

Welcome to lawes’s documentation!

MongoDB ORM for Python. Lawes is a Python distribution containing tools for working with MongoDB, and is the recommended way to work with MongoDB from Python. It looks like Django. This documentation attempts to explain everything you need to know to use PyMongo

Contents:

	Getting Started
	Overview

	Installation

	Usage

	Models
	Fields

	Field options

	Field types

	Meta options

	QuerySet API reference

	Ensure Index

	QuerySet API

	Model define reference

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

	Release:	1.8.0

	Date:	Apr 27, 2017

	Overview

	Installation
	Downloading and installing from source

	Using the development version

	Usage

Overview

Lawes is a Python distribution containing tools for working with MongoDB, and is the recommended way to work with MongoDB from Python.
It looks like Django.
This documentation attempts to explain everything you need to know to use PyMongo.

Installation

You can install Lawes either via the Python Package Index (PyPI)
or from source.

To install using pip:

$ sudo pip install lawes

Downloading and installing from source

Download the version 1.8.0 of Lawes from
https://pypi.python.org/pypi/Lawes

You can install it by doing the following,

$ tar xvfz Lawes
$ cd Lawes
$ python setup.py install

Using the development version

You can clone the repository by doing the following

$ git clone git@github.com:MrLawes/Lawes.git
$ cd Lawes
$ python setup.py install

To update:

$ cd Lawes
$ git pull origin master

The supports:

You must start MongoDB Server first, you can visit https://www.mongodb.com/ and get started.
Testing whether if it is running:

$ mongo
>MongoDB shell version: 2.4.9
>connecting to: test

Usage

Creating a model in model.py (Don’t change the file’s name! The connection is named with file’s name and model’s name)

>>> from lawes.db import models
>>> class Test(models.Model):
>>> name = models.CharField(default='')

Creating a connection in test.py:

>>> from lawes.db import models
>>> conf_dict = {'mongo_uri': 'mongodb://127.0.0.1:27017/', 'db_name': 'testindex'}
>>> models.setup(conf=conf_dict)
>>> from model import Test
>>> if __name__ == '__main__':
>>> obj = Test()
>>> obj.name = 'yourname'
>>> obj.save()

Finding the data in MongoDB:

$ mongo --port 27017
$ use testindex
$ db.model_test.find()
> { "_id" : ObjectId("58fec1221d41c83634580d87"), "name" : "yourname", }

Models

A model is the single, definitive source of information about your data. It contains the essential fields and behaviors of the data you’re storing. Generally, each model maps to a single database table.

	Fields

	Field options
	default

	db_index

	unique

	Field types
	CharField

	IntegerField

	FloatField

	DateTimeField

	BooleanField

	ArrayField

	Automatic primary key fields

	Meta options
	Model Meta options

	db_table

	QuerySet API reference
	objects

	Iteration

	Slicing

	Ensure Index
	init_index()

	QuerySet API
	filter()

	order_by()

	get()

	get_or_create()

	delete()

	Model define reference
	to_dict()

	to_dict_format()

Fields

Creating a model in model.py (Don’t change the file’s name! The connection is named with file’s name and model’s name)

>>> from lawes.db import models
>>> import datetime
>>> class Fruit(models.Model):
>>> name = models.CharField(default='mongo')
>>> num = models.IntegerField(default=88)
>>> price = models.FloatField(default=10.5)
>>> buy_date = models.DateTimeField(default=datetime.datetime.now())
>>> online = models.BooleanField(default=True)
>>> colors = models.ArrayField(default=['green', 'yellow'])

Creating a connection in test.py and running it with ‘python test.py’:

 >>> from lawes.db import models
 >>> conf_dict = {'mongo_uri': 'mongodb://127.0.0.1:27017/', 'db_name': 'testindex'}
 >>> models.setup(conf=conf_dict)
 >>> from model import Fruit
 >>> if __name__ == '__main__':
 >>> obj = Fruit()
>>> obj.save()

Finding the data in MongoDB:

$ mongo --port 27017
> use testindex
> db.model_fruit.find()
> { "_id" : ObjectId("58fecad31d41c839e6db0373"), "num" : 88, "name" : "mongo", "price" : 10.5, "colors" : ["green", "yellow"], "buy_date" : ISODate("2017-04-25T12:04:35.673Z"), "online" : true }

Field options

Each field takes a certain set of field-specific arguments. For example, CharField (and its subclasses) require a default argument which specifies the default value used to store the data.
There’s also a set of common arguments available to all field types. All are optional. Here’s a quick summary of the most often-used ones:

default

The default value for the field. This can be a value. If callable it will be called every time a new object is created.

db_index

If True, a database index will be created for this field.When only call Model.objects.init_index(), the database index does not be created by itself.

unique

If True, this field must be unique throughout the table.

This is enforced at the database level and by model validation. If you try to save a model with a duplicate value in a unique field, an Error will be raised by the model’s save() method.

This option is valid on all field types.

Note that when unique is True, you don’t need to specify db_index, because unique implies the creation of an index.

Field types

CharField

A str field, the default value for this field is ‘’.

IntegerField

A int field, the default value for this field is 0.

FloatField

A float field, the default value for this field is 0.0.

DateTimeField

A Datetime field, the default value for this field is None.

BooleanField

A bool field, the default value for this field is False.

ArrayField

A list field, the default value for this field is [].

Automatic primary key fields

By default, Lawes gives each model the following field:

_id = str

This is a primary key that comes from mongodb’s _id.

Meta options

Give your model metadata by using an inner class Meta, like so:

>>> class Fruit(models.Model):
>>> name = models.CharField(default='mongo')
>>> num = models.IntegerField(default=88)
>>> price = models.FloatField(default=10.5)
>>> buy_date = models.DateTimeField(default=datetime.datetime.now())
>>> online = models.BooleanField(default=True)
>>> colors = models.ArrayField(default=['green', 'yellow'])
>>> class Meta:
>>> db_table = 'my_fruit'

Model Meta options

db_table

The name of the collection in mongodb to use for the model:

Finding the data in MongoDB:

$ mongo --port 27017
> use testindex
 > db.my_fruit.find()

QuerySet API reference

Internally, a QuerySet can be constructed, filtered, sliced, and generally passed around without actually hitting the database. No database activity actually occurs until you do something to evaluate the queryset.

You can evaluate a QuerySet in the following ways:

objects

The most important attribute of a model is the Manager.
It’s the interface through which database query operations are provided to Lawes models and is used to retrieve the instances from the database.
The name is objects. Managers are only accessible via model classes, not the model instances.

Iteration

Iteration. A QuerySet is iterable, and it executes its database query the first time you iterate over it. For example, this will print the headline of all entries in the database:

>>> from model import Fruit
>>> for fruit in Fruit.objects.filter():
>>> print fruit.name

Slicing

Slicing. As explained in Limiting QuerySets, a QuerySet can be sliced, using Python’s array-slicing syntax.
Slicing an unevaluated QuerySet usually returns another unevaluated QuerySet, but Django will execute the database query if you use the “step” parameter of slice syntax, and will return a list.
Slicing a QuerySet that has been evaluated also returns a list.

>>> from model import Fruit
>>> for fruit in Fruit.objects.filter()[:1]:
>>> print fruit.name

Ensure Index

Some database indexs will be created for the fields.

init_index()

If db_index is True, a database index will be created for this field.

>>> from model import Fruit
>>> Fruit.objects.init_index()

QuerySet API

Django provides a range of QuerySet refinement methods that modify either the types of results returned by the QuerySet or the way its SQL query is executed.

filter()

Returns a new QuerySet containing objects that match the given lookup parameters.

The lookup parameters (**kwargs) should be in the format described in Field lookups below. Multiple parameters are joined via AND in the underlying SQL statement.

>>> from models import Fruit
>>> fruits = Fruit.objects.filter(name='mongo')
>>> for fruit in fruits:
>>> print fruit.name

order_by()

By default, results returned by a QuerySet are ordered by the _id in mongo. You can override this on a per-QuerySet basis by using the order_by method.
if there is a ‘-‘ in front of the parameter, it means order desc, else it means order asc.

>>> from models import Fruit
>>> fruits = Fruit.objects.filter().order_by('-name')
>>> for fruit in fruits:
>>> print fruit.name

get()

Returns the object matching the given lookup parameters, which should be in the format described in Field lookups.

get() raises MultipleObjectsReturned if more than one object was found.

get() raises a DoesNotExist exception if an object wasn’t found for the given parameters.

>>> from models import Fruit
>>> fruits = Fruit.objects.get(name='mongo')
>>> fruit.name

get_or_create()

A convenience method for looking up an object with the given kwargs (may be empty if your model has defaults for all fields), creating one if necessary.

Returns a tuple of (object, created), where object is the retrieved or created object and created is a boolean specifying whether a new object was created.

If you want to use get_or_create(), the field must be set unique.

>>> from models import Fruit
>>> obj, created = Fruit.objects.get_or_create(name='mongo')
>>> obj.name

delete()

Performs an SQL delete query on all rows in the QuerySet and returns the number of objects deleted and a dictionary with the number of deletions per object type.

For example, to delete all the entries in a particular blog:

>>> from models import Fruit
>>> Fruit.objects.filter(name='mongo').delete()
>>> for fruit in Fruit.objects.filter(name='mongo'):
>>> print fruit.delete()

Model define reference

to_dict()

A helper function to show all of values for key with dictionary.

>>> from model import Fruit
>>> fruit = Fruit()
>>> print(fruit.to_dict())
>>> {'num': 88, 'name': 'mongo', 'price': 10.5, 'colors': ['green', 'yellow'], 'buy_date': datetime.datetime(2017, 4, 27, 9, 36, 45, 459484), 'online': True}

to_dict_format()

A helper function to show all of values for key with ‘indent=4’ dumped dictionary. The datetime will be string.

>>> from model import Fruit
>>> fruit = Fruit()
>>> print(fruit.to_dict_format())
>>> {
 "name": "mongo",
 "buy_date": "2017-04-27 09:38:01.919688",
 "colors": [
 "green",
 "yellow"
],
 "num": 88,
 "price": 10.5,
 "online": true
 }

Index

 _static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to lawes's documentation!

 		Getting Started

 		Overview

 		Installation

 		Downloading and installing from source

 		Using the development version

 		Usage

 		Models

 		Fields

 		Field options

 		default

 		db_index

 		unique

 		Field types

 		CharField

 		IntegerField

 		FloatField

 		DateTimeField

 		BooleanField

 		ArrayField

 		Automatic primary key fields

 		Meta options

 		Model Meta options

 		db_table

 		QuerySet API reference

 		objects

 		Iteration

 		Slicing

 		Ensure Index

 		init_index()

 		QuerySet API

 		filter()

 		order_by()

 		get()

 		get_or_create()

 		delete()

 		Model define reference

 		to_dict()

 		to_dict_format()

