

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Laravel MongoDB

[image: Latest Stable Version] [https://packagist.org/packages/jenssegers/mongodb] [image: Total Downloads] [https://packagist.org/packages/jenssegers/mongodb] [image: Build Status] [https://travis-ci.org/jenssegers/laravel-mongodb] [image: Coverage Status] [https://coveralls.io/r/jenssegers/laravel-mongodb?branch=master] [image: Donate] [https://www.paypal.me/jenssegers]

An Eloquent model and Query builder with support for MongoDB, using the original Laravel API. This library extends the original Laravel classes, so it uses exactly the same methods.

Table of contents

	Installation

	Upgrading

	Configuration

	Eloquent

	Optional: Alias

	Query Builder

	Schema

	Extensions

	Troubleshooting

	Examples

Installation

Make sure you have the MongoDB PHP driver installed. You can find installation instructions at http://php.net/manual/en/mongodb.installation.php

WARNING: The old mongo PHP driver is not supported anymore in versions >= 3.0.

Installation using composer:

composer require jenssegers/mongodb

Laravel version Compatibility

Laravel | Package
:———|:———-
4.2.x | 2.0.x
5.0.x | 2.1.x
5.1.x | 2.2.x or 3.0.x
5.2.x | 2.3.x or 3.0.x
5.3.x | 3.1.x or 3.2.x
5.4.x | 3.2.x
5.5.x | 3.3.x
5.6.x | 3.4.x

And add the service provider in config/app.php:

Jenssegers\Mongodb\MongodbServiceProvider::class,

For usage with Lumen [http://lumen.laravel.com], add the service provider in bootstrap/app.php. In this file, you will also need to enable Eloquent. You must however ensure that your call to $app->withEloquent(); is below where you have registered the MongodbServiceProvider:

$app->register(Jenssegers\Mongodb\MongodbServiceProvider::class);

$app->withEloquent();

The service provider will register a mongodb database extension with the original database manager. There is no need to register additional facades or objects. When using mongodb connections, Laravel will automatically provide you with the corresponding mongodb objects.

For usage outside Laravel, check out the Capsule manager [https://github.com/illuminate/database/blob/master/README.md] and add:

$capsule->getDatabaseManager()->extend('mongodb', function($config)
{
 return new Jenssegers\Mongodb\Connection($config);
});

Upgrading

Upgrading from version 2 to 3

In this new major release which supports the new mongodb PHP extension, we also moved the location of the Model class and replaced the MySQL model class with a trait.

Please change all Jenssegers\Mongodb\Model references to Jenssegers\Mongodb\Eloquent\Model either at the top of your model files, or your registered alias.

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {}

If you are using hybrid relations, your MySQL classes should now extend the original Eloquent model class Illuminate\Database\Eloquent\Model instead of the removed Jenssegers\Eloquent\Model. Instead use the new Jenssegers\Mongodb\Eloquent\HybridRelations trait. This should make things more clear as there is only one single model class in this package.

use Jenssegers\Mongodb\Eloquent\HybridRelations;

class User extends Eloquent {

 use HybridRelations;

 protected $connection = 'mysql';

}

Embedded relations now return an Illuminate\Database\Eloquent\Collection rather than a custom Collection class. If you were using one of the special methods that were available, convert them to Collection operations.

$books = $user->books()->sortBy('title');

Testing

To run the test for this package, run:

docker-compose up

Configuration

Change your default database connection name in config/database.php:

'default' => env('DB_CONNECTION', 'mongodb'),

And add a new mongodb connection:

'mongodb' => [
 'driver' => 'mongodb',
 'host' => env('DB_HOST', 'localhost'),
 'port' => env('DB_PORT', 27017),
 'database' => env('DB_DATABASE'),
 'username' => env('DB_USERNAME'),
 'password' => env('DB_PASSWORD'),
 'options' => [
 'database' => 'admin' // sets the authentication database required by mongo 3
]
],

You can connect to multiple servers or replica sets with the following configuration:

'mongodb' => [
 'driver' => 'mongodb',
 'host' => ['server1', 'server2'],
 'port' => env('DB_PORT', 27017),
 'database' => env('DB_DATABASE'),
 'username' => env('DB_USERNAME'),
 'password' => env('DB_PASSWORD'),
 'options' => [
 'replicaSet' => 'replicaSetName'
]
],

Alternatively, you can use MongoDB connection string:

'mongodb' => [
 'driver' => 'mongodb',
 'dsn' => env('DB_DSN'),
 'database' => env('DB_DATABASE'),
],

Please refer to MongoDB official docs for its URI format: https://docs.mongodb.com/manual/reference/connection-string/

Eloquent

This package includes a MongoDB enabled Eloquent class that you can use to define models for corresponding collections.

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {}

Note that we did not tell Eloquent which collection to use for the User model. Just like the original Eloquent, the lower-case, plural name of the class will be used as the collection name unless another name is explicitly specified. You may specify a custom collection (alias for table) by defining a collection property on your model:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {

 protected $collection = 'users_collection';

}

NOTE: Eloquent will also assume that each collection has a primary key column named id. You may define a primaryKey property to override this convention. Likewise, you may define a connection property to override the name of the database connection that should be used when utilizing the model.

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class MyModel extends Eloquent {

 protected $connection = 'mongodb';

}

Everything else (should) work just like the original Eloquent model. Read more about the Eloquent on http://laravel.com/docs/eloquent

Optional: Alias

You may also register an alias for the MongoDB model by adding the following to the alias array in config/app.php:

'Moloquent' => Jenssegers\Mongodb\Eloquent\Model::class,

This will allow you to use the registered alias like:

class MyModel extends Moloquent {}

Query Builder

The database driver plugs right into the original query builder. When using mongodb connections, you will be able to build fluent queries to perform database operations. For your convenience, there is a collection alias for table as well as some additional mongodb specific operators/operations.

$users = DB::collection('users')->get();

$user = DB::collection('users')->where('name', 'John')->first();

If you did not change your default database connection, you will need to specify it when querying.

$user = DB::connection('mongodb')->collection('users')->get();

Read more about the query builder on http://laravel.com/docs/queries

Schema

The database driver also has (limited) schema builder support. You can easily manipulate collections and set indexes:

Schema::create('users', function($collection)
{
 $collection->index('name');

 $collection->unique('email');
});

Supported operations are:

	create and drop

	collection

	hasCollection

	index and dropIndex (compound indexes supported as well)

	unique

	background, sparse, expire, geospatial (MongoDB specific)

All other (unsupported) operations are implemented as dummy pass-through methods, because MongoDB does not use a predefined schema. Read more about the schema builder on http://laravel.com/docs/schema

Geospatial indexes

Geospatial indexes are handy for querying location-based documents. They come in two forms: 2d and 2dsphere. Use the schema builder to add these to a collection.

To add a 2d index:

Schema::create('users', function($collection)
{
 $collection->geospatial('name', '2d');
});

To add a 2dsphere index:

Schema::create('users', function($collection)
{
 $collection->geospatial('name', '2dsphere');
});

Extensions

Auth

If you want to use Laravel’s native Auth functionality, register this included service provider:

'Jenssegers\Mongodb\Auth\PasswordResetServiceProvider',

This service provider will slightly modify the internal DatabaseReminderRepository to add support for MongoDB based password reminders. If you don’t use password reminders, you don’t have to register this service provider and everything else should work just fine.

Queues

If you want to use MongoDB as your database backend, change the driver in config/queue.php:

'connections' => [
 'database' => [
 'driver' => 'mongodb',
 'table' => 'jobs',
 'queue' => 'default',
 'expire' => 60,
],

If you want to use MongoDB to handle failed jobs, change the database in config/queue.php:

'failed' => [
 'database' => 'mongodb',
 'table' => 'failed_jobs',
],

And add the service provider in config/app.php:

Jenssegers\Mongodb\MongodbQueueServiceProvider::class,

Sentry

If you want to use this library with Sentry [https://cartalyst.com/manual/sentry], then check out https://github.com/jenssegers/Laravel-MongoDB-Sentry

Sessions

The MongoDB session driver is available in a separate package, check out https://github.com/jenssegers/Laravel-MongoDB-Session

Examples

Basic Usage

Retrieving All Models

$users = User::all();

Retrieving A Record By Primary Key

$user = User::find('517c43667db388101e00000f');

Wheres

$users = User::where('votes', '>', 100)->take(10)->get();

Or Statements

$users = User::where('votes', '>', 100)->orWhere('name', 'John')->get();

And Statements

$users = User::where('votes', '>', 100)->where('name', '=', 'John')->get();

Using Where In With An Array

$users = User::whereIn('age', [16, 18, 20])->get();

When using whereNotIn objects will be returned if the field is non existent. Combine with whereNotNull('age') to leave out those documents.

Using Where Between

$users = User::whereBetween('votes', [1, 100])->get();

Where null

$users = User::whereNull('updated_at')->get();

Order By

$users = User::orderBy('name', 'desc')->get();

Offset & Limit

$users = User::skip(10)->take(5)->get();

Distinct

Distinct requires a field for which to return the distinct values.

$users = User::distinct()->get(['name']);
// or
$users = User::distinct('name')->get();

Distinct can be combined with where:

$users = User::where('active', true)->distinct('name')->get();

Advanced Wheres

$users = User::where('name', '=', 'John')->orWhere(function($query)
 {
 $query->where('votes', '>', 100)
 ->where('title', '<>', 'Admin');
 })
 ->get();

Group By

Selected columns that are not grouped will be aggregated with the $last function.

$users = Users::groupBy('title')->get(['title', 'name']);

Aggregation

Aggregations are only available for MongoDB versions greater than 2.2.

$total = Order::count();
$price = Order::max('price');
$price = Order::min('price');
$price = Order::avg('price');
$total = Order::sum('price');

Aggregations can be combined with where:

$sold = Orders::where('sold', true)->sum('price');

Aggregations can be also used on subdocuments:

$total = Order::max('suborder.price');
...

NOTE: this aggreagtion only works with single subdocuments (like embedsOne) not subdocument arrays (like embedsMany)

Like

$user = Comment::where('body', 'like', '%spam%')->get();

Incrementing or decrementing a value of a column

Perform increments or decrements (default 1) on specified attributes:

User::where('name', 'John Doe')->increment('age');
User::where('name', 'Jaques')->decrement('weight', 50);

The number of updated objects is returned:

$count = User->increment('age');

You may also specify additional columns to update:

User::where('age', '29')->increment('age', 1, ['group' => 'thirty something']);
User::where('bmi', 30)->decrement('bmi', 1, ['category' => 'overweight']);

Soft deleting

When soft deleting a model, it is not actually removed from your database. Instead, a deleted_at timestamp is set on the record. To enable soft deletes for a model, apply the SoftDeletingTrait to the model:

use Jenssegers\Mongodb\Eloquent\SoftDeletes;

class User extends Eloquent {

 use SoftDeletes;

 protected $dates = ['deleted_at'];

}

For more information check http://laravel.com/docs/eloquent#soft-deleting

MongoDB specific operators

Exists

Matches documents that have the specified field.

User::where('age', 'exists', true)->get();

All

Matches arrays that contain all elements specified in the query.

User::where('roles', 'all', ['moderator', 'author'])->get();

Size

Selects documents if the array field is a specified size.

User::where('tags', 'size', 3)->get();

Regex

Selects documents where values match a specified regular expression.

User::where('name', 'regex', new \MongoDB\BSON\Regex("/.*doe/i"))->get();

NOTE: you can also use the Laravel regexp operations. These are a bit more flexible and will automatically convert your regular expression string to a MongoDB\BSON\Regex object.

User::where('name', 'regexp', '/.*doe/i'))->get();

And the inverse:

User::where('name', 'not regexp', '/.*doe/i'))->get();

Type

Selects documents if a field is of the specified type. For more information check: http://docs.mongodb.org/manual/reference/operator/query/type/#op._S_type

User::where('age', 'type', 2)->get();

Mod

Performs a modulo operation on the value of a field and selects documents with a specified result.

User::where('age', 'mod', [10, 0])->get();

Near

NOTE: Specify coordinates in this order: longitude, latitude.

$users = User::where('location', 'near', [
 '$geometry' => [
 'type' => 'Point',
 'coordinates' => [
 -0.1367563,
 51.5100913,
],
],
 '$maxDistance' => 50,
]);

GeoWithin

$users = User::where('location', 'geoWithin', [
 '$geometry' => [
 'type' => 'Polygon',
 'coordinates' => [[
 [
 -0.1450383,
 51.5069158,
],
 [
 -0.1367563,
 51.5100913,
],
 [
 -0.1270247,
 51.5013233,
],
 [
 -0.1450383,
 51.5069158,
],
]],
],
]);

GeoIntersects

$locations = Location::where('location', 'geoIntersects', [
 '$geometry' => [
 'type' => 'LineString',
 'coordinates' => [
 [
 -0.144044,
 51.515215,
],
 [
 -0.129545,
 51.507864,
],
],
],
]);

Where

Matches documents that satisfy a JavaScript expression. For more information check http://docs.mongodb.org/manual/reference/operator/query/where/#op._S_where

Inserts, updates and deletes

Inserting, updating and deleting records works just like the original Eloquent.

Saving a new model

$user = new User;
$user->name = 'John';
$user->save();

You may also use the create method to save a new model in a single line:

User::create(['name' => 'John']);

Updating a model

To update a model, you may retrieve it, change an attribute, and use the save method.

$user = User::first();
$user->email = 'john@foo.com';
$user->save();

There is also support for upsert operations, check https://github.com/jenssegers/laravel-mongodb#mongodb-specific-operations

Deleting a model

To delete a model, simply call the delete method on the instance:

$user = User::first();
$user->delete();

Or deleting a model by its key:

User::destroy('517c43667db388101e00000f');

For more information about model manipulation, check http://laravel.com/docs/eloquent#insert-update-delete

Dates

Eloquent allows you to work with Carbon/DateTime objects instead of MongoDate objects. Internally, these dates will be converted to MongoDate objects when saved to the database. If you wish to use this functionality on non-default date fields, you will need to manually specify them as described here: http://laravel.com/docs/eloquent#date-mutators

Example:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {

 protected $dates = ['birthday'];

}

Which allows you to execute queries like:

$users = User::where('birthday', '>', new DateTime('-18 years'))->get();

Relations

Supported relations are:

	hasOne

	hasMany

	belongsTo

	belongsToMany

	embedsOne

	embedsMany

Example:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {

 public function items()
 {
 return $this->hasMany('Item');
 }

}

And the inverse relation:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class Item extends Eloquent {

 public function user()
 {
 return $this->belongsTo('User');
 }

}

The belongsToMany relation will not use a pivot “table”, but will push id’s to a related_ids attribute instead. This makes the second parameter for the belongsToMany method useless. If you want to define custom keys for your relation, set it to null:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {

 public function groups()
 {
 return $this->belongsToMany('Group', null, 'user_ids', 'group_ids');
 }

}

Other relations are not yet supported, but may be added in the future. Read more about these relations on http://laravel.com/docs/eloquent#relationships

EmbedsMany Relations

If you want to embed models, rather than referencing them, you can use the embedsMany relation. This relation is similar to the hasMany relation, but embeds the models inside the parent object.

REMEMBER: these relations return Eloquent collections, they don’t return query builder objects!

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class User extends Eloquent {

 public function books()
 {
 return $this->embedsMany('Book');
 }

}

You can access the embedded models through the dynamic property:

$books = User::first()->books;

The inverse relation is automagically available, you don’t need to define this reverse relation.

$user = $book->user;

Inserting and updating embedded models works similar to the hasMany relation:

$book = new Book(['title' => 'A Game of Thrones']);

$user = User::first();

$book = $user->books()->save($book);
// or
$book = $user->books()->create(['title' => 'A Game of Thrones'])

You can update embedded models using their save method (available since release 2.0.0):

$book = $user->books()->first();

$book->title = 'A Game of Thrones';

$book->save();

You can remove an embedded model by using the destroy method on the relation, or the delete method on the model (available since release 2.0.0):

$book = $user->books()->first();

$book->delete();
// or
$user->books()->destroy($book);

If you want to add or remove an embedded model, without touching the database, you can use the associate and dissociate methods. To eventually write the changes to the database, save the parent object:

$user->books()->associate($book);

$user->save();

Like other relations, embedsMany assumes the local key of the relationship based on the model name. You can override the default local key by passing a second argument to the embedsMany method:

return $this->embedsMany('Book', 'local_key');

Embedded relations will return a Collection of embedded items instead of a query builder. Check out the available operations here: https://laravel.com/docs/master/collections

EmbedsOne Relations

The embedsOne relation is similar to the embedsMany relation, but only embeds a single model.

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class Book extends Eloquent {

 public function author()
 {
 return $this->embedsOne('Author');
 }

}

You can access the embedded models through the dynamic property:

$author = Book::first()->author;

Inserting and updating embedded models works similar to the hasOne relation:

$author = new Author(['name' => 'John Doe']);

$book = Books::first();

$author = $book->author()->save($author);
// or
$author = $book->author()->create(['name' => 'John Doe']);

You can update the embedded model using the save method (available since release 2.0.0):

$author = $book->author;

$author->name = 'Jane Doe';
$author->save();

You can replace the embedded model with a new model like this:

$newAuthor = new Author(['name' => 'Jane Doe']);
$book->author()->save($newAuthor);

MySQL Relations

If you’re using a hybrid MongoDB and SQL setup, you’re in luck! The model will automatically return a MongoDB- or SQL-relation based on the type of the related model. Of course, if you want this functionality to work both ways, your SQL-models will need use the Jenssegers\Mongodb\Eloquent\HybridRelations trait. Note that this functionality only works for hasOne, hasMany and belongsTo relations.

Example SQL-based User model:

use Jenssegers\Mongodb\Eloquent\HybridRelations;

class User extends Eloquent {

 use HybridRelations;

 protected $connection = 'mysql';

 public function messages()
 {
 return $this->hasMany('Message');
 }

}

And the Mongodb-based Message model:

use Jenssegers\Mongodb\Eloquent\Model as Eloquent;

class Message extends Eloquent {

 protected $connection = 'mongodb';

 public function user()
 {
 return $this->belongsTo('User');
 }

}

Raw Expressions

These expressions will be injected directly into the query.

User::whereRaw(['age' => array('$gt' => 30, '$lt' => 40)])->get();

You can also perform raw expressions on the internal MongoCollection object. If this is executed on the model class, it will return a collection of models. If this is executed on the query builder, it will return the original response.

// Returns a collection of User models.
$models = User::raw(function($collection)
{
 return $collection->find();
});

// Returns the original MongoCursor.
$cursor = DB::collection('users')->raw(function($collection)
{
 return $collection->find();
});

Optional: if you don’t pass a closure to the raw method, the internal MongoCollection object will be accessible:

$model = User::raw()->findOne(['age' => array('$lt' => 18)]);

The internal MongoClient and MongoDB objects can be accessed like this:

$client = DB::getMongoClient();
$db = DB::getMongoDB();

MongoDB specific operations

Cursor timeout

To prevent MongoCursorTimeout exceptions, you can manually set a timeout value that will be applied to the cursor:

DB::collection('users')->timeout(-1)->get();

Upsert

Update or insert a document. Additional options for the update method are passed directly to the native update method.

DB::collection('users')->where('name', 'John')
 ->update($data, ['upsert' => true]);

Projections

You can apply projections to your queries using the project method.

DB::collection('items')->project(['tags' => ['$slice' => 1]])->get();
DB::collection('items')->project(['tags' => ['$slice' => [3, 7]]])->get();

Projections with Pagination

$limit = 25;
$projections = ['id', 'name'];
DB::collection('items')->paginate($limit, $projections);

Push

Add items to an array.

DB::collection('users')->where('name', 'John')->push('items', 'boots');
DB::collection('users')->where('name', 'John')->push('messages', ['from' => 'Jane Doe', 'message' => 'Hi John']);

If you don’t want duplicate items, set the third parameter to true:

DB::collection('users')->where('name', 'John')->push('items', 'boots', true);

Pull

Remove an item from an array.

DB::collection('users')->where('name', 'John')->pull('items', 'boots');
DB::collection('users')->where('name', 'John')->pull('messages', ['from' => 'Jane Doe', 'message' => 'Hi John']);

Unset

Remove one or more fields from a document.

DB::collection('users')->where('name', 'John')->unset('note');

You can also perform an unset on a model.

$user = User::where('name', 'John')->first();
$user->unset('note');

Query Caching

You may easily cache the results of a query using the remember method:

$users = User::remember(10)->get();

From: http://laravel.com/docs/queries#caching-queries

Query Logging

By default, Laravel keeps a log in memory of all queries that have been run for the current request. However, in some cases, such as when inserting a large number of rows, this can cause the application to use excess memory. To disable the log, you may use the disableQueryLog method:

DB::connection()->disableQueryLog();

From: http://laravel.com/docs/database#query-logging

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

