 16, 40, 22)
}

})

A configuration source such as INIFile takes the name of a file. In this example, we use a INI-style file.

myinifile = INIFile("myapp.ini")

Note: LayeredConfig uses the configparser module, which requires that each setting is placed within a section.
By default, top-level settings are placed within the [__root__] section.

In this example, we assume that there is a file called myapp.ini within the current directory with the following
contents:

5

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/configparser.html#module-configparser

LayeredConfig Documentation, Release 0.3.4.dev1

[__root__]
home = /usr/home/staffan/.myapp

[submodule]
retry = True
lastrun = 2014-10-31 16:40:22

The Environment source uses environment variables as settings. Since the entire environment is not suitable to use
as a configuration, use of this source requires that a prefix is given. Only environment variables starting with this
prefix are used. Furthermore, since the name of environment variable typically uses uppercase, they are by default
lowercased by this source. This means that, in this example, the value of the environmentvariable MYAPP_HOME will
be available as the configuration setting home.

env = {'MYAPP_HOME': 'C:\\Progra~1\\MyApp',
'MYAPP_SUBMODULE_RETRY': 'True'}

myenv = Environment(env, prefix="MYAPP_")

Finally, the Commandline processes the contents of sys.argv and uses any parameter starting with -- as a setting,
such as --home=/Users/staffan/Library/MyApp. Arguments that do not match this (such as positional
arguments or short options like -f) are made available through the rest property, to be used with eg. argparse.

mycmdline = Commandline(['-f', '--home=/opt/myapp', '--times=2', '--dostuff'])
rest = mycmdline.rest

Now that we have our config sources all set up, we can create the actual configuration object:

cfg = LayeredConfig(mydefaults,
myinifile,
myenv,
mycmdline)

And we use the attributes on the config object to access the settings:

print("%s starting, home in %s" % (cfg.name, cfg.home))

2.1 Precedence

Since several sources may contain a setting, A simple precedence system determines which setting is actually used.
In the above example, the printed string is "MyApp starting, home in /opt/myapp". This is because
while name was specified only by the mydefaults source, home was specified by source with higher predecence
(mycmdline). The order of sources passed to LayeredConfig determines predecence, with the last source having the
highest predecence.

2.2 Config sources

Apart from the sources used above, there are classes for settings stored in JSON files, YAML files and PList files, as
well as etcd stores. Each source can to varying extent be configured with different parameters. See Available sources
for further details.

You can also use a single source class multiple times, for example to have one system-wide config file together with a
user config file, where settings in the latter override the former.

6 Chapter 2. Usage

https://docs.python.org/3/library/argparse.html#module-argparse
https://coreos.com/using-coreos/etcd

LayeredConfig Documentation, Release 0.3.4.dev1

It’s possible to write your own ConfigSource-based class to read (and possibly write) from any concievable kind
of source.

2.3 Typing

The values retrieved can have many different types – not just strings.

delay = date.today() - cfg.duedate # date
if cfg.dostuff: # bool

for i in range(cfg.times): # int
print(", ".join(cfg.things)) # list

If a particular source doesn’t contain intrinsic typing information, other sources can be used to find out what type a
particular setting should be. LayeredConfig converts the data automatically.

Note: strings are always str objects, (unicode in python 2). They are never bytes objects (str in python 2)

2.4 Subsections

It’s possible to divide up settings and group them in subsections.

subcfg = cfg.submodule
if subcfg.retry:

print(subcfg.lastrun.isoformat())

2.5 Cascading

If a particular setting is not available in a subsection, LayeredConfig can optionally look for the same setting in parent
sections if the cascade option is set.

cfg = LayeredConfig(mydefaults, myinifile, myenv, mycmdline, cascade=True)
subcfg = cfg.submodule
print(subcfg.home) # prints '/opt/myapp', from Commandline source root section

2.6 Modification and persistance

It’s possible to change a setting in a config object. It’s also possible to write out the changed settings to a config source
(ie. configuration files) by calling write()

subcfg.lastrun = datetime.now()
LayeredConfig.write(cfg)

2.3. Typing 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

LayeredConfig Documentation, Release 0.3.4.dev1

8 Chapter 2. Usage

CHAPTER 3

Using LayeredConfig with argparse

The standard module for handling command line arguments in python is argparse. This module handles much of
the same things as LayeredConfig does (eg. defining the default values and types of arguments and making them easily
accessed), but it isn’t able to read parameter values from other sources such as INI files or environment variables.

LayeredConfig integrates with argparse through the Commandline config source. If you have existing code to set
up an argparse.ArgumentParser object, you can re-use that with LayeredConfig.

import sys
import argparse
from datetime import date, datetime
from layeredconfig import LayeredConfig, Defaults, INIFile, Commandline, UNIT_SEP

After this setup, you might want to create any number of config sources. In this example we use a Defaults object,
mostly used for specifying the type of different arguments.

defaults = Defaults({'home': str,
'name': 'MyApp',
'dostuff': bool,
'times': int,
'duedate': date,
'things': list,
'submodule': {'retry': bool,

'lastrun': datetime
}

})

And also an INIFile that is used to store actual values for most parameters.

with open("myapp.ini", "w") as fp:
fp.write("""[__root__]

home = /tmp/myapp
dostuff = False
times = 4
duedate = 2014-10-30

(continues on next page)

9

https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

LayeredConfig Documentation, Release 0.3.4.dev1

(continued from previous page)

things = Huey, Dewey, Louie

[submodule]
retry = False
lastrun = 2014-10-30 16:40:22
""")
inifile = INIFile("myapp.ini")

Next up, we create an instance of argparse.ArgumentParser in the normal way. Note that in this example,
we specify the types of some of the parameters, since this is representative of how ArgumentParser normally is used.
But you can also omit this information (the action and type parameters to add_argument()) as long as you
provide information through a Defaults config source object.

Note: we don’t add arguments for --duedate or --submodule-lastrun to show that LayeredConfig can define
these arguments based on other sources. Also note that defaults values are automatically fetched from either defaults
or inifile.

parser = argparse.ArgumentParser("This is a simple program")
parser.add_argument("--home", help="The home directory of the app")
parser.add_argument('--dostuff', action="store_true", help="Do some work")
parser.add_argument("-t", "--times", type=int, help="Number of times to do it")
parser.add_argument('--things', action="append", help="Extra things to crunch")
parser.add_argument('--retry', action="store_true", help="Try again")
parser.add_argument("file", metavar="FILE", help="The filename to process")

Now, instead of calling parse_args(), you can pass this initialized parser object as a named parameter when
creating a Commandline source, and use this to create a LayeredConfig object.

Note that you can use short parameters if you want, as long as you define long parameters (that map to your other
parameter names) as well

sys.argv = ['./myapp.py', '--home=/opt/myapp', '-t=2', '--dostuff', 'file.txt']
cfg = LayeredConfig(defaults,

inifile,
Commandline(parser=parser))

print("Starting %s in %s for %r times (doing work: %s)" % (cfg.name,
cfg.home,
cfg.times,
cfg.dostuff))

should print "Starting MyApp in /opt/myapp for 2 times (doing work: True)"

The standard feature of argparse to create a help text if the -h parameter is given still exists. Note that it will also
display parameters such as –name‘, which was defined in the Defaults object, not in the parser object.

sys.argv = ['./myapp.py', '-h']
cfg = LayeredConfig(defaults,

inifile,
Commandline(parser=parser))

Warning: Using a bespoke argparse.ArgumentParser together with subsections is a bit more compli-
cated. If you want to do that, you will need to setup each argument to the ArgumenParser object by explicitly
naming the internal name for the attribute as specifid by the dest parameter, and separating the subsections with
the special layeredconfig.UNIT_SEP delimiter, eg:

parser.add_argument("--submodule-retry", help="Whether to retry the submodule",
dest="submodule"+UNIT_SEP+"retry")

10 Chapter 3. Using LayeredConfig with argparse

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

LayeredConfig Documentation, Release 0.3.4.dev1

11

LayeredConfig Documentation, Release 0.3.4.dev1

12 Chapter 3. Using LayeredConfig with argparse

CHAPTER 4

Embedding configuration in python files

In many cases, it’s desirable to let the end user specify configuration in the same langauge as the rest of the system
(Django and Sphinx are examples of frameworks that works this way). LayeredConfig provides the source PyFile
that lets the user create configuration using normal python code.

If you create a file like conf.py with the following contents:

from __future__ import unicode_literals

import os
import multiprocessing
from datetime import datetime, date

home = os.getcwd()
name = 'My App'
dostuff = name.istitle()
duedate = date.today()
submodule = Subsection()
submodule.retry = True

Note: The class Subsection will automatically be imported into conf.py and is used to create new subsections.
Parameters in subsections are created as normal attributes on the subsection object.

And load it, together with a Defaults source like in previous examples:

from layeredconfig import LayeredConfig, PyFile, Defaults
from datetime import date, datetime

conf = LayeredConfig(Defaults({'home': '/tmp/myapp',
'name': 'MyApp',
'dostuff': False,
'times': 4,
'duedate': date(2014, 10, 30),

(continues on next page)

13

https://www.djangoproject.com/
http://sphinx-doc.org/

LayeredConfig Documentation, Release 0.3.4.dev1

(continued from previous page)

'things': ['Huey', 'Dewey', 'Louie'],
'submodule': {

'retry': False,
'lastrun': datetime(2014, 10, 30, 16, 40, 22)

}
}),

PyFile("conf.py"))

The configuration object will act the same as in previous examples, ie. values that are specified in conf.py be used,
and values specified in the Defaults object only used if conf.py doesn’t specify them.

Note: The PyFile source is read-only, so it should not be used when it’s desirable to be able to save changed
configuration parameters to a file. Use PyFile or one of the other *File sources in these cases.

It’s also possible to keep system defaults in a separate python file, load these with one PyFile instance, and then
let the user override parts using a separate PyFile instance. Functionally, this is not very different than loading
system defaults using a Defaults source, but it might be preferable in some cases. As an example, if the file
defaults.py contains the following code:

from datetime import date, datetime

home = '/tmp/myapp'
name = 'MyApp'
dostuff = False
times = 4
duedate = date(2014, 10, 30),
things = ['Huey', 'Dewey', 'Louie']
submodule = Subsection()
submodule.retry = False
submodule.lastrun = datetime(2014, 10, 30, 16, 40, 22)

And a LayeredConfig object is initialized in the following way, then the resulting configuration object works identically
to the above:

conf = LayeredConfig(PyFile("defaults.py"),
PyFile("conf.py"))

14 Chapter 4. Embedding configuration in python files

CHAPTER 5

API reference

class layeredconfig.LayeredConfig(*sources, **kwargs)
Creates a config object from one or more sources and provides unified access to a nested set of configuration
parameters. The source of these parameters a config file (using .ini-file style syntax), command line parameters,
and default settings embedded in code. Command line parameters override configuration file parameters, which
in turn override default settings in code (hence Layered Config).

Configuration parameters are accessed as regular object attributes, not dict-style key/value pairs. Configuration
parameter names should therefore be regular python identifiers, and preferrably avoid upper-case and “_” as
well (i.e. only consist of the characters a-z and 0-9)

Configuration parameter values can be typed (strings, integers, booleans, dates, lists. . .). Even though some
sources lack typing information (eg in INI files, command-line parameters and enviroment variables, everything
is a string), LayeredConfig will attempt to find typing information in other sources and convert data.

Parameters

• *sources – Initialized ConfigSource-derived objects

• cascade (bool) – If an attempt to get a non-existing parameter on a sub (nested) config-
uration object should attempt to get the parameter on the parent config object. False by
default,

• writable (bool) – Whether configuration values should be mutable. True by default.
This does not affect set().

static write(config)
Commits any pending modifications, ie save a configuration file if it has been marked “dirty” as a result of
an normal assignment. The modifications are written to the first writable source in this config object.

Note: This is a static method, ie not a method on any object instance. This is because all attribute access
on a LayeredConfig object is meant to retrieve configuration settings.

Parameters config (layeredconfig.LayeredConfig) – The configuration object to
save

15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

LayeredConfig Documentation, Release 0.3.4.dev1

static set(config, key, value, sourceid=’defaults’)
Sets a value in this config object without marking any source dirty, and with exact control of exactly where
to set the value. This is mostly useful for low-level trickery with config objects.

Parameters

• config – The configuration object to set values on

• key – The parameter name

• value – The new value

• sourceid – The identifier for the underlying source that the value should be set on.

static get(config, key, default=None)
Gets a value from the config object, or return a default value if the parameter does not exist, like dict.
get() does.

static dump(config)
Returns the entire content of the config object in a way that can be easily examined, compared or dumped
to a string or file.

Parameters config – The configuration object to dump

Return type dict

static datetimeconvert(value)
Convert the string value to a datetime object. value is assumed to be on the form “YYYY-MM-DD
HH:MM:SS” (optionally ending with fractions of a second).

static dateconvert(value)
Convert the string value to a date object. value is assumed to be on the form “YYYY-MM-DD”.

static boolconvert(value)
Convert the string value to a boolean. "True" is converted to True and "False" is converted to
False.

Note: If value is neither “True” nor “False”, it’s returned unchanged.

16 Chapter 5. API reference

https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date

CHAPTER 6

Available sources

6.1 Hardcoded defaults

class layeredconfig.Defaults(defaults=None, **kwargs)
This source is initialized with a dict.

Parameters defaults (dict) – A dict with configuration keys and values. If any values are
dicts, these are turned into nested config objects.

6.2 Environment variables

class layeredconfig.Environment(environ=None, prefix=None, lower=True, sectionsep=’_’,
**kwargs)

Loads settings from environment variables. If prefix is set to MYAPP_, the value of the environment variable
MYAPP_HOME will be available as the configuration setting home.

Parameters

• environ (dict) – Environment variables, in dict form like os.environ. If not pro-
vided, uses the real os.environ.

• prefix (str) – Since the entire environment is not suitable to use as a configuration, only
variables starting with this prefix are used.

• lower (True) – If true, lowercase the name of environment variables (since these typically
uses uppercase)

• sectionsep (str) – An alternate section separator instead of -.

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

LayeredConfig Documentation, Release 0.3.4.dev1

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

set(key, val)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

6.3 Command-line parameters

class layeredconfig.Commandline(commandline=None, parser=None, sectionsep=’-’,
add_help=True, **kwargs)

Load configuration from command line options. Any long-style parameters are turned into configuration values,
and parameters containing the section separator (by default "-") are turned into nested config objects (i.e.
--module-parameter=foo results in self.module.parameter == "foo".

If an initialized ArgumentParser object is provided, the defined parameters in that object is used for supporting
short form options (eg. '-f' instead of '--force'), typing information and help text. The standards argparse
feature of printing a helpful message when the ‘-h’ option is given is retained.

Parameters

• commandline (list) – Command line arguments, in list form like sys.argv. If not
provided, uses the real sys.argv.

• parser (argparse.ArgumentParser) – An initialized/configured argparse object

• sectionsep (str) – An alternate section separator instead of -.

18 Chapter 6. Available sources

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str

LayeredConfig Documentation, Release 0.3.4.dev1

• add_help (bool) – Same as for ArgumentParser()

rest = []
The remainder of the command line, containing all parameters that couldn’t be turned into configuration
settings.

setup(config)
Perform some post-initialization setup. This method will be called by the LayeredConfig constructor after
its internal initialization is finished, with itself as argument. Sources may access all properties of the config
object in order to eg. find out which parameters have been defined.

The sources will be called in the same order as they were provided to the LayeredConfig constructior, ie.
lowest precedence first.

Parameters config (layeredconfig.LayeredConfig) – The initialized config object
that this source is a part of

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

6.3. Command-line parameters 19

https://docs.python.org/3/library/functions.html#bool

LayeredConfig Documentation, Release 0.3.4.dev1

6.4 INI files

class layeredconfig.INIFile(inifilename=None, rootsection=’__root__’, sectionsep=’.’,
writable=True, **kwargs)

Loads and optionally saves configuration files in INI format, as handled by configparser.

Parameters

• inifile (str) – The name of a ini-style configuration file. The file should have a top-
level section, by default named __root__, whose keys are turned into top-level configu-
ration parameters. Any other sections in this file are turned into nested config objects.

• rootsection (str) – An alternative name for the top-level section. See note below.

• sectionsep (str) – separator to use in section names to separate nested subsections.
See note below.

• writable (bool) – Whether changes to the LayeredConfig object that has this INIFile
object amongst its sources should be saved in the INI file.

Note: Nested subsections is possible, but since the INI format does not natively support nesting, this is accom-
plished through specially-formatted section names, eg the config value mymodule.mysection.example would be
expressed in the ini file as:

[mymodule.mysection]
example = value

Since this source uses configparser, and since that module handles sections named [DEFAULT] dif-
ferently, this module will have a sort-of automatic cascading feature for subsections if DEFAULT is used as
rootsection

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

20 Chapter 6. Available sources

https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/configparser.html#module-configparser

LayeredConfig Documentation, Release 0.3.4.dev1

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

6.5 JSON files

class layeredconfig.JSONFile(jsonfilename=None, writable=True, **kwargs)
Loads and optionally saves configuration files in JSON format. Since JSON has some support for typed val-
ues (supports numbers, lists, bools, but not dates or datetimes), data from this source are sometimes typed,
sometimes only available as strings.

Parameters

• jsonfile (str) – The name of a JSON file, whose root element should be a JSON object
(python dict). Nested objects are turned into nested config objects.

• writable (bool) – Whether changes to the LayeredConfig object that has this JSONFile
object amongst its sources should be saved in the JSON file.

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

6.5. JSON files 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

LayeredConfig Documentation, Release 0.3.4.dev1

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

6.6 YAML files

class layeredconfig.YAMLFile(yamlfilename=None, writable=True, **kwargs)
Loads and optionally saves configuration files in YAML format. Since YAML (and the library implementing
the support, PyYAML) has automatic support for typed values, data from this source are typed.

Parameters

• yamlfile (str) – The name of a YAML file. Nested sections are turned into nested
config objects.

• writable (bool) – Whether changes to the LayeredConfig object that has this YAMLFile
object amongst its sources should be saved in the YAML file.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

6.7 PList files

class layeredconfig.PListFile(plistfilename=None, writable=True, **kwargs)
Loads and optionally saves configuration files in PList format. Since PList has some support for typed values
(supports numbers, lists, bools, datetimes but not dates), data from this source are sometimes typed, sometimes
only available as strings.

Parameters

• plistfile (str) – The name of a PList file. Nested sections are turned into nested
config objects.

• writable (bool) – Whether changes to the LayeredConfig object that has this PListFile
object amongst its sources should be saved in the PList file.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

22 Chapter 6. Available sources

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

LayeredConfig Documentation, Release 0.3.4.dev1

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

6.8 Python files

class layeredconfig.PyFile(pyfilename=None, **kwargs)
Loads configuration from a python source file. Any variables defined in that file will be interpreted as configu-
ration keys. The class Subsection is automatically imported into the context when the file is executed, and
represents a subsection of the configuration. Any attribute set on such an object is treated as a configuration
parameter on that subsection.

Note: The python source file is loaded and interpreted once, when creating the PyFile object. If a value is set
by eg. calling a function, that function will only be called at load time, not when accessing the parameter.

Parameters pyfile (str) – The name of a file containing valid python code.

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing

6.8. Python files 23

https://docs.python.org/3/library/stdtypes.html#str

LayeredConfig Documentation, Release 0.3.4.dev1

information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

6.9 etcd stores

class layeredconfig.EtcdStore(baseurl=’http://127.0.0.1:2379/v2/’, **kwargs)
Loads configuration from a etcd store.

Parameters baseurl – The main endpoint of the etcd store

etcd has no concept of typed values, so all data from this source are returned as strings.

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

24 Chapter 6. Available sources

https://github.com/coreos/etcd

LayeredConfig Documentation, Release 0.3.4.dev1

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

set(key=None, value=None)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

If your source is read-only, you don’t have to implement this method.

6.9. etcd stores 25

LayeredConfig Documentation, Release 0.3.4.dev1

26 Chapter 6. Available sources

CHAPTER 7

Implementing custom ConfigSource classes

If you want to get configuration settings from some other sources than the built-in sources, you should create a class
that derives from ConfigSource and implement a few methods.

If your chosen source can expose the settings as a (possibly nested) dict, it might be easier to derive from
DictSource which already provide implementations of many methods.

class layeredconfig.ConfigSource(**kwargs)
The constructor of the class should set up needed resources, such as opening and parsing a configuration file.

It is a good idea to keep whatever connection handles, data access objects, or other resources needed to re-
trieve the settings, as unprocessed as possible. The methods that actually need the data (has(), get(),
subsection(), subsections() and possibly typed()) should use those resources directly instead of
reading from cached locally stored copies.

The constructor must call the superclass’ __init__ method with all remaining keyword arguments, ie.
super(MySource, self).__init__(**kwargs).

dirty = False
For writable sources, whether any parameter value in this source has been changed so that a call to save()
might be needed.

identifier = None
A string identifying this source, primarily used with LayeredConfig.set().

writable = False
Whether or not this source can accept changed configuration settings and store them in the same place as
the original setting came from.

parent = None
The parent of this source, if this represents a nested configuration source, or None

source = None
By convention, this should be your main connection handle, data access object, or other resource neededed
to retrieve the settings.

has(key)
This method should return true if the parameter identified by key is present in this configuration source.

27

https://docs.python.org/3/library/stdtypes.html#dict

LayeredConfig Documentation, Release 0.3.4.dev1

It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

keys()

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

setup(config)
Perform some post-initialization setup. This method will be called by the LayeredConfig constructor after
its internal initialization is finished, with itself as argument. Sources may access all properties of the config
object in order to eg. find out which parameters have been defined.

The sources will be called in the same order as they were provided to the LayeredConfig constructior, ie.
lowest precedence first.

Parameters config (layeredconfig.LayeredConfig) – The initialized config object
that this source is a part of

save()
Persist changed data to the backend. This generally means to update a loaded configuration file with all
changed data, or similar.

This method will only ever be called if writable is True, and only if dirty has been set to True.

28 Chapter 7. Implementing custom ConfigSource classes

LayeredConfig Documentation, Release 0.3.4.dev1

If your source is read-only, you don’t have to implement this method.

typevalue(key, value)
Given a parameter identified by key and an untyped string, convert that string to the type that our version
of key has.

class layeredconfig.DictSource(**kwargs)
If your backend data is exposable as a python dict, you can subclass from this class to avoid implementing
has(), get(), keys(), subsection() and subsections(). You only need to write __init__()
(which should set self.source to that exposed dict), and possibly typed() and save().

subsections()
Should return a list (or other iterator) of subsection keys, ie names that represent subsections of this con-
figuration source. Not all configuration sources need to support subsections. In that case, this should just
return an empty list.

subsection(key)
Should return the subsection identified by key, in the form of a new object of the same class, but initialized
differently. Exactly how will depend on the source, but as a general rule the same resource handle used as
self.source should be passed to the new object. Often, the subsection key will need to be provided to
the new object as well, so that get() and other methods can use it to look in the correct place.

As a general rule, the constructor should be called with a parent parameter set to self.

typed(key)
Should return True if this source contains typing information for key, ie information about which data
type this parameter should be.

For sources where everything is stored as a string, this should generally return False (no way of distin-
guishing an actual string from a date formatted as a string).

has(key)
This method should return true if the parameter identified by key is present in this configuration source.
It is up to each configuration source to define the semantics of what exactly “is present” means, but a
guideline is that only real values should count as being present. If you only have some sort of placeholder
or typing information for key this should probably not return True.

Note that it is possible that a configuration source would return True for typed(some_key) and at
the same time return False for has(some_key), if the source only carries typing information, not real
values.

get(key)
Should return the actual value of the parameter identified by key. If has(some_key) returns True,
get(some_key) should always succeed. If the configuration source does not include intrinsic typing
information (ie. everything looks like a string) this method should return the string as-is, LayeredConfig
is responsible for converting it to the correct type.

set(key, value)
Should set the parameter identified by key to the new value value.

This method should be prepared for any type of value, ie ints, lists, dates, bools. . . If the backend cannot
handle the given type, it should convert to a str itself.

Note that this does not mean that the changes should be persisted in the backend data, only in the existing
objects view of the data (only when save() is called, the changes should be persisted).

29

LayeredConfig Documentation, Release 0.3.4.dev1

30 Chapter 7. Implementing custom ConfigSource classes

Index

B
boolconvert() (layeredconfig.LayeredConfig static

method), 16

C
Commandline (class in layeredconfig), 18
ConfigSource (class in layeredconfig), 27

D
dateconvert() (layeredconfig.LayeredConfig static

method), 16
datetimeconvert() (layeredconfig.LayeredConfig

static method), 16
Defaults (class in layeredconfig), 17
DictSource (class in layeredconfig), 29
dirty (layeredconfig.ConfigSource attribute), 27
dump() (layeredconfig.LayeredConfig static method), 16

E
Environment (class in layeredconfig), 17
EtcdStore (class in layeredconfig), 24

G
get() (layeredconfig.Commandline method), 19
get() (layeredconfig.ConfigSource method), 28
get() (layeredconfig.DictSource method), 29
get() (layeredconfig.Environment method), 18
get() (layeredconfig.EtcdStore method), 24
get() (layeredconfig.INIFile method), 21
get() (layeredconfig.LayeredConfig static method), 16
get() (layeredconfig.PListFile method), 23
get() (layeredconfig.PyFile method), 23
get() (layeredconfig.YAMLFile method), 22

H
has() (layeredconfig.Commandline method), 19
has() (layeredconfig.ConfigSource method), 27
has() (layeredconfig.DictSource method), 29
has() (layeredconfig.Environment method), 17

has() (layeredconfig.EtcdStore method), 24
has() (layeredconfig.INIFile method), 20
has() (layeredconfig.PyFile method), 23

I
identifier (layeredconfig.ConfigSource attribute), 27
INIFile (class in layeredconfig), 20

J
JSONFile (class in layeredconfig), 21

K
keys() (layeredconfig.ConfigSource method), 28

L
LayeredConfig (class in layeredconfig), 15

P
parent (layeredconfig.ConfigSource attribute), 27
PListFile (class in layeredconfig), 22
PyFile (class in layeredconfig), 23

R
rest (layeredconfig.Commandline attribute), 19

S
save() (layeredconfig.ConfigSource method), 28
save() (layeredconfig.EtcdStore method), 25
save() (layeredconfig.INIFile method), 21
save() (layeredconfig.JSONFile method), 21
save() (layeredconfig.PListFile method), 23
save() (layeredconfig.YAMLFile method), 22
set() (layeredconfig.Commandline method), 19
set() (layeredconfig.ConfigSource method), 28
set() (layeredconfig.DictSource method), 29
set() (layeredconfig.Environment method), 18
set() (layeredconfig.EtcdStore method), 25
set() (layeredconfig.INIFile method), 21
set() (layeredconfig.JSONFile method), 21

31

LayeredConfig Documentation, Release 0.3.4.dev1

set() (layeredconfig.LayeredConfig static method), 15
set() (layeredconfig.PListFile method), 22
set() (layeredconfig.PyFile method), 24
setup() (layeredconfig.Commandline method), 19
setup() (layeredconfig.ConfigSource method), 28
source (layeredconfig.ConfigSource attribute), 27
subsection() (layeredconfig.Commandline method),

19
subsection() (layeredconfig.ConfigSource method),

28
subsection() (layeredconfig.DictSource method), 29
subsection() (layeredconfig.Environment method),

18
subsection() (layeredconfig.EtcdStore method), 25
subsection() (layeredconfig.INIFile method), 20
subsection() (layeredconfig.PyFile method), 24
subsections() (layeredconfig.Commandline

method), 19
subsections() (layeredconfig.ConfigSource

method), 28
subsections() (layeredconfig.DictSource method),

29
subsections() (layeredconfig.Environment method),

18
subsections() (layeredconfig.EtcdStore method), 25
subsections() (layeredconfig.INIFile method), 20
subsections() (layeredconfig.PListFile method), 23
subsections() (layeredconfig.PyFile method), 24

T
typed() (layeredconfig.Commandline method), 19
typed() (layeredconfig.ConfigSource method), 28
typed() (layeredconfig.DictSource method), 29
typed() (layeredconfig.Environment method), 18
typed() (layeredconfig.EtcdStore method), 24
typed() (layeredconfig.INIFile method), 20
typed() (layeredconfig.JSONFile method), 21
typed() (layeredconfig.PListFile method), 23
typed() (layeredconfig.PyFile method), 24
typevalue() (layeredconfig.ConfigSource method),

29

W
writable (layeredconfig.ConfigSource attribute), 27
write() (layeredconfig.LayeredConfig static method),

15

Y
YAMLFile (class in layeredconfig), 22

32 Index

	Introduction
	Usage
	Precedence
	Config sources
	Typing
	Subsections
	Cascading
	Modification and persistance

	Using LayeredConfig with argparse
	Embedding configuration in python files
	API reference
	Available sources
	Hardcoded defaults
	Environment variables
	Command-line parameters
	INI files
	JSON files
	YAML files
	PList files
	Python files
	etcd stores

	Implementing custom ConfigSource classes
	Index

