

Welcome to lambda-toolkit’s documentation!

lambda-toolkit

[image: Documentation Status]
 [http://lambda-toolkit.readthedocs.io/en/latest/?badge=latest][image: Build Status]
 [https://travis-ci.org/lucioveloso/lambda-toolkit][image: Compatible]
	Now compatible with Python 2 and 3.

	Now compatible with Linux, Mac and Windows.

Top Features

	Invoke locally lambdas in your machine with simulated events or real events

	Easy import and deploy your lambdas in different regions (v0.3.0)

	Supporting Lambda Environment Variables (Even in local execution) (v0.3.3)

Contributing

We are open to contributions. Also let we know if you need some feature that is not implemented or it’s not working properly. Please feel free to open an Issue in the Github project requesting fixes or new features.

Easy to use and install

We provide a step-by-step installation guide with installation manual and how to use.

Access now here [http://lambda-toolkit.readthedocs.io/en/trunk/start.html].

Documentation

http://lambda-toolkit.readthedocs.io/

GitHub Project

https://github.com/lucioveloso/lambda-toolkit

Installation:

$ pip install lambda-toolkit -U

Lambda-toolkit offers a lambda proxy

Using lambda-toolkit proxy you’re able to debug real events in real time in your own machine.

See how it works.

[image: https://s3-eu-west-1.amazonaws.com/lucio-public-bucket/lambda-proxy-diagram.png]
After you create a proxy, you’re able even to put breakpoints in your code, like the example below:

[image: https://s3-eu-west-1.amazonaws.com/lucio-public-bucket/debugging-lambda.jpg]

Lambda-toolkit offers lambda tailing

[image: https://s3-eu-west-1.amazonaws.com/lucio-public-bucket/lambda-tail.gif]

Getting started:

	General Prerequisites
	Python

	Package Management System (pip)

	AWS Credentials

	Installing
	Installing using pip

	Cloning the repository manually

Examples:

	Creating a lambda project

	Listing AWS lambda projects

	Importing an existing AWS lambda project

	Deploying a project in AWS

	Setting a default role

	Invoking a local lambda

	Invoking a remote lambda

	Tailing a remote lambda

Debugging Lambda:

	Debugging a Lambda

	Creating a queue

	Deploying a proxy

	Verifying requisites

	Debugging

Indices and tables

	Index

	Module Index

	Search Page

 Basically you’re able to install the lambda-toolkit using pip. You can also install it manually, cloning the project from GitHub.

Hint

If you’re not a developer and you’re not planning to contribute developing in lambda-toolkit, we do recommend to use pip installation mode..

General Prerequisites

Basically, to start to use the lambda-toolkit, you must have at least:

	Python 2 or 3

	Package Management System (pip)

	AWS Credentials

Python

Python is required to use lambda-toolkit. By this way, you should make sure that your system has a proper Python installation available:

$ python --version
Python x.x.x

If your system does not support Python, you can install here [https://www.python.org/download].

Package Management System (pip)

pip is required to use lambda-toolkit. By this way, you should make sure that your system has a proper pip installed:

$ pip --version
pip 9.0.1 from /Library/Python/2.7/site-packages/pip-9.0.1-py2.7.egg (python 2.7)

If you system does not has pip installed, you can install here [https://pip.pypa.io/en/stable/installing/].

AWS Credentials

Lambda-toolkit can read yours credentials from the system environment variables or credential files.

If you’re already using aws cli for example, credential files were generated when the command aws configure was executed.

Hint

Lambda-toolkit tries first to read the environment variables, and if it is not configured, lambda-toolkit reads the credential files.

Warning

We do recommend to use credential files.

Using credential files

Make sure that you have the files:

	~/.aws/credentials

	~/.aws/config

For example:

~/.aws/credentials:

[default]
aws_access_key_id = AAAAAAAAAAAAAAAAAAAA
aws_secret_access_key = AWS_ACCESS_SECRET_KEY__KEEP_IT_SAFE

~/.aws/config:

[default]
region = eu-west-1

Hint

As you can see, the example shows how to create a default credential. You can create others, and then, you can use the environment variable AWS_PROFILE to choice a specific one.
You can also overwrite your region option, setting the environment variable AWS_REGION.

Using environments variables

Specify the env variables below:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY

	AWS_REGION

For example:

$ export AWS_ACCESS_KEY_ID="AAAAAAAAAAAAAAAAAAAA"
$ export AWS_SECRET_ACCESS_KEY="AWS_ACCESS_SECRET_KEY__KEEP_IT_SAFE"
$ export AWS_REGION="us-east-1"

Hint

Remember that you must export the variables.

Warning

Lambda-toolkit only uses the environment variables, if the 3 variables are available.

Installing

Installing using pip

The installation with pip is quick and simple. For common installation, use the command below:

$ sudo -H pip install lambda-toolkit
$ lt --help

Hint

If you want uninstall lambda-toolkit, just run sudo pip uninstall lambda-toolkit.
To update, run sudo pip install lambda-toolkit -U

Cloning the repository manually

Installing from repository is not to common users, but it is also another option. To install from repository you also need to have the git client installed.

The first step is clone the repository:

$ git clone https://github.com/lucioveloso/lambda-toolkit

Install the requirements using pip:

$ pip install -r lambda-toolkit/requirements-user.txt
$ lambda-toolkit/bin/lt --help

And then, you are able to run the lambda-toolkit from current user:

Creating a lambda project

The first step to start to use the lambda-toolkit is creating or importing a lambda project. Lambda-toolkit provides a command called project, that you can invoke to create a lambda project running the command lt project create:

$ lt project create -p myLambdaProject
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] Creating the project lambda-toolkit folder '/Users/glucio/lambda-toolkit/lambdas/myLambdaProject_eu-west-1'
[INFO] Project 'myLambdaProject' [python2.7] has been created.

Now I have my project pre-configured in lambdas/myLambdaProject_eu-west-1:

$ ls /Users/glucio/lambda-toolkit/lambdas/myLambdaProject_eu-west-1
__init__.py index.py

Note

Lambda-toolkit created also the file __init__.py. Lambda-toolkit creates this file to make sure that it will be possible to load this project as module.

Now, if we list our environment, we already can see this project:

$ lt list
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO]
[INFO] User Projects (Lambda Functions):
[INFO] - Project: lambda-list-buckets Deployed: True Runtime: python2.7
[INFO] - Project: myLambdaProject Deployed: False Runtime: python2.7

To see the project command help, just type lt project --help:

Manage Projects
**

 Examples:

 $ lt project list
 $ lt project create -p myProject [--runtime nodejs6.10]
 $ lt project delete -p myProject
 $ lt project deploy -p myProject [--rolename arn:xxx:yyyy]
 $ lt project undeploy -p myProject
 $ lt project deploy-all [--rolename arn:xxx:yyyy]
 $ lt project undeploy-all
 $ lt project import -p myAwsProject
 $ lt project import-all
 $ lt project list-aws

Hint

For all the commands, you can use --help. For example: lt invoke --help or lt queue --help.

Listing AWS lambda projects

To list all existing AWS lambda projects in your AWS environment, you can use the command lt project list-aws:

$ lt project list-aws
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] AWS Projects (Lambda Functions):
[INFO] - Project: abcd Imported: False Runtime: python2.7
[INFO] - Project: s3_resources Imported: False Runtime: python2.7
[INFO] - Project: lambda-list-buckets Imported: True Runtime: python2.7

Importing an existing AWS lambda project

To import an existing lambda project in your AWS environment, you can use the command lt project import:

$ lt project import -p s3_resources
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] Creating the project lambda-toolkit folder '/Users/glucio/lambda-toolkit/lambdas/s3_resources_eu-west-1'
[INFO] Project s3_resources imported.

Warning

Note that if you import an proxy that you already have inside lambda-toolkit, it will overwrite your local project. It can be very useful if you wish to update your local project from the lambda in the AWS, but it also can make you lose data.

Deploying a project in AWS

To deploy a project to your AWS environment, you can use the command lt project deploy:

$ lt project deploy -p myLambdaProject
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] Lambda project myLambdaProject was created and deployed.

Note

Note that I didn’t provide the option --rolename that is required. It happened due I previously had configured a default role using the command lt role --set-default.

Warning

If you already have a lambda project with this name in your AWS environment, it will be overwritten.

Setting a default role

To set a default role to be used always that you do not provide a rolename to deploy a proxy or a lambda project, you can use the command lt role:

$ lt role set-default --rolename arn:aws:iam::432811670411:role/service-role/myRoleLambda
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] Role 'arn:aws:iam::123456789000:role/service-role/myRoleLambda' is set as default now.

Hint

If you define a default role, but you use the --rolename to deploy a lambda project, the rolename that you specify will preponderate.

Invoking a local lambda

To invoke a lambda project locally in your machine, you can use the command lt project invoke:

$ lt invoke local --projectname myLambdaProject --event-file helloworld.json
Initializing lambda-toolkit CLI (v0.2.10) - Region: eu-west-1 - Auth: file
[INFO] Importing project myLambdaProject
Hi, I'm here. Lambda-proxy is working. =)
AWS Event ID: 11111111-1111-1111-1111-111111111111
Event Body: {"key3": "value3", "key2": "value2", "key1": "value1"}

Hint

You can customize or add new events file in the folder ~/lambda-toolkit/invoke/events/

Invoking a remote lambda

To invoke a lambda project remotely, you can use the command lt project invoke remote:

$ lt invoke remote --event-file helloworld.json --projectname myLambdaProject
Initializing lambda-toolkit CLI (v0.2.11) - Region: eu-west-1 - Auth: file
[INFO] Invoking the project myLambdaProject
START RequestId: 5a380d00-66c6-11e7-8119-9b430b7e8688 Version: $LATEST
Hi, I'm here. Lambda-proxy is working. =)
AWS Event ID: 5a380d00-66c6-11e7-8119-9b430b7e8688
Event Body: {"key3": "value3", "key2": "value2", "key1": "value1"}
END RequestId: 5a380d00-66c6-11e7-8119-9b430b7e8688
REPORT RequestId: 5a380d00-66c6-11e7-8119-9b430b7e8688 Duration: 0.57 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 29 MB

Hint

You can invoke remotely your lambda-toolkit proxy, providing the argument --proxyname instead --projectname.

Tailing a remote lambda

To tail a remote lambda project, you can use the command lt tail cloudwatch:

$ lt tail cloudwatch --loggroupname "/aws/lambda/myLambdaProject"
Initializing tail-toolkit CLI (v0.0.5) - Region: eu-west-1
Collecting logs in real time, starting from 5 minutes ago
START RequestId: 8b690d74-66de-11e7-b54e-2d48a73dcaf9 Version: $LATEST
Hi, I'm here. Lambda-proxy is working. =)
AWS Event ID: 8b690d74-66de-11e7-b54e-2d48a73dcaf9
Event Body: {"account": "123456789000", "region": "eu-west-1", "detail": {"state": "running", "instance-id": "i-03169cf0533d7d000"}, "detail-type": "EC2 Instance State-change Notification", "source": "aws.ec2", "version": "0", "time": "2017-07-12T08:46:05Z", "id": "812d642c-5f46-4588-9dde-bfa4478a4e78", "resources": ["arn:aws:ec2:eu-west-1:123456789000:instance/i-03169cf0533d7d000"]}
END RequestId: 8b690d74-66de-11e7-b54e-2d48a73dcaf9
REPORT RequestId: 8b690d74-66de-11e7-b54e-2d48a73dcaf9 Duration: 0.69 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 29 MB

Important

Please note that tail can be used to any log group name in your cloudwatch environment. To tail your lambda functions you should append the lambda log group prefix /aws/lambda/<your lambda function name>

Note

If you want to debug your remote lambda function, you should use the receiver command instead the tail.

Debugging a Lambda

To debug real events in real time, you should have at least:

	A queue (to store the events)

	A proxy (to forward the events to the queue)

	A lambda project (to process the events)

Creating a queue

To create a queue, you can use the command lt project queue create:

$ lt queue create -q myQueue
Initializing lambda-toolkit CLI (v0.2.11) - Region: eu-west-1 - Auth: file
[INFO] The queue 'myQueue.fifo' has been created.

Hint

In any moment, you can use lt list to see all resources in your lambda-toolkit environment.

Deploying a proxy

To deploy a proxy, you can use the command lt project proxy deploy:

$ lt proxy deploy -p myProxy -q myQueue
Initializing lambda-toolkit CLI (v0.2.11) - Region: eu-west-1 - Auth: file
[INFO] Lambda proxy myProxy created proxying requests to myQueue.fifo

Verifying requisites

Let’s list our environment, to check if we already have the queue, the proxy and the lambda project.

$ lt list
Initializing lambda-toolkit CLI (v0.2.11) - Region: eu-west-1 - Auth: file
[INFO]
[INFO] User Projects (Lambda Functions):
[INFO] - Project: s3_resources Deployed: True Runtime: python2.7
[INFO] - Project: myLambdaProject Deployed: True Runtime: python2.7
[INFO] - Project: lambda-list-buckets Deployed: True Runtime: python2.7
[INFO]
[INFO] SQS (Queues):
[INFO] - Queue name: myQueue.fifo Used by: myProxy
[INFO]
[INFO] Proxies (Lambda proxies):
[INFO] - Proxy name: myProxy Queue: myQueue.fifo Runtime: python2.7

Note

Note that now we have the proxy myProxy forwarding the event to myQueue.

Debugging

Now that you already have the all requisites to run a receiver, we can execute it to start to collect our real data in real time:

$ lt receiver collect --projectname myLambdaProject --sqsname myQueue
Initializing lambda-toolkit CLI (v0.2.11) - Region: eu-west-1 - Auth: file
[INFO] Importing project myLambdaProject
[INFO] Starting the receiver using the queue myQueue.fifo
.........

Attention

You can run this command inside your IDE in Debug Mode. By this way you will be able to set break points and debug all data. If you want to just see the logs in real time, you can use the lt tail instead the lt receiver.

Index

 nav.xhtml

 Table of Contents

 		Welcome to lambda-toolkit's documentation!

 		General Prerequisites

 		Python

 		Package Management System (pip)

 		AWS Credentials

 		Using credential files

 		Using environments variables

 		Installing

 		Installing using pip

 		Cloning the repository manually

 		Creating a lambda project

 		Listing AWS lambda projects

 		Importing an existing AWS lambda project

 		Deploying a project in AWS

 		Setting a default role

 		Invoking a local lambda

 		Invoking a remote lambda

 		Tailing a remote lambda

 		Debugging a Lambda

 		Creating a queue

 		Deploying a proxy

 		Verifying requisites

 		Debugging

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

