

lars

lars is a small Python framework for working with httpd logs (from a variety
of common servers like Apache, nginx, and IIS). The primary purpose is to
provide a set of conversions to ease loading such logs into relational
databases, but numerous other possibilities can be realized with a little
imagination. Which is to say: lars is not a web log analyzer. However, it
is a toolkit that makes it quite easy to construct your own analyzer.

Links

	The code is licensed under the MIT license

	The source code can be obtained from GitHub, which also hosts the bug
tracker

	The documentation (which includes installation instructions and several
examples) can be read on ReadTheDocs

	The build status can be observed on Travis CI

Table of Contents

	1. Install
	1.1. Pre-requisites

	1.2. Ubuntu Linux

	1.3. Other Platforms

	2. Introduction
	2.1. Filtering rows

	2.2. Manipulating row content

	3. API Reference
	3.1. lars.apache - Reading Apache Logs

	3.2. lars.iis - Reading IIS Logs

	3.3. lars.csv - Writing CSV Files

	3.4. lars.sql - Direct Database Output

	3.5. lars.geoip - GeoIP Database Access

	3.6. lars.datatypes - Web Log Datatypes

	3.7. lars.progress - Rendering Progress

	3.8. lars.dns - DNS Resolution

	3.9. lars.cache - Cache Decorators

	3.10. lars.exc - Base Exceptions

	4. Change log
	4.1. Release 1.0 (2017-01-04)

	4.2. Release 0.3 (2014-09-07)

	4.3. Release 0.2 (2013-07-28)

	4.4. Release 0.1 (2013-06-09)

	5. License
	5.1. DateTime, Date, and Time documentation license

	5.2. _strptime license

	5.3. IPNetwork & IPAddress documentation license

Indices and tables

	Index

	Module Index

	Search Page

1. Install

lars is distributed in several formats. The following sections detail
installation on a variety of platforms.

1.1. Pre-requisites

Where possible, installation methods will automatically handle all mandatory
pre-requisites. However, if your particular installation method does not handle
dependency installation, then you will need to install the following Python
packages manually:

	pygeoip - The pure Python API for MaxMind GeoIP databases

	ipaddress - Google’s IPv4 and IPv6 address handling library. This is
included as standard in Python 3.3 and above.

1.2. Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the Waveform PPA as follows
(this also ensures you are kept up to date as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-lars

1.3. Other Platforms

If your platform is not covered by one of the sections above, lars is
available from PyPI and can therefore be installed with the Python setuptools
easy_install tool:

$ easy_install lars

Or the (now deprecated) distribute pip tool:

$ pip install lars

If you do not have either of these tools available, please install the Python
setuptools package first.

2. Introduction

A typical lars script opens some log source, typically a file, and uses the
source and target wrappers provided by lars to convert the log entries into
some other format (potentially filtering and/or modifying the entries along the
way). A trivial script to convert IIS W3C style log entries into a CSV file is
shown below:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)

Going through this section by section we can see the following:

	The first couple of lines import the necessary modules that we’ll need; the
standard Python io module for opening files, and the iis and
csv modules from lars for converting the data.

	Using io.open() we open the input file (with mode 'r' for reading)
and the output file (with mode 'wb' for creating a new file and writing
(binary mode) to it)

	We wrap infile (the input file) with IISSource to
parse the input file, and outfile (the output file) with
CSVTarget to format the output file.

	Finally, we use a simple loop to iterate over the rows in the source file,
and the write() method to write them to the
target.

This is the basic structure of most lars scripts. Most extra lines for
filtering and manipulating rows appear within the loop at the end of the file,
although sometimes extra module configuration lines are required at the top.

2.1. Filtering rows

The row object declared in the loop has attributes named after the columns of
the source (with characters that cannot appear in Python identifiers replaced
with underscores). To see the structure of a row you can simply print one and
then terminate the loop:

import io
from lars import iis, csv

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 print(row)
 break

Given the following input file (long lines indented for readability):

#Software: Microsoft Internet Information Services 6.0
#Version: 1.0
#Date: 2002-05-24 20:18:01
#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem
 cs-uri-query sc-status sc-bytes cs-bytes time-taken cs(User-Agent)
 cs(Referrer)
2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm -
 200 7930 248 31
 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server)
 http://64.224.24.114/

This will produce this output on the command line:

Row(date=Date(2002, 5, 24), time=Time(20, 18, 1),
 c_ip=IPv4Address(u'172.224.24.114'), cs_username=None,
 s_ip=IPv4Address(u'206.73.118.24'), s_port=80, cs_method=u'GET',
 cs_uri_stem=Url(scheme='', netloc='', path=u'/Default.htm', params='',
 query_str='', fragment=''), cs_uri_query=None, sc_status=200,
 sc_bytes=7930, cs_bytes=248, time_taken=31.0,
 cs_User_Agent=u'Mozilla/4.0 (compatible; MSIE 5.01; Windows 2000
 Server)', cs_Referrer=Url(scheme=u'http', netloc=u'64.224.24.114',
 path=u'/', params='', query_str='', fragment=''))

From this one can see that field names like c-ip have been converted into
c_ip (- is an illegal character in Python identifiers). Furthermore it
is apparent that instead of simple strings being extracted, the data has been
converted into a variety of appropriate datatypes
(Date for the date field,
Url for the cs-uri-stem field, and so on). This
significantly aids in filtering rows based upon sub-attributes of the extracted
data.

For example, to filter on the year of the date:

if row.date.year == 2002:
 target.write(row)

Alternatively, you could filter on whether or not the client IP belongs in a
particular network:

if row.c_ip in datatypes.network('172.0.0.0/8'):
 target.write(row)

Or use Python’s string methods to filter on any string:

if row.cs_User_Agent.startswith('Mozilla/'):
 target.write(row)

Or any combination of the above:

if row.date.year == 2002 and 'MSIE' in row.cs_User_Agent:
 target.write(row)

2.2. Manipulating row content

If you wish to modify the output structure,the simplest method is to declare
the row structure you want at the top of the file (using the
row() function) and then construct rows with the new
structure in the loop (using the result of the function):

import io
from lars import datatypes, iis, csv

NewRow = datatypes.row('date', 'time', 'client', 'url')

with io.open('webserver.log', 'r') as infile, \
 io.open('output.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source, csv.CSVTarget(outfile) as target:
 for row in source:
 new_row = NewRow(row.date, row.time, row.c_ip, row.cs_uri_stem)
 target.write(new_row)

There is no need to convert column data back to strings for output; all
datatypes produced by lars source adapters have built-in string conversions
which all target adapters know to use.

3. API Reference

The framework is designed in a modular fashion with a separate module for each
log input format, each data output format, a few auxilliary modules for the
datatypes exposed by the framework and their functionality. Where possible,
standards dictating formats are linked in the API reference.

Each module comes with documentation including examples of usage. The best way
to learn the framework is to peruse the API reference and try out the examples,
modifying them to suit your purposes.

	3.1. lars.apache - Reading Apache Logs
	3.1.1. Classes

	3.1.2. Data

	3.1.3. Exceptions

	3.1.4. Examples

	3.2. lars.iis - Reading IIS Logs
	3.2.1. Classes

	3.2.2. Exceptions

	3.2.3. Examples

	3.2.4. Note for maintainers

	3.3. lars.csv - Writing CSV Files
	3.3.1. Classes

	3.3.2. Data

	3.3.3. Examples

	3.4. lars.sql - Direct Database Output
	3.4.1. Classes

	3.4.2. Exceptions

	3.4.3. Examples

	3.5. lars.geoip - GeoIP Database Access
	3.5.1. Functions

	3.5.2. Examples

	3.6. lars.datatypes - Web Log Datatypes
	3.6.1. Classes

	3.6.2. Functions

	3.7. lars.progress - Rendering Progress
	3.7.1. Classes

	3.7.2. Examples

	3.8. lars.dns - DNS Resolution
	3.8.1. Functions

	3.9. lars.cache - Cache Decorators
	3.9.1. Functions

	3.10. lars.exc - Base Exceptions
	3.10.1. Exceptions

3.1. lars.apache - Reading Apache Logs

This module provides a wrapper for Apache log files, typically in common or
combined format (but technically any Apache format which can be unambiguously
parsed with regexes).

The ApacheSource class is the major element that this module exports;
this is the class which wraps a file-like object containing a common, combined,
or otherwise Apache formatted log file and yields rows from it as tuples.

3.1.1. Classes

	
class lars.apache.ApacheSource(source, log_format=COMMON)

	Wraps a stream containing a Apache formatted log file.

This wrapper converts a stream containing an Apache log file into an
iterable which yields tuples. Each tuple has fieldnames derived from the
following mapping of Apache format strings (which occur in the optional
log_format parameter):

	Format String

	Field Name

	%a

	remote_ip

	%A

	local_ip

	%B

	size

	%b

	size

	%{Foobar}C

	cookie_Foobar (1)

	%D

	time_taken_ms

	%{FOOBAR}e

	env_FOOBAR (1)

	%f

	filename

	%h

	remote_host

	%H

	protocol

	%{Foobar}i

	req_Foobar (1)

	%k

	keepalive

	%l

	ident

	%m

	method

	%{Foobar}n

	note_Foobar (1)

	%{Foobar}o

	resp_Foobar (1)

	%p

	port

	%{canonical}p

	port

	%{local}p

	local_port

	%{remote}p

	remote_port

	%P

	pid

	%{pid}P

	pid

	%{tid}P

	tid

	%{hextid}P

	hextid

	%q

	url_query

	%r

	request

	%R

	handler

	%s

	status

	%t

	time

	%{format}t

	time

	%T

	time_taken

	%u

	remote_user

	%U

	url_stem

	%v

	server_name

	%V

	canonical_name

	%X

	connection_status

	%I

	bytes_received

	%O

	bytes_sent

Notes:

	Any characters in the field-name which are invalid in a Python
identifier are converted to underscore, e.g. %{foo-bar}C becomes
"cookie_foo_bar".

Warning

The wrapper will only operate on log_format specifications that can
be unambiguously parsed with a regular expression. In particular, this
means that if a field can contain whitespace it must be surrounded by
characters that it cannot legitimately contain (or cannot contain
unescaped versions of). Typically double-quotes are used as Apache
(from version 2.0.46) escapes double-quotes within %r, %i, and
%o. See Apache’s Custom Log Formats documentation for full
details.

	Parameters

	
	source – A file-like object containing the source stream

	format (str) – Defaults to COMMON but can be set to any valid
Apache LogFormat string

	
source

	The file-like object that the source reads rows from

	
count

	Returns the number of rows successfully read from the source

	
log_format

	The Apache LogFormat string that the class will use to decode rows

	
close()

	Close the source; attempting to read further rows is not permitted
after this method is called.

3.1.2. Data

	
lars.apache.COMMON

	This string contains the Apache LogFormat string for the common log format
(sometimes called the CLF). This is the default format for the
ApacheSource class.

	
lars.apache.COMMON_VHOST

	This string contains the Apache LogFormat strnig for the common log format
with an additional virtual-host specification at the beginning of the
string. This is a typical configuration used by several distributions of
Apache which are configured with virtualhosts by default.

	
lars.apache.COMBINED

	This string contains the Apache LogFormat string for the NCSA
combined/extended log format. This is a popular variant that many server
administrators use as it combines the COMMON format with
REFERER and USER_AGENT formats.

	
lars.apache.REFERER

	This string contains the (rudimentary) referer log format which is
typically used in conjunction with the COMMON format.

	
lars.apache.USER_AGENT

	This string contains the (rudimentary) user-agent log format which is
typically used in conjunction with the COMMON format.

3.1.3. Exceptions

	
class lars.apache.ApacheError(message, line_number=None, line=None)

	Base class for ApacheSource errors.

Exceptions of this class take the optional arguments line_number and line
for specifying the index and content of the line that caused the error
respectively. If specified, the __str__() method is overridden to
include the line number in the error message.

	Parameters

	
	message (str) – The error message

	line_number (int) – The 1-based index of the line that caused the error

	line (str) – The content of the line that caused the error

	
exception lars.apache.ApacheWarning

	Raised when an error is encountered in parsing a log row.

3.1.4. Examples

A typical usage of this class is as follows:

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
 with io.open('access.csv', 'wb') as outfile:
 with apache.ApacheSource(infile) as source:
 with csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)

3.2. lars.iis - Reading IIS Logs

This module provides a wrapper for W3C extended log files, typically used by
the Microsoft IIS web-server.

The IISSource class is the major element that this module provides;
this is the class which wraps a file-like object containing a W3C formatted log
file and yields rows from it as tuples.

3.2.1. Classes

	
class lars.iis.IISSource(source)

	Wraps a stream containing a IIS formatted log file.

This wrapper converts a stream containing a IIS formatted log file into an
iterable which yields tuples. Each tuple is a namedtuple instance with the
fieldnames of the tuple being the sanitized versions of the field names in
the original log file (as specified in the #Fields directive).

The directives contained in the file can be obtained from attributes of the
wrapper itself (useful in the case that relative timestamps, e.g. with the
#Date directive, are being used) in which case the attribute will be
the lower-cased version of the directive name without the # prefix.

	Parameters

	source – A file-like object containing the source stream

	
count

	Returns the number of rows successfully read from the source

	
date

	The timestamp specified by the last encountered #Date directive (if
any), as a DateTime instance

	
fields

	A sequence of fields names found in the #Fields directive in the
file header

	
finish

	The timestamp found in the #End-Date directive (if any, as a
DateTime instance)

	
remark

	The remarks recorded in the #Remark directive (if any)

	
software

	The name of the software which produced the source file as given by
the #Software directive (if any)

	
start

	The timestamp found in the #Start-Date directive (if any), as a
DateTime instance

	
version

	The version of the source file, as given by the #Version directive
in the header

3.2.2. Exceptions

	
class lars.iis.IISError(message, line_number=None, line=None)

	Base class for IISSource errors.

Exceptions of this class take the optional arguments line_number and line
for specifying the index and content of the line that caused the error
respectively. If specified, the __str__() method is overridden to
include the line number in the error message.

	Parameters

	
	message (str) – The error message

	line_number (int) – The 1-based index of the line that caused the error

	line (str) – The content of the line that caused the error

	
exception lars.iis.IISDirectiveError(message, line_number=None, line=None)

	Raised when an error is encountered in any #Directive.

	
exception lars.iis.IISFieldsError(message, line_number=None, line=None)

	Raised when an error is encountered in a #Fields directive.

	
exception lars.iis.IISVersionError(message, line_number=None, line=None)

	Raised for a #Version directive with an unknown version is found.

	
exception lars.iis.IISWarning

	Raised when an error is encountered in parsing a log row.

3.2.3. Examples

A typical usage of this class is as follows:

import io
from lars import iis, csv

with io.open('logs\iis.txt', 'rb') as infile:
 with io.open('iis.csv', 'wb') as outfile:
 with iis.IISSource(infile) as source:
 with csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)

3.2.4. Note for maintainers

The draft standard for the W3C Extended Log File Format is not well written
(see the various notes and comments in the code); actual practice deviates from
the draft in several areas, and the draft is deficient in describing what is
potentially permitted in other areas.

Examples of the format as produced by IIS (the major user of the draft) can be
found on MSDN. When maintaining the code below, please refer to both the
draft (for information on what could be included in W3C log files) as well as
the examples (for information on what typically is included in W3C log files,
even when it outright violates the draft), and bear in mind Postel’s Law.

3.3. lars.csv - Writing CSV Files

This module provides a target wrapper for CSV (Comma Separated Values)
formatted text files, which are typically used as a generic source format for
bulk loading databases.

The CSVTarget class is the major element that this module provides; it
is a standard target class (a context manager with a
write() method that accepts row tuples).

3.3.1. Classes

	
class lars.csv.CSVTarget(fileobj, header=False, dialect=CSV_DIALECT, encoding='utf-8', **kwargs)

	Wraps a stream to format rows as CSV (Comma Separated Values).

This wrapper provides a simple write() method which can be used to
format row tuples as comma separated values in a variety of common
dialects. The dialect defaults to CSV_DIALECT which produces a
typical CSV file compatible with the vast majority of products.

If you desire a different output format you can either specify a different
value for the dialect parameter, or if you only wish to use a minimal
modification of the dialect you can override its attributes with keyword
arguments. For example:

CSVTarget(outfile, dialect=CSV_DIALECT, lineterminator='\n')

The encoding parameter controls the character set used in the output.
This defaults to UTF-8 which is a sensible default for most modern systems,
but is a multi-byte encoding which some legacy systems (notably mainframes)
may have troubles with. In this case you can either select a single byte
encoding like ISO-8859-1 or even EBCDIC. See Python standard encodings
for a full list of supported encodings.

Warning

The file that you wrap with CSVTarget must be opened in
binary mode ('wb') partly because the dialect dictates the line
terminator that is used, and partly because the class handles its own
character encoding.

	
close()

	Closes the CSV output. Further calls to write() are not permitted
after calling this method.

	
write(row)

	Write the specified row (a tuple of values) to the wrapped output.
All provided rows must have the same number of elements. There is no
need to convert elements of the tuple to str; this will be
handled implicitly.

	
class lars.csv.CSV_DIALECT

	This is the default dialect used by the CSVTarget class which has
the following attributes:

	Attribute

	Value

	delimiter

	',' (comma)

	quotechar

	'"' (double-quote)

	quoting

	QUOTE_MINIMAL

	lineterminator

	'\r\n' (DOS line breaks)

	doublequote

	True

	escapechar

	None

This dialect is compatible with Microsoft Excel and the vast majority of
of other products which accept CSV as an input format. However, please note
that some UNIX based database products require UNIX style line endings
('\n') in which case you may wish to override the lineterminator
attribute (see CSVTarget for more information).

	
class lars.csv.TSV_DIALECT

	This is a dialect which produces tab-delimited files, another common data
exchange format also supported by Microsoft Excel and numerous database
products. This dialect has the following properties:

	Attribute

	Value

	delimiter

	'\t' (tab)

	quotechar

	'"' (double-quote)

	quoting

	QUOTE_MINIMAL

	lineterminator

	'\r\n' (DOS line breaks)

	doublequote

	True

	escapechar

	None

3.3.2. Data

	
lars.csv.QUOTE_NONE

	This value indicates that no values should ever be quoted, even if they
contain the delimiter character. In this case, any delimiter characters
appearing the data will be preceded by the dialect’s escapechar which
should be set to an appropriate value. If escapechar is not set (None)
an exception will be raised if any character that require quoting are
encountered.

	
lars.csv.QUOTE_MINIMAL

	This is the default quoting mode. In this mode the writer will only quote
those values that contain the delimiter or quotechar characters, or
any of the characters in lineterminator.

	
lars.csv.QUOTE_NONNUMERIC

	This value tells the writer to quote all numeric (int and float) values.

	
lars.csv.QUOTE_ALL

	This value simply tells the writer to quote all values written.

3.3.3. Examples

A typical example of working with the class is shown below:

import io
from lars import apache, csv

with io.open('/var/log/apache2/access.log', 'rb') as infile:
 with io.open('apache.csv', 'wb') as outfile:
 with apache.ApacheSource(infile) as source:
 with csv.CSVTarget(outfile, lineterminator='\n') as target:
 for row in source:
 target.write(row)

3.4. lars.sql - Direct Database Output

This module provides a target wrapper for SQL-based databases, which can
provide a powerful means of analyzing log data.

The SQLTarget class accepts row objects in its
write() method and automatically generates the required SQL
INSERT statements to append records to the specified target table.

The implementation has been tested with SQLite3 (built into Python), and
PostgreSQL, but should work with any PEP-249 (Python DB API 2.0) compatible
database cursor. A list of available Python database drives is maintained on
the Python wiki DatabaseInterfaces page.

3.4.1. Classes

	
class lars.sql.SQLTarget(db_module, connection, table, insert=1, commit=1000, create_table=False, drop_table=False, ignore_drop_errors=True, str_type='VARCHAR(1000)', int_type='INTEGER', fixed_type='DOUBLE', bool_type='SMALLINT', date_type='DATE', time_type='TIME', datetime_type='TIMESTAMP', ip_type='VARCHAR(53)', hostname_type='VARCHAR(255)', path_type='VARCHAR(260)')

	Wraps a database connection to insert row tuples into an SQL database
table.

This wrapper provides a simple write() method which can be used to
insert row tuples into a specified table, which can optionally by created
automatically by the wrapper before insertion of the first row. The wrapper
must be passed a database connection object that conforms to the Python
DB-API (version 2.0) as defined by PEP-249.

The db_module parameter must be passed the module that defines the
database interface (this odd requirement is so that the wrapper can look up
the parameter style that the interface uses, and the exceptions that it
declares).

The connection parameter must be given an active database connection
object (presumably belonging to the module passed to db_module).

The table parameter is the final mandatory parameter which names the
table that values are to be inserted into. If the table name requires
quoting in the target SQL dialect, you should include such quoting in the
table value (this class does not try and discern what database engine
you are connecting to and thus has no idea about non-standard quoting
styles like `MySQL` or [MS-SQL]).

The insert parameter controls how many rows are inserted in a single
INSERT statement. If this is set to a value greater than 1 (the
default), then the write() method will buffer rows until the count
is reached and attempt to insert all rows at once.

New in version 0.2.

Warning

This is a relatively risky option. If an error occurs while inserting
one of the rows in a multi-row insert, then normally all rows in the
buffer will fail to be inserted, but you will not be able to determine
(in your script) which row caused the failure, or which rows should be
re-attempted.

In other words, only use this if you are certain that failures cannot
occur during insertion (e.g. if the target table has no constraints,
no primary/unique keys, and no triggers which might signal failure).

The commit parameter controls how often a COMMIT statement is
executed when inserting rows. By default, this is 1000 which is usually
sufficient to provide decent performance but may (in certain database
engines with fixed size transaction logs) cause errors, in which case you
may wish to specify a lower value. This parameter must be a multiple of
the value of the insert parameter (otherwise, the COMMIT statement
will not be run reliably).

If the create_table parameter is set to True (it defaults to False), when
the write() method is first called, the class will determine column
names and types from the row passed in and will attempt to generate and
execute a CREATE TABLE statement to set up the target table
automatically. The database types that are used in the CREATE TABLE
statement are controlled by other optional parameters and are documented in
the table below:

	Parameter

	Default Value (SQL)

	str_type

	VARCHAR(1000) - typically used for URL fields.

	int_type

	INTEGER - used for fields like status and size.
If your server is serving large binaries you may wish
to use a 64-bit type like BIGINT here instead.

	fixed_type

	DOUBLE - used for fields like time_taken. Some
users may wish to change this an appropriate
NUMERIC or DECIMAL specification for
precision.

	bool_type

	SMALLINT - used for any boolean values in the
input (0 for False, 1 for True)

	date_type

	DATE

	time_type

	TIME

	datetime_type

	TIMESTAMP - MS-SQL users will likely wish to
change this to DATETIME or SMALLDATETIME.
MySQL users may wish to change this to DATETIME,
although TIMESTAMP is technically also supported
(albeit with functional differences).

	ip_type

	VARCHAR(53) - this is sufficient for storing all
possible IP address and port combinations up and
including an IPv6 v4-mapped address. If you are
certain you will only need IPv4 support you may wish
to use a length of 21 (with port) or 15 (no port).
PostgreSQL users may wish to use the special inet
type instead as this is much more efficient but
cannot store port information.

	hostname_type

	VARCHAR(255)

	path_type

	VARCHAR(260)

If the drop_table parameter is set to True (it defaults to False), the
wrapper will first attempt to use DROP TABLE to destroy any existing
table before attempting CREATE TABLE. If ignore_drop_errors is
True (which it is by default) then any errors encountered during the drop
operation (e.g. if the table does not exist) will be ignored.

	
commit

	The number of rows which the class will attempt to write before
performing a COMMIT. It is strongly recommended to set this to a
reasonably large number (e.g. 1000) to ensure decent INSERT performance

	
insert

	The number of rows which the class will attempt to insert with each
INSERT statement. The commit parameter must be a multiple of
this value.

New in version 0.2.

	
count

	Returns the number of rows successfully written to the database so far

	
create_table

	If True, the class will attempt to create the target table during the
first call to the write() method

	
drop_table

	If True, the class will attempt to unconditionally drop any existing
target table during the first call to the write() method

	
ignore_drop_errors

	If True, and drop_table is True, any errors encountered during
the DROP TABLE operation will be ignored (typically useful when you
are not sure the target table exists or not)

	
table

	The name of the target table in the database, including any required
escaping or quotation

	
close()

	Close the SQL target. This flushes any remaining rows from the internal
buffer and the cursor against the provided connection. Note that it
does not close the connection (as this instance didn’t open the
connection).

	
write(row)

	Write row (a tuple of values) to the table specified in the
constructor. If this is the first row written, and create_table was
set to True in the constructor, this operation will also attempt to
create the table (optionally dropping any existing table, again
depending on constructor values).

	
class lars.sql.OracleTarget(db_module, connection, table, insert=1, commit=1000, create_table=False, drop_table=False, ignore_drop_errors=True, str_type='VARCHAR2(1000)', int_type='NUMBER(10)', fixed_type='NUMBER', bool_type='NUMBER(1)', date_type='DATE', time_type='DATE', datetime_type='DATE', ip_type='VARCHAR2(53)', hostname_type='VARCHAR2(255)', path_type='VARCHAR2(260)')

	The Oracle database is sufficiently peculiar (particularly in its
non-standard syntax for multi-row INSERTs, and odd datatypes) to require
its own sub-class of SQLTarget. This sub-class takes all the same
parameters as SQLTarget, but customizes them specifically for
Oracle, and overrides the SQL generation methods to cope with Oracle’s
strange syntax.

New in version 0.2.

3.4.2. Exceptions

	
exception lars.sql.SQLError(message, row=None)

	Base class for all fatal errors generated by classes in the sql module.

Exceptions of this class take the optional argument row for specifying the
row (if any) that was being inserted (or retrieved) when the error
occurred. If specified, the __str__() method is overridden to include
the row in the error message.

	Parameters

	
	message (str) – The error message

	row – The row being processed when the error occurred

	
exception lars.sql.SQLWarning

	Raised when a non-fatal condition occurs while inserting data into a
database.

3.4.3. Examples

A typical example of working with the class is shown below:

import io
import sqlite3
from lars import apache, sql

connection = sqlite3.connect('apache.db',
 detect_types=sqlite3.PARSE_DECLTYPES)

with io.open('/var/log/apache2/access.log', 'rb') as infile:
 with io.open('apache.csv', 'wb') as outfile:
 with apache.ApacheSource(infile) as source:
 with sql.SQLTarget(sqlite3, connection, 'log_entries',
 create_table=True) as target:
 for row in source:
 target.write(row)

3.5. lars.geoip - GeoIP Database Access

This module provides a common interface to the GeoIP database. Most users will
only need to be aware of the init_database() function in this module,
which is used to initialize the GeoIP database(s). All other functions should
be ignored; instead, users should use the
country,
region,
city, and
coords attributes of the
IPv4Address and
IPv6Address classes.

3.5.1. Functions

	
lars.geoip.init_databases(v4_geo_filename=None, v4_isp_filename=None, v4_org_filename=None, v6_geo_filename=None, v6_isp_filename=None, v6_org_filename=None, memcache=True)

	Initializes the global GeoIP database instances in a thread-safe manner.

This function opens GeoIP databases for use by the
IPv4Address and
IPv6Address classes. There are several types of
GeoIP databases. The country, region, and city databases are considered
“geographical” databases and should be specified for the v4_geo_filename
and/or v6_geo_filename databases (for IPv4 and IPv6 databases
respectively). The ISP and organisational databases are treated separately
as they contain no geographical information. If you have such databases,
specify them as the values of the v4_isp_filename, v6_isp_filename,
v4_org_filename, and v6_org_filename parameters (all optional).

GeoIP geographical databases are hierarchical: if you open a country
database, you will only be able to use country-level lookups. However,
city-level databases enable all geographical lookups (country, region,
city, and coordinates).

By default, the function caches the entire content of database(s) in memory
(on the assumption that just about any modern machine has more than
sufficient RAM for this), but this behaviour can be overridden with the
memcache parameter.

Warning

At the time of writing, the free GeoLite IPv6 city-level database does
not work (the authors seem to be using a new database format which the
pygeoip API does not yet know). This does not affect the IPv4
city-level database.

	Parameters

	
	v4_geo_filename (str) – The filename of the IPv4 geographic database (optional)

	v4_isp_filename (str) – The filename of the IPv4 ISP database (optional)

	v4_org_filename (str) – The filename of the IPv4 organisation database (optional)

	v6_geo_filename (str) – The filename of the IPv6 geographic database (optional)

	v6_isp_filename (str) – The filename of the IPv6 ISP database (optional)

	v6_org_filename (str) – The filename of the IPv6 organisation database (optional)

	memcache (bool) – Set to False if you don’t wish to cache the db in RAM (optional)

	
lars.geoip.country_code_by_addr(address)

	Returns the country code associated with the specified address, or None if
the address is not found in the GeoIP geographical database. You should
use the country or
country attributes instead of this
function.

If the geographical database for the address type has not been initialized,
the function raises a ValueError.

	Parameters

	address – The address to lookup the country for

	Returns str

	The country code associated with the address

	
lars.geoip.city_by_addr(address)

	Returns the city associated with the address. You should use the
city or
city attributes instead of this
function.

Given an address, this function returns the city associated with it.
Note: this function will raise an exception if the GeoIP database
loaded is above city level.

If the geographical database for the address type has not been initialized,
the function raises a ValueError.

	Parameters

	address – The address to lookup the city for

	Returns str

	The city associated with the address, or None

	
lars.geoip.region_by_addr(address)

	Returns the region (e.g. state) associated with the address. You should use
the region or
region attributes instead of this
function.

Given an address, this function returns the region associated with it.
In the case of the US, this is the state. In the case of other
countries it may be a state, county, something GeoIP-specific or simply
undefined. Note: this function will raise an exception if the GeoIP
database loaded is country-level only.

If the geographical database for the address type has not been initialized,
the function raises a ValueError.

	Parameters

	address – The address to lookup the region for

	Returns str

	The region associated with the address, or None

	
lars.geoip.coords_by_addr(address)

	Returns the coordinates (long, lat) associated with the address. You should
use the coords or
coords attributes instead of this
function.

Given an address, this function returns a tuple with the attributes
longitude and latitude (in that order) representing the (very)
approximate coordinates of the address on the globe. Note: this
function will raise an exception if the GeoIP database loaded is above
city level.

If the geographical database for the address type has not been initialized,
the function raises a ValueError.

	Parameters

	address – The address to locate

	Returns str

	The coordinates associated with the address, or None

	
lars.geoip.isp_by_addr(address)

	Returns the ISP that services the address. You should use the
isp or
isp attributes instead of this
function.

If the ISP database for the address type has not been initialized, the
function raises a ValueError.

	Parameters

	address – The address to lookup the ISP for

	Returns str

	The ISP associated with the address, or None

	
lars.geoip.org_by_addr(address)

	Returns the organisation that owns the address, or the ISP that services
the address (in the case that the organisation has opted not to reveal its
address). If the organisational database for the address type has not been
initialized, the function raises a ValueError.

3.5.2. Examples

3.6. lars.datatypes - Web Log Datatypes

This module wraps various Python data-types which are commonly found in log
files to provide them with default string coercions and enhanced attributes.
Each datatype is given a simple constructor function which accepts a string in
a common format (for example, the date() function which accepts dates in
YYYY-MM-DD format), and returns the converted data.

Most of the time you will not need the functions in this module directly, but
the attributes of the classes are extremely useful for filtering and
transforming log data for output.

3.6.1. Classes

	
class lars.datatypes.DateTime

	Represents a timestamp.

This type is returned by the datetime() function and represents a
timestamp (with optional timezone). A DateTime object is a single
object containing all the information from a Date object and a
Time object. Like a Date object, DateTime
assumes the current Gregorian calendar extended in both directions; like a
time object, DateTime assumes there are exactly 3600*24 seconds
in every day.

Other constructors, all class methods:

	
classmethod today()

	Return the current local datetime, with tzinfo None. This is
equivalent to DateTime.fromtimestamp(time.time()). See also
now(), fromtimestamp().

	
classmethod now([tz])

	Return the current local date and time. If optional argument tz is
None or not specified, this is like today(), but, if possible,
supplies more precision than can be gotten from going through a
time.time() timestamp (for example, this may be possible on
platforms supplying the C gettimeofday() function).

Else tz must be an instance of a class tzinfo subclass, and
the current date and time are converted to tz’s time zone. In this
case the result is equivalent to
tz.fromutc(DateTime.utcnow().replace(tzinfo=tz)). See also
today(), utcnow().

	
classmethod utcnow()

	Return the current UTC date and time, with tzinfo None. This
is like now(), but returns the current UTC date and time, as a
naive DateTime object. See also now().

	
classmethod fromtimestamp(timestamp[, tz])

	Return the local date and time corresponding to the POSIX timestamp,
such as is returned by time.time(). If optional argument tz is
None or not specified, the timestamp is converted to the platform’s
local date and time, and the returned DateTime object is naive.

Else tz must be an instance of a class tzinfo subclass, and
the timestamp is converted to tz’s time zone. In this case the result
is equivalent to
tz.fromutc(DateTime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).

fromtimestamp() may raise ValueError, if the timestamp is
out of the range of values supported by the platform C
localtime() or gmtime() functions. It’s common for this
to be restricted to years in 1970 through 2038. Note that on non-POSIX
systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp(), and then it’s possible to
have two timestamps differing by a second that yield identical
DateTime objects. See also utcfromtimestamp().

	
classmethod utcfromtimestamp(timestamp)

	Return the UTC DateTime corresponding to the POSIX timestamp,
with tzinfo None. This may raise ValueError, if the
timestamp is out of the range of values supported by the platform C
gmtime() function. It’s common for this to be restricted to
years in 1970 through 2038. See also fromtimestamp().

	
classmethod combine(date, time)

	Return a new DateTime object whose date components are equal to
the given date object’s, and whose time components and
tzinfo attributes are equal to the given Time
object’s. For any DateTime object d, d ==
DateTime.combine(d.date(), d.timetz()). If date is a
DateTime object, its time components and tzinfo
attributes are ignored.

	
classmethod strptime(date_string, format)

	Return a DateTime corresponding to date_string, parsed
according to format. This is equivalent to
DateTime(*(time.strptime(date_string, format)[0:6])).
ValueError is raised if the date_string and format can’t be
parsed by time.strptime() or if it returns a value which isn’t a
time tuple.

Class attributes:

	
min

	The earliest representable DateTime.

	
max

	The latest representable DateTime.

	
resolution

	The smallest possible difference between non-equal DateTime
objects, timedelta(microseconds=1).

Instance attributes (read-only):

	
year

	Between MINYEAR and MAXYEAR inclusive.

	
month

	Between 1 and 12 inclusive.

	
day

	Between 1 and the number of days in the given month of the given year.

	
hour

	In range(24).

	
minute

	In range(60).

	
second

	In range(60).

	
microsecond

	In range(1000000).

	
tzinfo

	The object passed as the tzinfo argument to the DateTime
constructor, or None if none was passed.

Supported operations:

	Operation

	Result

	datetime2 = datetime1 + timedelta

	(1)

	datetime2 = datetime1 - timedelta

	(2)

	timedelta = datetime1 - datetime2

	(3)

	datetime1 < datetime2

	Compares DateTime to
DateTime. (4)

	datetime2 is a duration of timedelta removed from datetime1, moving
forward in time if timedelta.days > 0, or backward if
timedelta.days < 0. The result has the same tzinfo
attribute as the input datetime, and datetime2 - datetime1 == timedelta
after. OverflowError is raised if datetime2.year would be smaller
than MINYEAR or larger than MAXYEAR. Note that no time
zone adjustments are done even if the input is an aware object.

	Computes the datetime2 such that datetime2 + timedelta == datetime1. As
for addition, the result has the same tzinfo attribute as the
input datetime, and no time zone adjustments are done even if the input
is aware. This isn’t quite equivalent to datetime1 + (-timedelta),
because -timedelta in isolation can overflow in cases where datetime1 -
timedelta does not.

	Subtraction of a DateTime from a DateTime is defined
only if both operands are naive, or if both are aware. If one is aware
and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo
attribute, the tzinfo attributes are ignored, and the result is
a timedelta object t such that datetime2 + t ==
datetime1. No time zone adjustments are done in this case.

If both are aware and have different tzinfo attributes, a-b
acts as if a and b were first converted to naive UTC datetimes
first. The result is (a.replace(tzinfo=None) - a.utcoffset()) -
(b.replace(tzinfo=None)
- b.utcoffset()) except that the implementation never overflows.

	datetime1 is considered less than datetime2 when datetime1
precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is
raised. If both comparands are aware, and have the same tzinfo
attribute, the common tzinfo attribute is ignored and the base
datetimes are compared. If both comparands are aware and have different
tzinfo attributes, the comparands are first adjusted by
subtracting their UTC offsets (obtained from self.utcoffset()).

Note

In order to stop comparison from falling back to the default scheme
of comparing object addresses, datetime comparison normally raises
TypeError if the other comparand isn’t also a
DateTime object. However, NotImplemented is returned
instead if the other comparand has a timetuple() attribute.
This hook gives other kinds of date objects a chance at implementing
mixed-type comparison. If not, when a DateTime object is
compared to an object of a different type, TypeError is raised
unless the comparison is == or !=. The latter cases return
False or True, respectively.

DateTime objects can be used as dictionary keys. In Boolean
contexts, all DateTime objects are considered to be true.

Instance methods:

	
date()

	Return date object with same year, month and day.

	
time()

	Return Time object with same hour, minute, second and
microsecond. tzinfo is None. See also method
timetz().

	
timetz()

	Return Time object with same hour, minute, second,
microsecond, and tzinfo attributes. See also method time().

	
replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])

	Return a DateTime with the same attributes, except for those attributes
given new values by whichever keyword arguments are specified. Note
that tzinfo=None can be specified to create a naive DateTime from an
aware DateTime with no conversion of date and time data.

	
astimezone(tz)

	Return a DateTime object with new tzinfo attribute
tz, adjusting the date and time data so the result is the same UTC
time as self, but in tz’s local time.

tz must be an instance of a tzinfo subclass, and its
utcoffset() and dst() methods must not return None.
self must be aware (self.tzinfo must not be None, and
self.utcoffset() must not return None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self:
no adjustment of date or time data is performed. Else the result is
local time in time zone tz, representing the same UTC time as self:
after astz = dt.astimezone(tz), astz - astz.utcoffset() will
usually have the same date and time data as dt - dt.utcoffset(). The
discussion of class tzinfo explains the cases at Daylight
Saving Time transition boundaries where this cannot be achieved (an
issue only if tz models both standard and daylight time).

If you merely want to attach a time zone object tz to a DateTime dt
without adjustment of date and time data, use dt.replace(tzinfo=tz).
If you merely want to remove the time zone object from an aware DateTime
dt without conversion of date and time data, use
dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in
a tzinfo subclass to affect the result returned by
astimezone(). Ignoring error cases, astimezone() acts
like:

def astimezone(self, tz):
 if self.tzinfo is tz:
 return self
 # Convert self to UTC, and attach the new time zone object.
 utc = (self - self.utcoffset()).replace(tzinfo=tz)
 # Convert from UTC to tz's local time.
 return tz.fromutc(utc)

	
utcoffset()

	If tzinfo is None, returns None, else returns
self.tzinfo.utcoffset(self), and raises an exception if the latter
doesn’t return None, or a timedelta object representing a
whole number of minutes with magnitude less than one day.

	
dst()

	If tzinfo is None, returns None, else returns
self.tzinfo.dst(self), and raises an exception if the latter doesn’t
return None, or a timedelta object representing a whole
number of minutes with magnitude less than one day.

	
tzname()

	If tzinfo is None, returns None, else returns
self.tzinfo.tzname(self), raises an exception if the latter doesn’t
return None or a string object,

	
weekday()

	Return the day of the week as an integer, where Monday is 0 and Sunday
is 6. The same as self.date().weekday(). See also
isoweekday().

	
isoweekday()

	Return the day of the week as an integer, where Monday is 1 and Sunday
is 7. The same as self.date().isoweekday(). See also
weekday(), isocalendar().

	
isocalendar()

	Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date().isocalendar().

	
isoformat([sep])

	Return a string representing the date and time in ISO 8601 format,
YYYY-MM-DDTHH:MM:SS.mmmmmm or, if microsecond is 0,
YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is
appended, giving the UTC offset in (signed) hours and minutes:
YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0
YYYY-MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character
separator, placed between the date and time portions of the result. For
example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'

	
class lars.datatypes.Date

	Represents a date.

This type is returned by the date() function and represents a date.
A Date object represents a date (year, month and day) in an
idealized calendar, the current Gregorian calendar indefinitely extended in
both directions. January 1 of year 1 is called day number 1, January 2 of
year 1 is called day number 2, and so on. This matches the definition of
the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book
Calendrical Calculations, where it’s the base calendar for all
computations. See the book for algorithms for converting between proleptic
Gregorian ordinals and many other calendar systems.

Other constructors, all class methods:

	
classmethod today()

	Return the current local date. This is equivalent to
date.fromtimestamp(time.time()).

	
classmethod fromtimestamp(timestamp)

	Return the local date corresponding to the POSIX timestamp, such as is
returned by time.time(). This may raise ValueError, if the
timestamp is out of the range of values supported by the platform C
localtime() function. It’s common for this to be restricted to
years from 1970 through 2038. Note that on non-POSIX systems that
include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp().

Class attributes:

	
min

	The earliest representable date, date(MINYEAR, 1, 1).

	
max

	The latest representable date, date(MAXYEAR, 12, 31).

	
resolution

	The smallest possible difference between non-equal date objects,
timedelta(days=1).

Instance attributes (read-only):

	
year

	Between MINYEAR and MAXYEAR inclusive.

	
month

	Between 1 and 12 inclusive.

	
day

	Between 1 and the number of days in the given month of the given year.

Supported operations:

	Operation

	Result

	date2 = date1 + timedelta

	date2 is timedelta.days days
removed from date1. (1)

	date2 = date1 - timedelta

	Computes date2 such that date2 +
timedelta == date1. (2)

	timedelta = date1 - date2

	(3)

	date1 < date2

	date1 is considered less than
date2 when date1 precedes date2
in time. (4)

Notes:

	date2 is moved forward in time if timedelta.days > 0, or
backward if timedelta.days < 0. Afterward date2 - date1 ==
timedelta.days. timedelta.seconds and timedelta.microseconds
are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

	This isn’t quite equivalent to date1 + (-timedelta), because -timedeltan
i isolation can overflow in cases where date1 - timedelta does not .
timedelta.seconds and timedelta.microseconds are ignored .

	This is exact, and cannot overflow. timedelta.seconds and
timedelta.microseconds are 0, and date2 + timedelta == date1 after.

	In other words, date1 < date2 if and only if date1.toordinal()
< date2.toordinal(). In order to stop comparison from falling back
to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a
date object. However, NotImplemented is returned instead
if the other comparand has a timetuple() attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type
comparison. If not, when a date object is compared to an
object of a different type, TypeError is raised unless the
comparison is == or !=. The latter cases return False
or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all
date objects are considered to be true.

Instance methods:

	
replace(year, month, day)

	Return a date with the same value, except for those parameters given new
values by whichever keyword arguments are specified. For example, if
d == Date(2002, 12, 31), then d.replace(day=26) == Date(2002, 12,
26).

	
weekday()

	Return the day of the week as an integer, where Monday is 0 and Sunday
is 6. For example, Date(2002, 12, 4).weekday() == 2, a Wednesday.
See also isoweekday().

	
isoweekday()

	Return the day of the week as an integer, where Monday is 1 and Sunday
is 7. For example, Date(2002, 12, 4).isoweekday() == 3, a
Wednesday. See also weekday(), isocalendar().

	
isocalendar()

	Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good
explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on
a Monday and ends on a Sunday. The first week of an ISO year is the
first (Gregorian) calendar week of a year containing a Thursday. This is
called week number 1, and the ISO year of that Thursday is the same as
its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year
2004 begins on Monday, 29 Dec 2003 and ends on Sunday, 4 Jan 2004, so
that Date(2003, 12, 29).isocalendar() == (2004, 1, 1) and
Date(2004, 1, 4).isocalendar() == (2004, 1, 7).

	
isoformat()

	Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’.
For example, Date(2002, 12, 4).isoformat() == '2002-12-04'.

	
strftime(format)

	Return a string representing the date, controlled by an explicit format
string. Format codes referring to hours, minutes or seconds will see 0
values.

	
class lars.datatypes.Hostname(s)

	Represents an Internet hostname and provides attributes for DNS resolution.

This type is returned by the hostname() function and represents a DNS
hostname. The address property allows resolution of the hostname
to an IP address.

	Parameters

	hostname (str) – The hostname to parse

	
address

	Attempts to resolve the hostname into an IPv4 or IPv6 address
(returning an IPv4Address or IPv6Address object
repsectively). The result of the DNS query (including negative lookups
is cached, so repeated queries for the same hostname should be
extremely fast.

	
class lars.datatypes.IPv4Address(address)

	Represents an IPv4 address.

This type is returned by the address() function and represents an
IPv4 address and provides various attributes and comparison operators
relevant to such addresses.

For example, to test whether an address belongs to particular network you
can use the in operator with the result of the network()
function:

address('192.168.0.64') in network('192.168.0.0/16')

The hostname attribute will perform reverse DNS resolution to
determine a hostname associated with the address (if any). The result of
the query (including negative lookups) is cached so subsequent queries of
the same address should be extermely rapid.

If the lars.geoip module has been initialized with a database, the
GeoIP-related attributes country, region, city, and
coords will return the country, region, city and a (longitude,
latitude) tuple respectively.

	
compressed

	Returns the shorthand version of the IP address as a string (this is
the default string conversion).

	
exploded

	Returns the longhand version of the IP address as a string.

	
is_link_local

	Returns True if the address is reserved for link-local. See RFC 3927
for details.

	
is_loopback

	Returns True if the address is a loopback address. See RFC 3330 for
details.

	
is_multicast

	Returns True if the address is reserved for multicast use. See RFC
3171 for details.

	
is_private

	Returns True if this address is allocated for private networks. See
RFC 1918 for details.

	
is_reserved

	Returns True if the address is otherwise IETF reserved.

	
is_unspecified

	Returns True if the address is unspecified. See RFC 5735 3 for
details.

	
packed

	Returns the binary representation of this address.

	
city

	If init_databases() has been called with a
city-level GeoIP database, returns the city of the address.

	
coords

	If init_databases() has been called with a
city-level GeoIP database, returns a (longitude, latitude) tuple
describing the approximate location of the address.

	
country

	If init_databases() has been called to initialize
a GeoIP database, returns the country of the address.

	
hostname

	Performs a reverse DNS lookup to attempt to determine a hostname for
the address. Lookups (including negative lookups) are cached so that
repeated lookups are extremely quick. Returns a Hostname
object if the lookup is successful, or None.

	
isp

	If init_databases() has been called with an ISP level
database, returns the ISP that provides connectivity for the address.

	
org

	If init_databases() has been called with an
organisation level database, returns the name of the organisation the
address belongs to.

	
region

	If init_databases() has been called with a
region-level (or lower) GeoIP database, returns the region of the
address.

	
class lars.datatypes.IPv4Network(address, strict=True)

	This type is returned by the network() function. This class
represents and manipulates 32-bit IPv4 networks.

Attributes: [examples for IPv4Network(‘192.0.2.0/27’)]

	network_address: IPv4Address('192.0.2.0')

	hostmask: IPv4Address('0.0.0.31')

	broadcast_address: IPv4Address('192.0.2.32')

	netmask: IPv4Address('255.255.255.224')

	prefixlen: 27

	
address_exclude(other)

	Remove an address from a larger block.

For example:

addr1 = network('192.0.2.0/28')
addr2 = network('192.0.2.1/32')
addr1.address_exclude(addr2) = [
 IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
 IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29'),
]

	Parameters

	other – An IPv4Network object of the same type.

	Returns

	An iterator of the IPv4Network objects which is self minus
other.

	
compare_networks(other)

	Compare two IP objects.

This is only concerned about the comparison of the integer
representation of the network addresses. This means that the host bits
aren’t considered at all in this method. If you want to compare host
bits, you can easily enough do a HostA._ip < HostB._ip.

	Parameters

	other – An IP object.

	Returns

	-1, 0, or 1 for less than, equal to or greater than
respectively.

	
hosts()

	Generate iterator over usable hosts in a network.

This is like __iter__() except it doesn’t return the network
or broadcast addresses.

	
overlaps(other)

	Tells if self is partly contained in other.

	
subnets(prefixlen_diff=1, new_prefix=None)

	The subnets which join to make the current subnet.

In the case that self contains only one IP (self._prefixlen == 32 for
IPv4 or self._prefixlen == 128 for IPv6), yield an iterator with just
ourself.

	Parameters

	
	prefixlen_diff (int) – An integer, the amount the prefix length
should be increased by. This should not be set if new_prefix is
also set.

	new_prefix (int) – The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix. This
should not be set if prefixlen_diff is also set.

	Returns

	An iterator of IPv(4|6) objects.

	
supernet(prefixlen_diff=1, new_prefix=None)

	The supernet containing the current network.

	Parameters

	
	prefixlen_diff (int) – An integer, the amount the prefix length of
the network should be decreased by. For example, given a /24
network and a prefixlen_diff of 3, a supernet with a /21
netmask is returned.

	new_prefix (int) – The desired new prefix length. This must be a
smaller number (larger prefix) than the existing prefix. This
should not be set if prefixlen_diff is also set.

	Returns

	An IPv4Network object.

	
is_link_local

	Returns True if the address is reserved for link-local. See RFC 4291
for details.

	
is_loopback

	Returns True if the address is a loopback address. See RFC 2373
2.5.3 for details.

	
is_multicast

	Returns True if the address is reserved for multicast use. See RFC
2373 2.7 for details.

	
is_private

	Returns True if this address is allocated for private networks. See
RFC 4193 for details.

	
is_reserved

	Returns True if the address is otherwise IETF reserved.

	
is_unspecified

	Returns True if the address is unspecified. See RFC 2373 2.5.2 for
details.

	
class lars.datatypes.IPv4Port(address)

	Represents an IPv4 address and port number.

This type is returned by the address() function and represents an
IPv4 address and port number. Other than this, all properties of the base
IPv4Address class are equivalent.

	
port

	An integer representing the network port for a connection

	
class lars.datatypes.IPv6Address(address)

	Represents an IPv6 address.

This type is returned by the address() function and represents an
IPv6 address and provides various attributes and comparison operators
relevant to such addresses.

For example, to test whether an address belongs to particular network you
can use the in operator with the result of the network()
function:

address('::1') in network('::/16')

The hostname attribute will perform reverse DNS resolution to
determine a hostname associated with the address (if any). The result of
the query (including negative lookups) is cached so subsequent queries of
the same address should be extermely rapid.

If the lars.geoip module has been initialized with a database, the
GeoIP-related attributes country, region, city, and
coords will return the country, region, city and a (longitude,
latitude) tuple respectively.

	
compressed

	Returns the shorthand version of the IP address as a string (this is
the default string conversion).

	
exploded

	Returns the longhand version of the IP address as a string.

	
ipv4_mapped

	Returns the IPv4 mapped address if the IPv6 address is a v4 mapped
address, or None otherwise.

	
is_link_local

	Returns True if the address is reserved for link-local. See RFC 4291
for details.

	
is_loopback

	Returns True if the address is a loopback address. See RFC 2373
2.5.3 for details.

	
is_multicast

	Returns True if the address is reserved for multicast use. See RFC
2373 2.7 for details.

	
is_private

	Returns True if this address is allocated for private networks. See
RFC 4193 for details.

	
is_reserved

	Returns True if the address is otherwise IETF reserved.

	
is_site_local

	Returns True if the address is reserved for site-local.

Note that the site-local address space has been deprecated by RFC
3879. Use is_private to test if this address is in the space
of unique local addresses as defined by RFC 4193. See RFC 3513
2.5.6 for details.

	
is_unspecified

	Returns True if the address is unspecified. See RFC 2373 2.5.2 for
details.

	
packed

	Returns the binary representation of this address.

	
sixtofour

	Returns the IPv4 6to4 embedded address if present, or None if the
address doesn’t appear to contain a 6to4 embedded address.

	
teredo

	Returns a (server, client) tuple of embedded Teredo IPs, or
None if the address doesn’t appear to be a Teredo address (doesn’t
start with 2001::/32).

	
city

	If init_databases() has been called with a
city-level GeoIP IPv6 database, returns the city of the address.

	
coords

	If init_databases() has been called with a
city-level GeoIP IPv6 database, returns a (longitude, latitude) tuple
describing the approximate location of the address.

	
country

	If init_databases() has been called to initialize
a GeoIP IPv6 database, returns the country of the address.

	
hostname

	Performs a reverse DNS lookup to attempt to determine a hostname for
the address. Lookups (including negative lookups) are cached so that
repeated lookups are extremely quick. Returns a Hostname
object if the lookup is successful, or None.

	
isp

	If init_databases() has been called with an ISP level
IPv6 database, returns the ISP that provides connectivity for the
address.

	
org

	If init_databases() has been called with an IPv6
organisation level database, returns the name of the organisation the
address belongs to.

	
region

	If init_databases() has been called with a
region-level (or lower) GeoIP IPv6 database, returns the region of the
address.

	
class lars.datatypes.IPv6Network(address, strict=True)

	This type is returned by the network() function. This class
represents and manipulates 128-bit IPv6 networks.

	
address_exclude(other)

	Remove an address from a larger block.

For example:

addr1 = network('192.0.2.0/28')
addr2 = network('192.0.2.1/32')
addr1.address_exclude(addr2) = [
 IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
 IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29'),
]

	Parameters

	other – An IPv4Network object of the same type.

	Returns

	An iterator of the IPv4Network objects which is self minus
other.

	
compare_networks(other)

	Compare two IP objects.

This is only concerned about the comparison of the integer
representation of the network addresses. This means that the host bits
aren’t considered at all in this method. If you want to compare host
bits, you can easily enough do a HostA._ip < HostB._ip.

	Parameters

	other – An IP object.

	Returns

	-1, 0, or 1 for less than, equal to or greater than
respectively.

	
hosts()

	Generate iterator over usable hosts in a network.

This is like __iter__() except it doesn’t return the network
or broadcast addresses.

	
overlaps(other)

	Tells if self is partly contained in other.

	
subnets(prefixlen_diff=1, new_prefix=None)

	The subnets which join to make the current subnet.

In the case that self contains only one IP (self._prefixlen == 32 for
IPv4 or self._prefixlen == 128 for IPv6), yield an iterator with just
ourself.

	Parameters

	
	prefixlen_diff (int) – An integer, the amount the prefix length
should be increased by. This should not be set if new_prefix is
also set.

	new_prefix (int) – The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix. This
should not be set if prefixlen_diff is also set.

	Returns

	An iterator of IPv(4|6) objects.

	
supernet(prefixlen_diff=1, new_prefix=None)

	The supernet containing the current network.

	Parameters

	
	prefixlen_diff (int) – An integer, the amount the prefix length of
the network should be decreased by. For example, given a /24
network and a prefixlen_diff of 3, a supernet with a /21
netmask is returned.

	new_prefix (int) – The desired new prefix length. This must be a
smaller number (larger prefix) than the existing prefix. This
should not be set if prefixlen_diff is also set.

	Returns

	An IPv4Network object.

	
is_link_local

	Returns True if the address is reserved for link-local. See RFC 4291
for details.

	
is_loopback

	Returns True if the address is a loopback address. See RFC 2373
2.5.3 for details.

	
is_multicast

	Returns True if the address is reserved for multicast use. See RFC
2373 2.7 for details.

	
is_private

	Returns True if this address is allocated for private networks. See
RFC 4193 for details.

	
is_reserved

	Returns True if the address is otherwise IETF reserved.

	
is_unspecified

	Returns True if the address is unspecified. See RFC 2373 2.5.2 for
details.

	
class lars.datatypes.IPv6Port(address)

	Represents an IPv6 address and port number.

This type is returned by the address() function an represents an IPv6
address and port number. The string representation of an IPv6 address with
port necessarily wraps the address portion in square brakcets as otherwise
the port number will make the address ambiguous. Other than this, all
properties of the base IPv6Address class are equivalent.

	
port

	An integer representing the network port for a connection

	
class lars.datatypes.Path

	Represents a path.

This type is returned by the path() function and represents a path in
POSIX format (forward slash separators and no drive portion). It is used to
represent the path portion of URLs and provides attributes for extracting
parts of the path there-in.

The original path can be obtained as a string by asking for the string
conversion of this class, like so:

p = datatypes.path('/foo/bar/baz.ext')
assert p.dirname == '/foo/bar'
assert p.basename == 'baz.ext'
assert str(p) == '/foo/bar/baz.ext'

	
dirname

	A string containing all of the path except the basename at the end

	
basename

	A string containing the basename (filename and extension) at the end
of the path

	
ext

	A string containing the filename’s extension (including the leading dot)

	
join(*paths)

	Joins this path with the specified parts, returning a new Path
object.

	Parameters

	*paths – The parts to append to this path

	Returns

	A new Path object representing the extended path

	
basename_no_ext

	Returns a string containing basename with the extension removed
(including the final dot separator).

	
dirs

	Returns a sequence of the directories making up dirname

	
isabs

	Returns True if the path is absolute (dirname begins with one or more
forward slashes).

	
class lars.datatypes.Time

	Represents a time.

This type is returned by the time() function and represents a time.
A time object represents a (local) time of day, independent of any
particular day, and subject to adjustment via a tzinfo object.

Class attributes:

	
min

	The earliest representable Time, time(0, 0, 0, 0).

	
max

	The latest representable Time, time(23, 59, 59, 999999).

	
resolution

	The smallest possible difference between non-equal Time
objects, timedelta(microseconds=1), although note that arithmetic on
Time objects is not supported.

Instance attributes (read-only):

	
hour

	In range(24).

	
minute

	In range(60).

	
second

	In range(60).

	
microsecond

	In range(1000000).

	
tzinfo

	The object passed as the tzinfo argument to the Time
constructor, or None if none was passed.

Supported operations:

	comparison of Time to Time, where a is considered
less than b when a precedes b in time. If one comparand is naive
and the other is aware, TypeError is raised. If both comparands
are aware, and have the same tzinfo attribute, the common
tzinfo attribute is ignored and the base times are compared. If
both comparands are aware and have different tzinfo attributes,
the comparands are first adjusted by subtracting their UTC offsets
(obtained from self.utcoffset()). In order to stop mixed-type
comparisons from falling back to the default comparison by object
address, when a Time object is compared to an object of a
different type, TypeError is raised unless the comparison is
== or !=. The latter cases return False or
True, respectively.

	hash, use as dict key

	efficient pickling

	in Boolean contexts, a Time object is considered to be true if
and only if, after converting it to minutes and subtracting
utcoffset() (or 0 if that’s None), the result is non-zero.

Instance methods:

	
replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])

	Return a Time with the same value, except for those attributes
given new values by whichever keyword arguments are specified. Note
that tzinfo=None can be specified to create a naive Time
from an aware Time, without conversion of the time data.

	
isoformat()

	Return a string representing the time in ISO 8601 format,
HH:MM:SS.mmmmmm or, if self.microsecond is 0, HH:MM:SS If
utcoffset() does not return None, a 6-character string is
appended, giving the UTC offset in (signed) hours and minutes:
HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0, HH:MM:SS+HH:MM

	
strftime(format)

	Return a string representing the time, controlled by an explicit format
string.

	
utcoffset()

	If tzinfo is None, returns None, else returns
self.tzinfo.utcoffset(None), and raises an exception if the latter
doesn’t return None or a timedelta object representing a
whole number of minutes with magnitude less than one day.

	
dst()

	If tzinfo is None, returns None, else returns
self.tzinfo.dst(None), and raises an exception if the latter doesn’t
return None, or a timedelta object representing a whole
number of minutes with magnitude less than one day.

	
tzname()

	If tzinfo is None, returns None, else returns
self.tzinfo.tzname(None), or raises an exception if the latter
doesn’t return None or a string object.

	
class lars.datatypes.Url

	Represents a URL.

This type is returned by the url() function and represents the parts
of the URL. You can obtain the original URL as a string by requesting the
string conversion of this class, for example:

>>> u = datatypes.url('http://foo/bar/baz')
>>> print u.scheme
http
>>> print u.hostname
foo
>>> print str(u)
http://foo/bar/baz

	
scheme

	The scheme of the URL, before the first :

	
netloc

	The “network location” of the URL, comprising the hostname and port
(separated by a colon), and historically the username and password
(prefixed to the hostname and separated with an ampersand)

	
path_str

	The path of the URL from the first slash after the network location

	
path

	The path of the URL, parsed into a tuple which splits out the directory,
filename, and extension:

>>> u = datatypes.url('foo/bar/baz.html')
>>> u.path
Path(dirname='foo/bar', basename='baz.html', ext='.html')
>>> u.path.isabs
False

	
params

	The parameters of the URL

	
query_str

	The query string of the URL from the first question-mark in the path

	
query

	The query string, parsed into a mapping of keys to lists of values. For
example:

>>> u = datatypes.url('foo/bar?a=1&a=2&b=3&c=')
>>> print u.query
{'a': ['1', '2'], 'c': [''], 'b': ['3']}
>>> print 'a' in u.query
True

	
fragment

	The fragment of the URL from the last hash-mark to the end of the URL

Additionally, the following attributes can be used to separate out the
various parts of the netloc attribute:

	
username

	The username (historical, rare to see this used on the modern web)

	
password

	The password (historical, almost unheard of on the modern web as it’s
extremely insecure to include credentials in the URL)

	
hostname

	The hostname from the network location. This attribute returns a
Hostname object which can be used to resolve the hostname into
an IP address if required.

	
port

	The optional network port

	
geturl()

	Return the URL as a string string.

3.6.2. Functions

	
lars.datatypes.address(s)

	Returns an IPv4Address, IPv6Address, IPv4Port,
or IPv6Port instance for the given string.

	Parameters

	s (str) – The string containing the IP address to parse

	Returns

	An IPv4Address, IPv4Port, IPv6Address,
or IPv6Port instance

	
lars.datatypes.date(s, format='%Y-%m-%d')

	Returns a Date object for the given string.

	Parameters

	
	s (str) – The string containing the date to parse

	format (str) – Optional string containing the date format to parse

	Returns

	A Date object representing the date

	
lars.datatypes.datetime(s, format='%Y-%m-%d %H:%M:%S')

	Returns a DateTime object for the given string.

	Parameters

	
	s (str) – The string containing the timestamp to parse

	format (str) – Optional string containing the datetime format to parse

	Returns

	A DateTime object representing the timestamp

	
lars.datatypes.hostname(s)

	Returns a Hostname, IPv4Address, or IPv6Address
object for the given string depending on whether it represents an IP
address or a hostname.

	Parameters

	s (str) – The string containing the hostname to parse

	Returns

	A Hostname, IPv4Address, or
IPv6Address instance

	
lars.datatypes.network(s)

	Returns an IPv4Network or IPv6Network instance for the
given string.

	Parameters

	s (str) – The string containing the IP network to parse

	Returns

	An IPv4Network or IPv6Network instance

	
lars.datatypes.path(s)

	Returns a Path object for the given string.

	Parameters

	s (str) – The string containing the path to parse

	Returns

	A Path object representing the path

	
lars.datatypes.row(*args)

	Returns a new tuple sub-class type containing the specified fields. For
example:

NewRow = row('foo', 'bar', 'baz')
a_row = NewRow(1, 2, 3)
print(a_row.foo)

	Parameters

	*args – The set of fields to include in the row definition.

	Returns

	A tuple sub-class with the specified fields.

	
lars.datatypes.time(s, format='%H:%M:%S')

	Returns a Time object for the given string.

	Parameters

	
	s (str) – The string containing the time to parse

	format (str) – Optional string containing the time format to parse

	Returns

	A Time object representing the time

	
lars.datatypes.url(s)

	Returns a Url object for the given string.

	Parameters

	s (str) – The string containing the URL to parse

	Returns

	A Url tuple representing the URL

3.7. lars.progress - Rendering Progress

This module provides a wrapper that outputs simple progress meters to the
command line based on source file positions, or an arbitrary counter. The
ProgressMeter class is the major element that this module provides.

3.7.1. Classes

	
class lars.progress.ProgressMeter(fileobj=None, value=0, total=None, max_wait=0.1, stream=sys.stderr, mode='w', style=BarStyle, hide_on_finish=True)

	This class provides a simple means of rendering a progress meter at the
command line. It can be driven either with a file object (in which case the
current position of the file is used) or with an arbitrary value (which
your code must provide). In the case of a file-object, the file must be
seekable (so that the class can determine the overall length of the file).
If fileobj is not specified, then total must be specified.

The class is intended to be used as a context manager. Upon entry it will
render an initial progress meter, and will update it at reasonable
intervals (dictated by the max_wait parameter) in response to calls to the
update() method. When you leave the context, the progress meter will
be automatically erased if hide_on_finish is True (which it is by
default).

Within the context, the hide() and show() methods can be used
to temporarily hide and show the progress meter (in order to display some
status text, for example).

	Parameters

	
	fileobj (file) – A file-like object from which to determine progress

	value (int) – An arbitrary value from which to determine progress

	total (int) – In the case that value is set, this must be set to the maximum value
that value will take

	max_wait (float) – The minimum length of time that must elapse before a screen update is
permitted

	stream (file) – The stream object that output should be written to, defaults to stderr

	style – A reference to a class which will be used to render the progress meter,
defaults to BarStyle

	hide_on_finish (bool) – If True (the default), the progress meter will be erased when the
context exits

	
hide()

	Hide the progress bar from the console (or whatever the output stream
is connected to).

	
show()

	Show the progress bar on the console (or whatever the output stream
is connected to).

	
update(value=None)

	Update the progress bar to position value (which must be less than
the total value passed to the constructor).

	
class lars.progress.SpinnerStyle(meter)

	A ProgressMeter style that renders a simple spinning line.

	
class lars.progress.PercentageStyle(meter)

	A ProgressMeter style that renders a simple percentage counter.

	
class lars.progress.EllipsisStyle(meter)

	A ProgressMeter style that renders an looping series of dots.

	
class lars.progress.BarStyle(meter)

	A ProgressMeter style that renders a full progress bar and
percentage.

	
class lars.progress.HashStyle(meter)

	A ProgressMeter style for those that remember FTP’s hash
command!

3.7.2. Examples

The most basic usage of this class is as follows:

import io
from lars import iis, csv, progress

with io.open('logs\iis.txt', 'rb') as infile, \
 io.open('iis.csv', 'wb') as outfile, \
 progress.ProgressMeter(infile) as meter, \
 iis.IISSource(infile) as source, \
 csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)
 meter.update()

Note that you do not need to worry about the detrimental performance effects of
calling update() too often; the class ensures that
repeated calls are ignored until max_wait seconds have
elapsed since the last update.

Alternatively, if you wish to update according to, say, the number of files to
process you could use something like the following example (which also
demonstrates temporarily hiding the progress meter in order to show the current
filename):

import os
import io
from lars import iis, csv, progress
from pathlib import Path

files = list(Path('.').iterdir())
with progress.ProgressMeter(total=len(files),
 style=progress.BarStyle) as meter:
 for file_num, file_name in enumerate(files):
 meter.hide()
 print "Processing %s" % file_name
 meter.show()
 with file_name.open('rb') as infile, \
 file_name.with_suffix('.csv').open('wb') as outfile, \
 iis.IISSource(infile) as source, \
 csv.CSVTarget(outfile) as target:
 for row in source:
 target.write(row)
 meter.update(file_num)

3.8. lars.dns - DNS Resolution

This module provides a couple of trivial DNS resolution functions, enhanced
with LRU caches. Most users should never need to access these functions
directly. Instead, use the address and
hostname properties of relevant objects.

3.8.1. Functions

	
lars.dns.from_address(address)

	Reverse resolve an address to a hostname.

Given a string containing an IPv4 or IPv6 address, this functions returns
a hostname associated with the address, using an LRU cache to speed up
repeat queries. If the address does not reverse, the function returns
the original address.

	Parameters

	address (str) – The address to resolve to a hostname

	Returns

	The resolved hostname

	
lars.dns.to_address(hostname, family=<AddressFamily.AF_UNSPEC: 0>, socktype=<SocketKind.SOCK_STREAM: 1>)

	Resolve a hostname to an address, preferring IPv4 addresses.

Given a string containing a DNS hostname, this function resolves the
hostname to an address, using an LRU cache to speed up repeat queries. The
function prefers IPv4 addresses, but will return IPv6 addresses if no IPv4
addresses are present in the result from getaddrinfo. If the hostname does
not resolve, the function returns None rather than raise an exception (this
is preferable as it provides a negative lookup cache).

	Parameters

	hostname (str) – The hostname to resolve to an address

	Returns

	The resolved address

3.9. lars.cache - Cache Decorators

This module provides a backport of the Python 3.3 LRU caching decorator. Users
should never need to access this module directly; its contents are solely
present to ensure DNS lookups can be cached under a Python 2.7 environment.

Source adapted from Raymond Hettinger’s recipe licensed under the MIT
license.

3.9.1. Functions

	
lars.cache.lru_cache(maxsize=100, typed=False)

	Least-recently-used cache decorator.

If maxsize is set to None, the LRU features are disabled and the cache
can grow without bound.

If typed is True, arguments of different types will be cached separately.
For example, f(3.0) and f(3) will be treated as distinct calls with
distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (hits, misses, maxsize, currsize)
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.

3.10. lars.exc - Base Exceptions

Defines base exception and warnings types for the package.

3.10.1. Exceptions

	
exception lars.exc.LarsError

	Base class for all errors generated by the lars package. This exists purely
for ease of filtering / catching all such errors.

	
exception lars.exc.LarsWarning

	Base class for all warnings generated by the lars package. This exists
purely for ease of filtering / catching all such warnings.

4. Change log

4.1. Release 1.0 (2017-01-04)

	Permit NULL values in first row when creating SQL tables (but warn as this is
not encouraged)

	Permit sources and targets to be used outside of context handlers (makes
experimentation in the REPL a bit nicer)

	Don’t warn when request is NULL in Apache log sources (in certain
configurations this is common when stringent timeouts are set)

	Fixed incorrect generation of Oracle multi-row INSERT statements

	Fixed operation of SQL target when row doesn’t cover complete set of target
table rows

4.2. Release 0.3 (2014-09-07)

	Implemented Python 3 compatibility (specifically 3.2 or above) and added
debian packaging for Python 3 and docs

4.3. Release 0.2 (2013-07-28)

	Added ISP and organisation lookups to geoip module

	Added multi-row insertion support to the sql module

	Added Oracle specific target in the sql module

	Fixed the setup.py script (missing MANIFEST.in meant utils.py was excluded
which setup.py relies upon)

	Fixed test coverage for the progress module

4.4. Release 0.1 (2013-06-09)

	Initial release

5. License

Copyright © 2013-2017, Dave Jones

Copyright © 2013, Mime Consulting Ltd.

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5.1. DateTime, Date, and Time documentation license

The documentation for the DateTime,
Date, and Time classes
in this module are derived from the documentation sources for the datetime,
date, and time classes in Python 2.7.4 and thus are subject to the following
copyright and license:

Copyright (c) 1990-2013, Python Software Foundation

5.1.1. PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

	This LICENSE AGREEMENT is between the Python Software Foundation
(“PSF”), and the Individual or Organization (“Licensee”) accessing
and otherwise using Python 2.7.4 software in source or binary form and its
associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to
reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 2.7.4 alone or in
any derivative version, provided, however, that PSF’s License Agreement
and PSF’s notice of copyright, i.e., “Copyright © 2001-2013 Python
Software Foundation; All Rights Reserved” are retained in Python 2.7.4
alone or in any derivative version prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.4 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 2.7.4.

	PSF is making Python 2.7.4 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 2.7.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.4
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.4, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

	By copying, installing or otherwise using Python 2.7.4, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

5.2. _strptime license

The strptime and timezone modules are derived
from the _strptime and datetime modules in Python 3.2 respectively, and
therefore are subject to the following license:

Copyright (c) 1990-2013, Python Software Foundation

5.2.1. PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

	This LICENSE AGREEMENT is between the Python Software Foundation
(“PSF”), and the Individual or Organization (“Licensee”) accessing
and otherwise using Python 3.2.3 software in source or binary form and its
associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 3.2.3 alone or in
any derivative version, provided, however, that PSF’s License Agreement
and PSF’s notice of copyright, i.e., “Copyright © 2001-2012 Python
Software Foundation; All Rights Reserved” are retained in Python 3.2.3
alone or in any derivative version prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.2.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 3.2.3.

	PSF is making Python 3.2.3 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 3.2.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.2.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.2.3, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

	By copying, installing or otherwise using Python 3.2.3, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

5.3. IPNetwork & IPAddress documentation license

The documentation for the IPv4Address,
IPv4Network,
IPv6Address, and
IPv6Network classes in lars are derived from the
ipaddress documentation sources which are subject to the following copyright
and are licensed to the PSF under the contributor agreement which makes them
subject to the PSF 3.2.3 license from the section above:

Copyright (c) 2007 Google Inc.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lars	

 	
 	
 lars.apache	

 	
 	
 lars.cache	

 	
 	
 lars.csv	

 	
 	
 lars.datatypes	

 	
 	
 lars.dns	

 	
 	
 lars.exc	

 	
 	
 lars.geoip	

 	
 	
 lars.iis	

 	
 	
 lars.progress	

 	
 	
 lars.sql	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	address (lars.datatypes.Hostname attribute)

 	address() (in module lars.datatypes)

 	address_exclude() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

 	
 	ApacheError (class in lars.apache)

 	ApacheSource (class in lars.apache)

 	ApacheWarning

 	astimezone() (lars.datatypes.DateTime method)

B

 	
 	BarStyle (class in lars.progress)

 	
 	basename (lars.datatypes.Path attribute)

 	basename_no_ext (lars.datatypes.Path attribute)

C

 	
 	city (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	city_by_addr() (in module lars.geoip)

 	close() (lars.apache.ApacheSource method)

 	(lars.csv.CSVTarget method)

 	(lars.sql.SQLTarget method)

 	combine() (lars.datatypes.DateTime class method)

 	COMBINED (in module lars.apache)

 	commit (lars.sql.SQLTarget attribute)

 	COMMON (in module lars.apache)

 	COMMON_VHOST (in module lars.apache)

 	compare_networks() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

 	
 	compressed (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	coords (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	coords_by_addr() (in module lars.geoip)

 	count (lars.apache.ApacheSource attribute)

 	(lars.iis.IISSource attribute)

 	(lars.sql.SQLTarget attribute)

 	country (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	country_code_by_addr() (in module lars.geoip)

 	create_table (lars.sql.SQLTarget attribute)

 	CSV_DIALECT (class in lars.csv)

 	CSVTarget (class in lars.csv)

D

 	
 	Date (class in lars.datatypes)

 	date (lars.iis.IISSource attribute)

 	date() (in module lars.datatypes)

 	(lars.datatypes.DateTime method)

 	DateTime (class in lars.datatypes)

 	datetime() (in module lars.datatypes)

 	
 	day (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

 	dirname (lars.datatypes.Path attribute)

 	dirs (lars.datatypes.Path attribute)

 	drop_table (lars.sql.SQLTarget attribute)

 	dst() (lars.datatypes.DateTime method)

 	(lars.datatypes.Time method)

E

 	
 	EllipsisStyle (class in lars.progress)

 	exploded (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	
 	ext (lars.datatypes.Path attribute)

F

 	
 	fields (lars.iis.IISSource attribute)

 	finish (lars.iis.IISSource attribute)

 	fragment (lars.datatypes.Url attribute)

 	
 	from_address() (in module lars.dns)

 	fromtimestamp() (lars.datatypes.Date class method)

 	(lars.datatypes.DateTime class method)

G

 	
 	geturl() (lars.datatypes.Url method)

H

 	
 	HashStyle (class in lars.progress)

 	hide() (lars.progress.ProgressMeter method)

 	Hostname (class in lars.datatypes)

 	hostname (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.Url attribute)

 	
 	hostname() (in module lars.datatypes)

 	hosts() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

 	hour (lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

I

 	
 	ignore_drop_errors (lars.sql.SQLTarget attribute)

 	IISDirectiveError

 	IISError (class in lars.iis)

 	IISFieldsError

 	IISSource (class in lars.iis)

 	IISVersionError

 	IISWarning

 	init_databases() (in module lars.geoip)

 	insert (lars.sql.SQLTarget attribute)

 	ipv4_mapped (lars.datatypes.IPv6Address attribute)

 	IPv4Address (class in lars.datatypes)

 	IPv4Network (class in lars.datatypes)

 	IPv4Port (class in lars.datatypes)

 	IPv6Address (class in lars.datatypes)

 	IPv6Network (class in lars.datatypes)

 	IPv6Port (class in lars.datatypes)

 	is_link_local (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	is_loopback (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	is_multicast (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	
 	is_private (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	is_reserved (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	is_site_local (lars.datatypes.IPv6Address attribute)

 	is_unspecified (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv4Network attribute)

 	(lars.datatypes.IPv6Address attribute)

 	(lars.datatypes.IPv6Network attribute)

 	isabs (lars.datatypes.Path attribute)

 	isocalendar() (lars.datatypes.Date method)

 	(lars.datatypes.DateTime method)

 	isoformat() (lars.datatypes.Date method)

 	(lars.datatypes.DateTime method)

 	(lars.datatypes.Time method)

 	isoweekday() (lars.datatypes.Date method)

 	(lars.datatypes.DateTime method)

 	isp (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	isp_by_addr() (in module lars.geoip)

J

 	
 	join() (lars.datatypes.Path method)

L

 	
 	lars (module)

 	lars.apache (module)

 	lars.cache (module)

 	lars.csv (module)

 	lars.datatypes (module)

 	lars.dns (module)

 	lars.exc (module)

 	
 	lars.geoip (module)

 	lars.iis (module)

 	lars.progress (module)

 	lars.sql (module)

 	LarsError

 	LarsWarning

 	log_format (lars.apache.ApacheSource attribute)

 	lru_cache() (in module lars.cache)

M

 	
 	max (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	microsecond (lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	min (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	
 	minute (lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	month (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

N

 	
 	netloc (lars.datatypes.Url attribute)

 	
 	network() (in module lars.datatypes)

 	now() (lars.datatypes.DateTime class method)

O

 	
 	OracleTarget (class in lars.sql)

 	org (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	
 	org_by_addr() (in module lars.geoip)

 	overlaps() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

P

 	
 	packed (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	params (lars.datatypes.Url attribute)

 	password (lars.datatypes.Url attribute)

 	Path (class in lars.datatypes)

 	path (lars.datatypes.Url attribute)

 	
 	path() (in module lars.datatypes)

 	path_str (lars.datatypes.Url attribute)

 	PercentageStyle (class in lars.progress)

 	port (lars.datatypes.IPv4Port attribute)

 	(lars.datatypes.IPv6Port attribute)

 	(lars.datatypes.Url attribute)

 	ProgressMeter (class in lars.progress)

Q

 	
 	query (lars.datatypes.Url attribute)

 	query_str (lars.datatypes.Url attribute)

 	QUOTE_ALL (in module lars.csv)

 	
 	QUOTE_MINIMAL (in module lars.csv)

 	QUOTE_NONE (in module lars.csv)

 	QUOTE_NONNUMERIC (in module lars.csv)

R

 	
 	REFERER (in module lars.apache)

 	region (lars.datatypes.IPv4Address attribute)

 	(lars.datatypes.IPv6Address attribute)

 	region_by_addr() (in module lars.geoip)

 	remark (lars.iis.IISSource attribute)

 	replace() (lars.datatypes.Date method)

 	(lars.datatypes.DateTime method)

 	(lars.datatypes.Time method)

 	
 	resolution (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	row() (in module lars.datatypes)

S

 	
 	scheme (lars.datatypes.Url attribute)

 	second (lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	show() (lars.progress.ProgressMeter method)

 	sixtofour (lars.datatypes.IPv6Address attribute)

 	software (lars.iis.IISSource attribute)

 	source (lars.apache.ApacheSource attribute)

 	SpinnerStyle (class in lars.progress)

 	SQLError

 	
 	SQLTarget (class in lars.sql)

 	SQLWarning

 	start (lars.iis.IISSource attribute)

 	strftime() (lars.datatypes.Date method)

 	(lars.datatypes.Time method)

 	strptime() (lars.datatypes.DateTime class method)

 	subnets() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

 	supernet() (lars.datatypes.IPv4Network method)

 	(lars.datatypes.IPv6Network method)

T

 	
 	table (lars.sql.SQLTarget attribute)

 	teredo (lars.datatypes.IPv6Address attribute)

 	Time (class in lars.datatypes)

 	time() (in module lars.datatypes)

 	(lars.datatypes.DateTime method)

 	timetz() (lars.datatypes.DateTime method)

 	to_address() (in module lars.dns)

 	
 	today() (lars.datatypes.Date class method)

 	(lars.datatypes.DateTime class method)

 	TSV_DIALECT (class in lars.csv)

 	tzinfo (lars.datatypes.DateTime attribute)

 	(lars.datatypes.Time attribute)

 	tzname() (lars.datatypes.DateTime method)

 	(lars.datatypes.Time method)

U

 	
 	update() (lars.progress.ProgressMeter method)

 	Url (class in lars.datatypes)

 	url() (in module lars.datatypes)

 	USER_AGENT (in module lars.apache)

 	
 	username (lars.datatypes.Url attribute)

 	utcfromtimestamp() (lars.datatypes.DateTime class method)

 	utcnow() (lars.datatypes.DateTime class method)

 	utcoffset() (lars.datatypes.DateTime method)

 	(lars.datatypes.Time method)

V

 	
 	version (lars.iis.IISSource attribute)

W

 	
 	weekday() (lars.datatypes.Date method)

 	(lars.datatypes.DateTime method)

 	
 	write() (lars.csv.CSVTarget method)

 	(lars.sql.SQLTarget method)

Y

 	
 	year (lars.datatypes.Date attribute)

 	(lars.datatypes.DateTime attribute)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 lars

 		
 Install

 		
 Pre-requisites

 		
 Ubuntu Linux

 		
 Other Platforms

 		
 Introduction

 		
 Filtering rows

 		
 Manipulating row content

 		
 API Reference

 		
 lars.apache - Reading Apache Logs

 		
 Classes

 		
 Data

 		
 Exceptions

 		
 Examples

 		
 lars.iis - Reading IIS Logs

 		
 Classes

 		
 Exceptions

 		
 Examples

 		
 Note for maintainers

 		
 lars.csv - Writing CSV Files

 		
 Classes

 		
 Data

 		
 Examples

 		
 lars.sql - Direct Database Output

 		
 Classes

 		
 Exceptions

 		
 Examples

 		
 lars.geoip - GeoIP Database Access

 		
 Functions

 		
 Examples

 		
 lars.datatypes - Web Log Datatypes

 		
 Classes

 		
 Functions

 		
 lars.progress - Rendering Progress

 		
 Classes

 		
 Examples

 		
 lars.dns - DNS Resolution

 		
 Functions

 		
 lars.cache - Cache Decorators

 		
 Functions

 		
 lars.exc - Base Exceptions

 		
 Exceptions

 		
 Change log

 		
 Release 1.0 (2017-01-04)

 		
 Release 0.3 (2014-09-07)

 		
 Release 0.2 (2013-07-28)

 		
 Release 0.1 (2013-06-09)

 		
 License

 		
 DateTime, Date, and Time documentation license

 		
 PSF LICENSE AGREEMENT FOR PYTHON 2.7.4

 		
 _strptime license

 		
 PSF LICENSE AGREEMENT FOR PYTHON 3.2.3

 		
 IPNetwork & IPAddress documentation license

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

