LatinSquareSolver Documentation
Release 1.0

Nicholas Rutherford

April 21, 2015

Contents

1 Latin Squares Explained
2 How The Solver Works
3 License:

4 Contents:

4.1 Instillation
4.2 Running
4.3 Object Classes . .
4.4 More Information
4.5 License
Python Module Index

LatinSquareSolver Documentation, Release 1.0

Looking to get started right away? Check out the /nstillation and Running pages.

Contents 1

LatinSquareSolver Documentation, Release 1.0

2 Contents

CHAPTER 1

Latin Squares Explained

A Latin Square is a \(N\times N\) matrix where each row, and each column contains the numbers \(\left\{
1,2,\dots,n\right\}\). We then add in \(K\) holes to the square that must be filled in so that each row and column
contain the numbers \(\left\{ 1,2,\dots,n\right\}\). An example Latin Square with \(N=5\text{ and }K=16\) is:

$$\begin{array } {ccccc} \square & 2 & \square & \square & 4\ 3 & \square & 1 & \square & \square\\ \square & 4 &
\square & \square & 1\\ 2 & \square & \square & \square & 3\\ \square & \square & 2 & 1 & \square \end{array }$$

And the solution would be:

$$\begin{array}{ccece} 1 &2 & 5&3 & MN3&5& 1 &4&2\5&4 &3 &2&IN2&1&4&5&3\4&3&
2 & 1 & 5\end{array}$$

LatinSquareSolver Documentation, Release 1.0

4 Chapter 1. Latin Squares Explained

CHAPTER 2

How The Solver Works

The initial solution to this problem would be to use depth first search to iterate through all the possible values for each
hole. Unfortunately the complexity of this problem will cause depth first search to take an infeasible amount of time
for even small problems like the one shown above. Since brute force depth first search is out of the question we need
to come up with clever methods to help it out and this is done with two main methods, forward checking, and arc
consistency. When we are filling in values to the Latin Square we have to make two decisions per branch, which hole
to fill, and what value to put into the hole. We use forward checking to make sure that we select the hole, and value
for that hole that has the highest probability of being correct. Arc Consistency is used to keep track of what the valid
values would be for each hole, and to update this list of values as we fill in the square.

LatinSquareSolver Documentation, Release 1.0

6 Chapter 2. How The Solver Works

CHAPTER 3

License:

GPL

Froa Soffware

This software is licensed under GPLv3. For the full license see: License

LatinSquareSolver Documentation, Release 1.0

8 Chapter 3. License:

CHAPTER 4

Contents:

4.1 Instillation

4.1.1 Using Pip

pip install LatinSquareSolver

4.1.2 Directly From Source

git clone https://github.com/nicholasRutherford/LatinSquareSolver.git

Building Documentation

If you want to build the documentation you’ll need some extra packages:

pip install sphinx sphinx-rtd-theme Pygments

Then it can be built with:

sphinx-build -a -b html docs/source/ docs/build/

4.2 Running

4.2.1 Loading a square:

If you have a square to solve already, you can simply load it into the solver. The format for the square is as follows:
1. Each row of text is a row of the square.
2. Each element is an integer, separated by a space.
3. Holes are denoted as non-intger, non-space characters. ie * or _.

For example if we had the following in a file square.txt:

LatinSquareSolver Documentation, Release 1.0

012 34
12 3 4 _
23401
3012
4 01 2 3

Then we can run:

from LatinSquareSolver.solver import Solver

rawFile = open("square.txt", "r'")
square = rawFile.read()
rawFile.close ()

solv = Solver ()
solv.loadSquare (square)
solv.solveSquare ()
print solv

Which will give us:

Original Square:

012 3 4
12 3 4 %
23401
3012
4 01 2 3

Solved Square:

01234
12340
23401
34’01 2
40123

4.2.2 Generating a square:

We can also generate random squares as well by using the randSquare (n, k) function. It requires to parameters:
* \(N\) - The side length of the square.
* \(K\) - The number of holes to add to the square.

Note: The squares generated will be solvable, but the solution is not guaranteed to be unique.

from LatinSquareSolver.solver import Solver

solv = Solver ()

solv.randSquare (10, 25) # 10 x 10 square with 25 holes
solv.solveSquare ()

print solv

Which will give us:

Original Square:

3 % % x 7T % x *x * 2
8 96 52 %« 3417
6 4308195
23 % 96 %8 x1

10 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

01 742556 3 %
4521 %6 9073
*+ 85419236
12 x5367x*x20
907 6 314238
56329701 * %

Solved Square:
3 47170"7 57

rqgr

~
~

~

W 3 0w U1 N o O B o

’

~
~

’

~
~
~

~
o O DN O O W J W
~
~

N oy 0 b J W0 Ww o

~
~

’

8
3
1
7
5
9
2
6
4
0

QN B O JWwo o o
S 00 O o W WO O JdDN

~

9
4
2
8
6
0
3
7
5
1

OO R J9 ODN oY
O W U= 0 oy ODN
~
NP W w o N> 0O

~

4.3 Object Classes

4.3.1 Solver

Solves a latin square.

class LatinSquareSolver.solver.Solver

str ()
Pretty output

loadSquare (rawString)
Load a latin square from a string

Parameters rawStr (szr) — The latin square as string

Notes

The elements must be intgers seperated by spaces. The holes are denoted as non-integer, non-space ele-
ments, such as ‘“*’, or °_ . For example:

01234
1234 _
23401
34012
40123

randSquare (n, k, seed=None, randomise=True)
Initialize a random latin square.

Parameters
* n (int) — The side length of the square
* k (int) — The number of holes in the grid

* seed (inf) — The seed for the random number generator

4.3. Object Classes 11

LatinSquareSolver Documentation, Release 1.0

* randomize (bool) — Whether to randomize the grid, or leave with the basic grid layout
Notes

The Latin Square generated will be solveable, though the solution is not guarteed to be unique. If random-
ize is not selected the square will remain in the basic state where each row is one offset from the previous.

Ie for N =5:
01 2 3 4
12340
23401
34012
4 01 2 3

solveSquare ()
Solve the loaded latin square.

4.3.2 LatinSquare

Represents a Latin Square and includes methods needed to search for a solution

class LatinSquareSolver.latinSquare.Hole (n)
Represent a square in a Latin square that needs to be filled in, aka a hole in the square.

Notes

Keeps track of the location of the hole, the possible values that the hole can take, and whether the value has been
set.

class LatinSquareSolver.latinSquare.LatinSquare

_str__ ()
Pretty output. Hole values are postfixed with °.

Returns The pretty output.
Return type str

addHoles ()
Randomly initializes the holes in the grid.

Notes

This randomly adds K holes to the graph. The result will be a solvable Latin square, but there may be more
then one solution to it.

checkHoleOptions ()
Removes possible options from each hole based on the non-hole values.

isSolved()
Determine is the current square is correctly solved

Returns True if it is correctly solved.

Return type bool

12 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

Notes

Determines if the square is correct by making sure that each row and column contains all of the elements
from O to n. This method will fail quicker than counting the values for each row and column and making
sure there are no duplicates.

isvalid()
Whether a partially filled in Latin square has valid hole values

Returns True if everything is valid so far, False otherwise
Return type bool

loadSquare (rawStr)
Load a latin square from a string

Parameters rawStr (szr) — The latin square as string

Raises Runt imeError — Invalid Square Given

Notes

The elements must be intgers seperated by spaces. The holes are denoted as non-integer, non-space ele-

ments, such as “*’, or ‘_’. For example:
01 2 3 4
1 2 3 4 _
23401
3012
4 01 2 3

nextStates ()
Generate all the squares corresponding to the options of the hole with the least number of options.

Returns List of squares corresponding to selecting one of the possible values of the hole h,
where h has the smallest number of possible values out of all the holes.

Return type [latinSquare]

Notes

The list of squares is calculated lazily, where the value is not calculated until it is actually used. This cuts
down on the number of expensive deepcopy calls needed.

randSquare (n, k, seed=1337, randomise=True)
Initialize a random latin square.

Parameters
* n (int) — The side length of the square
¢ k (int) — The number of holes in the grid
* seed (inf) — The seed for the random number generator
* randomize (bool) — Whether to randomize the grid, or leave with the basic grid layout

Raises RuntimeError —if K> N.

4.3.

Object Classes 13

LatinSquareSolver Documentation, Release 1.0

Notes

If randomize is not selected the square will remain in the basic state where each row is one offset from the
previous. Ie for N = 5:

01234
12340
23401
34012
40123

randomise ()
Takes a correct Latin square and randomizes the entries.

Notes

The randomization is done by performing an in place randomization of the rows, and then of the columns.
As long as the Latin square was valid before, it will be valid afterwards.

strHoles ()
Pretty output. Holes are marked with an *.

Returns The pretty output.
Return type str

updateHoleOptions (h)
Removes possible options from each hole based on the values of the given hole.

Parameters h (Hole) — The hole to check all the other holes against

validCols ()
Determines whether the columns are valid.

Returns True if the columns are valid, False otherwise.

Return type bool

Notes

Determines validity by making sure no value is repeated twice in each column. This is more expensive
than the method used in isSolved, but necessary since there could be holes in the grid.

validHoles ()
Determine if the values for the holes is valid.

Returns If the holes have valid values will return True

Return type bool

Notes

Determines validity by checking that each non-set hole has at least one option for it’s value.

validRows ()
Determines whether the rows are valid.

Returns True if the rows are valid

14 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

Return type bool

Notes

Determines validity by making sure no value is repeated twice in each row. This is more expensive than
the method used in isSolved, but necessary since there could be holes in the grid.

4.4 More Information

4.4.1 Implementation Details

In order to test our implementation we randomly generate Latin Squares to use. We do this by creating a naive Latin
Square where we start off with all the elements in order, and then shift each row below over by one, like so:

$$\begin{array}{ccecc} 1 &2 &3 &4 &5N2&3&4&5& IN\3&4&5&1 &2\ 4&5&1&2&3\5&1&
2 & 3 & 4 \end{array}$$

Once we have this naive square we randomize the columns, and then randomize the rows. Once we have our random
square we randomly remove \(K\) holes from it. This will result in a solvable Latin Square, though the solution is not
guaranteed to be unique. For the purposes of this problem the non-uniqueness does not affect anything.

To help speed up the solve time we used both forward checking and arc consistency. For arc consistency we keep a list
of possible values for each hole. When the grid is initialized we go through each hole and update the possible values
it can take. After this point any time we assign a value to a hole we go through any hole in the same column or row
and update their remaining possibilities.

We use forward checking to pick the best hole to evaluate by picking the hole that has the least number of possible
options. Normally you would want to pick the best possible value from the list of possible values for each hole, but
we have no more information to go on so we simply pick the lowest possible option and check it. Once we’ve selected
a value we check and make sure that the grid is still solvable by making sure that all remaining holes have at least
one possible option, and no row or column has double elements. If we find that we selected a value that results in an
invalid grid we will stop the search and backtrack until we have a valid grid again.

One last python specific optimization is that we use a generator to list all the children of a search node. Previously we
were creating all the nodes, which involve an expensive copy operation, even if we never looked at the other nodes.
By using a generator the nodes are only created when they are actually looked at, which requires significantly less
computation.

4.4.2 How Well It Works

To test how well our implementation works we ran two tests. For the first we solved grids with \(N=K\), which can
be seen in figure 1. For each value of \(N\) we generated 10 random grids and plotted the mean time to solve, and the
standard deviation among the solve times. For the second test we plotted the average solve time for a 10x10 grid with
an increasing number of holes. For each data point we ran the solver on 50 random grids and plotted the mean solve
time. The second test can be seen in figure 2.

From the results above we can see that the solver does produce results in reasonable time. For a \(100\times 100\) grid
with 100 holes it took on average 3 seconds to find the solution. It also shows a clear experiential trend that we would
expect to see with a problem like this. Looking at figure 2 we see that the solver runs into significant trouble once the
grid is 50-75% empty, which is the expected result of a Latin Square solver so this is not a cause for concern.

4.4. More Information 15

LatinSquareSolver Documentation, Release 1.0

Grid Complexity vs Time to Solve

35
30
25
=
3 20
=
(=]
wl
=]
[+1]
2 1s
=
10
/
05 =
_--""'_F-P“{
e
_———'___.df
e
0y —
10 20 0 40 50 &0 70 80 90 100
Size of Grid and Number of Holes
Figure 4.1: Figure 1: Time to solve for different sizes.
10 10 X 10 Grid
08
= 06 |
g |
=
wn |I |
'8 III |J|
u I| |I |' |
[=
': 04 | I“I|
[T |
|
[] |
[] |
[. _
02 N
| \ _.-'\,——""’_/_
—, | N —
Y
——— /-
60—
0 20 40 &0 a0 100

Number of Holes

Figure 4.2: Figure 2: Solve time for increasing number of holes.

16 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

4.5 License

4.5.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

4.5.2 Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change
all versions of a program—to make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any other work released this way by
its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2)
offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software.
For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change
the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to
those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict develop-
ment and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that
patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents
cannot be used to render the program non-free.

4.5. License 17

http://fsf.org/

LatinSquareSolver Documentation, Release 1.0

The precise terms and conditions for copying, distribution and modification follow.

4.5.3 TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work
“based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interac-
tion with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body,
or, in the case of interfaces specified for a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only
to enable use of the work with that Major Component, or to implement a Standard Interface for which an implemen-
tation is available to the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activi-
ties. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the work, and the source code
for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by
intimate data communication or control flow between those subprograms and other parts of the work.

18 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided
the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program.
The output from running a covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for running those works, provided that you comply
with the terms of this License in conveying all material for which you do not control copyright. Those thus making or
running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling
obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting
or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to
the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and
you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and

4.5. License 19

LatinSquareSolver Documentation, Release 1.0

all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions
of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey
the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source
for all the software in the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

¢) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such
an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a
network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or common use of that class
of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or
expects or is expected to use, the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use
of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its
Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

20 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to
the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product
in which it has been modified or installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format
that is publicly documented (and with an implementation available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under applicable law. If additional permissions apply
only to part of the Program, that part may be used separately under those permissions, but the entire Program remains
governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that
copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases
when you modify the work.) You may place additional permissions on material, added by you to a covered work, for
which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized
by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appro-
priate Legal Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or mod-
ified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If
the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with
a term that is a further restriction, you may remove that term. If a license document contains a further restriction but
permits relicensing or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

4.5. License 21

LatinSquareSolver Documentation, Release 1.0

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including
any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation
of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise
does not require acceptance. However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or
propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or sub-
dividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s
predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the
Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

22 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated,
not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringe-
ment). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is
not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients.
“Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable
patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would receive the covered work
from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringe-
ment that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a
work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey
the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

4.5. License 23

LatinSquareSolver Documentation, Release 1.0

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of
the GNU General Public License “or any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for
the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are im-
posed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according
to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil
liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

4.5.4 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

24 Chapter 4. Contents:

LatinSquareSolver Documentation, Release 1.0

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public License.
Of course, your program’s commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer”
for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-not-lIgpl.htmI>.

4.5. License 25

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

LatinSquareSolver Documentation, Release 1.0

26

Chapter 4. Contents:

Python Module Index

LatinSquareSolver.latinSquare, 12
LatinSquareSolver.solver, 11

27

LatinSquareSolver Documentation, Release 1.0

28

Python Module Index

Index

Symbols

_str__ () (LatinSquareSolver.latinSquare.LatinSquare

method), 12
__str__() (LatinSquareSolver.solver.Solver method), 11

A

addHoles() (LatinSquareSolver.latinSquare.LatinSquare

method), 12

C

checkHoleOptions() (LatinSquare-
Solver.latinSquare.LatinSquare method),
12

H

Hole (class in LatinSquareSolver.latinSquare), 12

isSolved() (LatinSquareSolver.latinSquare.LatinSquare
method), 12

(LatinSquareSolver.latinSquare.LatinSquare
method), 13

isValid()

L

LatinSquare (class in LatinSquareSolver.latinSquare), 12
LatinSquareSolver.latinSquare (module), 12
LatinSquareSolver.solver (module), 11

loadSquare() (LatinSquare-
Solver.latinSquare.LatinSquare method),
13

loadSquare() (LatinSquareSolver.solver.Solver method),
11

N

nextStates() (LatinSquareSolver.latinSquare.LatinSquare
method), 13

R

randomise() (LatinSquareSolver.latinSquare.LatinSquare
method), 14

randSquare() (LatinSquare-
Solver.latinSquare.LatinSquare method),
13

randSquare() (LatinSquareSolver.solver.Solver method),
11

S

Solver (class in LatinSquareSolver.solver), 11

solveSquare() (LatinSquareSolver.solver.Solver method),
12

strHoles() (LatinSquareSolver.latinSquare.LatinSquare

method), 14

U

updateHoleOptions()
Solver.latinSquare.LatinSquare
14

(LatinSquare-
method),

Vv

validCols() (LatinSquareSolver.latinSquare.LatinSquare
method), 14

validHoles() (LatinSquareSolver.latinSquare.LatinSquare
method), 14

validRows() (LatinSquareSolver.latinSquare.LatinSquare
method), 14

29

	Latin Squares Explained
	How The Solver Works
	License:
	Contents:
	Instillation
	Running
	Object Classes
	More Information
	License

	Python Module Index

