
LamAna Documentation
Release 0.4.11

P.R. II

June 09, 2016

Gallery

1 User Benefits 3

2 Community Benefits 5

3 Indices and Tables 127

i

ii

LamAna Documentation, Release 0.4.11

The LamAna project is an extensible Python library for interactive laminate analysis and visualization.

What’s New in LamAna

• appveyor builds (support on Windows)

LamAna enables users to calculate/export/analyze and author custom models based on laminate theory. Feature
modules can be used to plot stress distributions, analyze thickessness effects and predict failure trends.

Gallery 1

LamAna Documentation, Release 0.4.11

2 Gallery

CHAPTER 1

User Benefits

The primary benefits to users is an scientific package that:

• Simplicity: given a model and parameters, analysis begins with three lines of code

• Visualization: plotting and physical representations

• Analysis: fast computational analysis using a Pandas backend

• Extensibility: anyone with a little Python knowledge can implement custom laminate models

• Speed: data computed, plotting and exported for dozens of configurations within seconds

3

LamAna Documentation, Release 0.4.11

4 Chapter 1. User Benefits

CHAPTER 2

Community Benefits

Long-term goals for the laminate community are:

• Standardization: general abstractions for laminate theory analysis

• Common Library: R-like acceptance of model contributions for everyone to use

2.1 Quick View

Here is a brief gallery of some stress distribution plots produced by LamAna.

2.1.1 Single Geometry Plots

We can plot stress distributions for single laminates as a function of layer thicknesses or normalized thicknesses
(default).

In [5]: case1 = la.distributions.Case(load_params, mat_props) # instantiate a User Input Case Object through distributions
case1.apply(single_geo)
case1.plot(normalized=False)

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

5

LamAna Documentation, Release 0.4.11

In [6]: case1.plot(normalized=True, grayscale=True)

6 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

We can superimpose both layer axes with insets, and adjust the colors for publications.

In [7]: case1.plot(annotate=True, colorblind=True, inset=True)

2.1. Quick View 7

LamAna Documentation, Release 0.4.11

2.1.2 Multiple Geometry Plots

Normalized layers enables superimposed of stress distributions and concurrent laminate analysis. Data for multiple
laminates are encapsulated in a Case object.

In [10]: case2.plot(title, colorblind=True, annotate=True)

8 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

These distributions can be separated as desired into a panel of multiple plots.

In [11]: case2.plot(title, colorblind=True, annotate=True, separate=True)

2.1. Quick View 9

LamAna Documentation, Release 0.4.11

10 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Halfplots

The following has not been implemented yet, but demonstrates the idea of several multi-plots of tensile data. Each
plot show cases some pattern of interest.

• 1. constant total thickness; varied layer thicknesses

• 2. constant outer layer

• 3. constant inner layer

• 4. constant middle layer

Fig. 2.1: halfplots

In [13]: cases1.plot(extrema=False)

2.1. Quick View 11

LamAna Documentation, Release 0.4.11

2.1.3 Data Analysis

Using a prior case, we can analyze the data calculations based on a given theorical model.

Laminate data is contained in a DataFrame, a powerful data structure used in data analysis.

In [16]: #df = case1.frames
df = case1.frames[0]
df
#df.style # pandas 0.17.1, css on html table
#df.style.bar(subset=['stress_f (MPa/N)', 'strain'], color='#d65f5f')

12 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Accessing frames method.

Finally, we can export the latter data and parameters to Excel or .csv formats for archiving and further use.
case1.to𝑥𝑙𝑠𝑥()

2.2 Conclusion

With simple lines of code, we can quickly perform laminate analysis calculations, visulalize distributions and export
data.

...and it’s FREE.

2.3 Installation

These introductions explain how to install LamAna. We recommend installing Anaconda (Python 2.7.6+ or Python
3.3+) prior to installing LamAna. This will ensure dependencies are pre-installed.

2.3.1 Install LamAna

There are two simple options for installing LamAna. Open a terminal and run one of the following options:

$ pip install lamana # from source (default)

$ pip install lamana --use-wheel # from binary (faster)

For more detailed installation instructions, see Advanced Installation.

Note: The first installation option is most succint and builds LamAna from source (slow, but canonical). The
second option builds from a binary that uses pre-compiled libraries (faster). Both options install the most current
dependencies.

2.4 Getting Started

2.4.1 Using LamAna with Jupyter (recommended)

LamAna was developed with visualization in mind.

LamAna works best with the Jupter Notebook 4.0+ (formerly IPyhon 3.2+). Jupyter is a powerful analytical tool that
performs computations in separated cells and integrates well with Python. Plotting works best in Jupyter with some
matplotlib backend initiated in a cell using idiomatic IPython magics e.g. %matplotlib inline.

The user starts by importing the desired Feature module, e.g. distributions for plots of stress or strain distribu-
tions.

2.4.2 Using LamAna from Commandline

If visualization is not important to you, you can still run calcuations and export data from the commandline.

2.2. Conclusion 13

https://www.continuum.io/downloads
https://www.continuum.io/downloads
http://jupyter.org/

LamAna Documentation, Release 0.4.11

Important: As of lamana 0.4.9, the Jupyter notebook is not an official dependency and does not in-
stall automatically. Rather notebook is only frozen in the requirements.txt file. For non-Anaconda users, it
must be installed separately. However It is typically packaged with conda ([see documentation for installa-
tion](https://jupyter.readthedocs.org/en/latest/install.html))‘. See examples of notebooks in the github repository.

Note: User inputs are handled through feature modules that access the input_ module using the apply method.
Indirect access to lamana.input_ was decided because importing input_ first and then accessing a Feature
module was cumbersome and awkward for the user. To reduce boilerpoint, the specific Feature module became the
frontend while the input transactions where delegated as the backend.

We will now explore how the user can input data and generate plots using the distributions module.

2.4.3 User Setup

First we must input loading parameters and material pproperties. Secondly, we must invoke a selected laminate theory.
The former requires knowlege of the specimen dimensions, the materials properties and loading configuration. For
illustration, an example schematic of laminate loading parameters is provided below.

Fig. 2.3: Loading Parameters

A table is provided defining the illustrated parameters. These loading parameters are coded in a dictionary called
load_params.

14 Chapter 2. Community Benefits

https://jupyter.readthedocs.org/en/latest/install.html

LamAna Documentation, Release 0.4.11

Parameter Units (SI) Definition
P N applied load
R m specimen radius
a m support radius
b m piston radius
r m radial distance from central loading
p • graphical points or DataFrame rows

per layer

User Defined Parameters

Sample code is provided for setting up geometric dimensions, loading parameters and material properties.

In [14]: # SETUP ---

import lamana as la

For plotting in Jupyter
%matplotlib inline

Build dicts for loading parameters and material properties
load_params = {

'P_a': 1, # applied load
'R': 12e-3, # specimen radius
'a': 7.5e-3, # support radius
'p': 4, # points/layer
'r': 2e-4, # radial distance from center loading

}

Using Quick Form (See Standard Form)
mat_props = {

'HA': [5.2e10, 0.25], # modulus, Poissions
'PSu': [2.7e9, 0.33],

}

Build a list of geometry strings to test. Accepted conventions shown below:
'outer - [{inner...-...}_i] - middle'

geos1 = ['400-400-400', '400-200-800', '400-350-500'] # = total thickness
geos2 = ['400-[400]-400', '400-[200,100]-800'] # = outer thickness
#--

2.4.4 Generate Data in 3 Lines

With the loading and material information, we can make stress distribution plots to define (reusable) test cases by
implementing 3 simple steps.

1. Instantiate a Feature object with loading and material parameters (generates makes a user Case object)

2. apply() a model to a test with desired geometries (assumes mirrored at the neutral axis)

3. plot() the case object based on the chosen feature

2.4. Getting Started 15

LamAna Documentation, Release 0.4.11

Once the parameters geometries are set, in three lines of code, you can build a case and simultaneiously plot stress
distributions for an indefinite number of laminates varying in compostion and dimension within seconds. Conveniently,
the outputs are common Python data structures, specifically pandas DataFrames and matplotlib graphical plots
ready for data munging and analysis.

In [13]: case1 = la.distributions.Case(load_params, mat_props) # instantiate
case1.apply(geos1, model='Wilson_LT') # apply
case1.plot() # plot

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

2.4.5 Other Attributes

A case stores all of the laminate data for a particular set of parameters in two forms: a dict and a DataFrame (see
tutorial for details). Once a case is built, there serveral covenient builtin attributes for accessing this data for further
analysis.

Case Attributes
case.geometries # geometry object
case.total # total laminate thickness (all)
case.inner # layer thickness (all)
case.total_inner # total layer type (all)
case.total_inner[0] # slicing

16 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

case.total_inner_i # total inner layers
case1.snapshot # list of all geometry stacks (unique layers)
case1.frames # list all DataFrames (all layers)

2.4.6 Extensibile

LamAna is extensible. Users can define custom or modified models based on laminate theory and apply these models
to cases (see theories section for details).

Classical Laminate Theory
case2 = la.distributions(load_params, mat_props) # instantiate
case2.apply(geos2, model='Classic_LT') # apply model
case2.plot()

Custom Biaxial Flexure Model
case3 = la.distributions(load_params, mat_props) # instantiate
case3.apply(geos2, model='Wilson_LT') # custom model
case3.plot()

We can perform sepearate analyses by building different cases and apply different models (default model: “Wil-
son_LT” for circular disks in biaxial flexure).

2.5 API Reference

A quick reference to important LamAna objects.

2.5.1 Core Modules

input_ Classes and functions for handling user inputs.
constructs A module that builds core objects, such as stacks and laminates.
theories A interface between constructs and models modules.
output_ Classes and functions for handling visualizations, plots and exporting data.

2.5.2 Feature Modules

distributions A Feature Module of classes and functions related to stress distributions.

2.5.3 Auxiliary Modules

utils.tools Handy tools for global use.
utils.references A module for storing weblinks and references for package development.

2.5.4 Models

models.Wilson_LT A sample class-style, custom model using a modified laminate theory.

2.5. API Reference 17

LamAna Documentation, Release 0.4.11

2.5.5 LamAna Objects

Classes

input_.Geometry(geo_input) Parse input geometry string into floats.
input_.BaseDefaults() Common geometry strings, objects and methods for building defaults.
distributions.Case([load_params, mat_props, ...]) Build a Case object that handles User Input parameters.
distributions.Cases(caselets[, load_params, ...]) Return a dict-like object of enumerated Case objects.
constructs.Stack(FeatureInput) Build a StackTuple object containing stack-related methods.
constructs.Laminate(FeatureInput) Create a LaminateModel object.
theories.BaseModel() Provide attributes for sub-classing custom models.

Functions

theories.handshake(Laminate[, adjusted_z]) Return updated LaminateModel and FeatureInput objects.

2.6 Support

Contact the LamAna Team with questions or submit issues to Github.

Email: par2.get@gmail.com

Submit Issues: https://github.com/par2/lamana/issues

2.7 Writing Custom Models

Writing custom theoretical models is a powerful, extensible option of the LamAna package.

2.7.1 Authoring Custom Models

Custom models are simple .py files that can be locally placed by the user into the models directory. The API allows
for calling these selected files in the apply() method of the distributions module. In order for these process
to work smoothly, the following essentials are needed to talk to theories module.

1. Implement a _use_model_() hook that returns (at minimum) an updated DataFrame.

2. If using the class-style to make models, implement _use_model_() hook within a class named “Model”
(must have this name) that inherits from theories.BaseModel.

Exceptions for specific models are maintained by the models author.

The following cell shows excerpts of the class-style model. Examples of function-style and class-style models are
found in the “examples” folder found in the repository.

#--
Class-style model

...

class Model(BaseModel):
'''A custom CLT model.

18 Chapter 2. Community Benefits

mailto:par2.get@gmail.com
https://github.com/par2/lamana/issues

LamAna Documentation, Release 0.4.11

A modified laminate theory for circular biaxial flexure disks,
loaded with a flat piston punch on 3-ball support having two distinct
materials (polymer and ceramic).

'''
def __init__(self):

self.Laminate = None
self.FeatureInput = None
self.LaminateModel = None

def _use_model_(self, Laminate, adjusted_z=False):
'''Return updated DataFrame and FeatureInput.

...

Returns

tuple

The updated calculations and parameters stored in a tuple
`(LaminateModel, FeatureInput)``.

df : DataFrame
LaminateModel with IDs and Dimensional Variables.

FeatureInut : dict
Geometry, laminate parameters and more. Updates Globals dict for
parameters in the dashboard output.

'''
self.Laminate = Laminate
df = Laminate.LFrame.copy()
FeatureInput = Laminate.FeatureInput

Author-defined Exception Handling
if (FeatureInput['Parameters']['r'] == 0):

raise ZeroDivisionError('r=0 is invalid for the log term in the moment eqn.')
elif (FeatureInput['Parameters']['a'] == 0):

raise ZeroDivisionError('a=0 is invalid for the log term in the moment eqn.')

...

Calling functions to calculate Qs and Ds
df.loc[:, 'Q_11'] = self.calc_stiffness(df, FeatureInput['Properties']).q_11
df.loc[:, 'Q_12'] = self.calc_stiffness(df, FeatureInput['Properties']).q_12
df.loc[:, 'D_11'] = self.calc_bending(df, adj_z=adjusted_z).d_11
df.loc[:, 'D_12'] = self.calc_bending(df, adj_z=adjusted_z).d_12

Global Variable Update
if (FeatureInput['Parameters']['p'] == 1) & (Laminate.nplies%2 == 0):

D_11T = sum(df['D_11'])
D_12T = sum(df['D_12'])

else:
D_11T = sum(df.loc[df['label'] == 'interface', 'D_11']) # total D11
D_12T = sum(df.loc[df['label'] == 'interface', 'D_12'])

#print(FeatureInput['Geometric']['p'])

D_11p = (1./((D_11T**2 - D_12T**2)) * D_11T) #
D_12n = -(1./((D_11T**2 - D_12T**2)) *D_12T) #

2.7. Writing Custom Models 19

LamAna Documentation, Release 0.4.11

v_eq = D_12T/D_11T # equiv. Poisson's ratio
M_r = self.calc_moment(df, FeatureInput['Parameters'], v_eq).m_r
M_t = self.calc_moment(df, FeatureInput['Parameters'], v_eq).m_t
K_r = (D_11p*M_r) + (D_12n*M_t) # curvatures
K_t = (D_12n*M_r) + (D_11p*M_t)

Update FeatureInput
global_params = {

'D_11T': D_11T,
'D_12T': D_12T,
'D_11p': D_11p,
'D_12n': D_12n,
'v_eq ': v_eq,
'M_r': M_r,
'M_t': M_t,
'K_r': K_r,
'K_t:': K_t,

}

FeatureInput['Globals'] = global_params
self.FeatureInput = FeatureInput # update with Globals
#print(FeatureInput)

Calculate Strains and Stresses and Update DataFrame
df.loc[:,'strain_r'] = K_r * df.loc[:, 'Z(m)']
df.loc[:,'strain_t'] = K_t * df.loc[:, 'Z(m)']
df.loc[:, 'stress_r (Pa/N)'] = (df.loc[:, 'strain_r'] * df.loc[:, 'Q_11']

) + (df.loc[:, 'strain_t'] * df.loc[:, 'Q_12'])
df.loc[:,'stress_t (Pa/N)'] = (df.loc[:, 'strain_t'] * df.loc[:, 'Q_11']

) + (df.loc[:, 'strain_r'] * df.loc[:, 'Q_12'])
df.loc[:,'stress_f (MPa/N)'] = df.loc[:, 'stress_t (Pa/N)']/1e6

del df['Modulus']
del df['Poissons']

self.LaminateModel = df

return (df, FeatureInput)

Add Defaults here

Note: DEV: If testing with both function- and class-styles, keep in mind any changes to the model model should be
should be reflected in both styles.

What are Defaults?

Recall there are a set of geometric, loading and material parameters that are required to run LT calculations. For testing
purposes, these parameters can become tedious to set up each time you wish to run a simple plot or test parallel case.
Therefore, you can prepare variables that store default parameters with specific values. Calling these variables can
reduce the redundancy of typing them over again.

The BaseDefaults class stores a number of common geometry strings, Geometry objects, arbitrary loading param-
eters and material properties. These values are intended to get you started, but can be altered easily to fit your common
tolerance for your model. This customization is simple by subclassing BaseDefaults. This class also has methods

20 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

for easily building accepted, formated FeatureInput objects. Here you can build custom loading parameters, materials
properties and FeatureInput objects.

class Defaults(BaseDefaults):
'''Return parameters for building distributions cases. Useful for consistent
testing.

Dimensional defaults are inherited from utils.BaseDefaults().
Material-specific parameters are defined here by he user.

- Default geometric parameters
- Default material properties
- Default FeatureInput

Examples
========
>>> dft = Defaults()
>>> dft.load_params
{'R' : 12e-3, 'a' : 7.5e-3, 'p' : 1, 'P_a' : 1, 'r' : 2e-4,}

>>> dft.mat_props
{'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},
'Poissons': {'HA': 0.25, 'PSu': 0.33}}

>>> dft.FeatureInput
{'Geometry' : '400-[200]-800',
'Geometric' : {'R' : 12e-3, 'a' : 7.5e-3, 'p' : 1, 'P_a' : 1, 'r' : 2e-4,},
'Materials' : {'HA' : [5.2e10, 0.25], 'PSu' : [2.7e9, 0.33],},
'Custom' : None,
'Model' : Wilson_LT}

'''
def __init__(self):

BaseDefaults.__init__(self)
'''DEV: Add defaults first. Then adjust attributes.'''
DEFAULTS --
Build dicts of geometric and material parameters
self.load_params = {

'R': 12e-3, # specimen radius
'a': 7.5e-3, # support ring radius
'p': 5, # points/layer
'P_a': 1, # applied load
'r': 2e-4, # radial distance from center loading

}

self.mat_props = {
'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},
'Poissons': {'HA': 0.25, 'PSu': 0.33}

}

ATTRIBUTES --
FeatureInput
self.FeatureInput = self.get_FeatureInput(

self.Geo_objects['standard'][0],
load_params=self.load_params,
mat_props=self.mat_props,
model='Wilson_LT',
global_vars=None

)

2.7. Writing Custom Models 21

LamAna Documentation, Release 0.4.11

Exceptions (0.4.3c6)

Since users can create their own models and use them in LamAna, it becomes important to handle erroroneous
code. The oneous of exception handling is maintained by the model’s author. However, basic handling is incor-
porated within Laminate._update_calculations to prevent erroroneous code from halting LamAna. In
other words, provided the variables for Laminate construction are valid, a Laminate will be stored and accessed via
Laminate.LFrame. This again is the a primitive DataFrame with IDs and Dimensional data prior to updating.
When _update_cacluations() is called and any exception is raised, they are caught and LFrame is set to LM-
Frame, allowing other dependency code to work. A traceback will still print even though the exception was caught,
allowing the author to improve their code and prevent breakage. LMFrame will not update unless the author model
code lacks exceptions. Again, primary exception handling of models is the author’s responsibility.

Modified Classical Laminate Theory - Wilson_LT

Here is a model that comes with LamAna that applies CLT to circular-disk laminates with alternating ceramic-polymer
materials. Classical laminate theory (CLT) was modified for disks loaded in biaxial flexure.

Stiffness Matrix: 𝐸 is elastic modulus, 𝜈 is Poisson’s ratio.

|𝑄| =

⃒⃒⃒⃒
𝑄11 𝑄12

𝑄21 𝑄22

⃒⃒⃒⃒
𝑄11 = 𝑄22 = 𝐸/(1 − 𝜈2)

𝑄12 = 𝑄21 = 𝜈𝐸/(1 − 𝜈2)

Bending : 𝑘 is essentially the enumerated interface where 𝑘 = 0 is tensile surface. ℎ is the layer thickness relative
to the neutral axis where 𝑡𝑚𝑖𝑑𝑑𝑙𝑒 = ℎ𝑚𝑖𝑑𝑑𝑙𝑒/2. 𝑧 (lower case) f the relative distance betweeen the neuatral axis and a
lamina centroid.

|𝐷| =

⃒⃒⃒⃒
𝐷11 𝐷12

𝐷21 𝐷22

⃒⃒⃒⃒
𝐷11 = 𝐷22 = Σ𝑁

𝑘=1𝑄11(𝑘)((ℎ
3
(𝑘)/12) + ℎ(𝑘)𝑧

2
(𝑘))

𝐷12 = 𝐷21 = Σ𝑁
𝑘=1𝑄12(𝑘)((ℎ

3
(𝑘)/12) + ℎ(𝑘)𝑧

2
(𝑘))

Equivalent Poisson’s Ratio

𝜈𝑒𝑞 = 𝐷12/𝐷11

Moments: radial and tangential bending moments. The tangential stress is used for the failure stress.

𝑀𝑟 = (𝑃/4𝜋)[(1 + 𝜈𝑒𝑞) log(𝑎/𝑟)]

𝑀𝑡 = (𝑃/4𝜋)[(1 + 𝜈𝑒𝑞) log(𝑎/𝑟) + (1 − 𝜈𝑒𝑞)]

Curvature {︂
𝐾𝑟

𝐾𝑡

}︂
= [𝐷]−1

{︂
𝑀𝑟

𝑀𝑡

}︂
Strain: 𝑍 (caplital) is the distance betwen the neutral axis and the lamina interface.{︂

𝜖𝑟
𝜖𝑡

}︂
= 𝑍𝑘

{︂
𝐾𝑟

𝐾𝑡

}︂
Stress {︂

𝜎𝑟

𝜎𝑡

}︂
= [𝑄]

{︂
𝜖𝑟
𝜖𝑡

}︂

22 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

2.8 The Package Architecture

The current package stems from a simple legacy script (circa 2014). It has since been updated and currently abstracted
with a focus to analyze more general problems related to laminates.

This repository is extensibily designed for various geometry constructs given a specific (or customized) model based
on classical laminate theory. This package architecture is diagrammed below.

Fig. 2.4: API Diagram

As shown, each diamond represents a module. The diagram illustrates their relationships in passing important
LaminateModels and FeatureInput objects between modules. The user-related areas are highlighted blue.
The package is most extensible in these blue areas. The components of the lamana project can be distinguished as
three types:

• Frontend: user-interacted, feature modules of particular interest that utilize laminate theory models

• Extension: directories/modules extending capabilities of the repository, e.g. models directory containing user
defined laminate theories (Classical_LT, Wilson_LT).

• Backend: remaining Core modules, input_, constructs_, theories_, output_; workhorse facotries
of LaminateModel objects.

2.8.1 Package Module Summary

This section details some important modules critical to LamAna’s operation. The following table summarizes the
core and feature modules in this package, what they intend to do and some important objects that result. Objects that
get passed between modules are italicized. The Auxillary (or Utility) modules house support code that will not be
discussed.

2.8. The Package Architecture 23

LamAna Documentation, Release 0.4.11

Module Classi-
fier

Purpose Product

input_ Backend Backend code for processing user inputs for all
feature modules.

User Input object i.e.
Geometry

distrubtionsFeature Analyze stress distributions for different geometries. FeatureInput object, Case,
Cases

ratios Feature Thickness ratio analyses for optimizing
stress-geomtry design.

FeatureInput object

predictions Feature Failure predictions using experimental and laminate
theory data.

FeatureInput object

constructs Backend Code for building Laminate objects. LaminateModel object
theories Backend Code for selecting Model objects Model object
<models> Exten-

sion
Directory of user-defined, custom LT models Model objects

output_ Backend Code for several plotting objects, exporting and
saving

Output object e.g. plots, xls,
figures

Note: This project is forked from legacy code: Script - Laminate_Stress_Constant_Thickness_3a3.ipynb.

Note: Only the distributions Feature module is implementated as of LamAna 0.4.10. ratios and predictions
will be added in future releases.

Intermodular Products

The key inter-modular products will be mentioned briefly. These objects have information that is exchanged between
package modules. These objects are illustrated as circles in the API Diagram.

FeatureInput

A FeatureInput is a Python dict that contains information from both a feature module and user-information processed
by the input_ module. Here is a sample dict and the associated items are tabulated:

Key Value Description
’Geometry’ Geometry object a single tuple of Geometry thicknesses
’Parameters’ load_params loading parameters
’Properties’ mat_props material properties, e.g. modulus, Poisson’s ratio
’Materials’ materials index ordered list of materials from DataFrame index
’Model’ model str selected string of model name
’Globals’ None a placeholder for future ubiquitous model variables

FeatureInput = {
'Geometry': Geometry, # defined in Case
'Parameters': load_params,
'Properties': mat_props,
'Materials': materials, # set material order
'Model': model,
'Globals': None, # defined in models

}

Note: DEPRECATED custom_matls was depredated and replaced with the materials key. The materials order is saved

24 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

as a list and interacts with the material cycler in the add_materials() method. It can be overridden (see Demonstration
for API use).

Note: PEP8 discusses use of trailing underscore to avoid conflicts with Python keywords.

LaminateModel

A LaminateModel is an pandas DataFrame object that combines data processed by the
constructs.Laminate and theories.<model> classes. Details of this object will be discussed fur-
ther in the constructs section.

2.9 Key Package Components

2.9.1 Core Module: input_

Geometry class

This class is designed for parsing a user input (assumed a geometry string) and converts it into a Geometry object.

LamAna.input_.Geometry(geo_input) --> <Geometry object>

A geometry string is formatted to a General Convention representing characteristic laminae types, i.e. outer-inner_i-
middle. A Geometry object is created of mixed Pythonic types - specifically a namedtiple comprising floats, a
list and a string (optional).

We distinguish the latter string and coverted object types with the following naming conventions:

• geometry string: raw string of the laminate geometry, e.g. ’400-200-800’

• Geometry object: Geometry class instance e.g. <Geometry object (400-[200]-800)>

Names referencing geometry strings are lower-case:

• g, geo_inputs, geos or geos_full,

• geos = [’400-[200]-800’, ’400-[100,100]-400S’]

Names referencing ‘‘Geometry‘‘ objects are capatlized:

• G, Geo_objects, Geos or Geos_full,

• G = la.input_.Geometry(FeatureInput)

BaseDefaults class

This class is essentially a storage for common geometry strings and Geometry objects. Placing them here enables
simple inheritance of starter objects when using the API.

There are two main dicts which are stored as instance attributes: geo_inputs and Geo_objects

2.9. Key Package Components 25

https://www.python.org/dev/peps/pep-0008/

LamAna Documentation, Release 0.4.11

geo_inputs

This is a simple dict of common geometry strings with keys named by the number of plies. Again the number of plies
is determined by

2(𝑜𝑢𝑡𝑒𝑟 + 𝑖𝑛𝑛𝑒𝑟) + 𝑚𝑖𝑑𝑑𝑙𝑒

. Here is an example geo_inputs dict:

self.geo_inputs = {
'1-ply': ['0-0-2000', '0-0-1000'],
'2-ply': ['1000-0-0'],
'3-ply': ['600-0-800', '600-0-400S'],
'4-ply': ['500-500-0', '400-[200]-0'],
'5-ply': ['400-200-800', '400-[200]-800', '400-200-400S'],
'6-ply': ['400-[100,100]-0', '500-[250,250]-0'],
'7-ply': ['400-[100,100]-800', '400-[100,100]-400S'],
'9-ply': ['400-[100,100,100]-800'],
'10-ply': ['500-[50,50,50,50]-0'],
'11-ply': ['400-[100,100,100,100]-800'],
'13-ply': ['400-[100,100,100,100,100]-800'],

}

Additional keys are added to this dict such as ‘geos_even’, ‘geos_odd’ and ‘geos_all’ which create new key-value
pairs of groups for even, odd and all geometry strings. Notice the naming placement of ‘s’: “geo_inputs” is the base
dict while “geos_” is a grouping of existing dict values appended to the dict. Therefore an author or developer could
extend either the base or appended dict items.

Geo_objects

This is a lazy dict. All entries of geo_inputs are automatically converted and stored as Geometry objects. The
purpose here is to eliminate the added step of calling Geometry to convert strings. Both this dict and the geo_inputs
dict are created using similar private methods, so there mechanisms are parallel.

Subclassing

The remaining defeaults such as load_params, mat_props and FeatureInput are specific to experimental
setups and cannot be generalized effectively. However, this class can be subclassed into a custom Defaults class by
the author. See the Authour Documentation for examples of subclassing.

Important: DEV: Only add geometry strings to geo_inputs. Removing or “trimming” these dicts may break tests.

Important: In future versions, load_params, mat_props and FeatureInputwill be added to BaseDefaults()
as attributes to partake in inheritance.

2.9.2 Feature Module: distributions

Case class

The Case class translates user information into managable, analytical units. A Case object is:

26 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

1. instantiated

2. user info is applied such as geoemtry strings, model name, etc.

3. method and proerties are accessed, such as plot() and total

Here is an idiomatic example of the latter characteristics:

case = la.distributions.Case(load_params, mat_props)
case.apply(geo_strings=None, model='Wilson_LT', **kwargs)
case.plot(**kwargs)

The case instance accepts loading and material information and sets up their associated dicts. Specific geometry
strings and one model is applied to the case object. This apply() method generates LaminateModel objects
(FeatureInput objects are also made). Information is parsed, calculated (such as layer thicknesses) and stored in
attributes. These attributes and methods are then accessible for performing analysis, most importantly the plot()
method.

Therefore, you can think of a case as an analytical unit comprising start up data converted to LaminateModel objects.

Cases class

The Cases class supplies options for manipulating multiple case objects. For example, set operations can be per-
formed on multiple cases. In this context, each case is termed a caselet and typically correlated with a matplotlib
subplot. Here is an idiomatic example:

import lamana as la

bdft = la.input_.BaseDefaults()
cases = Cases(bdft.geo_inputs['geos_all'], ps=[2,3,4])

The latter code builds cases for all geometry strings contained in the BaseDefaults() class, one for each p number
of datapoints. Therefore in this example dozens of analytical units are built with only three lines of code. See LPEP
002 and LPEP 003 for the motivation and details on Cases.

2.9.3 Core Module: constructs

Principally, the constructs module builds a LaminateModel object. Technically a LaminateModel is a
‘pandas <http://pandas.pydata.org/>‘__ DataFrames representing a physical laminate with a few helpful attributes.
DataFrames were chosen as the backend object because they allow for powerful data manipulation analyses and
database/spreadsheet-like visualizations with simple methods.

Additionally, the constructs module computes laminate dimensional columns and compiles theoretical calcu-
lations handled by the complementary theories module. Conventiently, all of this data is contained in tabular
form within the DataFrame. The column names are closely related to computational variables defined in the next
sub-section.

Variable Classifications

Before we discuss the Laminate structure, here we distinguish two ubiquitous variable categories used internally:
“Laminate” and “model” variables. In in a full laminate DataFrame, these categories comprise variables that are
represented as columns. The categories variables, columns and corresponding modules are illustrated in the image
below and described in greater detail:

An image of the output for a DataFrame and their labeled categories of columns (IDs, dimensionals and models).
The first two categories are computed by constructs classess; the models columns are computed by theories

2.9. Key Package Components 27

http://pandas.pydata.org/

LamAna Documentation, Release 0.4.11

Fig. 2.5: dataframe output

classes and models. The highlighted blue text indicates user interaction. Groups of rows are colored with alternating
red and orange colors to distinguish separate layers.

What distinguishes “Laminate” variables from “Model” variables

• Laminate (or constructs) variables are responsible for building the laminate stack and defining dimensions
of the laminate. Internally, these varibles will be semantically distinguished with one trailing underscore.

1. ID: variables related to layer and row identifications

(a) layer_, side_, matl_, type_, t_

2. Dimensional: variables of heights relative to cross-sectional planes

(a) label_, h_, d_, intf_, k_, Z_, z_

• Model (or theories) variables: all remaining variables are relevant for LT calculations and defined from a
given model. Since these variables are model-specific, theres is no particular semantic or naming format.

The finer granularity seen with model variables is not essential for typcial API use, but may be helpful when authoring
custom code that integrates with LamAna.

Further Details of Model Variables

For more detailed discussions, model variables can be further divided into sub-categories. There common subsets are
as follows:

1. **User**: global variables delibrately set by the user at startup
2. **Inline**: variables used per lamina at a kth level (row)
3. **Global**: variables applied to the laminate, accessible by ks

Although model variables are often particular to a chosen model, e.g Wilson_LT, there are some general trends that
may be adopted. Some model variables are provided at startup by the user (user_vars). Some variables are calculated
for each row of the data within the table (inline_vars). Some variables are calculated by the designated laminate theory
model, which provide constants for remaining calculations (global_vars). Global values would display as the same
number for every row. These constants are thus removed from the DataFrame, but they are stored internally within a
dict. The details of this storage are coded within each model module.

28 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Global values are of particular importance to FeatureInput objects and when exporting meta data as dashboards in
spreadsheets. In contrast, Inline values alter directly with the dimensional values thoroughout the lamainate thickness.
Names of common variables used in distributions are organized below:

Model Variable Subsets

Model_vars = {user_vars, inline_vars, global_vars}

Examples of Subsets of Model Variables

• user_vars = [mat_props, load_params]

• global_vars = [v_eq, D_11T, D_12T, M_r, M_t, D_11p, D_12n, K_r, K_t]

• inline_vars = [Q11, Q12, D11, D12, strain_r, strain_t, stress_r, stress_t, stress_f]

TIP: Aside from user variables, all others are found as headers for columns in a DataFrame (or spreadsheet).

The Laminate Architecture

This section will describe in greater detail how LaminateModels are constructed.

When the user calls case.apply(), a number of objects are created. We begin with a primitive Stack, which
comprises skeletal components for building a Laminate DataFrame (also interally called an LFrame). The phases
for building a LaminateModel object are outlined below and outline the architecture of constructs.Laminate
class.

• Phase 1: build a primitive laminate (Stack)

• Phase 2: calculate Laminate dimensional values (LFrame)

• Phase 3: calculate laminate theory Model values (LMFrame aka LaminateModel)

Phase 1: The Stack Class

The purpose of the Stack class is to build a skeletal, precusor of a primitive Laminate object. This class houses
methods for parsing Geometry objects, ordering layers, adding materials labels for each layer and setting expected
stress states for each tensile or compressive side. Stack returns a namedtuple containing stack-related information
(described below).

For a given Geometry object instance (commonlly assigned to a capital “G”) the Stack().StackTuple method
creates a namedtuple of the stack information. This object contains attributes to access the:

• stack order

• the number of plies, nplies

• the technical name for the laminate, “4-ply”, “5-ply”

• a convenient alias if any, e.g. “Bilayer”, “Trilayer”

The stack attribute accesses a dict of the laminate layers ordered from bottom to top. Now although Python dicts are
unsorted, this particular dict is sorted because each layer is enumerated and stored as keys to perserve the order, layer
thickness and layer type (sometimes referred as “ltype”).

Examples

>>> import LamAna as la
>>> G = la.input_.Geometry(['400-200-800'])
>>> G
<Geometry object (400-[200]-800)>

2.9. Key Package Components 29

LamAna Documentation, Release 0.4.11

Create a StackTuple and access its attributes
>>> st = constructs.Stack(G).StackTuple # converts G to a namedtuple
>>> st.order # access namedtuple attributes
{1: [400.0, 'outer'],
2: [200.0, 'inner']
3: [800.0, 'middle']
4: [200.0, 'inner']
5: [400.0, 'outer']}

>>> st.nplies
5
>>> st.name
'5-ply'
>>> st.alias
'standard'

Phase 2: The Laminate class

The Laminate class simply builds a LaminateModel - an object containing all dimensional information of a
physical Laminate and all theoretical calculations using a laminate theory Model, e.g. stress/strain.

The Laminate class builds an LFrame object based on the skeletal layout of a stack parsed by and returned from
the Stack class. A Geometry object, material parameters and geometric parameters are all passed from the user
in as a single FeatureInput object - a dict of useful information that is passed between modules. See *More on
‘‘FeatureInput‘‘* for details. Stack information is stored in an instance attribute called Snapshot and then converted
to a set of DataFrames.

Therefore, the IDs and dimensional data are determined and computed by Stack and Laminate. Combined, this
information builds an LFrame.

Phase 3: The Laminate class (continued)

Laminate then calls the theories module which “handshakes” between the Laminate module and the cus-
tom module containing code of a user-specified, theoretical LT model. It is common for a custom model to
be named by the author, suffixed by the characters “_LT”). These computations update the Laminate DataFrame
(Laminate.LFrame), creating a final LaminateModel (Laminate.LMFrame). The complete workflow is
summarized below.

Summary of LaminateModel Workflow

constructs :: class Stack --> class Laminate

theories :: class BaseModel

Laminate object + “Model” object –> LaminateModel object

Detailed workflow of constructs-theories interaction:

class Stack --> StackTuple
|

class Laminate --> Snapshot, LFrame, LMFrame
|
| # Phase 1 : Instantiate; Determine Laminate ID Values

30 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

| Laminate._build_snapshot(stack) --> Snapshot
| |
| Stack.add_materials(stack)
| Stack.stack_to_df(stack) # first creation of the Laminate df
| Laminate._set_stresses(stack)
|
| Laminate._build_laminate(snapshot) --> LFrame
|
| # Phase 2 : Calculate Laminate Dimensional Values
| Laminate._update_columns._update_dimensions() --> LFrame (updated)
| label_, h_, d_, intf_, k_, z_, Z_
|
| # Phase 3 : Calculate Model Values
| Laminate._update_columns._update_calculations() --> LMFrame
| theories.Model(Laminate)
| models.<selected model>
| _calc_stiffness()
| _calc_bending()
| _calc_moment()
| global_vars = [`v_eq`, `D_11T`, `D_12T`, ...]
| inline_vars = [`Q11`, `D11` `strain_r`, ...]
|

LaminateModel : df

Additional Details

More on Material Stacking Order

The material order is initially defined by the user mat_props dict in distributions and automatically parsed in
the input_ module. Extracting order from a dict is not trivial, so the default sorting is alphabetical order. This order
is handled by converting the dict to a pandas index. See Stack.add_materials() method for more details.

As of 0.4.3d4, the user can partially override the default ordering by setting the materials property in the Case
instance. This allows simple control of the stacking order in the final laminate stack and Laminate objects. At the
moment, a list of materials is cycled through; more customizations have not been implemented yet.

>>> case.material
['HA', 'PSu'] # alphabetical order
>>> case.material = ['PSu', 'HA'] # overriding order
>>> case.material
['PSu', 'HA']
>>> case.apply(...)
<materials DataFrame> # cycles the stacking order

More on Laminate

Using Laminate._build_snapshot(), the instance stack dict is converted to a DataFrame (Snapshot),
giving a primitive view of the laminate geometry, idenfiers (IDs) and stacking order. This “snapshot”
has the following ID columns of infornation, which are accessible to the user in a Case instance (see
distributions.Case.snapshot):

Variables addressed: `layer_, matl_, type_, t_`

2.9. Key Package Components 31

LamAna Documentation, Release 0.4.11

From this snapshot, the DataFrame can is updated with new information. For example, the sides on which
to expected tensile and compressive stresses are located (side_) are assigned to a laminate through the
Laminate._set_stresses() method. This function accounts for DataFrames with even and odd rows. For
odd rows, ‘None’ is assigned to the neutral axis, implying “no stress”.

Variables addressed: `side_`

Note: This stress assignment is a general designation, coarsely determined by which side of the netural axis a row
is found. The rigorous or finite stress state must be calculated through other analytical tools means such as Finite
Element Analysis.

Likewise, the DataFrame is further updated with columns of dimensional data (from Dimensional variables)
and laminate theory data (from model variables). The current LaminateModel object is made by calling
Laminate._update_columns._build_laminates() which updates the snapshot columns to build two
DataFrame objects:

Here are similarities between the laminate data columns and the its objects:

• Snapshot: primiate DataFrame of the Stack (see materials, layer info order).

• LFrame: updated Snapshot of IDs and dimensionals.

• LMFrame: updated LFrame with models computed columns.

LMFrame is the paramount data structure of interest containing all IDs, Dimensional and Model variables and p
number of rows pertaining to data points within a given lamina.

Dimensional variable columns are populated through the Laminate._update_columns._update_dimensions()
method, which contains algorithms for calculating realative and absolute heights, thicknesses and midplane distances
relative to the neutral axis. These columns contain dimensional data that are determined independent from the
laminate theory model.

Variables addresed: `label_, h_, d_, intf_, k_, Z_, z_`

These variables are defined in the Laminate class docstring. See More on label_ to understand the role of points, p
and their relationship to DataFrame rows.

Finally Data variable columns are populated using Laminate._update_columns._update_calculations().
These columnns contain data based on calculations from laminate theory for a selected model. Here global_vars and
inline_vars are calculated.

Variables addressed:

global_vars = [`v_eq, D_11T, D_12T, M_r, M_t, D_11p, D_12n, K_r, K_t`] --> FeatureInput['Global'] (dict entry)

inline_vars = [`Q11, Q12, D11, D12, strain_r, strain_t, stress_r, stress_t, stress_f`] --> LaminateModel object (DataFrame)

More on FeatureInput

A Feature module defines a FeatureInput object.

For distributions, it is defined in Case. FeatureInputs contain information that is passed between
objects. For instance, this object transfers user input data in distributions (converted in input_) to the
constructs module to build the laminate stack and populate ID and dimensional columns. A FeatureInput from
distributions looks like the following (as of 0.4.4b).

FeatureInput = {
'Geometry': <Geometry object>,
'Loading': <load_params dict>,
'Materials': <mat_props dict>,

32 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Fig. 2.6: laminate objects

2.9. Key Package Components 33

LamAna Documentation, Release 0.4.11

'Custom': <undefined>,
'Model': <string>,
'Globals': <dict>,

}

After calculating model data, the “Globals” key is updated containing all necessary globabl_vars. These variables
are constant and are necessary for further calculations of inline_vars. Here is an example of Global variables key-
value pair in FeatureInput.

FeatureInput['Globals'] = [v_eq, D_11T, D_12T, M_r, M_t, D_11p, D_12n, K_r, K_t]

More on label_

See LPEP 001.02 for standards of API units.

For this explanation, imagine we transverse the absolute height of the laminate at different cross-sectional planes. The
values of inline stress points are calculated along different planes throughout the laminate thickness. What happens
at interfaces where two materials meet with different stresses? How are these two stress points differentiated in a
DataFrame or in a plot? For plotting purposes, we need to define diferent types of points. Here we define some rulse
and four types of points found within a (i.e. DataFrame rows):

1. interfacial - point on unbound outer surfaces and bound internal surfaces.

2. internal - point with the lamina thickness between interfaces

3. discontinuity - point on bounded interfaces pertaining to an adjacent lamina

4. neutralaxis - the middle, symmetric axial plane

How these points are distributed depends on their locations within each lamina and whether they are located on the
tensile or compressive side_. The neutral axis exists in physical laminates, but they are only represented as a row
in DataFrames of odd ply, odd p laminates; they are not displayed in even laminates. The image below illustrates the
different points from above with respect to k_ (the fractional height for a given layer).

Notice various layers have different point types.

• Middle layers have two interfacial points, no discontinuities and a neutral axis.

• All other layers have one interfacial point with a discontinuity if p >= 2.

• All layers may (or may not) have internal points.

• Monoliths do not have discontinuities

Note: Only the interfacial points can be theoreticlly verified, representing the maximum principal strains and stresses.
The internal and discontinuity points are merely used by matplotlib to connect the points, assuming a linear stress
distribution.

Note: The midplane z height (z_) for discontinuities assumes a non-zero, lower limit value equal to the Z_ height of
the bounding layer. This value should be verified.

More on IndeterminateError

An IndeterminateError is thrown in cases where values cannot be calculated. An INDET keyword is given as
values in DataFrame cells. An example for such an error is determining the stress state side_ for a monolith with one
data point (nplies=1, p=1). From a design perspective, the location of the point is ambiguous, either one one interface,
but more intuitively at the neutral access. At such a position, the value of stress would report zero, which is misleading
for the true stress state of the monolith. Therefore, the InderminateError is thrown, recommending at least p =
2 for disambiguated stress calculations.

34 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Fig. 2.7: points

2.9. Key Package Components 35

LamAna Documentation, Release 0.4.11

2.9.4 Core Module: theories

Laminate theory is merged with dimensional data to create a LaminateModel.

LaminateModel Handling

For clarify, an illustration of LaminateModel handling is shown below.

The Laminate DataFrame (LFrame) is passed from constructs to theories. If successful the
LaminateModel is returned to constructs; otherwise an exception is thrown, consumed and the Laminate is
returned unchanged (LFrame).

Fig. 2.8: theories flowchart

Note: The term repr for <LaminateModel object> remains constant refering to a post-theories operation, whether
LMFrame is updated with Model columns or not.

When Laminate._update_columns._update_calculations() (represented as Laminate.foo()) is
called, an instance of the Laminate self (shown as “x”) is passed to theories.handshake() (black ar-
row). This function handles all updates to the primitive Laminate DataFrame (LFrame) which comprise IDs
and Dimensional columns only. The Laminate gives the models author full access to its attributes. From here,
theories.handshakes() searches within the models directory for a model (grey, dashed arrows) specified by
the user at the time of instantiation, i.e. Case.apply(*args, model=<model_name>).

A model is simply a module containing code that handles laminate theory calculations. The purpose of the model is
to update the primitive LFame with LT calculations. handshake() automatically distinguishes whether the author

36 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

implemented a class-style or function-style model. The most important hook method/function is ‘‘_use_model_()‘‘,
which must be present somewhere inside the model module and must return a tuple containing:

- the updated Laminate DataFrame with model data columns (a.k.a. `LaminateModel`)
- the `FeatureInput` with updated `'Globals'` key. `'Globals'` is a dict of calculated constants, used in exported reports (see output_ section).

Finally, the Laminate.LMFrame attribute is updated with the new LaminateModel and FeatureInput (green
arrow). However, if exceptions are raised, Laminate._update_calculations() handles them by reverting
the LMFrame to a copy of LFrame, printing a warning and printing a minor traceback informing the author to refactor
the code. This is commom for Laminates with p=1, which detects an INDET in middle layers and must revert to
LFrame. The handshake() method for more details on Exceptions.

Custom Models

Sometimes Classical Laminate Theory needs to be modified to fit a specific set of constraints or boundary conditions.
The LamAna package has powerful, extensible options for integrating user user-defined (authored) implementations
of their own custom laminate theory models.

A library of these custom models, tests and pre-defined defaults are stored in the models directory (sub-package).
Code for calculations, related exceptions, FeatureInput variables and defaults are stored in a Models module.
theories then merges the model calculations with the passed in Laminate to calculate data columns in
the LaminateModel object. This exchange is possbile since the theories module “handshakes” with the
constructs module, and the selected model from the models sub-package.

2.9.5 Core Module: output_

A summary of output objects

Object Purpose
SinglePlot Stress distribution for a single geometry
MultiPlot Stress distributions for a multiple geometries
HalfPlot Partial plot of either compression or tension side
QuarterPlot Partial halfplot excluding side without data
PanelPlot A series of subplots side-by-side
RatioPlot Ratio thickness plot; prinicipal stress vs. ratio
PredictPlot Plot of experimental failure load or stress vs. middle layer princ. stress

Note: Development is beta for this module, therefore these objects are not yet implemented. The majority of plotting
options are handled by temporary private functions called _distribplot() and _multiplot().

The utils.tools.export() function is used to save regular or temporary file versions of .xslx or .csv files. Files
are automatically stored in the default export folder. More details are shown in the Demonstrations file.

2.10 Advanced Installation

This document details installation philosophies and approaches for maintaining reproducible packages.

2.10.1 Philosphophy on Reproducibility

Problem: The same package can behave differently based on:

2.10. Advanced Installation 37

LamAna Documentation, Release 0.4.11

1. the dependency environment and versions

2. third-party updates to dependencies

3. operating system (OS)

The first is and second items are prevented with pinned dependencies, one method for repeatable packages. The third
item is prevented by through continuous integration, specifically with Travis and Appveyor (for Linux and Windows
systems respectively). We will discuss proposals for the first two items only.

Proposal: We endorse freezing of dependencies at the start and end of the delevopment release cycle.

• Start: freeze the conda enviroment in an environment.yaml file

• End: freeze all dependencies in dev_requirement.txt and critical dependencies in
requirements.txt files.

In []: # TODO: Add diagram of trends in typical release cycle; show start and end freezings.

2.10.2 How Reprodicibility Is Approached in LamAna

If packages work flawlessly, reproducible environments are generally not necessary for successful package use. Re-
producible enviroments do become important when dependencies conflict with the package due to bugged patches
or API changes in sub-dependencies. LamAna support either a “hands-off” or “hands-off” approach to versioning
dependencies.

Hands-off Approach

By default, LamAna (and most Pythonic packages) assume that dependencies are coded with minimal API changes
that intentionally break code. For example, sub-dependencies may require non-pythonic extensions to build correctly
such as C/C++ compiliers. If so, warnings are commonly issued to the users. With this in mind, users can simply:

$ pip install lamana

This command searches for dependencies in the install_requires key of the setup.py file. Dependencies
intentionally unpinned here, which means a user will download the latest version of every dependency listed.

Hands-on Approach

In the case where a dependency change breaks the package, the user is empowered to recreate a the dependency envi-
ronment in which the release was oringially developed and known to work. The recreated environment installs pinned
dependencies from a frozen requirements.txt file. This file represents the last list of known dependencies to a
work with package correctly.

$ pip install -r </path/to/requirements.txt>

$ pip install lamana # source

Locating this file is not hard. Each release is shipped with this a requirements.txt file. The file simply needs to be
download from the archives of the correct version of lamana hosted at GitHub releases or search on PyPI. Extract the
file to your computer and run the commands.

It should be noted that installing pinned dependencies will change the current environement by upgrading or more
likely downgrading existing packages to versions assigned in the requirements file. A developement environment is
recommended for testing installations.

38 Chapter 2. Community Benefits

https://pip.pypa.io/en/stable/user_guide/#ensuring-repeatability
https://github.com/par2/lamana/releases
https://pypi.python.org/pypi

LamAna Documentation, Release 0.4.11

Installing from wheels (optional)

Sometimes installing from source is slow. You can force the latter installation method to install with faster binaries.

$ pip install lamana --use-wheel # binary

2.10.3 Creating a developer environment with conda

The latter methods can be very slow, especially when intalling dependencies that rely on C extensions (numpy, pandas).
Anaconda serves as the most consistent option for building dependencies and sub-dependencies. Here is a supporting
rationale for using conda in travis. The following creates a fresh conda environment with critical dependencies that
trigger installation of sub-dependencies required for LamAna.

$ git clone -b <branch name> https://github.com/par2/lamana
$ conda create -n <testenv name> pip nose numpy matplotlib pandas
$ source activate <testenv name> # exclude source for Windows
$ pip install -r dev_requirements.txt
$ pip install . # within lamana directory

The first command downloads the repo from a spefic branch using git. The second command creates a reproducbile
virtual environment using conda where therein, isolated versions of pip and nose are installed. Specific dependencies
of the latest versions are downloaded within this environment which contain a necessary backend of sub-dependencies
that are difficult to install manually. The environment is activated in the next command. Once the conda build is setup,
pip will downgrade the existing versions to the pinned versions found in the requirments.txt file. Afterwards, the
package is finally installed mimicking the original release environment.

The latter installation method should work fine. To check, the following command should be able to run without
errors:

$ nosetests

Now, you should be able to run include jupyter notebook Demos.

Installing dependencies from source

In the absence of Anaconda, installing the three major dependendencies from source can be tedious and arduous,
specifically numpy, pandas and matplotlib. Here are some reasons and tips 1, 2 for installing dependencies if
they are not setup on your system.

On Debian-based systems, install the following pre-requisites.

$ apt-get install build-essential python3-dev

On Windows systems, be certain to install the appropriate Visual Studio C-compilers.

Note: Installing dependencies on windows can be troublesomes. See the installation guide for matplotlib. Try this
or this for issues installing matplotlib. Future developments will work towards OS agnostiscism with continuous
Integration on Linux, OS and Windows using Travis and Appveyor.

Important: If issues still arise, ensure the following requisites are satisfied:

• the conda environment is properly set up with dependencies and compiled sub-dependencies e.g. C-extensions
(see above)

2.10. Advanced Installation 39

https://gist.github.com/dan-blanchard/7045057
https://gist.github.com/dan-blanchard/7045057
https://git-scm.com/downloads
https://stackoverflow.com/questions/26473681/pip-install-numpy-throws-an-error-ascii-codec-cant-decode-byte-0xe2
https://stackoverflow.com/questions/25674612/ubuntu-14-04-pip-cannot-upgrade-matplotllib
https://matthew-brett.github.io/pydagogue/python_msvc.html
http://matplotlib.org/users/installing.html
https://github.com/matplotlib/matplotlib/issues/3029/
http://newcoder.io/dataviz/part-0/

LamAna Documentation, Release 0.4.11

• the appropriate compiler libraries are installed on your specific OS, i.e. gcc for Linux, Visual Studio for Win-
dows. With conda, this should not be necessary.

• sufficient memory is available to compile C-extensions, e.g. 0.5-1 GB minimum

• the appropriate LamAna version, compatible python version and dependency versions are installed according to
requirements.txt (see the Dependencies chart)

Dependencies

• Mandatory Dependencies

– numpy

– matplotlib

– pandas

• Recommended Dependencies

– notebook

The following table shows a chart of tested build build compatible with LamAna:

lamana python dependency OS
0.4.8 2.7.6, 2.7.10, 3.3, 3.4, 3.5,

3.5.1
numpy==1.10.1, pandas==0.16.2, matplotlib==1.5.0 linux, local

win(?)
0.4.9 2.7, 3.3, 3.4, 3.5, 3.5.1 conda==3.19.0, numpy==1.10.1, pandas==0.16.2,

matplotlib==1.4.3
linux, win(?)

0.4.10 2.7, 2.7.11, 3.3, 3.4, 3.5, 3.5.1 conda==3.19.0, numpy==1.10.2, pandas==0.17.1,
matplotlib==1.5.1

linux

0.4.10 2.7 (x32, x64), 3.4 (x32), 3.5
(x32, x64)

conda==3.19.0, numpy==1.10.2, pandas==0.17.1,
matplotlib==1.5.1

win

2.11 Contributing Code

First, thank you for your interests in improving LamAna. At the moment, you can contribute to the LamAna commu-
nity as an Author or Developer in several ways.

2.11.1 As an Author

to the Models Library

So you have worked on your custom model and you would like to share it with others...

You can sumbit your custom model as an extension to the current models library as a pull request on GitHub. As an
extension, other users can access your model with ease. With further review and community acceptance, favorable
models will be accepted into the core LamAna models library. Please do the following:

1. create Python files subclassed from theories.Model

2. write tests

3. document your code

4. cite academic references

40 Chapter 2. Community Benefits

https://github.com/pydata/pandas/issues/1880
https://matthew-brett.github.io/pydagogue/python_msvc.html
http://ze.phyr.us/pandas-memory-crash/
http://www.numpy.org/
http://matplotlib.org/
http://pandas.pydata.org/
http://jupyter.org/

LamAna Documentation, Release 0.4.11

5. include supporting validation or FEA data (preferred)

The LamAna Project welcomes open contributions to the offical models library. It is envisioned that a stable source
of reliable laminate anaylsis models will be useful to other users, similar to the way R package libraries are maintained.

2.11.2 As a Developer

to LPEPs

If you are not interested in writing code, but would like to propose an idea for enchancing LamAna, you can submit
an LPEP for review.

1. Please draft your proposals in a similar format to existing LPEPs as jupyter notebooks

2. Submit a pull request on GitHub.

The LPEP submission and content guidelines closely follow PEP 0001.

to Project Code

If you would like to improve the latest version, please do the following:

1. git clone the develop branch

2. use gitflow to make feature branches

3. since GitHub squashes local commits, add detailed commit history to the feature branch merge commits

4. write tests for your enhancement

5. modify the code with appropriate comments

6. successfully run tests

7. write documentation in a jupyter notebook

8. submit your test, code and documentation as a pull requests on GitHub.

The latter steps pertain to adding or enchancing Feature modules and improving core modules. For starters, you can
look to the demonstrations or gallery as motivation for improving LamAna’s functionality, clarity or optimization.

Thanks for your contributions. You are helping to improve the LamAna community!

In []: # TODO: add gitflow, workflow diagram

2.11.3 Resources

If you are new to developing, here are some resources to get started on this project:

• git: default version control

• GitHub: git host opensource projects

• gitflow-avh: a git extension used to ease development workflow

• atom: an great, open source text editor [using linter, flake8, minimap, pygments, colorpicker]

The following packages are available in conda or pip:

• virtualenv: create reproducible, isolated virtual enviroments

• vituralenvwrapper: simplify virtualenv creation; see also virtualenvwrapper-win for Windows

2.11. Contributing Code 41

https://www.python.org/dev/peps/pep-0001/#id29
https://www.python.org/dev/peps/pep-0001/#id32
http://jamescooke.info/git-to-squash-or-not-to-squash.html
https://git-scm.com/downloads
https://github.com
https://github.com/petervanderdoes/gitflow-avh
https://atom.io/
https://github.com/pypa/virtualenv
https://bitbucket.org/dhellmann/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper-win

LamAna Documentation, Release 0.4.11

• nose: test code; see also pytest alternative.

The following are Sphinx extensions helpful in documenting code:

• autodoc: auto generate api docs

• autosummary: make a custom API reference, summary table

• nbsphinx: auto generate rst files from jupyter notebook files

• numpydoc: auto format docs using numpy-style docstrings

• napoleon: numpy and google-style doctrings

• viewcode: link api references and see implementation of the code directly in source.

The following are useful web-based tools:

• Travis: test builds on linux/Mac systems and dependency versions

• readthedocs: automate doc builds (in a travis-like way)

• TestPyPI: Test code before officially hosting to PyPI

• PyPI: host Python projects

2.12 Testing Code

A guide for testing code prior to submitting pull request.

Testing LamAna occurs in two flavors:

1. Unit-testing with nose

2. Regression testing of API with Jupyter or runipy

2.12.1 Testing code with nose

The current testing utility is nose. From the root directory, you can test all files prepended with “test_” by running:

$ nosetests

There are three types of tests contained in the source lamana directory:

1. module tests: normal test files located in the ”./tests” directory

2. model tests: test files specific for custom models, located in ”./models/tests”

3. controls: .csv files located ”./tests/controls_LT”

Models tests are separated to support an extensibile design for author contributions. This design enables authors to
create models and tests together with a single pull request to the standard module directory.

Tests for the utils module writes and removes temporary files in a root directory called “export”. If this directory
does not exist, one will be created. These test check that writing and reading of files are consistent. Temporary files
are prefixed with “temp”, but should be removed by these test functions.

Note: The locations for tests may change in future releases.

42 Chapter 2. Community Benefits

https://nose.readthedocs.org/en/latest/
https://codeandchaos.wordpress.com/2012/07/30/sphinx-autodoc-tutorial-for-dummies/
http://www.sphinx-doc.org/en/stable/ext/autosummary.html
https://nbsphinx.readthedocs.org/en/0.2.2/
https://codeandchaos.wordpress.com/2012/08/09/sphinx-and-numpydoc/
http://www.sphinx-doc.org/en/stable/ext/napoleon.html#module-sphinx.ext.napoleon
http://www.sphinx-doc.org/en/stable/ext/viewcode.html?highlight=viewcode#module-sphinx.ext.viewcode
https://docs.travis-ci.com/user/customizing-the-build
https://readthedocs.org/
https://testpypi.python.org/pypi
https://pypi.python.org/pypi

LamAna Documentation, Release 0.4.11

Control files

LamAna maintains .csv files with expected data for different lamanate configurations. These files are tested with
the test_controls module. This module reads each control file and parses information such as layer numbers,
number of points per layer and geometry. Control files are named by these variables.

Controls files can be created manually, but it may be simpler to make and then edit a starter file. This process can
be expedited for multiple files by passing LaminateModels into the utils.tools.write_csv() function. This
function will create a csv file for every LaminateModel, which can be altered as desired and tested by copying into the
“lamana/tests/controls_LT” folder.

2.12.2 Coverage

We use the following tools and commands to assess test coverage. nose-cov helps to combine coverage reports for
sub-packages automatically. The remaining flags will report missing lines for the source directory.

$ pip install coverage, nose-cov
$ nosetests --with-cov --cov lamana

or

$ nosetests --with-cov --cov-report term-missing --cov lamana

LamAna aims for the highest “reasonable” coverage for core modules. A separate ideology must be developed for
testing output_ as plots are tricky to test fully.

2.12.3 Regression Testing

Prior to a release, it is fitting to test API regression tests on any demonstration notebooks in a development virtual
environment and release branch (see docs/demo.ipynb). A simple way to validate API is to run demo.ipynb notebook
in Python 3 and Python 2 kernels.

Another simple way to validate notebook cells without errors is to use the ‘runipy tool
<https://github.com/paulgb/runipy>‘__. This tool will run notebook cells in the command prompt and halt if
errors are found. The command is simple to apply to a notebook:

$ pip install runipy
$ runipy <demo>.ipynb

If no errors were found, your tested API works, and you can advance in the release workflow.

Note: There are occassions where runipy throws an error for cells that run normally in the Jupyter notebook. It is
then reasonable to simply run all cells in a notebook as usual.

2.13 Documenting Code

A general guide for authors and developers.

2.13. Documenting Code 43

https://github.com/paulgb/runipy

LamAna Documentation, Release 0.4.11

2.13.1 As a Developer

Setup

This section is related to maintainers of the project repository. Documentation for the LamAna package uses Sphinx,
readthedocs and the nbsphinx extension. These three tools give a simple documentating experience by directly render-
ing jupyter notebooks. Some details are written here for reference.

The critical docs file structure is present below:

docs
|
|+ _archive
|+ _images
|- conf.py
|- Makefile
|- make.bat
|- index.rst
|- *.ipynb
|- ...

Jupyter notebooks dwell in the “docs” folder. By adding the nbsphinx extension to conf.py, notebooks extant
in this folder are automatically converted to html from ipynb files by running the make html build command. This
setup has several benefits:

1. Edit notebooks directly; no copies or moves required from twin files.

2. Notebooks are rendered as-is.

3. Timestamps and command line info can be “hidden” prior to rendering (edit the metadata).

4. Images can pull from a single directory

Only the index.rst file uses the native reST format.

Images

Images for the entire packages are currently reserved in the ./docs/_images folder. This placement eases root
access to images for any notebook. There is an “_archive” folder within used to store older versions of image files.
The README in the docs folder reminds not to enumerate updated image files, otherwise notebook links will break.
Rather, copy and enumerate the old file and archive for reference.

Important: Do not add spaces filenames of images. They do not render with nbsphinx.

Note: A specical “Doc builder” file is retained in the “_notebook” folder to assist in building docs.

API Docs

The sphinx.ext.autosummary documentation is followed closely to build the API Reference page. cd into the root
package and run this code to update the API reference.

$ sphinx-api -f -o ./docs/generated .

You can optionally clean the build and make a new one afterwards.

44 Chapter 2. Community Benefits

http://www.sphinx-doc.org/en/stable/
https://readthedocs.org/
https://nbsphinx.readthedocs.org/en/0.2.2/
http://www.sphinx-doc.org/en/stable/ext/autosummary.html

LamAna Documentation, Release 0.4.11

$ make clean

$ make html

This will create api docs or “stubs” for all modules found in your package and store them in the “generated” folder.
This folder appears to be important for linking object rendered by autosummary to their appropriate api doc. (Projects
like seaborn and pandas seem to gitignore this folder and its contents). It was obeserved here that without this folder
versioned, the api docs will break links.

Note: The alternative option is to figure out how to invoke the latter command on readthedocs, but at this time, that
option has not been successfully executed.

The sphinx extension viewcode links to the exact code where each module is documented in the API reference. The
alternative is to use the “View in GitHub” link on each page in readthedocs (not observed locally).

Note: The API Reference currently generates long list of WARNINGS when run, related to the location of the
files needed to link to the reference documentation. The links seem to work despite these warnings. Alternatives are
welcome.

2.14 Demonstration

The following demonstration includes basic and intermediate uses of the LamAna Project library. It is intended to
exhaustively reference all API features, therefore some advandced demonstrations will favor technical detail.

2.15 Tutorial: Basic

2.15.1 User Input Startup

In [4]: #--
import pandas as pd

import lamana as la
#import LamAna as la

%matplotlib inline
#%matplotlib nbagg
PARAMETERS --
Build dicts of geometric and material parameters
load_params = {'R' : 12e-3, # specimen radius

'a' : 7.5e-3, # support ring radius
'r' : 2e-4, # radial distance from center loading
'P_a' : 1, # applied load
'p' : 5, # points/layer
}

Quick Form: a dict of lists
mat_props = {'HA' : [5.2e10, 0.25],

'PSu' : [2.7e9, 0.33],

2.14. Demonstration 45

LamAna Documentation, Release 0.4.11

}

Standard Form: a dict of dicts
mat_props = {'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},
'Poissons': {'HA': 0.25, 'PSu': 0.33}}

What geometries to test?
Make tuples of desired geometeries to analyze: outer - {inner...-....}_i - middle

Current Style
g1 = ('0-0-2000') # Monolith
g2 = ('1000-0-0') # Bilayer
g3 = ('600-0-800') # Trilayer
g4 = ('500-500-0') # 4-ply
g5 = ('400-200-800') # Short-hand; <= 5-ply
g6 = ('400-200-400S') # Symmetric
g7 = ('400-[200]-800') # General convention; 5-ply
g8 = ('400-[100,100]-800') # General convention; 7-plys
g9 = ('400-[100,100]-400S') # General and Symmetric convention; 7-plys

'''Add to test set'''
g13 = ('400-[150,50]-800') # Dissimilar inner_is
g14 = ('400-[25,125,50]-800')

geos_most = [g1, g2, g3, g4, g5]
geos_special = [g6, g7, g8, g9]
geos_full = [g1, g2, g3, g4, g5, g6, g7, g8, g9]
geos_dissimilar = [g13, g14]

Future Style
#geos1 = ((400-400-400),(400-200-800),(400-350-500)) # same total thickness
#geos2 = ((400-400-400), (400-500-1600), (400-200-800)) # same outer thickness

In [5]: #import pandas as pd
pd.set_option('display.max_columns', 10)
pd.set_option('precision', 4)

2.15.2 Goal: Generate a Plot in 3 Lines of Code

In [6]: case1 = la.distributions.Case(load_params, mat_props) # instantiate a User Input Case Object through distributions
case1.apply(['400-200-800'])
case1.plot()

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

46 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

That’s it! The rest of this demonstration showcases API functionality of the LamAna project.

2.15.3 Calling Case attributes

Passed in arguments are acessible, but can be displayed as pandas Series and DataFrames.

In [7]: # Original
case1.load_params

Out[7]: {'P_a': 1, 'R': 0.012, 'a': 0.0075, 'p': 5, 'r': 0.0002}

In [8]: # Series View
case1.parameters

Out[8]: P_a 1.000e+00
R 1.200e-02
a 7.500e-03
p 5.000e+00
r 2.000e-04
dtype: float64

In [9]: # Original
case1.mat_props

Out[9]: defaultdict(<class 'dict'>, {'Poissons': {'PSu': 0.33, 'HA': 0.25}, 'Modulus': {'PSu': 2700000000.0, 'HA': 52000000000.0}})

2.15. Tutorial: Basic 47

LamAna Documentation, Release 0.4.11

In [10]: # DataFrame View
case1.properties

In [11]: # Equivalent Standard Form
case1.properties.to_dict()

Out[11]: {'Modulus': {'HA': 52000000000.0, 'PSu': 2700000000.0},
'Poissons': {'HA': 0.25, 'PSu': 0.33000000000000002}}

Reset material order. Changes are relfected in the properties view and stacking order.

In [12]: case1.materials = ['PSu', 'HA']
case1.properties

Overriding materials order...

Serial resets

In [13]: case1.materials = ['PSu', 'HA', 'HA']
case1.properties

Overriding materials order...

In [14]: case1.materials # get reorderd list of materials

Getting materials...

Out[14]: ['PSu', 'HA', 'HA']

In [15]: case1._materials

Out[15]: ['PSu', 'HA', 'HA']

In [16]: case1.apply(geos_full)

User input geometries have been converted and set to Case.

In [17]: case1.snapshots[-1]

Accessing snapshot method.

In [18]: '''Need to bypass pandas abc ordering of indicies.'''

Out[18]: 'Need to bypass pandas abc ordering of indicies.'

Reset the parameters

In [19]: mat_props2 = {'HA' : [5.3e10, 0.25],
'PSu' : [2.8e9, 0.33],
}

In [20]: case1 = la.distributions.Case(load_params, mat_props2)
case1.properties

Converting mat_props to Standard Form.

2.15.4 apply() Geometries and LaminateModels

Construct a laminate using geometric, matrial paramaters and geometries.

In [21]: case2 = la.distributions.Case(load_params, mat_props)
case2.apply(geos_full) # default model Wilson_LT

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

48 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Access the user input geometries

In [22]: case2.Geometries # using an attribute, __repr__

Out[22]: [Geometry object (0.0-[0.0]-2000.0),
Geometry object (1000.0-[0.0]-0.0),
Geometry object (600.0-[0.0]-800.0),
Geometry object (500.0-[500.0]-0.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[200.0]-400.0S),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0]-400.0S)]

In [23]: print(case2.Geometries) # uses __str__

[Geometry object (0.0-[0.0]-2000.0), Geometry object (1000.0-[0.0]-0.0), Geometry object (600.0-[0.0]-800.0), Geometry object (500.0-[500.0]-0.0), Geometry object (400.0-[200.0]-800.0), Geometry object (400.0-[200.0]-400.0S), Geometry object (400.0-[200.0]-800.0), Geometry object (400.0-[100.0,100.0]-800.0), Geometry object (400.0-[100.0,100.0]-400.0S)]

In [24]: case2.Geometries[0] # indexing

Out[24]: Geometry object (0.0-[0.0]-2000.0)

We can compare Geometry objects with builtin Python operators. This process directly compares GeometryTuples in
the Geometry class.

In [25]: bilayer = case2.Geometries[1] # (1000.0-[0.0]-0.0)
trilayer = case2.Geometries[2] # (600.0-[0.0]-800.0)
#bilayer == trilayer
bilayer != trilayer

Out[25]: True

Get all thicknesses for selected layers.

In [26]: case2.middle

Out[26]: [2000.0, 0.0, 800.0, 0.0, 800.0, 400.0, 800.0, 800.0, 400.0]

In [27]: case2.inner

Out[27]: [[0.0],
[0.0],
[0.0],
[500.0],
[200.0],
[200.0],
[200.0],
[100.0, 100.0],
[100.0, 100.0]]

In [28]: case2.inner[-1]

Out[28]: [100.0, 100.0]

In [29]: case2.inner[-1][0] # List indexing allowed

Out[29]: 100.0

In [30]: [first[0] for first in case2.inner] # iterate

Out[30]: [0.0, 0.0, 0.0, 500.0, 200.0, 200.0, 200.0, 100.0, 100.0]

In [31]: case2.outer

Out[31]: [0.0, 1000.0, 600.0, 500.0, 400.0, 400.0, 400.0, 400.0, 400.0]

2.15. Tutorial: Basic 49

LamAna Documentation, Release 0.4.11

A general and very important object is the LaminateModel.

In [32]: case2.LMs

Out[32]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-400.0S), p=5>]

Sometimes might you want to throw in a bunch of geometry strings from different groups. If there are repeated strings
in different groups (set intersections), you can tell Case to only give a unique result.

For instane, here we combine two groups of geometry strings, 5-plys and odd-plys. Clearly these two groups overlap,
and there are some repeated geometries (one with different conventions). Using the unique keyword, Case only
operates on a unique set of Geometry objects (independent of convention), resulting in a unique set of Laminate-
Models.

In [33]: fiveplys = ['400-[200]-800', '350-400-500', '200-100-1400']
oddplys = ['400-200-800', '350-400-500', '400.0-[100.0,100.0]-800.0']
mix = fiveplys + oddplys
mix

Out[33]: ['400-[200]-800',
'350-400-500',
'200-100-1400',
'400-200-800',
'350-400-500',
'400.0-[100.0,100.0]-800.0']

In [34]: # Non-unique, repeated 5-plys
case_ = la.distributions.Case(load_params, mat_props)
case_.apply(mix)
case_.LMs

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

Out[34]: [<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=5>,
<lamana LaminateModel object (200.0-[100.0]-1400.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>]

In [35]: # Unique
case_ = la.distributions.Case(load_params, mat_props)
case_.apply(mix, unique=True)
case_.LMs

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

Out[35]: [<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=5>,

50 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (200.0-[100.0]-1400.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>]

2.15.5 DataFrame Access

You can get a quick view of the stack using the snapshotmethod. This gives access to a Construct - a DataFrame
converted stack.

In [36]: case2.snapshots[-1]

Accessing snapshot method.

We can easily view entire laminate DataFrames using the frames attribute. This gives access to LaminateModels
(DataFrame) objects, which extends the stack view so that laminate theory is applied to each row.

In [37]: '''Consider head command for frames list'''

Out[37]: 'Consider head command for frames list'

In [38]: #case2.frames

In [39]: ##with pd.set_option('display.max_columns', None): # display all columns, within this context manager
case2.frames[5]

In [40]: case2.frames[5].head()

Accessing frames method.

In [41]: '''Extend laminate attributes'''

Out[41]: 'Extend laminate attributes'

In [42]: case3 = la.distributions.Case(load_params, mat_props)
case3.apply(geos_dissimilar)
#case3.frames

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

NOTE, for even plies, the material is set alternate for each layer. Thus outers layers may be different materials.

In [43]: case4 = la.distributions.Case(load_params, mat_props)
case4.apply(['400-[100,100,100]-0'])
case4.frames[0][['layer', 'matl', 'type']]
;

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
Accessing frames method.

Out[43]: ''

In [44]: '''Add functionality to customize material type.'''

Out[44]: 'Add functionality to customize material type.'

Totaling

The distributions.Case class has useful properties available for totaling specific layers for a group of laminates
as lists. As these properties return lists, these results can be sliced and iterated.

In [45]: '''Show Geometry first then case use.'''

2.15. Tutorial: Basic 51

LamAna Documentation, Release 0.4.11

Out[45]: 'Show Geometry first then case use.'

.total property

In [46]: case2.total

Out[46]: [2000.0, 2000.0, 2000.0, 2000.0, 2000.0, 2000.0, 2000.0, 2000.0, 2000.0]

In [47]: case2.total_middle

Out[47]: [2000.0, 0.0, 800.0, 0.0, 800.0, 800.0, 800.0, 800.0, 800.0]

In [48]: case2.total_middle

Out[48]: [2000.0, 0.0, 800.0, 0.0, 800.0, 800.0, 800.0, 800.0, 800.0]

In [49]: case2.total_inner_i

Out[49]: [[0.0],
[0.0],
[0.0],
[1000.0],
[400.0],
[400.0],
[400.0],
[200.0, 200.0],
[200.0, 200.0]]

In [50]: case2.total_outer

Out[50]: [0.0, 2000.0, 1200.0, 1000.0, 800.0, 800.0, 800.0, 800.0, 800.0]

In [51]: case2.total_outer[4:-1] # slicing

Out[51]: [800.0, 800.0, 800.0, 800.0]

In [52]: [inner_i[-1]/2.0 for inner_i in case2.total_inner_i] # iterate

Out[52]: [0.0, 0.0, 0.0, 500.0, 200.0, 200.0, 200.0, 100.0, 100.0]

Geometry Totals

The total attribute used in Case actually dervive from attributes for Geometry objects individually. On Geometry
objects, they return specific thicknesses instead of lists of thicknesses.

In [53]: G1 = case2.Geometries[-1]
G1

Out[53]: Geometry object (400.0-[100.0,100.0]-400.0S)

In [54]: G1.total # laminate thickness (um)

Out[54]: 2000.0

In [55]: G1.total_inner_i # inner_i laminae

Out[55]: [200.0, 200.0]

In [56]: G1.total_inner_i[0] # inner_i lamina pair

Out[56]: 200.0

In [57]: sum(G1.total_inner_i) # inner total

Out[57]: 400.0

In [58]: G1.total_inner # inner total

52 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Out[58]: 400.0

2.15.6 LaminateModel Attributes

Access the LaminateModel object directly using the LMs attribute.

In [59]: case2.LMs[5].Middle

In [60]: case2.LMs[5].Inner_i

Laminates are assumed mirrored at the neutral axis, but dissimilar inner_i thicknesses are allowed.

In [61]: case2.LMs[5].tensile

Separate from the case attributes, Laminates have useful attributes also, such as nplies, p and its own total.

In [62]: LM = case2.LMs[4]
LM.LMFrame.tail(7)

Often the extreme stress values (those at the interfaces) are most important. This is equivalent to p=2.

In [63]: LM.extrema

In [64]: LM.p # number of rows per group

Out[64]: 5

In [65]: LM.nplies # number of plies

Out[65]: 5

In [66]: LM.total # total laminate thickness (m)

Out[66]: 0.002

In [67]: LM.Geometry

Out[67]: Geometry object (400.0-[200.0]-800.0)

In [68]: '''Overload the min and max special methods.'''

Out[68]: 'Overload the min and max special methods.'

In [69]: LM.max_stress # max interfacial failure stress

Out[69]: 0 0.379
5 0.013
10 0.151
14 -0.151
19 -0.013
24 -0.379
Name: stress_f (MPa/N), dtype: float64

NOTE: this feature gives a different result for p=1 since a single middle cannot report two interfacial values; INDET.

In [70]: LM.min_stress

Out[70]: 4 0.227
9 0.009
15 -0.009
20 -0.227
Name: stress_f (MPa/N), dtype: float64

In [71]: '''Redo tp return series of bool an index for has_attrs'''

Out[71]: 'Redo tp return series of bool an index for has_attrs'

2.15. Tutorial: Basic 53

LamAna Documentation, Release 0.4.11

In [72]: LM.has_neutaxis

Out[72]: 0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
9 False
10 False
11 False
12 True
13 False
14 False
15 False
16 False
17 False
18 False
19 False
20 False
21 False
22 False
23 False
24 False
Name: label, dtype: bool

In [73]: LM.has_discont

Out[73]: 0 False
1 False
2 False
3 False
4 True
5 False
6 False
7 False
8 False
9 True
10 False
11 False
12 False
13 False
14 False
15 True
16 False
17 False
18 False
19 False
20 True
21 False
22 False
23 False

54 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

24 False
Name: label, dtype: bool

In [74]: LM.is_special

Out[74]: False

In [75]: LM.FeatureInput

Out[75]: {'Geometry': Geometry object (400.0-[200.0]-800.0),
'Globals': {'D_11T': 31.664191802890315,
'D_11p': 0.033700807714524279,
'D_12T': 7.9406108505093584,
'D_12n': -0.0084513446948124519,
'K_r': 0.0034519261262397653,
'K_t:': 0.0059650953251038216,
'M_r': 0.15666895161350616,
'M_t': 0.216290324549788,
'v_eq ': 0.25077573114575868},
'Materials': ['HA', 'PSu'],
'Model': 'Wilson_LT',
'Parameters': {'P_a': 1, 'R': 0.012, 'a': 0.0075, 'p': 5, 'r': 0.0002},
'Properties': defaultdict(<class 'dict'>, {'Poissons': {'PSu': 0.33, 'HA': 0.25}, 'Modulus': {'PSu': 2700000000.0, 'HA': 52000000000.0}})}

In [76]: '''Need to fix FeatureInput and Geometry inside LaminateModel'''

Out[76]: 'Need to fix FeatureInput and Geometry inside LaminateModel'

As with Geometry objects, we can compare LaminateModel objects also. [STRIKEOUT:This process directly com-
pares two defining components of a LaminateModel object: the LM DataFrame (LMFrame) and FeatureInput. If
either is False, the equality returns False.]

In [77]: case2 = la.distributions.Case(load_params, mat_props)
case2.apply(geos_full)

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

In [78]: bilayer_LM = case2.LMs[1]
trilayer_LM = case2.LMs[2]
trilayer_LM == trilayer_LM
#bilayer_LM == trilayer_LM

Out[78]: True

In [79]: bilayer_LM != trilayer_LM

Out[79]: True

Use python and pandas native comparison tracebacks that to understand the errors directly by comparing FeatureInput
dict and LaminateModel DataFrame.

In [80]: #bilayer_LM.FeatureInput == trilayer_LM.FeatureInput # gives detailed traceback

In [81]: '''Fix FI DataFrame with dict.'''

Out[81]: 'Fix FI DataFrame with dict.'

In [82]: bilayer_LM.FeatureInput

Out[82]: {'Geometry': Geometry object (1000.0-[0.0]-0.0),
'Globals': {'D_11T': 19.498876544595319,
'D_11p': 0.054826177209184083,

2.15. Tutorial: Basic 55

LamAna Documentation, Release 0.4.11

'D_12T': 4.9555181486053437,
'D_12n': -0.013933731800259629,
'K_r': 0.0055968142719747937,
'K_t:': 0.009677945375294943,
'M_r': 0.15709082448075087,
'M_t': 0.21644417677735781,
'v_eq ': 0.25414377783621128},
'Materials': ['HA', 'PSu'],
'Model': 'Wilson_LT',
'Parameters': {'P_a': 1, 'R': 0.012, 'a': 0.0075, 'p': 5, 'r': 0.0002},
'Properties': defaultdict(<class 'dict'>, {'Poissons': {'PSu': 0.33, 'HA': 0.25}, 'Modulus': {'PSu': 2700000000.0, 'HA': 52000000000.0}})}

In [83]: #bilayer_LM.LMFrame == trilayer_LM.LMFrame # gives detailed traceback

2.15.7 plot() LT Geometries

CAVEAT: it is recommended to use at least p=2 for calculating stress. Less than two points for odd plies is indetermi-
nant in middle rows, which can raise exceptions.

In [84]: '''Find a way to remove all but interfacial points.'''

Out[84]: 'Find a way to remove all but interfacial points.'

We try to quickly plot simple stress distriubtions with native pandas methods. We have two variants for displaying
distributions:

- Unnoormalized: plotted by the height (`d_`). Visaully: thicknesses vary, material slopes are constant.
- Normalized: plotted by the relative fraction level (`k_`). Visually: thicknesses are constant, material slopes vary.

Here we plot with the nbagg matplotlib backend to generatre interactive figures. NOTE: for Normalized plots, slope
can vary for a given material.

In [85]: from lamana.utils import tools as ut
from lamana.models import Wilson_LT as wlt

dft = wlt.Defaults()
#%matplotlib nbagg

Quick plotting
case4 = ut.laminator(dft.geos_standard)
for case in case4.values():

for LM in case.LMs:
df = LM.LMFrame

df.plot(x='stress_f (MPa/N)', y='d(m)', title='Unnormalized Distribution')
df.plot(x='stress_f (MPa/N)', y='k', title='Normalized Distribution')

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

Out[85]: <matplotlib.axes._subplots.AxesSubplot at 0x9e43390>

56 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

While we get reasonable stress distribution plots rather simply, LamAna offers some plotting methods pertinent to
laminates than assisting with visualization.

Demo - An example illustration of desired plotting of multiple geometries from distributions.

2.15. Tutorial: Basic 57

LamAna Documentation, Release 0.4.11

Fig. 2.9: demo

58 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

This is image of results from legacy code used for comparison.

We can plot the stress distribution for a case of a single geometry.

In [86]: case3 = la.distributions.Case(load_params, mat_props)
case3.apply(['400-200-800'], model='Wilson_LT')
case3.plot()

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

We can also plot multiple geometries of similar total thickness.

In [87]: five_plies = ['350-400-500', '400-200-800', '200-200-1200', '200-100-1400',
'100-100-1600', '100-200-1400', '300-400-600']

case4 = la.distributions.Case(load_params, mat_props)
case4.apply(five_plies, model='Wilson_LT')
case4.plot()

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

2.15. Tutorial: Basic 59

LamAna Documentation, Release 0.4.11

In [88]: '''If different plies or patterns, make new caselet (subplot)'''
'''[400-200-800, '300-[400,200]-600'] # non-congruent? equi-ply'''
'''[400-200-800, '400-200-0'] # odd/even ply'''
currently superimposes plots. Just needs to separate.

Out[88]: "[400-200-800, '400-200-0'] # odd/even ply"

2.15.8 Exporting

Saving data is critical for future analysis. LamAna offers two formas for exporting your data and parameters. Param-
eters used to make calculations such as the FeatureInput information are saved as “dashboards” in different forms. -
‘.xlsx’: (default); convient for storing multiple calculationa amd dashboards as se[arate worksheets in a Excel work-
book. - ‘.csv’: universal format; separate files for data and dashboard.

The lowest level to export data is for a LaminateModel object.

In [89]: LM = case4.LMs[0]
LM.to_xlsx(temp=True, delete=True) # or `to_csv()`
;

Out[89]: ''

NOTE For demonstration purposes, the temp and delete are activated. This will create temporary files in the OS
temp directory and automatically delete them. For practical use, ignore setting these flags.

60 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

The latter LaminateModel data was saved to an .xlsx file in the default export folder. The filepath is returned (currently
suppressed with the ; line).

The next level to export data is for a case. This will save all files comprise in a case. If exported to csv format, files
are saved seperately. In xlsx format, a single file is made where each LaminateModel data and dashboard are saved as
seperate worksheets.

In [90]: case4.to_xlsx(temp=True, delete=True) # or `to_csv()`
;

Out[90]: ''

2.16 Tutorial: Intermediate

So far, the barebones objects have been discussed and a lot can be accomplished with the basics. For users who have
some experience with Python and Pandas, here are some intermediate techniques to reduce repetitious actions.

This section dicusses the use of abstract base classes intended for reducing redundant tasks such as multiple case
creation and default parameter definitions. Custom model subclassing is also discussed.

In [91]: #--
import pandas as pd

import lamana as la

%matplotlib inline
#%matplotlib nbagg
PARAMETERS --
Build dicts of loading parameters and and material properties
load_params = {'R' : 12e-3, # specimen radius

'a' : 7.5e-3, # support ring radius
'r' : 2e-4, # radial distance from center loading
'P_a' : 1, # applied load
'p' : 5, # points/layer
}

Quick Form: a dict of lists
mat_props = {'HA' : [5.2e10, 0.25],
'PSu' : [2.7e9, 0.33],}

Standard Form: a dict of dicts
mat_props = {'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},

'Poissons': {'HA': 0.25, 'PSu': 0.33}}

What geometries to test?
Make tuples of desired geometeries to analyze: outer - {inner...-....}_i - middle

Current Style
g1 = ('0-0-2000') # Monolith
g2 = ('1000-0-0') # Bilayer
g3 = ('600-0-800') # Trilayer
g4 = ('500-500-0') # 4-ply

2.16. Tutorial: Intermediate 61

LamAna Documentation, Release 0.4.11

g5 = ('400-200-800') # Short-hand; <= 5-ply
g6 = ('400-200-400S') # Symmetric
g7 = ('400-[200]-800') # General convention; 5-ply
g8 = ('400-[100,100]-800') # General convention; 7-plys
g9 = ('400-[100,100]-400S') # General and Symmetric convention; 7-plys

'''Add to test set'''
g13 = ('400-[150,50]-800') # Dissimilar inner_is
g14 = ('400-[25,125,50]-800')

geos_most = [g1, g2, g3, g4, g5]
geos_special = [g6, g7, g8, g9]
geos_full = [g1, g2, g3, g4, g5, g6, g7, g8, g9]
geos_dissimilar = [g13, g14]

2.16.1 Generating Multiple Cases

We’ve already seen we can generate a case object and plots with three lines of code. However, sometimes it is
necessary to generate different cases. These invocations can be tedious with three lines of code per case. Have no fear.
A simple way to produce more cases is to instantiate a Cases object.

Below we will create a Cases which houses multiples cases that: - share similiar loading parameters/material prop-
erties and laminate theory model with - different numbers of datapoints, p

In [92]: cases1 = la.distributions.Cases(['400-200-800', '350-400-500',
'400-200-0', '1000-0-0'],

load_params=load_params,
mat_props=mat_props, model= 'Wilson_LT',
ps=[3,4,5])

cases1

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

Out[92]: <lamana.distributions.Cases object at 0x0000000009B15710>, {0: <<class 'lamana.distributions.Case'> p=3, size=1>, 1: <<class 'lamana.distributions.Case'> p=3, size=1>, 2: <<class 'lamana.distributions.Case'> p=3, size=1>, 3: <<class 'lamana.distributions.Case'> p=3, size=1>, 4: <<class 'lamana.distributions.Case'> p=4, size=1>, 5: <<class 'lamana.distributions.Case'> p=4, size=1>, 6: <<class 'lamana.distributions.Case'> p=4, size=1>, 7: <<class 'lamana.distributions.Case'> p=4, size=1>, 8: <<class 'lamana.distributions.Case'> p=5, size=1>, 9: <<class 'lamana.distributions.Case'> p=5, size=1>, 10: <<class 'lamana.distributions.Case'> p=5, size=1>, 11: <<class 'lamana.distributions.Case'> p=5, size=1>}

Cases() accepts a list of geometry strings. Given appropriate default keywords, this lone argument will return a
dict-like object of cases with indicies as keys. The model and ps keywords have default values.

A Cases() object has some interesting characteristics (this is not a dict):

• if user-defined, tries to import Defaults() to simplify instantiations

• dict-like storage and access of cases

• list-like ordering of cases

62 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

• gettable: list-like, get items by index (including negative indicies)

• sliceable: slices the dict keys of the Cases object

• viewable: contained LaminateModels

• iterable: by values (unlike normal dicts, not by keys)

• writable: write DataFrames to csv files

• selectable: perform set operations and return unique subsets

In [93]: # Gettable

cases1[0] # normal dict key selection
cases1[-1] # negative indices
cases1[-2] # negative indicies

Out[93]: <<class 'lamana.distributions.Case'> p=5, size=1>

In [94]: # Sliceable

cases1[0:2] # range of dict keys
cases1[0:3] # full range of dict keys
cases1[:] # full range
cases1[1:] # start:None
cases1[:2] # None:stop
cases1[:-1] # None:negative index
cases1[:-2] # None:negative index
#cases1[0:-1:-2] # start:stop:step; NotImplemented
#cases1[::-1] # reverse; NotImplemented

Out[94]: [<<class 'lamana.distributions.Case'> p=3, size=1>,
<<class 'lamana.distributions.Case'> p=3, size=1>,
<<class 'lamana.distributions.Case'> p=3, size=1>,
<<class 'lamana.distributions.Case'> p=3, size=1>,
<<class 'lamana.distributions.Case'> p=4, size=1>,
<<class 'lamana.distributions.Case'> p=4, size=1>,
<<class 'lamana.distributions.Case'> p=4, size=1>,
<<class 'lamana.distributions.Case'> p=4, size=1>,
<<class 'lamana.distributions.Case'> p=5, size=1>,
<<class 'lamana.distributions.Case'> p=5, size=1>]

In [95]: # Viewable
cases1
cases1.LMs

Out[95]: [<lamana LaminateModel object (400.0-[200.0]-800.0), p=3>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=3>,
<lamana LaminateModel object (400.0-[200.0]-0.0), p=3>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=4>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=4>,
<lamana LaminateModel object (400.0-[200.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (350.0-[400.0]-500.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-0.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>]

2.16. Tutorial: Intermediate 63

LamAna Documentation, Release 0.4.11

In [96]: # Iterable
for i, case in enumerate(cases1): # __iter__ values

print(case)
#print(case.LMs) # access LaminateModels

<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=4>
<<class 'lamana.distributions.Case'> p=4>
<<class 'lamana.distributions.Case'> p=4>
<<class 'lamana.distributions.Case'> p=4>
<<class 'lamana.distributions.Case'> p=5>
<<class 'lamana.distributions.Case'> p=5>
<<class 'lamana.distributions.Case'> p=5>
<<class 'lamana.distributions.Case'> p=5>

In [97]: # Writable
#cases1.to_csv() # write to file

In [98]: # Selectable
cases1.select(nplies=[2,4]) # by # plies
cases1.select(ps=[3,4]) # by points/DataFrame rows
cases1.select(nplies=[2,4], ps=[3,4], how='intersection') # by set operations

Out[98]: {<lamana LaminateModel object (400.0-[200.0]-0.0), p=3>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (400.0-[200.0]-0.0), p=4>}

LamainateModels can be compared using set theory. Unique subsets of LaminateModels can be returned from a mix
of repeated geometry strings. We will use the default model and ps values.

In [99]: set(geos_most).issubset(geos_full) # confirm repeated items

Out[99]: True

In [100]: mix = geos_full + geos_most # contains repeated items

In [101]: # Repeated Subset
cases2 = la.distributions.Cases(mix, load_params=load_params, mat_props=mat_props)
cases2.LMs

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

64 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Out[101]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-400.0S), p=5>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>]

In [102]: # Unique Subset
cases2 = la.distributions.Cases(mix, load_params=load_params, mat_props=mat_props,

unique=True)
cases2.LMs

Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

Out[102]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=5>,

2.16. Tutorial: Intermediate 65

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[100.0,100.0]-400.0S), p=5>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>]

2.16.2 Subclassing Custom Default Parameters

We observed the benefits of using implicit, default keywords (models, ps) in simplifying the writing of Cases()
instantiations. In general, the user can code explicit defaults for load_params and mat_props by subclassing
BaseDefaults() from inputs_. While subclassing requires some extra Python knowledge, this is a relatively
simple process that reduces a significant amount of redundant code, leading to a more effiencient anaytical setting.

The BaseDefaults contains a dict various geometry strings and Geometry objects. Rather than defining examples
for various geometry plies, the user can call from all or a groupings of geometries.

In [103]: from lamana.input_ import BaseDefaults

bdft = BaseDefaults()

geometry String Attributes
bdft.geo_inputs # all dict key-values
bdft.geos_all # all geo strings
bdft.geos_standard # static
bdft.geos_sample # active; grows

Geometry Object Attributes; mimics latter
bdft.Geo_objects # all dict key-values
bdft.Geos_all # all Geo objects
more ...

Custom FeatureInputs
#bdft.get_FeatureInput() # quick builds
#bdft.get_materials() # convert to std. form

Out[103]: [Geometry object (0.0-[0.0]-2000.0),
Geometry object (0.0-[0.0]-1000.0),
Geometry object (1000.0-[0.0]-0.0),
Geometry object (600.0-[0.0]-800.0),
Geometry object (600.0-[0.0]-400.0S),
Geometry object (500.0-[500.0]-0.0),
Geometry object (400.0-[200.0]-0.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[200.0]-400.0S),
Geometry object (400.0-[100.0,100.0]-0.0),
Geometry object (500.0-[250.0,250.0]-0.0),
Geometry object (400.0-[100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0]-400.0S),
Geometry object (400.0-[100.0,100.0,100.0]-800.0),
Geometry object (500.0-[50.0,50.0,50.0,50.0]-0.0),

66 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Geometry object (400.0-[100.0,100.0,100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0,100.0,100.0,100.0]-800.0)]

The latter geometric defaults come out of the box when subclassed from BaseDefaults. If custom geometries are
desired, the user can override the geo_inputs dict, which automatically builds the Geo_objects dict.

Users can override three categories of defaults parameters:

1. geometric variables

2. loading parameters

3. material properties

As mentioned, some geometric variables are provided for general laminate dimensions. The other parameters cannot
be predicted and need to be defined by the user. Below is an example of a Defaults() subclass. If a custom model has
been implemented (see next section), it is convention to place Defaults() and all other custom code within this
module. If a custom model is implemented an located in the models directory, Cases will automatically search will
the designated model modules, locate the load_params and mat_props attributes and load them automatically
for all Cases instantiations.

In [104]: # Example Defaults from LamAna.models.Wilson_LT
class Defaults(BaseDefaults):

'''Return parameters for building distributions cases. Useful for consistent
testing.

Dimensional defaults are inheirited from utils.BaseDefaults().
Material-specific parameters are defined here by he user.

- Default geometric and materials parameters
- Default FeatureInputs

Examples
========
>>>dft = Defaults()
>>>dft.load_params
{'R' : 12e-3, 'a' : 7.5e-3, 'p' : 1, 'P_a' : 1, 'r' : 2e-4,}

>>>dft.mat_props
{'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},
'Poissons': {'HA': 0.25, 'PSu': 0.33}}

>>>dft.FeatureInput
{'Geometry' : '400-[200]-800',
'Geometric' : {'R' : 12e-3, 'a' : 7.5e-3, 'p' : 1, 'P_a' : 1, 'r' : 2e-4,},
'Materials' : {'HA' : [5.2e10, 0.25], 'PSu' : [2.7e9, 0.33],},
'Custom' : None,
'Model' : Wilson_LT,
}

'''
def __init__(self):

BaseDefaults.__init__(self)
'''DEV: Add defaults first. Then adjust attributes.'''
DEFAULTS --
Build dicts of geometric and material parameters
self.load_params = {'R' : 12e-3, # specimen radius

2.16. Tutorial: Intermediate 67

LamAna Documentation, Release 0.4.11

'a' : 7.5e-3, # support ring radius
'p' : 5, # points/layer
'P_a' : 1, # applied load
'r' : 2e-4, # radial distance from center loading
}

self.mat_props = {'Modulus': {'HA': 5.2e10, 'PSu': 2.7e9},
'Poissons': {'HA': 0.25, 'PSu': 0.33}}

ATTRIBUTES --
FeatureInput
self.FeatureInput = self.get_FeatureInput(self.Geo_objects['standard'][0],

load_params=self.load_params,
mat_props=self.mat_props,
##custom_matls=None,
model='Wilson_LT',
global_vars=None)

In [105]: '''Use Classic_LT here'''

Out[105]: 'Use Classic_LT here'

In [106]: from lamana.distributions import Cases
Auto load_params and mat_params

dft = Defaults()
cases3 = Cases(dft.geos_full, model='Wilson_LT')
#cases3 = la.distributions.Cases(dft.geos_full, model='Wilson_LT')
cases3

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

Out[106]: <lamana.distributions.Cases object at 0x000000000AF85EB8>, {0: <<class 'lamana.distributions.Case'> p=5, size=1>, 1: <<class 'lamana.distributions.Case'> p=5, size=1>, 2: <<class 'lamana.distributions.Case'> p=5, size=1>, 3: <<class 'lamana.distributions.Case'> p=5, size=1>, 4: <<class 'lamana.distributions.Case'> p=5, size=1>, 5: <<class 'lamana.distributions.Case'> p=5, size=1>, 6: <<class 'lamana.distributions.Case'> p=5, size=1>, 7: <<class 'lamana.distributions.Case'> p=5, size=1>}

In [107]: '''Refine idiom for importing Cases '''

Out[107]: 'Refine idiom for importing Cases '

2.16.3 Subclassing Custom Models

One of the most powerful feauteres of LamAna is the ability to define customized modifications to the Laminate
Theory models.

Code for laminate theories (i.e. Classic_LT, Wilson_LT) are are located in the models directory. These models can
be simple functions or sublclass from BaseModels in the theories module. Either approach is acceptable (see
narrative docs for more details on creating custom models.

This ability to add custom code make this library extensibile to use a larger variety of models.

68 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

2.16.4 Plotting Cases

An example of multiple subplots is show below. Using a former case, notice each subplot is indepent, woth separate
geometries for each. LamAna treats each subplot as a subset or “caselet”:

In [108]: cases1.plot(extrema=False)

Each caselet can also be a separate case, plotting multiple geometries for each as accomplished with Case.

In [109]: const_total = ['350-400-500', '400-200-800', '200-200-1200',
'200-100-1400', '100-100-1600', '100-200-1400',]

const_outer = ['400-550-100', '400-500-200', '400-450-300',
'400-400-400', '400-350-500', '400-300-600',
'400-250-700', '400-200-800', '400-0.5-1199']

const_inner = ['400-400-400', '350-400-500', '300-400-600',
'200-400-700', '200-400-800', '150-400-990',

2.16. Tutorial: Intermediate 69

LamAna Documentation, Release 0.4.11

'100-400-1000', '50-400-1100',]
const_middle = ['100-700-400', '150-650-400', '200-600-400',

'250-550-400', '300-400-500', '350-450-400',
'400-400-400', '450-350-400', '750-0.5-400']

case1_ = const_total
case2_ = const_outer
case3_ = const_inner
case4_ = const_middle

cases_ = [case1_, case2_, case3_, case4_]

In [110]: cases3 = la.distributions.Cases(cases_, load_params=load_params,
mat_props=mat_props, model= 'Wilson_LT',
ps=[2,3])

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

In [111]: cases3.plot(extrema=False)

See Demo notebooks for more examples of plotting.

70 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

2.16.5 More on Cases

In [112]: '''Fix importing cases'''

Out[112]: 'Fix importing cases'

In [113]: from lamana.distributions import Cases

Applying caselets

The term “caselet” is defined in LPEP 003. Most importantly, the various types a caselet represents is handled by
Cases and discussed here. In 0.4.4b3+, caselets are contained in lists. LPEP entertains the idea of containing caselets
in dicts.

In [114]: from lamana.models import Wilson_LT as wlt
dft = wlt.Defaults()

%matplotlib inline

str_caselets = ['350-400-500', '400-200-800', '400-[200]-800']
list_caselets = [['400-400-400', '400-[400]-400'],

['200-100-1400', '100-200-1400',],
['400-400-400', '400-200-800','350-400-500',],
['350-400-500']]

case1 = la.distributions.Case(dft.load_params, dft.mat_props)
case2 = la.distributions.Case(dft.load_params, dft.mat_props)
case3 = la.distributions.Case(dft.load_params, dft.mat_props)
case1.apply(['400-200-800', '400-[200]-800'])
case2.apply(['350-400-500', '400-200-800'])
case3.apply(['350-400-500', '400-200-800', '400-400-400'])
case_caselets = [case1, case2, case3]
mixed_caselets = [['350-400-500', '400-200-800',],

[['400-400-400', '400-[400]-400'],
['200-100-1400', '100-200-1400',]],

[case1, case2,]
]

dict_caselets = {0: ['350-400-500', '400-200-800', '200-200-1200',
'200-100-1400', '100-100-1600', '100-200-1400'],

1: ['400-550-100', '400-500-200', '400-450-300',
'400-400-400', '400-350-500', '400-300-600'],

2: ['400-400-400', '350-400-500', '300-400-600',
'200-400-700', '200-400-800', '150-400-990'],

3: ['100-700-400', '150-650-400', '200-600-400',
'250-550-400', '300-400-500', '350-450-400'],

}

User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

In [115]: cases = Cases(str_caselets)
#cases = Cases(str_caselets, combine=True)
#cases = Cases(list_caselets)
#cases = Cases(list_caselets, combine=True)
#cases = Cases(case_caselets)
#cases = Cases(case_caselets, combine=True) # collapse to one plot

2.16. Tutorial: Intermediate 71

LamAna Documentation, Release 0.4.11

#cases = Cases(str_caselets, ps=[2,5])
#cases = Cases(list_caselets, ps=[2,3,5,7])
#cases = Cases(case_caselets, ps=[2,5])
#cases = Cases([], combine=True) # test raises

For next versions
#cases = Cases(dict_caselets)
#cases = Cases(mixed_caselets)
#cases = Cases(mixed_caselets, combine=True)
cases

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

Out[115]: <lamana.distributions.Cases object at 0x000000000C46E748>, {0: <<class 'lamana.distributions.Case'> p=5, size=1>, 1: <<class 'lamana.distributions.Case'> p=5, size=1>, 2: <<class 'lamana.distributions.Case'> p=5, size=1>}

In [116]: cases.LMs

Out[116]: [<lamana LaminateModel object (350.0-[400.0]-500.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>]

In [117]: '''BUG: Following cell raises an Exception in Python 2'''

Out[117]: 'BUG: Following cell raises an Exception in Python 2'

In [118]: #cases.plot()
#cases.plot(normalized=False)
#cases.plot(colorblind=True, grayscale=True)
cases.plot(extrema=False) # needed to see ps

In [119]: cases.caselets

Out[119]: ['350.0-[400.0]-500.0', '400.0-[200.0]-800.0', '400.0-[200.0]-800.0']

In [120]: '''get out tests from code'''
'''run tests'''
'''test set seletions'''

Out[120]: 'test set seletions'

Characteristics

72 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

In [121]: from lamana.models import Wilson_LT as wlt

dft = wlt.Defaults()
cases = Cases(dft.geo_inputs['5-ply'], ps=[2,3,4])

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

In [122]: len(cases) # test __len__

Out[122]: 9

In [123]: cases.get(1) # __getitem__

Out[123]: <<class 'lamana.distributions.Case'> p=2, size=1>

In [124]: #cases[2] = 'test' # __setitem__; not implemented

In [125]: cases[0] # select

Out[125]: <<class 'lamana.distributions.Case'> p=2, size=1>

In [126]: cases[0:2] # slice (__getitem__)

Out[126]: [<<class 'lamana.distributions.Case'> p=2, size=1>,
<<class 'lamana.distributions.Case'> p=2, size=1>]

In [127]: del cases[1] # __delitem__

In [128]: cases # test __repr__

Out[128]: <lamana.distributions.Cases object at 0x000000000B6292E8>, {0: <<class 'lamana.distributions.Case'> p=2, size=1>, 2: <<class 'lamana.distributions.Case'> p=2, size=1>, 3: <<class 'lamana.distributions.Case'> p=3, size=1>, 4: <<class 'lamana.distributions.Case'> p=3, size=1>, 5: <<class 'lamana.distributions.Case'> p=3, size=1>, 6: <<class 'lamana.distributions.Case'> p=4, size=1>, 7: <<class 'lamana.distributions.Case'> p=4, size=1>, 8: <<class 'lamana.distributions.Case'> p=4, size=1>}

In [129]: print(cases) # test __str__

{0: <<class 'lamana.distributions.Case'> p=2, size=1>, 2: <<class 'lamana.distributions.Case'> p=2, size=1>, 3: <<class 'lamana.distributions.Case'> p=3, size=1>, 4: <<class 'lamana.distributions.Case'> p=3, size=1>, 5: <<class 'lamana.distributions.Case'> p=3, size=1>, 6: <<class 'lamana.distributions.Case'> p=4, size=1>, 7: <<class 'lamana.distributions.Case'> p=4, size=1>, 8: <<class 'lamana.distributions.Case'> p=4, size=1>}

In [130]: cases == cases # test __eq__

Out[130]: True

In [131]: not cases != cases # test __ne__

Out[131]: True

In [132]: for i, case in enumerate(cases): # __iter__ values
print(case)
#print(case.LMs)

<<class 'lamana.distributions.Case'> p=2>
<<class 'lamana.distributions.Case'> p=2>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=3>
<<class 'lamana.distributions.Case'> p=4>

2.16. Tutorial: Intermediate 73

LamAna Documentation, Release 0.4.11

<<class 'lamana.distributions.Case'> p=4>
<<class 'lamana.distributions.Case'> p=4>

In [133]: cases.LMs # peek inside cases

Out[133]: [<lamana LaminateModel object (400.0-[200.0]-800.0), p=2>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=2>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=3>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=3>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=3>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=4>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=4>,
<lamana LaminateModel object (400.0-[200.0]-400.0S), p=4>]

In [134]: cases.frames # get a list of DataFrames directly

Accessing frames method.

Out[134]: [layer side type matl label ... strain_r \
0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA discont. ... 2.071e-06
2 2 Tens. inner PSu interface ... 2.071e-06
3 2 Tens. inner PSu discont. ... 1.381e-06
4 3 Tens. middle HA interface ... 1.381e-06
5 3 Comp. middle HA interface ... -1.381e-06
6 4 Comp. inner PSu discont. ... -1.381e-06
7 4 Comp. inner PSu interface ... -2.071e-06
8 5 Comp. outer HA discont. ... -2.071e-06
9 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 3.579e-06 164509.695 227238.398 0.227
2 3.579e-06 9854.181 12915.334 0.013
3 2.386e-06 6569.454 8610.223 0.009
4 2.386e-06 109673.130 151492.265 0.151
5 -2.386e-06 -109673.130 -151492.265 -0.151
6 -2.386e-06 -6569.454 -8610.223 -0.009
7 -3.579e-06 -9854.181 -12915.334 -0.013
8 -3.579e-06 -164509.695 -227238.398 -0.227
9 -5.965e-06 -274182.824 -378730.663 -0.379

[10 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA discont. ... 2.071e-06
2 2 Tens. inner PSu interface ... 2.071e-06
3 2 Tens. inner PSu discont. ... 1.381e-06
4 3 Tens. middle HA interface ... 1.381e-06
5 3 Comp. middle HA interface ... -1.381e-06
6 4 Comp. inner PSu discont. ... -1.381e-06
7 4 Comp. inner PSu interface ... -2.071e-06
8 5 Comp. outer HA discont. ... -2.071e-06
9 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)

74 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

0 5.965e-06 274182.824 378730.663 0.379
1 3.579e-06 164509.695 227238.398 0.227
2 3.579e-06 9854.181 12915.334 0.013
3 2.386e-06 6569.454 8610.223 0.009
4 2.386e-06 109673.130 151492.265 0.151
5 -2.386e-06 -109673.130 -151492.265 -0.151
6 -2.386e-06 -6569.454 -8610.223 -0.009
7 -3.579e-06 -9854.181 -12915.334 -0.013
8 -3.579e-06 -164509.695 -227238.398 -0.227
9 -5.965e-06 -274182.824 -378730.663 -0.379

[10 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.762e-06
2 1 Tens. outer HA discont. ... 2.071e-06
3 2 Tens. inner PSu interface ... 2.071e-06
4 2 Tens. inner PSu internal ... 1.726e-06
5 2 Tens. inner PSu discont. ... 1.381e-06
6 3 Tens. middle HA interface ... 1.381e-06
7 3 None middle HA neut. axis ... 0.000e+00
8 3 Comp. middle HA interface ... -1.381e-06
9 4 Comp. inner PSu discont. ... -1.381e-06
10 4 Comp. inner PSu internal ... -1.726e-06
11 4 Comp. inner PSu interface ... -2.071e-06
12 5 Comp. outer HA discont. ... -2.071e-06
13 5 Comp. outer HA internal ... -2.762e-06
14 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 4.772e-06 219346.259 302984.530 0.303
2 3.579e-06 164509.695 227238.398 0.227
3 3.579e-06 9854.181 12915.334 0.013
4 2.983e-06 8211.817 10762.778 0.011
5 2.386e-06 6569.454 8610.223 0.009
6 2.386e-06 109673.130 151492.265 0.151
7 0.000e+00 0.000 0.000 0.000
8 -2.386e-06 -109673.130 -151492.265 -0.151
9 -2.386e-06 -6569.454 -8610.223 -0.009
10 -2.983e-06 -8211.817 -10762.778 -0.011
11 -3.579e-06 -9854.181 -12915.334 -0.013
12 -3.579e-06 -164509.695 -227238.398 -0.227
13 -4.772e-06 -219346.259 -302984.530 -0.303
14 -5.965e-06 -274182.824 -378730.663 -0.379

[15 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.762e-06
2 1 Tens. outer HA discont. ... 2.071e-06
3 2 Tens. inner PSu interface ... 2.071e-06
4 2 Tens. inner PSu internal ... 1.726e-06
5 2 Tens. inner PSu discont. ... 1.381e-06

2.16. Tutorial: Intermediate 75

LamAna Documentation, Release 0.4.11

6 3 Tens. middle HA interface ... 1.381e-06
7 3 None middle HA neut. axis ... 0.000e+00
8 3 Comp. middle HA interface ... -1.381e-06
9 4 Comp. inner PSu discont. ... -1.381e-06
10 4 Comp. inner PSu internal ... -1.726e-06
11 4 Comp. inner PSu interface ... -2.071e-06
12 5 Comp. outer HA discont. ... -2.071e-06
13 5 Comp. outer HA internal ... -2.762e-06
14 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 4.772e-06 219346.259 302984.530 0.303
2 3.579e-06 164509.695 227238.398 0.227
3 3.579e-06 9854.181 12915.334 0.013
4 2.983e-06 8211.817 10762.778 0.011
5 2.386e-06 6569.454 8610.223 0.009
6 2.386e-06 109673.130 151492.265 0.151
7 0.000e+00 0.000 0.000 0.000
8 -2.386e-06 -109673.130 -151492.265 -0.151
9 -2.386e-06 -6569.454 -8610.223 -0.009
10 -2.983e-06 -8211.817 -10762.778 -0.011
11 -3.579e-06 -9854.181 -12915.334 -0.013
12 -3.579e-06 -164509.695 -227238.398 -0.227
13 -4.772e-06 -219346.259 -302984.530 -0.303
14 -5.965e-06 -274182.824 -378730.663 -0.379

[15 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.762e-06
2 1 Tens. outer HA discont. ... 2.071e-06
3 2 Tens. inner PSu interface ... 2.071e-06
4 2 Tens. inner PSu internal ... 1.726e-06
5 2 Tens. inner PSu discont. ... 1.381e-06
6 3 Tens. middle HA interface ... 1.381e-06
7 3 None middle HA neut. axis ... 0.000e+00
8 3 Comp. middle HA interface ... -1.381e-06
9 4 Comp. inner PSu discont. ... -1.381e-06
10 4 Comp. inner PSu internal ... -1.726e-06
11 4 Comp. inner PSu interface ... -2.071e-06
12 5 Comp. outer HA discont. ... -2.071e-06
13 5 Comp. outer HA internal ... -2.762e-06
14 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 4.772e-06 219346.259 302984.530 0.303
2 3.579e-06 164509.695 227238.398 0.227
3 3.579e-06 9854.181 12915.334 0.013
4 2.983e-06 8211.817 10762.778 0.011
5 2.386e-06 6569.454 8610.223 0.009
6 2.386e-06 109673.130 151492.265 0.151
7 0.000e+00 0.000 0.000 0.000

76 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

8 -2.386e-06 -109673.130 -151492.265 -0.151
9 -2.386e-06 -6569.454 -8610.223 -0.009
10 -2.983e-06 -8211.817 -10762.778 -0.011
11 -3.579e-06 -9854.181 -12915.334 -0.013
12 -3.579e-06 -164509.695 -227238.398 -0.227
13 -4.772e-06 -219346.259 -302984.530 -0.303
14 -5.965e-06 -274182.824 -378730.663 -0.379

[15 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.992e-06
2 1 Tens. outer HA internal ... 2.531e-06
3 1 Tens. outer HA discont. ... 2.071e-06
4 2 Tens. inner PSu interface ... 2.071e-06
5 2 Tens. inner PSu internal ... 1.841e-06
6 2 Tens. inner PSu internal ... 1.611e-06
7 2 Tens. inner PSu discont. ... 1.381e-06
8 3 Tens. middle HA interface ... 1.381e-06
9 3 Tens. middle HA internal ... 4.603e-07
10 3 Comp. middle HA internal ... -4.603e-07
11 3 Comp. middle HA interface ... -1.381e-06
12 4 Comp. inner PSu discont. ... -1.381e-06
13 4 Comp. inner PSu internal ... -1.611e-06
14 4 Comp. inner PSu internal ... -1.841e-06
15 4 Comp. inner PSu interface ... -2.071e-06
16 5 Comp. outer HA discont. ... -2.071e-06
17 5 Comp. outer HA internal ... -2.531e-06
18 5 Comp. outer HA internal ... -2.992e-06
19 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 5.170e-06 237625.114 328233.241 0.328
2 4.374e-06 201067.404 277735.820 0.278
3 3.579e-06 164509.695 227238.398 0.227
4 3.579e-06 9854.181 12915.334 0.013
5 3.181e-06 8759.272 11480.297 0.011
6 2.784e-06 7664.363 10045.260 0.010
7 2.386e-06 6569.454 8610.223 0.009
8 2.386e-06 109673.130 151492.265 0.151
9 7.953e-07 36557.710 50497.422 0.050
10 -7.953e-07 -36557.710 -50497.422 -0.050
11 -2.386e-06 -109673.130 -151492.265 -0.151
12 -2.386e-06 -6569.454 -8610.223 -0.009
13 -2.784e-06 -7664.363 -10045.260 -0.010
14 -3.181e-06 -8759.272 -11480.297 -0.011
15 -3.579e-06 -9854.181 -12915.334 -0.013
16 -3.579e-06 -164509.695 -227238.398 -0.227
17 -4.374e-06 -201067.404 -277735.820 -0.278
18 -5.170e-06 -237625.114 -328233.241 -0.328
19 -5.965e-06 -274182.824 -378730.663 -0.379

[20 rows x 22 columns],

2.16. Tutorial: Intermediate 77

LamAna Documentation, Release 0.4.11

layer side type matl label ... strain_r \
0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.992e-06
2 1 Tens. outer HA internal ... 2.531e-06
3 1 Tens. outer HA discont. ... 2.071e-06
4 2 Tens. inner PSu interface ... 2.071e-06
5 2 Tens. inner PSu internal ... 1.841e-06
6 2 Tens. inner PSu internal ... 1.611e-06
7 2 Tens. inner PSu discont. ... 1.381e-06
8 3 Tens. middle HA interface ... 1.381e-06
9 3 Tens. middle HA internal ... 4.603e-07
10 3 Comp. middle HA internal ... -4.603e-07
11 3 Comp. middle HA interface ... -1.381e-06
12 4 Comp. inner PSu discont. ... -1.381e-06
13 4 Comp. inner PSu internal ... -1.611e-06
14 4 Comp. inner PSu internal ... -1.841e-06
15 4 Comp. inner PSu interface ... -2.071e-06
16 5 Comp. outer HA discont. ... -2.071e-06
17 5 Comp. outer HA internal ... -2.531e-06
18 5 Comp. outer HA internal ... -2.992e-06
19 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 5.170e-06 237625.114 328233.241 0.328
2 4.374e-06 201067.404 277735.820 0.278
3 3.579e-06 164509.695 227238.398 0.227
4 3.579e-06 9854.181 12915.334 0.013
5 3.181e-06 8759.272 11480.297 0.011
6 2.784e-06 7664.363 10045.260 0.010
7 2.386e-06 6569.454 8610.223 0.009
8 2.386e-06 109673.130 151492.265 0.151
9 7.953e-07 36557.710 50497.422 0.050
10 -7.953e-07 -36557.710 -50497.422 -0.050
11 -2.386e-06 -109673.130 -151492.265 -0.151
12 -2.386e-06 -6569.454 -8610.223 -0.009
13 -2.784e-06 -7664.363 -10045.260 -0.010
14 -3.181e-06 -8759.272 -11480.297 -0.011
15 -3.579e-06 -9854.181 -12915.334 -0.013
16 -3.579e-06 -164509.695 -227238.398 -0.227
17 -4.374e-06 -201067.404 -277735.820 -0.278
18 -5.170e-06 -237625.114 -328233.241 -0.328
19 -5.965e-06 -274182.824 -378730.663 -0.379

[20 rows x 22 columns],
layer side type matl label ... strain_r \

0 1 Tens. outer HA interface ... 3.452e-06
1 1 Tens. outer HA internal ... 2.992e-06
2 1 Tens. outer HA internal ... 2.531e-06
3 1 Tens. outer HA discont. ... 2.071e-06
4 2 Tens. inner PSu interface ... 2.071e-06
5 2 Tens. inner PSu internal ... 1.841e-06
6 2 Tens. inner PSu internal ... 1.611e-06
7 2 Tens. inner PSu discont. ... 1.381e-06

78 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

8 3 Tens. middle HA interface ... 1.381e-06
9 3 Tens. middle HA internal ... 4.603e-07
10 3 Comp. middle HA internal ... -4.603e-07
11 3 Comp. middle HA interface ... -1.381e-06
12 4 Comp. inner PSu discont. ... -1.381e-06
13 4 Comp. inner PSu internal ... -1.611e-06
14 4 Comp. inner PSu internal ... -1.841e-06
15 4 Comp. inner PSu interface ... -2.071e-06
16 5 Comp. outer HA discont. ... -2.071e-06
17 5 Comp. outer HA internal ... -2.531e-06
18 5 Comp. outer HA internal ... -2.992e-06
19 5 Comp. outer HA interface ... -3.452e-06

strain_t stress_r (Pa/N) stress_t (Pa/N) stress_f (MPa/N)
0 5.965e-06 274182.824 378730.663 0.379
1 5.170e-06 237625.114 328233.241 0.328
2 4.374e-06 201067.404 277735.820 0.278
3 3.579e-06 164509.695 227238.398 0.227
4 3.579e-06 9854.181 12915.334 0.013
5 3.181e-06 8759.272 11480.297 0.011
6 2.784e-06 7664.363 10045.260 0.010
7 2.386e-06 6569.454 8610.223 0.009
8 2.386e-06 109673.130 151492.265 0.151
9 7.953e-07 36557.710 50497.422 0.050
10 -7.953e-07 -36557.710 -50497.422 -0.050
11 -2.386e-06 -109673.130 -151492.265 -0.151
12 -2.386e-06 -6569.454 -8610.223 -0.009
13 -2.784e-06 -7664.363 -10045.260 -0.010
14 -3.181e-06 -8759.272 -11480.297 -0.011
15 -3.579e-06 -9854.181 -12915.334 -0.013
16 -3.579e-06 -164509.695 -227238.398 -0.227
17 -4.374e-06 -201067.404 -277735.820 -0.278
18 -5.170e-06 -237625.114 -328233.241 -0.328
19 -5.965e-06 -274182.824 -378730.663 -0.379

[20 rows x 22 columns]]

In [135]: cases

Out[135]: <lamana.distributions.Cases object at 0x000000000B6292E8>, {0: <<class 'lamana.distributions.Case'> p=2, size=1>, 2: <<class 'lamana.distributions.Case'> p=2, size=1>, 3: <<class 'lamana.distributions.Case'> p=3, size=1>, 4: <<class 'lamana.distributions.Case'> p=3, size=1>, 5: <<class 'lamana.distributions.Case'> p=3, size=1>, 6: <<class 'lamana.distributions.Case'> p=4, size=1>, 7: <<class 'lamana.distributions.Case'> p=4, size=1>, 8: <<class 'lamana.distributions.Case'> p=4, size=1>}

In [136]: #cases.to_csv() # write to file

Unique Cases from Intersecting Caselets

Cases can check if caselet is unique by comparing the underlying geometry strings. Here we have a non-unique
caselets of different types. We get unique results within each caselet using the unique keyword. Notice, different
caselets could have similar LaminateModels.

In [137]: str_caselets = ['350-400-500', '400-200-800', '400-[200]-800']
str_caselets2 = [['350-400-500', '350-[400]-500'],

['400-200-800', '400-[200]-800']]
list_caselets = [['400-400-400', '400-[400]-400'],

['200-100-1400', '100-200-1400',],
['400-400-400', '400-200-800','350-400-500',],
['350-400-500']]

case1 = la.distributions.Case(dft.load_params, dft.mat_props)

2.16. Tutorial: Intermediate 79

LamAna Documentation, Release 0.4.11

case2 = la.distributions.Case(dft.load_params, dft.mat_props)
case3 = la.distributions.Case(dft.load_params, dft.mat_props)
case1.apply(['400-200-800', '400-[200]-800'])
case2.apply(['350-400-500', '400-200-800'])
case3.apply(['350-400-500', '400-200-800', '400-400-400'])
case_caselets = [case1, case2, case3]

User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

In [138]: def process_cases(cases_):
for i, case in enumerate(cases_):

print('Case #: {}'.format(i))
for LM in case.LMs:

##print(' {0}: {1:>4}'.format('LaminateModel', LM)) # Python 3.3
print(' {0}: {1!r:>4}'.format('LaminateModel', LM)) # Python 3.4+

In [139]: cases3 = Cases(str_caselets2, unique=True)
process_cases(cases3)

User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>

Case #: 1
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

In [140]: cases3 = Cases(list_caselets, unique=True)
process_cases(cases3)

User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (400.0-[400.0]-400.0), p=5>

Case #: 1
LaminateModel: <lamana LaminateModel object (200.0-[100.0]-1400.0), p=5>
LaminateModel: <lamana LaminateModel object (100.0-[200.0]-1400.0), p=5>

Case #: 2
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[400.0]-400.0), p=5>

Case #: 3
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>

In [141]: cases3 = Cases(case_caselets, unique=True)
process_cases(cases3)

User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

Case #: 1
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

80 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Case #: 2
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[400.0]-400.0), p=5>

Gotcha: A single list of individual geometry strings is actually only one case.

str_caselets = [’350-400-500’, ’400-200-800’, ’400-[200]-800’]

Since Cases is designed to produce multiple cases, it will create a separate subplot for each string by default. When
unique=True, since individual strings are already unique sets, Cases returns that same geometry. No operation is
performed, so a warning is prompted.

In [142]: cases3 = Cases(str_caselets, unique=True)
process_cases(cases3)

Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
Single geometry string detected. unique not applied. See combine=True keyword.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>

Case #: 1
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

Case #: 2
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

If it is desired to combine such a list into one plot, a convenient combine keyword is available if Cases is already
loaded with parameters, but it is best to use Case. The unique option is available and internally uses the native
Case(unique=True) keyword.

In [143]: cases3 = Cases(str_caselets, combine=True)
process_cases(cases3)

User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

In [144]: cases3 = Cases(str_caselets, combine=True, unique=True)
process_cases(cases3)

User input geometries have been converted and set to Case.
Case #: 0
LaminateModel: <lamana LaminateModel object (350.0-[400.0]-500.0), p=5>
LaminateModel: <lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

It is important to note that once set operations are performed, order is no longer a preserved. This is related to how
Python handles hashes. This applies to Cases() in two areas:

• The unique keyword optionally invoked during instantiation.

• Any use of set operation via the how keyword within the Cases.select() method.

Revamped Idioms

Gotcha: Although a Cases instance is a dict, as if 0.4.4b3, it’s __iter__ method has been overriden to iterate the
values by default (not the keys as in Python). This choice was decided since keys are uninformative integers, while

2.16. Tutorial: Intermediate 81

LamAna Documentation, Release 0.4.11

the values (curently cases)are of interest, which saves from typing .items() when interating a Cases instance.

>>> cases = Cases()
>>> for i, case in cases.items() # python
>>> ... print(case)
>>> for case in cases: # modified
>>> ... print(case)

This behavior may change in future versions.

In [145]: #--+

In [146]: # Iterating Over Cases
from lamana.models import Wilson_LT as wlt
dft = wlt.Defaults()

In [147]: # Multiple cases, Multiple LMs
cases = Cases(dft.geos_full, ps=[2,5]) # two cases (p=2,5)
for i, case in enumerate(cases): # iter case values()

print('Case #:', i)
for LM in case.LMs:

print(LM)

print("\nYou iterated several cases (ps=[2,5]) comprising many LaminateModels.")

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
Case #: 0
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>
Case #: 1
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>
Case #: 2
<lamana LaminateModel object (600.0-[0.0]-800.0), p=2>
Case #: 3
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>
Case #: 4
<lamana LaminateModel object (400.0-[200.0]-800.0), p=2>
Case #: 5
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=2>
Case #: 6
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=2>
Case #: 7

82 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=2>
Case #: 8
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>
Case #: 9
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>
Case #: 10
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>
Case #: 11
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>
Case #: 12
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
Case #: 13
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=5>
Case #: 14
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>
Case #: 15
<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>

You iterated several cases (ps=[2,5]) comprising many LaminateModels.

In [148]: # A single case, single LM
cases = Cases(['400-[200]-800']) # a single case and LM (manual)
for i, case_ in enumerate(cases): # iter i and case

for LM in case_.LMs:
print(LM)

print("\nYou processed a case and LaminateModel w/iteration. (Recommended)\n")

Caselets not using `combine`.
User input geometries have been converted and set to Case.
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

You processed a case and LaminateModel w/iteration. (Recommended)

In [149]: # Single case, multiple LMs
cases = Cases(dft.geos_full) # auto, default p=5
for case in cases: # iter case values()

for LM in case.LMs:
print(LM)

print("\nYou iterated a single case of many LaminateModels.")

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>

2.16. Tutorial: Intermediate 83

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>

You iterated a single case of many LaminateModels.

Selecting

From cases, subsets of LaminateModels can be chosen. select is a method that performs on and returns sets of
LaminateModels. Plotting functions are not implement for this method directly, however the reulsts can be used to
make new cases instances from which .plot() is accessible. Example access techniques using Cases.

• Access all cases : cases

• Access specific cases : cases[0:2]

• Access all LaminateModels : cases.LMs

• Access LaminateModels (within a case) : cases.LMs[0:2]

• Select a subset of LaminateModels from all cases : cases.select(ps=[3,4])

In [150]: # Iterating Over Cases
from lamana.models import Wilson_LT as wlt
dft = wlt.Defaults()

In [151]: #geometries = set(dft.geos_symmetric).union(dft.geos_special + dft.geos_standard + dft.geos_dissimilar)
#cases = Cases(geometries, ps=[2,3,4])
cases = Cases(dft.geos_special, ps=[2,3,4])

Reveal the full listdft.geos_specia
for case in cases: # iter case values()
for LM in case.LMs:
print(LM)

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.

In [152]: # Test union of lists
#geometries

In [153]: cases

Out[153]: <lamana.distributions.Cases object at 0x000000000A846BA8>, {0: <<class 'lamana.distributions.Case'> p=2, size=1>, 1: <<class 'lamana.distributions.Case'> p=2, size=1>, 2: <<class 'lamana.distributions.Case'> p=2, size=1>, 3: <<class 'lamana.distributions.Case'> p=2, size=1>, 4: <<class 'lamana.distributions.Case'> p=3, size=1>, 5: <<class 'lamana.distributions.Case'> p=3, size=1>, 6: <<class 'lamana.distributions.Case'> p=3, size=1>, 7: <<class 'lamana.distributions.Case'> p=3, size=1>, 8: <<class 'lamana.distributions.Case'> p=4, size=1>, 9: <<class 'lamana.distributions.Case'> p=4, size=1>, 10: <<class 'lamana.distributions.Case'> p=4, size=1>, 11: <<class 'lamana.distributions.Case'> p=4, size=1>}

In [154]: '''Right now a case shares p, size. cases share geometries and size.'''

Out[154]: 'Right now a case shares p, size. cases share geometries and size.'

In [155]: cases[0:2]

84 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Out[155]: [<<class 'lamana.distributions.Case'> p=2, size=1>,
<<class 'lamana.distributions.Case'> p=2, size=1>]

In [156]: '''Hard to see where these comem from. Use dict?'''

Out[156]: 'Hard to see where these comem from. Use dict?'

In [157]: cases.LMs

Out[157]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=2>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>]

In [158]: cases.LMs[0:6:2]
cases.LMs[0:4]

Out[158]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=2>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>]

Selections from latter cases.

In [159]: cases.select(nplies=[2,4])

Out[159]: {<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>}

In [160]: cases.select(ps=[2,4])

Out[160]: {<lamana LaminateModel object (600.0-[0.0]-800.0), p=4>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=2>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>}

In [161]: cases.select(nplies=4)

Out[161]: {<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>}

In [162]: cases.select(ps=3)

2.16. Tutorial: Intermediate 85

LamAna Documentation, Release 0.4.11

Out[162]: {<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>}

Advanced techniques: multiple selections.

Set operations have been implemented in the selection method of Cases which enables filtering of unique Laminate-
Models that meet given conditions for nplies and ps.

• union: all LMs that meet either conditions (or)

• intersection: LMs that meet both conditions (and)

• difference: LMs

• symmetric difference:

In [163]: cases.select(nplies=4, ps=3) # union; default

Out[163]: {<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>}

In [164]: cases.select(nplies=4, ps=3, how='intersection') # intersection

Out[164]: {<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>}

By default, difference is subtracted as set(ps) - set(nplies). Currently there is no implementation for the
converse difference, but set operations still work.

In [165]: cases.select(nplies=4, ps=3, how='difference') # difference

Out[165]: {<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>}

In [166]: cases.select(nplies=4) - cases.select(ps=3) # set difference

Out[166]: {<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>}

In [167]: '''How does this work?'''

Out[167]: 'How does this work?'

In [168]: cases.select(nplies=4, ps=3, how='symm diff') # symm difference

Out[168]: {<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>}

In [169]: cases.select(nplies=[2,4], ps=[3,4], how='union')

Out[169]: {<lamana LaminateModel object (600.0-[0.0]-800.0), p=4>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=4>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,

86 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>}

In [170]: cases.select(nplies=[2,4], ps=[3,4], how='intersection')

Out[170]: {<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=4>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=3>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>}

In [171]: cases.select(nplies=[2,4], ps=3, how='difference')

Out[171]: {<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>}

In [172]: cases.select(nplies=4, ps=[3,4], how='symmeric difference')

Out[172]: {<lamana LaminateModel object (600.0-[0.0]-800.0), p=4>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=3>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=4>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=3>,
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=4>}

Current logic seems to return a union.

Enhancing selection algorithms with set operations

Need logic to append LM for the following:

• all, either, neither (and, or, not or)

– a, b are int

– a, b are list

– a, b are mixed

– b, a are mixed

In [173]: import numpy as np
a = []
b = 1
c = np.int64(1)
d = [1,2]
e = [1,2,3]
f = [3,4]

test = 1

test in a
#test in b
#test is a
test is c
if test is a or test is c:
True

Out[173]: False

2.16. Tutorial: Intermediate 87

LamAna Documentation, Release 0.4.11

In [174]: from lamana.utils import tools as ut
ut.compare_set(d, e)
ut.compare_set(b, d, how='intersection')
ut.compare_set(d, b, how='difference')
ut.compare_set(e, f, how='symmertric difference')
ut.compare_set(d, e, test='issubset')
ut.compare_set(e, d, test='issuperset')
ut.compare_set(d, f, test='isdisjoint')

Out[174]: True

In [175]: set(d) ^ set(e)
ut.compare_set(d,e, how='symm')

Out[175]: {3}

In [176]: g1 = dft.Geo_objects['5-ply'][0]
g2 = dft.Geo_objects['5-ply'][1]

In []:

In [177]: cases = Cases(dft.geos_full, ps=[2,5]) # two cases (p=2,5)
for i, case in enumerate(cases): # iter case values()

for LM in case.LMs:
print(LM)

Caselets not using `combine`.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
User input geometries have been converted and set to Case.
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=2>
<lamana LaminateModel object (600.0-[0.0]-800.0), p=2>
<lamana LaminateModel object (500.0-[500.0]-0.0), p=2>
<lamana LaminateModel object (400.0-[200.0]-800.0), p=2>
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=2>
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=2>
<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=2>
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

88 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>

In order to compare objects in sets, they must be hashable. The simple requirement equality is include whatever makes
the hash of a equal to the hash of b. Ideally, we should hash the Geometry object, but the inner values is a list which
is unhashable due to its mutability. Conventiently however, strings are not hashable. We can try to hash the geometry
input string once they have been converted to General Convention as unique identifiers for the geometry object. This
requires some reorganization in Geometry.

• [STRIKEOUT:isolate a converter function _to_gen_convention()]

• privative all functions invisible to the API

• [STRIKEOUT:hash the converted geo_strings]

• [STRIKEOUT:privatize _geo_strings. This cannot be altered by the user.]

Here we see the advantage to using geo_strings as hashables. They are inheirently hashable.

UPDATE: decided to make a hashalbe version of the GeometryTuple

In [178]: hash('400-200-800')

Out[178]: 4937145087982841834

In [179]: hash('400-[200]-800')

Out[179]: -8985357057136576258

Need to make Laminate class hashable. Try to use unique identifiers such as Geometry and p.

In [180]: hash((case.LMs[0].Geometry, case.LMs[0].p))

Out[180]: 1570369202565922880

In [181]: case.LMs[0]

Out[181]: <lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>

In [182]: L = [LM for case in cases for LM in case.LMs]

In [183]: L[0]

Out[183]: <lamana LaminateModel object (0.0-[0.0]-2000.0), p=2>

In [184]: L[8]

Out[184]: <lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>

In [185]: hash((L[0].Geometry, L[0].p))

Out[185]: 4636833212297578389

In [186]: hash((L[1].Geometry, L[1].p))

Out[186]: 5861696211961991069

In [187]: set([L[0]]) != set([L[8]])

Out[187]: True

Use sets to filter unique geometry objects from Defaults().

In [188]: from lamana.models import Wilson_LT as wlt

dft = wlt.Defaults()

2.16. Tutorial: Intermediate 89

LamAna Documentation, Release 0.4.11

mix = dft.Geos_full + dft.Geos_all

In [189]: mix

Out[189]: [Geometry object (0.0-[0.0]-2000.0),
Geometry object (1000.0-[0.0]-0.0),
Geometry object (600.0-[0.0]-800.0),
Geometry object (500.0-[500.0]-0.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[100.0,100.0]-0.0),
Geometry object (400.0-[100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0,100.0]-800.0),
Geometry object (0.0-[0.0]-2000.0),
Geometry object (0.0-[0.0]-1000.0),
Geometry object (1000.0-[0.0]-0.0),
Geometry object (600.0-[0.0]-800.0),
Geometry object (600.0-[0.0]-400.0S),
Geometry object (500.0-[500.0]-0.0),
Geometry object (400.0-[200.0]-0.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[200.0]-400.0S),
Geometry object (400.0-[100.0,100.0]-0.0),
Geometry object (500.0-[250.0,250.0]-0.0),
Geometry object (400.0-[100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0]-400.0S),
Geometry object (400.0-[100.0,100.0,100.0]-800.0),
Geometry object (500.0-[50.0,50.0,50.0,50.0]-0.0),
Geometry object (400.0-[100.0,100.0,100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0,100.0,100.0,100.0]-800.0)]

In [190]: set(mix)

Out[190]: {Geometry object (1000.0-[0.0]-0.0),
Geometry object (400.0-[100.0,100.0]-0.0),
Geometry object (400.0-[200.0]-800.0),
Geometry object (400.0-[100.0,100.0,100.0,100.0]-800.0),
Geometry object (500.0-[250.0,250.0]-0.0),
Geometry object (500.0-[50.0,50.0,50.0,50.0]-0.0),
Geometry object (400.0-[100.0,100.0]-800.0),
Geometry object (600.0-[0.0]-400.0S),
Geometry object (0.0-[0.0]-1000.0),
Geometry object (400.0-[100.0,100.0]-400.0S),
Geometry object (600.0-[0.0]-800.0),
Geometry object (500.0-[500.0]-0.0),
Geometry object (400.0-[200.0]-0.0),
Geometry object (0.0-[0.0]-2000.0),
Geometry object (400.0-[100.0,100.0,100.0,100.0,100.0]-800.0),
Geometry object (400.0-[100.0,100.0,100.0]-800.0),
Geometry object (400.0-[200.0]-400.0S)}

90 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

2.16.6 Mixing Geometries

See above. Looks like comparing the order of these lists give different results. This test has been quarantine from the
repo until a solution is found.

In [191]: mix = dft.geos_most + dft.geos_standard # 400-[200]-800 common to both
cases3a = Cases(mix, combine=True, unique=True)
cases3a.LMs

User input geometries have been converted and set to Case.

Out[191]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>]

In [192]: load_params['p'] = 5
cases3b5 = la.distributions.Case(load_params, dft.mat_props)
cases3b5.apply(mix)

User input geometries have been converted and set to Case.

In [193]: cases3b5.LMs[:-1]

Out[193]: [<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>,
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>,
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>,
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>,
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>]

2.16.7 Idiomatic Case Making

As we transition to more automated techniques, tf parameters are to be reused multiple times, it can be helpful to store
them as default values.

In [194]: '''Add how to build Defaults()'''

Out[194]: 'Add how to build Defaults()'

In [195]: # Case Building from Defaults
import lamana as la
from lamana.utils import tools as ut
from lamana.models import Wilson_LT as wlt

dft = wlt.Defaults()
##dft = ut.Defaults() # user-definable
case2 = la.distributions.Case(dft.load_params, dft.mat_props)
case2.apply(dft.geos_full) # multi plies
#LM = case2.LMs[0]
#LM.LMFrame
print("\nYou have built a case using user-defined defaults to set geometric \
loading and material parameters.")
case2

User input geometries have been converted and set to Case.

You have built a case using user-defined defaults to set geometric loading and material parameters.

2.16. Tutorial: Intermediate 91

LamAna Documentation, Release 0.4.11

Out[195]: <<class 'lamana.distributions.Case'> p=5, size=8>

Finally, if building several cases is required for the same parameters, we can use higher-level API tools to help automate
the process.

Note, for every case that is created, a seperate ‘‘Case()‘‘ instantiation and ‘‘Case.apply()‘‘ call is required. These
techniques obviate such redundancies.

In [196]: # Automatic Case Building
import lamana as la
from lamana.utils import tools as ut

#Single Case
dft = wlt.Defaults()
##dft = ut.Defaults()
case3 = ut.laminator(dft.geos_full) # auto, default p=5
case3 = ut.laminator(dft.geos_full, ps=[5]) # declared
#case3 = ut.laminator(dft.geos_full, ps=[1]) # LFrame rollbacks
print("\nYou have built a case using higher-level API functions.")
case3

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

You have built a case using higher-level API functions.

Out[196]: {0: <<class 'lamana.distributions.Case'> p=5, size=8>}

In [197]: # How to get values from a single case (Python 3 compatible)
list(case3.values())

Out[197]: [<<class 'lamana.distributions.Case'> p=5, size=8>]

Cases are differentiated by different ps.

In [198]: # Multiple Cases
cases1 = ut.laminator(dft.geos_full, ps=[2,3,4,5]) # multi ply, multi p
print("\nYou have built many cases using higher-level API functions.")
cases1

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.

You have built many cases using higher-level API functions.

Out[198]: {0: <<class 'lamana.distributions.Case'> p=2, size=8>,
1: <<class 'lamana.distributions.Case'> p=3, size=8>,
2: <<class 'lamana.distributions.Case'> p=4, size=8>,
3: <<class 'lamana.distributions.Case'> p=5, size=8>}

In [199]: # How to get values from multiple cases (Python 3 compatible)
list(cases1.values())

92 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Out[199]: [<<class 'lamana.distributions.Case'> p=2, size=8>,
<<class 'lamana.distributions.Case'> p=3, size=8>,
<<class 'lamana.distributions.Case'> p=4, size=8>,
<<class 'lamana.distributions.Case'> p=5, size=8>]

Python 3 no longer returns a list for .values() method, so list used to evalate a the dictionary view. While con-
suming a case’s, dict value view with list() works in Python 2 and 3, iteration with loops and comprehensions
is a preferred technique for both single and mutiple case processing. After cases are accessed, iteration can access
the contetnts of all cases. Iteration is the preferred technique for processing cases. It is most general, cleaner, Py2/3
compatible out of the box and agrees with The Zen of Python:

There should be one– and preferably only one –obvious way to do it.

In [200]: # Iterating Over Cases
Latest style
case4 = ut.laminator(['400-[200]-800']) # a sinle case and LM
for i, case_ in case4.items(): # iter p and case

for LM in case_.LMs:
print(LM)

print("\nYou processed a case and LaminateModel w/iteration. (Recommended)\n")

case5 = ut.laminator(dft.geos_full) # auto, default p=5
for i, case in case5.items(): # iter p and case with .items()

for LM in case.LMs:
print(LM)

for case in case5.values(): # iter case only with .values()
for LM in case.LMs:

print(LM)

print("\nYou processed many cases using Case object methods.")

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>

You processed a case and LaminateModel w/iteration. (Recommended)

Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>
<lamana LaminateModel object (0.0-[0.0]-2000.0), p=5>
<lamana LaminateModel object (1000.0-[0.0]-0.0), p=5>
<lamana LaminateModel object (600.0-[0.0]-800.0), p=5>
<lamana LaminateModel object (500.0-[500.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[200.0]-800.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-0.0), p=5>
<lamana LaminateModel object (400.0-[100.0,100.0]-800.0), p=5>

2.16. Tutorial: Intermediate 93

LamAna Documentation, Release 0.4.11

<lamana LaminateModel object (400.0-[100.0,100.0,100.0]-800.0), p=5>

You processed many cases using Case object methods.

In [201]: # Convert case dict to generator
case_gen1 = (LM for p, case in case4.items() for LM in case.LMs)

Generator without keys
case_gen2 = (LM for case in case4.values() for LM in case.LMs)

print("\nYou have captured a case in a generator for later, one-time use.")

You have captured a case in a generator for later, one-time use.

We will demonstrate comparing two techniques for generating equivalent cases.

In [202]: # Style Comparisons
dft = wlt.Defaults()
##dft = ut.Defaults()

case1 = la.distributions.Case(load_params, mat_props)
case1.apply(dft.geos_all)

cases = ut.laminator(geos=dft.geos_all)
case2 = cases

Equivalent calls
print(case1)
print(case2)

print("\nYou have used classic and modern styles to build equivalent cases.")

User input geometries have been converted and set to Case.
Converting mat_props to Standard Form.
User input geometries have been converted and set to Case.
<<class 'lamana.distributions.Case'> p=5>
{0: <<class 'lamana.distributions.Case'> p=5, size=18>}

You have used classic and modern styles to build equivalent cases.

2.17 LPEP

LamAna Python Enhancement Proposals (LPEP) and Micro PEPs.

See also:

The LPEP types, submission and content guidelines closely follows PEP 0001.

Note: Most Active LPEPs include a Next Action Section.

94 Chapter 2. Community Benefits

https://www.python.org/dev/peps/pep-0001/#pep-types
https://www.python.org/dev/peps/pep-0001/#id29
https://www.python.org/dev/peps/pep-0001/#id32

LamAna Documentation, Release 0.4.11

2.17.1 LPEP 001: Implementing Coding and Package Standards

• Status: Active

• Type: Standards Track

• Date: Epoch

• Current Version: 0.1

Standards

This LPEP preserves best practices, standards or customs for develpopers that maintain code consistency. Tne follow-
ing micro-PEPs are numerically assigned. New micro-PEPs will be added over time or modified with caution.

1. A General Convention will be standardized for internal code, such that the inner layer(s) is/are consistently
returned as a list of floats i.e. 400.0-[200.0]-800.0 and 400.0-[100.0-100.0]-800.0. This
format is used to maintain type checking consistency within the code. External use by the user input is not
bound by this restriction however; shorthand notation is fine too, e.g. 400-200-800. Such notation will be
internally converted to the General Convention.

2. Except for user values such as layer thicknesses and total calculations (microns, um), all other internal, dimen-
sional variables will assume SI units (i.e. meters, m). These values will be converted for convenience for the
user in the DataFrames, (e.g. millimeters, mm). This PEP is adopted to limit excessive unit conversions within
code.

3. Per PEP 8, semi-private variables are marked with a single preceding underscore, i.e.
_check_layer_order(). This style is used to visually indicate internal methods/attributes, not par-
ticularly important for the user. Double underscores will only be used (sparingly) to prevent name collisions.
Internal hook methods with use both trailing and leading underscores, e.g. _use_model_.

4. The true lamina thickness value (t_) will remain constant in the DataFrame and not vary with height (d_).

5. In general, use convenient naming conventions that indicate modules where the objects originates, e.g.
FeatureInput object. However, whenever possible, aim to use descriptive names that reduce confusion
over convienient names, e.g. LaminateModel object instead of ConstructsTheories object.

6. For compatibilty checks, run nose 2.x and nose 3.x before commits to target Py3to2 errors in tests, (e.g.
dict.values()).

7. Materials parameters are handled internally as a dict formatted in Standard Form (compatible with pandas
DataFrames) , but it is displayed as a DataFrame when the materials attribute is called by the user. The Standard
form comprises a dict of materials property dicts. By contrast, a Quick Form is allowed as input by the user, but
interally converted to the Standard Form.

• Quick Form: {Material: [Modulus value, Poissons value], ...}

• Standard Form: {’Modulus’: {’Mat1’: value,...},’Poissons’: {’Mat1’:
value, ...}

8. Internally, middle layers from Geometry return the full thickness, not the symmetric thickness.

9. Thicknesses will be handled this way.

• 𝑡 is the total laminate thickness

• 𝑡𝑘 is the thickess at lamina k

• t_ is the internal variable that refers to true lamina thicknesses.

• The DataFrame column label 𝑡(𝑢𝑚) will refer to lamina thicknesses.

2.17. LPEP 95

LamAna Documentation, Release 0.4.11

• h_ is also a lamina thickness, relative to the neutral axis; therefore middle layers (and h_) are symmeric
about the neutral axis 𝑡𝑚𝑖𝑑𝑑𝑙𝑒 = 2ℎ𝑚𝑖𝑑𝑑𝑙𝑒

10. p=2 give the most critical points to calculate - interfacial minima and maxima per layer. Maxima correlate with
the ‘interface’ label_ and minima correspond to the ‘discont.’ label_. However, at minimun it is importannt
to test with p>=5 to calculate all point types (interfacial, internals and neutural axes) perferably for odd plies.

11. in geometry strings, the dash character - separates layer types outer-inner-middle. The comma , separates other
things, such as similar layer types, such as inner_i -[200,100,300]-. The following is an invalid geomtry string
’400-[200-100-300]-800’.

12. Two main branches will be maintained: “master” and “stable”. “master” will reflect development versions,
always ahead of stable releases. “stable” will remain relatively unchanged except for minor point releases to fix
bugs.

13. This package will adopt semantic versioning format (MAJOR.MINOR.PATCH). >- MAJOR version when you
make incompatible API changes, >- MINOR version when you add functionality in a backwards-compatible
manner, and >- PATCH version when you make backwards-compatible bug fixes.

14. Package releases pin dependencies to prevent breakage due to dependency patches/updates. This approach
assumes the development versions will actively address patches to latest denpendency updates prior to release.
User must be aware that installing older versions may downgradetheir current installs.

15. Use incremented, informative names for tests, e.g. the following says “testing a Case method called “plot” with
x feature:

• test_<class>_mtd_<method name>_<optional feature>#

• test_<class>_prop_<property name>_<optional feature>#.

Class tests are ordered as below: - Args: args - Keywords: kw - Attribtutes: attr - Special Methods: spmthd -
Methods: mthd - Properties: prop

Function tests apply similarly, where appropriate. Features are appended and purpose: -
test_<func>_<feature 1>_<feature ...>_<purpose>#

Copyright

This document has been placed in the public domain.

2.17.2 LPEP 002: Extending Cases with Patterns

• Status: Deferred

• Type: Process

• Date: October 01, 2015

• Current Version: 0.4.4b

Motivation

As of 0.4.4b, a Cases object supports a group of cases distinguished by different ps where each case is a set of
LaminateModels with some pattern that relates them. For example, an interesting plot might show multiple geometries
of:

• Pattern A: constant total thickness

• Pattern B: constant midddle thickness

96 Chapter 2. Community Benefits

http://semver.org/

LamAna Documentation, Release 0.4.11

In this example, two cases are represented, each comprising LaminateModels with geometries satisfying a specific
pattern. Currently Cases does not support groups of cases distinguished by pattern, but refactoring it thusly should
be simple and will be discussed here. Our goal is to extend the Cases class to generate cases that differ by parameters
other than p.

Desired Ouptut

To plot both patterns together, we need to feed each case seperately to plotting functons. We need to think of what
may differ between cases:

• p

• loading parameters

• material properties

• different geometries, similar plies

• number plies (complex to plot simulataneously)

• orientation (not implemented yet)

• ...

Given the present conditions, the most simple pattern is determined by geometry. Here are examples of cases to plot
with particular patterns of interest.

Pattern A: Constant Total Thickness
case1.LMs = [<LamAna LaminateModel object (400-200-800) p=5>,

<LamAna LaminateModel object (350-400-500) p=5>,
<LamAna LaminateModel object (200-100-1400) p=5>,

]

Pattern B: Constant Middle and Total Thickness
case2.LMs = [<LamAna LaminateModel object (400-200-800) p=5>,

<LamAna LaminateModel object (300-300-800) p=5>,
<LamAna LaminateModel object (200-400-800) p=5>,

]

Specification

To encapsulate these patterns, we can manually create a dict of keys and case values. Here the keys label each case
by the pattern name, which aids in tracking what the cases do. The Cases dict should emulate this modification to
support labeling.

cases = {'t_total': case1,
'mid&t_total': case2,}

Cases would first have to support building different cases given groups of different geometry strings. Perhaps given
a dict of geometry strings, the latter object gets automatically created. For example,

patterns = {
't_total': ['400-200-800', '350-400-500', '200-100-1400'],
'mid&t_total': ['400-200-800', '300-300-800', '200-400-800'],

}

The question then would be, how to label different ps or combine patterns i.e., t_total and ps. Advanced Cases
creation is a project for another time. Meanwhile, this idea of plotting by dicts of this manner will be beta tested.

2.17. LPEP 97

LamAna Documentation, Release 0.4.11

Next Actions

• Objective: organize patterns of interest and plot them easily with Case and Cases plot methods.

– Refactor Case and Cases to handle dicts in for the first arg.

– Parse keys to serve as label names (priority).

– Iterate the dict items to detect groups by the comma and generate a caselets for cases, which get plotted as
subplots using an instanace of ‘output_.PanelPlot’

See Also

• LPEP 003

Copyright

This document has been placed in the public domain.

2.17.3 LPEP 003: A humble case for caselets

• Status: Replaced

• Type: Process

• Date: October 05, 2015, March 15, 2016

• Current Version: 0.4.4b, 0.4.11

Motivation

By the final implementation of 0.4.4b, each case will generate a plot based on laminate data given loading, material
and geometric information. Single plots are created, but subplots are desired also, where data can be compared
from different cases in a single figure. This proposal suggests methods for organizing such plotting data by defining
a new case-related term, a caselet object and its application to a figure object comprising subplots, based on a
[STRIKEOUT:PanelPlot] FigurePlot subclass.

Definitions

• LaminateModel (LM): an object that combines physical laminate dimensions and laminate theory data, cur-
rently in the form of DataFrames.

• case: a group of LMs; an analytical unit typically sharing similar loading, material and geometric parameters.
The final outcome is commonly represented by a matplotlib axes.

• cases: a group of cases each differentiated by some “pattern” of interest, e.g. p, geometries, etc. (see LPEP
002).

• caselet: (new) [STRIKEOUT:a sub-unit of a case or cases object. Forms are either a single geometry string, list
of geometry strings or list of cases.] The final outcome is strongly associated with data pertaining to a matplotlib
axes, or subplot component (not an instance or class). (See LPEP 006 for revised definitions)

• input: (new) The user arg passed to Case() or Cases().

98 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Types of Inputs

The generation of caselet plots as matplotlib subplots requires us to pass objects into Case(*input*) or
Cases(*input*). To pass in caselet data, the input must be a container (e.g. list, tuple, dict, etc.) to encap-
sulate the objects. The container of any type contain caselets or various types including a string, list or case.

For example, if a list is used, there are at least three options for containing caselets:

1. A list of geometry strings: type(caselet) == str

2. A nested list of geometry strings: type(caselet) == list

3. A list of cases: type(caselet) == <LamAna.distributions.Case object>

If a dict is used to contain caselets, the latter options can substitute as dict values. The keys can be either integers or
explict labels.

NOTE: as of 0.4.5, the List will be the default input type of caselets . The dict may or may not be implemented in future
versions.

[STRIKEOUT:The following is completed implementation as of v0.4.5.]

Forms of Caselet Inputs

• Container : list or dict Contains the various types that represent cases

• Contained : str, list or str, cases (0.4.11.dev0) Input types that represent, user-defined separate cases.

List of Caselets

Here we assume the input container type is a homogenous list of caselets. The caselets can be either geometry strings,
lists of geometry strings or cases.

Caselets as geometry strings (Implemented) The idea behind caselets derives from situations where a user desires
to produce a figure of subplots. Each subplot might show a subset of the data involved. The simplest situation is a
figure of subplots where each subplot (a caselet) plots a different geometry.

>>> import LamAna as la
>>> from LamAna.models import Wilson_LT as wlt
>>> dft = wlt.Defaults()
>>> input = ['400-200-800', '350-400-500', '200-100-1400']
>>> case = la.distributions.Case(dft.load_params, dft.mat_props)
>>> case.apply(input)

Figure of three subplots with different geoemetries.

.. plot::
:context: close-figs

>>> case.plot(separate=True)

Here the Case.plot() method plots each geometry independently in a grid of subplots using a specialseparate
keyword. NOTE: Currently this feature uses ‘‘_multiplot()‘‘ to plot multiple subplots. Future implentation should
include ‘‘Panelplot‘‘ The Cases class is a more generic way to plot multiple subplots, which does not require a
separate keyword and handles other caselet types.

2.17. LPEP 99

LamAna Documentation, Release 0.4.11

>>> cases = la.distributions.Cases(input)

Figure of three subplots with different geoemetries.

.. plot::
:context: close-figs

>>> cases.plot()

Caselets as lists

(Implemented) Another example, if we deisre to build a figure of subplots where each subplot is a subset of a case
showing constant total thickness, constant middle thickness, constant outer thickness. We define each subset as a
caselet and could plot them each scenario as follows:

>>> import LamAna as la
>>> list_patterns = [

['400-200-800', '350-400-500', '200-100-1400'],
['400-200-800', '300-300-800', '200-400-800'],
['400-200-800', '400-100-1000', '400-300-600']

]
>>> cases = la.distributions.Cases(list_patterns)

Figure of three subplots with constant total thickness, middle and outer.

.. plot::
:context: close-figs

>>> cases.plot()

Caselets as cases

(Implemented) What if we already have cases? Here is a means of comparing different cases on the same figure.

>>> import LamAna as la
>>> list_caselets = [

['400-200-800'],
['400-200-800', '400-400-400'],
['400-200-800', '400-400-400', '350-400-500']

]
>>> case1 = la.distributions.Case(dft.load_params, dft.mat_props)
>>> case2 = la.distributions.Case(dft.load_params, dft.mat_props)
>>> case3 = la.distributions.Case(dft.load_params, dft.mat_props)
>>> case1.apply(list_caselets[0])
>>> case2.apply(list_caselets[1])
>>> case3.apply(list_caselets[2])

>>> list_cases = [case1, case2, case3]
>>> cases = la.distributions.Cases(list_patterns)

Figure of three subplots with constant total thickness and different geometries.

.. plot::
:context: close-figs

>>> cases.plot()

The following will not be implemented in v0.4.5.

100 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Dict of Caselets

Key-value pairs as labeled cases.

(NotImplemented) What if we want to compare different cases in a single figure? We can arrange data for each case
per subplot. We can abstract the code of such plots into a new class PanelPlot, which handles displaying subplots.
Let’s extend Cases to make a PanelPlot by supplying a dict of cases.

>>> dict_patterns = {'HA/PSu': case1,
... 'mat_X/Y': case2,}
>>> cases = la.distributions.Cases(dict_patterns)

Figure of two subplots with three differnt patterns for two laminates with different materials.

.. plot::
:context: close-figs

>>> cases.plot()

Key-value pairs as labeled lists

(NotImplemented) We could explicitly try applying a dict of patterns instead of a list. This inital labeling by keys
can help order patterns as well as feed matplotlib for rough plotting titles. Let’s say we have a new case of different
materials.

>>> dict_patterns = {
... 't_tot': ['400-200-800', '350-400-500', '200-100-1400'],
... 't&mid': ['400-200-800', '300-300-800', '200-400-800'],
... 't&out': ['400-200-800', '400-100-1000', '400-300-600']
... }
>>> new_matls = {'mat_X': [6e9, 0.30],
... 'mat_Y': [20e9, 0.45]}
>>> cases = la.distributions.Cases(
... dict_patterns, dft.load_params, new_matls
...)

Figure of three subplots with constant total thickness, middle and outer for different materials.

.. plot::
:context: close-figs

>>> cases.plot()

Key-value pairs as numbered lists

(NotImplemented) We can make a caselets in dict form where each key enumerates a list of geometry strings. This
idiom is probably the most generic. [STRIKEOUT:This idiom is currently accepted in Cases.plot().] Other
idioms may be developed and implemented in future versions.

>>> dict_caselets = {0: ['350-400-500', '400-200-800', '200-200-1200',
... '200-100-1400', '100-100-1600', '100-200-1400',]
... 1: ['400-550-100', '400-500-200', '400-450-300',
... '400-400-400', '400-350-500', '400-300-600'],
... 2: ['400-400-400', '350-400-500', '300-400-600',
... '200-400-700', '200-400-800', '150-400-990'],
... 3: ['100-700-400', '150-650-400', '200-600-400',
... '250-550-400', '300-400-500', '350-450-400'],
... }
>>> #dict_patterns == dict_caselets

2.17. LPEP 101

LamAna Documentation, Release 0.4.11

>>> cases = la.distributions.Cases(dict_caselets)

Figure of four subplots with different caselets. Here each caselet represents a different case (not always the situation).

.. plot::
:context: close-figs

>>> cases.plot()

Specification

Currently, the specification outlined here is to convert a caselet input into a caselet using a conversion function.
Implementation of a formal caselet object are subject to future consideration.

The current application is to feed a Cases.plot() method with input which is converted to one of the latter types
of caselets. At the moment, type handling for caselets occurs in Cases(). This section proposes that type handling
for caselets be implemented in the input_ module instead for general use.

This function will handle processing of various input container types.

def to_caselet(input):
'''Return a Case obect given an input.

This function accepts each item of a container and processes them into a Case.

Parameters

input : str, list (of str), case

This user input becomes a Case object, representing a caselet - a subcomponent
of other related cases.

Notes

Uses error handling to convert an input into one of the defined caselet types
str, list of str or case (see LPEP 003). These caselets derive from homogenous types.

Heterogenous caselets are not handled, but may be implemented in the future.

Raises

FormatError

Only a geometry string, homogenous list of geometry strings or case is accepted.

Returns

Case object

Integer-case, key-value pairs.

'''
try:

Assuming a list of geometry strings
case_ = la.distributions.Case(self.load_params, self.mat_props)
if unique:

case_.apply(input, unique=True)
else:

case_.apply(input)

102 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

self.caselets = [case_]
TODO: Brittle; need more robust try-except

except(AttributeError, TypeError): # raised from Geometry._to_gen_convention()
try:

If a list of lists
flattened_list = list(it.chain(*caselets))
lists are needed for Cases to recognize separate caselets
automatically makes a unique set
#print(caselets)
TODO: what else is _get_unique doing?
##self.caselets = [self._get_unique(flattened_list)]
#print(self.caselets)

except(TypeError):
if a list of cases, extract LMs, else raise
flattened_list = [LM.Geometry.string for caselet in caselets

for LM in caselet.LMs]
list is needed for Cases to recognize as one caselet
automatically makes a unique set
##self.caselets = [self._get_unique(flattened_list)]
#print(self.caselets)

raise FormatError('Caselet type is not accepted. Must be str, list of strings or case') #?

'''
Need to iterate caselets (lists of objects) to package the order of the data.
Then pass that data into the plot functions. Plot functions should simply
make an axes for each data unit, then return an ax (for singleplot) or figure
(for multiplot).

1. Case only need a single list of input because it only handles one case/time.
2. Cases takes multiple lists or case objects

- may require separating a caselet into cases bases on what's given.

A Caselets object should accept either number or inputs. Should rearrange caselets.
Should return a rearrange caselet input. If this self is passed in, the order
of cases should be preserved

'''

Next Actions

• Objective: Make abstract PanelPlot class that accepts dicts of LMs for cases to output figures of caselets or
cases.

– build PanelPlot which wraps matplotlib subplots method.

– inherit from PanelPlot in Case.plot() or Cases.plot()

– implement in output_

– make plots comparing different conditions in the same Case (caselets)

– [STRIKEOUT:make plots comparing different cases using Cases]

• Abstract idiom for building caselets accepted in Cases.plot().

• Implement general caselet converter, error-handler in input_

• Make a caselets class.

2.17. LPEP 103

LamAna Documentation, Release 0.4.11

• Revise LPEP to accept LM or LMs as caselet types; refactor to_caselet to handle these types. See
output_._multiplot, which defines caselet differently.

See Also

• LPEP 002

Copyright

This document has been placed in the public domain.

2.17.4 LPEP 004: Refactoring class Stack

• Status: Draft

• Type: Process

• Date: October 20, 2015, March 17, 2016 (revised)

• Current Version: 0.4.4b1, 0.4.11

Motivation

Inspired to adhere to classic data structures, we attempt to refactor some classes. The present
la.constructs.Stack class is not a true stack. Athough built in a LIFO style, there are no methods for re-
versing the stack. It may be beneficial to the user to add or delete layers on the fly. Stacks, queues and other data
structures have methods for such manipulations. Here are some ideas that entertain this train of thought.

Desired Output

• Insert and remove any layers

• Access geometry positions in an index way

Specification

• Make stacks from deques

• Extend Stack to interpret from geometry strings also

Examples

>>> LM = la.distributions.Cases('400-200-800').LMs
>>> LM.insert('[:,100]') # eqv. ':-[:,100]-:'
>>> print(LM.geometry, LM.nplies)
<Geometry object (400-[200,100]-800)>, 7

>>> LM.remove('middle')
>>> print(LM.geometry, LM.nplies)
<Geometry object (400-[200,100]-0)>, 6

104 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

>>> LM.remove(['outer', 'inner'])
StackError 'If inner layers are removed, outer layers must exist.'

Next Actions

• Write specification for using deques

• Write specification for implementing geo_string interpretation.

• Develop the idea of duples in tandem

See Also

• analyze_geostrings(): interpret strings nplies, thickness, order.

Copyright

This document has been placed in the public domain.

2.17.5 LPEP 005: Making Concurrent LaminateModels with the new asyncio

• Status: Draft

• Type: Process

• Date: February 23, 2016

• Current Version: 0.4.10

Motivation

The idea of concurrency offers a potential option for improving creation of LamAna objects. For instance, if 10
LaminateModels are called to be made, rather then waiting for each object to instantiate serially, it may be better
to create them in parallel. This proposal is entertains current object creation using concurrency, and it is adapted from
this simple, well written set of examples of coroutines and chained coroutines.

Definitions

• G : Geometry object

• FI : FeatureInput object

• St : Stack

• Sp : Snapshot

• L : Laminate

• LM : LaminateModel

When la.distributions.Case.apply() is called, the get_LaminateModel() function creates a gener-
ated list of LaminateModels. A series of objects a created accessing 3 core modules.[︀

𝐺𝑖𝑛𝑝𝑢𝑡_ → 𝐹𝐼𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠−𝑖𝑛𝑝𝑢𝑡_
]︀
−→

[︀
𝑆𝑡 → 𝑆𝑝 → 𝐿 → 𝐿𝑀

]︀
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠

2.17. LPEP 105

https://pymotw.com/3/asyncio/coroutines.html

LamAna Documentation, Release 0.4.11

When apply() is called, it has to wait for other serial processes to finish in a certain order before completing. These
characteristics of waiting on ordered processes may qualify the LamAna architecture as a candidate for concurrency
features in the new Python 3.5 asyncio module.

Implemented Chained Coroutines

We attempt to apply these concepts to LamAna. A summary of the main coroutine is outlined below.

import asyncio

async def get_LaminateModel(geo_string):
'''Run set of processes in order to give finally create a LaminateModel from a geo_string.'''
conv_geometry converts a geo_string to general convention
TODO: include geo_string caching

TODO: comvert these objects to coroutines (or keep as generators?)
G = await = la.input_.Geometry(conv_geomtry)
FI = await la.input_.BaseDefaults.get_FeatureInput(G, **kwargs) # rewrite FeatureInput
St = await la.constructs.Stack(FI)
Sp = await la.constructs.Snapshot(St) # snapshot
L = await la.constructs.Laminate(Sp) # LFrame
LM = await la.constructs.Laminate(L) # LMFrame

The main event loop
event_loop = asyncio.get_event_loop()
for geo_string in geo_strings: # unsure if this would work

try:
Consider alternatives to this default loop
laminate_model = event_loop.run_until_complete(get_LaminateModel(geo_string))

finally:
event_loop.close()

NOTE: It is unclear how to advance the geo_strings iterable object in the default asyncio loops

Vetting

Pros:

• Possbible concurrency, multitasking of LaminateModel creation

• Clear, explicit illustration of order

Cons:

• Limited to Python 3.5

Next Actions

• Look into advancing iterables in an asynio default loop

• Use mock objects to test this LPEP as proof of concept

Copyright

This document has been placed in the public domain.

106 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

2.17.6 LPEP 006: Defining LamAna Objects

• Status: Draft

• Type: Informational

• Date: March 17, 2016

• Current Version: 0.4.11

Motivation

This LPEP is written to clarify certain types used within LamAna documentation and codebase.

Definitions

Laminate classifications

• Symmetric: a laminate with symmetry across the neutral axis.

• Asymmetric: non-symmetry across the netural axis.

Representations

• geo_string (g): a geometry string typically formatted to general convention (see LPEP 001)

• Geo_object (G): a Geometry object, an instance of the Geometry class

• Geo_orient (GO) (NotImplemented): a GeoOrient object, containing in-plane, directional, ply-angle infor-
mation

Layer types (lytpe)

• outer: the top and bottom-most layers

• inner_i: a list (or string representation) of all inner layer thicknesses; inners refers to a subset of inner_i

• inner: an internal, non-middle, non-outer layer

• middle: for odd plies, the center layer; for symmetric laminates, this layers passing through the neutral axis

Geometry string containers

Pythonic objects used to signify groups of layer thickness:

• list: a pythonic list of inner layers, e.g. [100, 100, 50]. Each entry represents equivalent layer thicknesses for
both tensile and compressive sides.

• token: pertaining to one of the layer types

• duple (NotImplemented): a tuple of dual layer thicknesses for corresponding (tensile, compressive) layers, e.g.
(100,300). Each entry represents a significant thickness of a tensile/compressive side for a given layer type.
Zero is also not allowed (0,400). A duple replaces one of the thickness positions in a geometry string. The sum
of a duple contributes to the total laminate thickness. By definition, duples are only used to specify asymmetric
geometries, therefore repeated values are disallowed e.g. (400,400). Also, since middles are singular constructs,
duples are disallowed for middle layers.

2.17. LPEP 107

LamAna Documentation, Release 0.4.11

Geometry strings

Regular geometry strings: a simple, symmetric stacking sequence of outer, inner_i and middle layers. e.g.

- '400-[200]-800' # simple
- '400-[150,50]-800' # inner_i

These strings follow a simple algorithms for calculating layer thicknesses:

𝑡𝑡𝑜𝑡𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 = 2𝑡𝑜𝑢𝑡𝑒𝑟

𝑡𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑛𝑒𝑟 = 2𝑡𝑖𝑛𝑛𝑒𝑟𝑖

𝑡𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑛𝑒𝑟𝑖 = 2

𝑚∑︁
𝑖

𝑡𝑖𝑛𝑛𝑒𝑟

𝑡𝑡𝑜𝑡𝑎𝑙 = 2(𝑡𝑜𝑢𝑡𝑒𝑟 + 𝑡𝑖𝑛𝑛𝑒𝑟𝑖) + 𝑡𝑚𝑖𝑑𝑑𝑙𝑒

𝑛𝑝𝑙𝑖𝑒𝑠 = 2(𝑛𝑜𝑢𝑡𝑒𝑟 + 𝑛𝑖𝑛𝑛𝑒𝑟𝑖) + 𝑛𝑚𝑖𝑑𝑑𝑙𝑒

Irregular geometry strings: includes assymmetric laminates; involves

- '(300,100)-[150,50]-800' # outer duple
- '400-[150,(75,50),25]-800' # inner duple
- '(300,100)-[150,(75,50),25]-800' # outer and inner duple

These strings can follow more complex algorithms for calculating layer thickness. For every 𝑖𝑡ℎ item in the list of
inner_i and 𝑗𝑡ℎ index within an 𝑖 (duple or non), where 𝑚 is the end of the squence and 𝐶 = 1 for duples and 𝐶 = 2
for non-duples:

𝑡𝑡𝑜𝑡𝑎𝑙,𝑜𝑢𝑡𝑒𝑟 = 𝐶

𝑚∑︁
𝑖

𝑚=2∑︁
𝑗

𝑡𝑜𝑢𝑡𝑒𝑟

𝑡𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑛𝑒𝑟 = 𝐶

𝑚𝑗∑︁
𝑗

𝑡𝑖𝑛𝑛𝑒𝑟

𝑡𝑡𝑜𝑡𝑎𝑙,𝑖𝑛𝑛𝑒𝑟𝑖 = 𝐶

𝑚∑︁
𝑖

𝑚𝑗∑︁
𝑗

𝑡𝑖𝑛𝑛𝑒𝑟

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑜𝑢𝑡𝑒𝑟 + 𝑡𝑖𝑛𝑛𝑒𝑟𝑖 + 𝑡𝑚𝑖𝑑𝑑𝑙𝑒

𝑛𝑝𝑙𝑖𝑒𝑠 = 𝐶1

𝑚𝑖∑︁
𝑖

𝑚𝑗∑︁
𝑗

𝑛𝑜𝑢𝑡𝑒𝑟 + 𝐶2

𝑚𝑖∑︁
𝑖

𝑚𝑗∑︁
𝑗

𝑛𝑖𝑛𝑛𝑒𝑟 + 𝑛𝑚𝑖𝑑𝑑𝑙𝑒

108 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Data structures

Conceptual structures used to represent groups of data:

• packet: a user-defined input data, e.g. a list of geometry strings. This group are structured according to some
pattern of interest (see LPEP 002). A packet may become processed datasets (LMs) encased within a Case
object.

• packets: a group of packets, units that represent separated cases, e.g. a list of lists comprising geometry strings.
These groups are ordered according to desired output.

• stack: the bottom-to-top (tensile-to-compressive) stacking sequence of laminated layers. Represented as lists,
deques or other pertinent data structures. Regular stacks reverse inner_i order post middle layer. Irregular stacks
must parse duple indices, tensile and compressive.

– Regular stack: ‘400-[150,50]-800’ –> [400.0, 150.0, 50.0, 800.0, 50.0, 150.0, 400.0]

– Irregular stack: ‘400-[(150,50)]-800’ –> [400.0, 150.0, 800.0, 50.0, 400.0]

• LaminateModel (LM): an object that combines physical laminate dimensions and laminate theory data, cur-
rently in the form of DataFrames.

• case: an analytical unit typically sharing similar loading, material and geometric parameters. This object con-
tains a group of LMs; the final outcome is commonly represented by a matplotlib axes.

• cases: a group of cases each differentiated by some “pattern” of interest, e.g. p, geometries, etc. (see LPEP
002). The final product is commonly represented as a matplotlib Figure. Each group is a smaller case “caselet”

• caselet: a samller case that is related to a larger group of cases. This conceptual unit is finally manifested as a
matplotlib subplot.

Plotting objects

• figureplot: a matplotlib Figure with attributes for quick access to plot objects. A base class for setting figure
options and appearance, akin to a seaborn FacetGrid

• singleplot: a single matplotlib axes.

• multiplot: a figure of singleplots represented in subplots.

• feature plot: a LamAna plotting object based on a specific feature module e.g. DistribPlot

Examples

Analyzed string Information

Number of plies, total laminate thickness and stacking order
(nplies, t_total, order)

General Convention
'400.0-[100.0,100.0]-800.0'
(7, 2.0, [400.0,100.0,100.0,800.0,100.0,100.0,400.0])

Duple
'(300.0,100.0)-[(50.0, 150.0),100.0]-800.0
(7, 1.6, [300.0,50.0,100.0,800.0,100.0,150.0,100.0])

2.17. LPEP 109

https://github.com/mwaskom/seaborn/blob/10bdb18f47bb5fc0a30d34954ff6f174b4cf5881/seaborn/axisgrid.py

LamAna Documentation, Release 0.4.11

Next Actions

• Swap definitions of “inner_i” and “inner”.

See Also

• LPEP 001: General Convention

Copyright

This document has been placed in the public domain.

2.17.7 LPEP 007: Redesigning the distributions Plotting Architecture

• Status: Draft

• Type: Process

• Date: April 05, 2016

• Current Version: 0.4.11

Motivation

The plotting functions were quickly put together prior to LamAna’s offical release. This original plotting archi-
tecture lacks robustness and scalability for future feature modules. The current version of Case.plot() and
Cases.plot() methods use non-public functions located the output_ module for plotting single axes figures
(“single plots”) and multi-axes figures (“multi plots”). The purpose of this proposal is to lay out a robust, lucid
architecture for plotting distributions and future feature module outputs.

Desired Ouptut

...

Definitions

See LPEP 007 for formal definitions.

Basic Plot Options

The following objects associate with lower level matplotlib objects:

• singleplot, multiplot, figureplot

The following definition pertains to a unique LamAna objects that inherits the latter objects:

• DistribPlot: a class that handles the output of a distributions plot.

110 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Specification

A DistribPlot should be given LamainateModels. While iterating over LaminateModels, information is
extracted (e.g. nplies, p) and axes are generated both combining plotting lines and separating unique laminates under
various conditions. THis class should inherit from a base that controls how a figure appears. Through iterating the
given argument, this class should determine whether the resulting figure should be a singleplot or multiplot. Here is a
sample signature for the Distriplot.

import lamana as la

class _FigurePlot(object):
'''Return a matplotlib Figure with base control.'''
def __init__(self):

self.nrows = 1
self.ncols = 1

fig, ax = plt.subplots(self.nrows, self.ncols)
self = fig
self.axes = ax
self.naxes = len(ax)
self.x_data = fig.axes.Axes[0]
self.y_data = fig.axes.Axes[1]
#self.patches = extract_patches()

def update_figure():
'''Update figure dimensions.'''
pass

pass

class DistribPlot(_FigurePlot):
'''Return a distributions FigurePlot.

This class needs to process LaminateModels and honor the user-defined packages.

Parameters

cases_ : Case or Cases object

The self object of the Case and Cases classes. Relies on the pre-ordered
arrangement of the user-defined, package input.

kwargs : dict
Various plotting keywords.

See Also

Entry points
- lamana.distributions.Case.apply: primarily singleplots unless separated
- lamana.distributions.Cases: primarily multiplots unless combined

'''
def __init__(self, cases_, **kwargs):

super(DistribPlot, self).__init__(cases_, **kwargs)
self = self.make_fig(cases_)
self.packages = cases_.packages # NotImplemented

Temporary
TODO: these plotters need to be abstracted from distributions code.

2.17. LPEP 111

LamAna Documentation, Release 0.4.11

def _singleplot(self, case):
singleplot = la.output_._distribplot(case.LMs)
return singleplot

def _multiplot(self, cases):
multiplot = la.output_._multiplot(cases)
return multiplot

def make_fig(self, cases_ordered):
'''Return a figure given cases data.

Parameters

cases_ordered : Case- or Cases-like

Contains data required to generate the plots. Assumes the cases
preserve the the user-defined order at onset in the caselet_input.

'''
if isinstance(cases_ordered, la.distributions.Case):

Give a single Case object
case = cases_ordered
fig = plt.figure()
ax = self._singleplot(case)
fig.axes.append(ax)

elif isinstance(cases_ordered, la.distributions.Cases:
Give a Cases object
fig = self._multiplot(cases_ordered)
#plt.suptitle()
#plt.legend()

else:
raise TypeError(

'Unknown distributions type was pass into {}.'.format(self.__class__)
)

return fig

Mock Implementations ---------------------

Handles singleplots from Case
def Case.plot(self, **kwargs):

return la.output_.DistribPlot(*args, **kwargs)

Handles multiplots from Cases
def Cases.plot(self, **kwargs):

return la.output_.DistribPlot(*args, **kwargs)

Examples

Singleplots

>>> case = Case(['400-200-800', '400-400-400'])
>>> singleplot = cases.plot()
<matplotlib Figure>
>>> multiplot.naxes
1

112 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Multiplots

>>> cases = Cases([['400-200-800', '400-400-400'], ['100-100-1600']])
>>> multiplot = cases.plot()
<matplotlib Figure>
>>> multiplot.naxes
2

>>> multiplot.axes
[<maplotlib AxesSupbplot>, <maplotlib AxesSupbplot>]
>>> multiplot.packages # orig. input
[['400-200-800', '400-400-400'], ['100-100-1600']]

Vetting

Next Actions

• Add more attributes as ideas come about

• Implement and test in future versions; revise Case, Cases and add Packages

•

See Also

• LPEP 002: on patterns

• LPEP 003: packets; a revised form of caselets

• LPEP 006: unoffical glossary

• LPEP: 008 Formalizing Packets

Copyright

This document has been placed in the public domain.

2.17.8 LPEP 008: Formalizing Packets: input data for caselets

• Status: Draft

• Type: Process

• Date: April 07, 2016, (Rev. 04/10/16)

• Current Version: 0.4.11

Motivation

Multiplots require structured data to display plots correctly. Ulitmately this product requires data that has be validated
and organized in a simple and discernable format. The Packets class is in input_ datastructure that attempts to
funnel various input type into a simple that that object after processing inputs as follows:

• validate the geometry strings and input formats

2.17. LPEP 113

LamAna Documentation, Release 0.4.11

• reformat geometry data to according to internally-accepted, Generation Conventions.

• reorder or rearrange data if exceptions are raised

• analyze geometry data

The user can now focus on arranging the data into analytical sub-groups (caselets). This information new, restructured
data is supplied to feature module objects such as Case or Cases that package the data according to the user-defined
order. Most importantly, plotting functions can simply iterate over the structured data an output plots that reflect this
order.

NOTE: the ‘‘Packets‘‘ object was alpha coded in 0.4.11.dev0

Desired Ouptut

An enumerated dict of packet inputs.

This class should focus on cleaning and organizing the data for a feature module function. Let Case and Cases handle
the data.

Definitions/Keywords

Terms such as caselet and packet have been developed during the planning phases of defining and refactoring
output_ objects into a logical, scaleable framework. See LPEP 006 for formal definitions.

• packet, packets, LaminateModel, caselet, case, cases

Specification

The simplest approach to ordering data is to handling all incoming inputs upfront. The packets can them be funneled
into a clean, restructured form. As of 0.4.11, we introduced the Packet class, intended to convert packet inputs in
said object.

Error handling is important for certain scenarios. For example, given a list of geometry strings, a separate caselet must
be generated when:

1. The current nplies does not match the nplies in the current axes
2. Another set of ps is discovered

As Packets must handle such an event by analyzing the raw geometry strings upfront. Packet requirement may vary
for different feature modules.

class Packets(object):
'''Return a Packets object by processing user-defined packet inputs.

This class is an interface for converting various inputs to a formal datastructure.
It serves to precess inputs as follows:
- validate: geo_strings are a valid and interpretible
- reformat: convert a geo_string to General Convention
- reorder: split unequal-plied geo_strings in separate caselets (if needed)
- analyze: assessed for duples (NotImplemented)

This class also handles unique exceptions to form new, separate packets based on various conditions:

1. The current nplies does not match the nplies in the current axes
2. Another set of ps is discovered
3. ...

114 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Parameters

packet : list

User input geometry strings; dictates how caselets are organized.

Returns

dict

Fast, callable, ordered. Contains int-caselet input, key-value pairs.

See Also

- LPEP 003: original ideas on caselets

Notes

Due to many container types, this class will be gradually extended:
- 0.4.12.dev0: supports the list container of str, lists of strs and cases.

Examples

See below.

'''
def __init__(self, packets):

self.packets = self.clean(packets)
self = to_dict(self.packets)

self.nplies = None
self.t_total = None
self.size = len(self.packets)

def clean(packets):
'''Return an analyzed reformatted, validated, orderd list of packets.

Exploits the fine-grain iteration to extract geo_string data
via analyze_string().

'''
Handle analyses and converting geo_strings to General Convention

if self.nplies is None:
self.nplies = {}

if self.t_total is None:
self.t_total = {}

nplies_last = None
caselet_conv = []

for packet in packets:
caselet_new = []
for geo_string in packet:

Validate
if is_valid(geo_string):

Reformat: Should raise error if invalid geo_string
geo_string_conv = la.input_.to_gen_convention(geo_string)
Analyze: extract geo_string data while in the loop

2.17. LPEP 115

LamAna Documentation, Release 0.4.11

nplies, t_total, _ = la.input_.analyze_geostring(geo_string)

Store analyzed data in attributes
self.nplies.add(nplies)
self.t_total.add(t_total)

Reorder: make new list for unequal nplies
if nplies != nplies_last:

geo_string_conv = list(geo_string_conv)

caselet_new.append(geo_string_conv)
nplies_last = nplies

Ship for final handling and formatting
if len(caselet_new) == 1:

return self._handle_types(caselet_new)
else:

packets_conv.append(caselet_new)
return self._handle_types(packets_conv)

def _handle_types(self):
'''Return the accepted packets format given several types.

As of 0.4.11, the list is the only accpeted objecct container. At this
entry point, users should not be aware of Case or LaminateModels,
but they included anyway.

'''
Forward Compatibility ---
List of Case objects
[case_a, case_b, ...] --> [['geo_str1', 'geo_str2'], ['geo_str1'], ...]

A Single Case
[case] or case --> ['geo_str1', 'geo_str2', 'geo_str3']

List of LaminateModels (LMs)
[<LM1>, <LM2>, ...] --> [['geo_str1', 'geo_str2'], ['geo_str1'], ...]

A Single LaminateModel (LM)
[LM] or LM --> [['geo_str1', 'geo_str2', 'geo_str3'], ...]

List of lists or geo_strings
[['geo_str1', 'geo_str2'], ['geo_str1'], ...] --> _

List of geo_strings
['geo_str1', ...] --> _

Single geo_string
['geo_str1'] or 'geo_str1' --> ['geo_str1']

116 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

except(AttributeError) as e:
raise FormatError(
'Caselet input () is an unrecognized format.'
' Use a list of geo_strings'.format(e)
)

pass

def to_dict(self)
'''Return an enumerated dict of packets.'''
dict_ = ct.defaultdict(list)
for i, caselet in enumerate(self.packets):

dict_[i] = caselet

return dict_

def to_list(self):
'''Return lists of packets.'''
pass

@property
def info(self):

'''Return DataFrame of information per caselet.'''
pass

Examples

Boilerplate

>>> import lamana as la
>>> from lamana.input_ import Packets
>>> from lamana.models import Wilson_LT as wlt
>>> dft = wlt.Defaults()

Usage: A packet --> a future case and a singleplot (one axes)

>>> packet = Packets(['400-200-800', '400-400-400'])
>>> packet
<lamana Packets object, `distribution`, size=1>
>>> packet()
{0: ['400-200-800', '400-400-400']}
>>> case = la.distributions.Case(dft.load_params, dft.mat_props)
>>> case.apply(packet)
>>> singleplot = case.plot
>>> singleplot.naxes
1

Usage: Packets --> a group of cases (caselets) --> multiplot (n>1 axes)

>>> packets = Packets([['400-200-800', '400-400-400'], ['400-0-1200']])
>>> packets()
{0: ['400-200-800', '400-400-400'],
1: ['400-0-1200']}

>>> cases = la.distributions.Cases(packets) # assumes default parameters and properties
>>> singleplot = case.plot
>>> singleplot.naxes
2

2.17. LPEP 117

LamAna Documentation, Release 0.4.11

Handling: if unequal plies are found, a new packet is generated automatically

>>> str_packets = [# should be one caselet
... '400-200-800', '400-400-400', # but nplies=5
... '400-0-1200' # and nplies=3; cannot plot together
]
>>> packets = Packets(str_packets)
Using default distributions objects.
Unequal nplies found. Separating...
>>> packets()
{0: ['400-200-800', '400-400-400'],
1: ['400-0-1200']}

>>> packets.size
2
>>> packets.nplies
[5, 3] # ordered by input position
>>> packets.info # pandas DataFrame

nplies p contained
0 5 5 '400-200-800', '400-400-400'
1 3 5 '400-0-1200'

Feature: For a distributions `Case` or `Cases` object --> stress distribution

>>> packets = Packets(['400-200-800', '400-400-400'], feature='distributions')
>>> packets
<lamana Packets object `distributions`, size=1>

Feature: For a predictions module object (NotImplemented) --> regression plot

>>> packets = Packets(['400-200-800', '400-400-400'], feature='predictions')
>>> packets
<lamana Packets object `predictions`, size=1>

Feature: For a ratios module (NotImplemented) --> layer group in a ratio plot

>>> packets = Packets(['400-200-800', '400-400-400'], feature='ratios')
>>> packets
<lamana Packets object `ratios`, size=1>

Vetting

Benefits: - This approach handles all analyses, conversions,

validations, and reorderings (e.g. nply separation) of user input data. | - It feeds a consistent form to Case and Cases
- Off loads the need to figure out what kind of caselet should be made. - Preprocesses with light, strings and lists. -
Can later use in conjunction with a some startup functions e.g. Start to simplify user API. - Handle future input
types e.g. GeoOrient object.

Next Actions

• Develop post 0.4.11.

• Implement the General Convention strings.

• Implement the ordering algorithms.

118 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

• Implement the isvalid method.

• Implement into input_ module; refactor distributions Case and Cases to accept Packets. Remove redun-
dant code.

See Also

• LPEP 003: original ideas on caselets

• LPEP 007: plotting redesign

Copyright

This document has been placed in the public domain.

2.17.9 LPEP 009: Revisiting Entry Points

• Status: Draft

• Type: Process

• Date: April 07, 2016

• Current Version: 0.4.11

Motivation

The user input can be complex and difficult to predict. Additionaly, the user should not be bothered with the following:

1. Worrying about which type to use as an entry point e.g. Case or Cases

2. Remembering to apply as in Case.apply

3. Worrying about particular signatures for each feature module.

As feature modules are added, the entry points to LamAna increase while also broading the signature for caselets.
This broadening may become confusing over time. The purpose of this proposal is to mitigate the user responsibility
in setting up boilerpoint and focus on analysis.

Desired Ouptut

After supplying caselet information, prompt the user with information it requires per feature module, e.g. load_params
or mat_props.

Definitions

Specification

Examples

2.17. LPEP 119

LamAna Documentation, Release 0.4.11

>>> # Geometries to analyze
>>> caselet = ['400-200-800', '400-400-400']
>>> # What kind of analysis?
>>> la.input_.Start(caselet, feature='distributions')
... Please supply loading paramaters. Press Enter to use defaults.
... Please supply material properties. Press Enter to use defaults.
... Please supply laminate theory model. Press Enter to use defaults.
Using default load_params and mat_props...
Using Wilson_LT model...
Done.
[<lamana Case object size=1, p=5>]

Vetting

Next Actions

• Design an object that routes user to specific feature module objects and prompts for necessary data.

See Also

Copyright

This document has been placed in the public domain.

2.17.10 LPEP 010: Decoupling LaminateModels from Laminate

• Status: Draft

• Type: Standards Track

• Date: May 30, 2016

• Current Version: 0.4.11

Motivation

The LaminateModel object is not a class, but it is rather a DataFrame object assigned to an instance attribute of the
Laminate class. The implementation was originally intended to reduce class objects creation (reducing memory),
encourage simplicity and likely reduce the number of looping operations for populating DataFrame rows and columns.
However, this implicit architecture of the clandestine LaminateModels can lead to misunderstanding when trying
to track the flow of objects. In addition, during refactoring the theories objects, passing a pure Laminate object
into the theories.handshake() has proven is impossible at the moment.

In effort to access separate objects and for clarity, this proposal maps out a plan to decouple LaminateModel from
Laminate as a seprate object through subclassing.

Desired Ouptut

A LaminateModel object that inherits from Laminate and Stack.

120 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

Specification

1. Given a FeatureInput, create LaminateModel.

2. If Exception raised, return a Laminate object.

3. Update tests expecting Laminate to return LaminateModel

4. Duplicate _build_laminate to _build_primitive; merge former with Phase 2.

The latter objects should be achieved by extracting Phase 3 _update_calucations into LaminateModel. For
cleanup, we can separate object parsing attributes into their associated objects. We can then serially call lower level
objects to make the final product.

LaminateModel(Laminate(Stack))

Examples

Create Separate Objects
>>> S = la.constructs.Stack(FI)
>>> S
<Stack object>
>>> L = la.contstructs.Laminate(FI)
>>> L
<Laminate object 400-[200]-800>
>>>LM = la.constructs.LaminateModel(FI)
>>> LM
<LaminateModel object 400-[200]-800>

>>> # Attribute Inheritance
>>> S_attrs = ['stack_order', 'nplies', 'name', 'alias']
>>> all([hasattr(S, attr) for attr in S_attrs])
True
>>> L_attrs = ['FeatureInput', 'Stack', 'Snapshot', 'LFrame']
>>> all([hasattr(L, attr) for attr in ''.join([L_attrs, S_attrs])
True
>>> LM_attrs = ['LMFrame']
>>> all([hasattr(LM, attr) for attr in ''.join([LM_attrs, L_attrs, S_attrs])
True

Vetting

Next Actions

• Reduce object recreation; notice a FI is passed to Stack and Laminate.

• Get image of how objects are passed prior to refactoring.

See Also

• LPEP 004: Refactoring Stack to optimize object creation

• LPEP 006: Defining objects

2.17. LPEP 121

LamAna Documentation, Release 0.4.11

Copyright

This document has been placed in the public domain.

In []:

2.18 Version Log

In [1]: '''
=======
Scripts
=======

Fast Plots, Initial Conversion from Excel to Python

0.1 Legacy Script - Laminate_Stress_Constant_Thickness_1g.ipynb
- Calculates stress, plot, export data for single geometry.
Supports insets.

0.2 - Legacy Script - Laminate_Stress_Constant_Thickness_2d.ipynb
- Handles multiple geometries, heiarchical indexing, more...

0.3 Legacy Script - Laminate_Stress_Constant_Thickness_3a3.ipynb
- Abstracted layers to classes.
- Forked to become the LamAna project.

=============
Local Program
=============

Standalone Program, Abstracted for General Application, Single Notebook

0.4.0 Organized module and package layout
0.4.1 Most user inpurt API conventions worked out

- `input_.Geometry`
- `distributions.Case(*args)`, `distributions.Case().apply()`
- `Geometry().itotal()`

0.4.2 General Convention standardized types for Geometry object
0.4.2a Developed total method; float and list wrappers covering attributes
0.4.2b Develop total methods and tests; cleaned docs
0.4.3 Developed `contructs` module to return DataFrames
0.4.3a Built Stack class giving skeletal layout for each Geometry
0.4.3b Implemented namedtuples called `StackTuple` in the `Stack` class

- Deprecated ModdedList and ModdedFloat wrappers
- Implemented namedtuples called GeometryTuple in the `Geometry` class
- Made unittest for p >= 1 (odd and even)

0.4.3c Added stress states to laminates.
0.4.3c1 Refactored the ConstuctTheory workflow

- Refocused on building separate Construct and Theory objects
- Removed double call of snapshot and laminate model in Case

0.4.3c2 Laminate object made the official LaminateModel object w/ __repr__
- laminate_tuple deprecated. self attrs used instead
- LaminatModel object is now Laminae self called directly in Case
- `LM` attribute returns the LaminateModel object

122 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

- Refactored frames and snapshots to generate lists only when called.
0.4.3c3 Developed Laminate Object to calculate Planar variables
0.4.3c4 Implemented update_columns() into Laminate as `_update_dimensions()`.

First trial with version 4a. Testing needs resolution.
Refactored `_update_dim..()` w/copies and returns; cleared warnings.
1.5x longer to run 62 tests with now; from 33s to 86s.
Tested Planar values for different plies, ps.

0.4.3c4b Verify values and algorightms with CLT.
- Added drag and drop spreadsheet testing of laminates.
- Removed a labels test with improved test speed.
- Built the `utils.tools` modulue and implemented in tests.
- Fixed critical BUG in inner_i ordering.

0.4.3c4c Cleaned deprecations, and made use of `laminator()`
- Applied `shift` to discontinuity values.
- Added nplies, p, total attrs to Laminate

0.4.3c4d Vectorize _update_dimensions(). Deprecated for tech.
- Documented alogrithms.
- Made test_controls for various case controls.
- Deprecated Laminae classes; maybe someday. Only dfs for now.
- Rename to LFrame. Changed planar term to dimensionals.

0.4.3c5 Deprecation code cleared.
Learned about iterators, generators, gen expressions and more.

0.4.3c5a Add iterator functionality; replaced empty list/append code.
- Add lt_exceptions for relevent error handling.

0.4.3c5b The Big Generator Switch
- Improved architexture using generators in Geometry and Stack.
- The StackTuple has added alias and unifed name to 'n-ply'.

decode_geometry() and indentify_geometry() were refactored.
- Running 75 tests at 109s. No big speed up. The tests are slow.

0.4.3c6 Marked for theories model and Data variable implementation.
- LFrame returns IDs and Dimensional columns only
- LMFrame returns full DataFrame.
- Many tests developed for theories and models.
- Models accepted as functions or classes
- Minor exception handling to prevent backdoor API breaking.

0.4.3d Deprecations, cleanup, reorganization, documentation.
- Deprecated .itotal()
- Renamed Model to BaseModel and subclassed from it.
- Refactored laminator to yield case, not LMs
- Reorganized docs; added Delta Code and new case build idioms (2/3)
- Refactored tests for new case build ideology (Py2/3 compliant)
- Started Cases object outline to replace laminator.

0.4.3d1 continued...
- Defaults() abstracted to BaseDefaults()
- Defaults() subclassed in Wilson_LT
- Refactored BaseDefaults() geo_inputs dict keys with names
- Automated BaseDefaults() groupings
- Built smarter tests to allow extension of BaseDefaults()
- Moved BaseDefaults() from utils.tools to input_ module
- Geometry and LaminateModel objects support == and != comparisions

0.4.3d2 continued...
- Rename geo_params to load_params

0.4.3d3 continued...
- Changed mat_params default type from Dataframe to (nested) dict

2.18. Version Log 123

LamAna Documentation, Release 0.4.11

- mat_params now DataFrame and assert_equally-friendly
- Cleaner exception handing of apply(mat_params)
- Deprecated materials_to_df in favor of Standard Form conversions
- Replaced @staticmethod with @classmethod
- Cleaned Case helpers; moved to BaseDefaults

0.4.3d4 continued...
- Refactored FeatureInput; Parameters, Properties, Materials...
- Support of ordered materials lists
- Added get_materials()
- Extended case params and props to give Series and DataFrame views
- Tested models columns by written new .csv files
- Cleanup, privatizing, Geo_object comparison tests, user-defined

material setting, material stack order tests, change to mat_props.
0.4.4 Marked `distributions` plotting.

- Defined Cases and select method.
- Made Geometry and Laminate hashable for set comparison w/tests.
- Extended Cases.select() with set operations.
- Implemented Cases.to_csv
- Implemented Cases in distributions
- Wrote Cases tests.

0.4.4a Cases documentation in intermediate tutorial; upgrade from beta
0.4.4b Cases.__eq__ handles DataFrame/Series attrs

- Laminate.__eq__ handles DataFrame/Series attrs
- Refactored LPEP numbers. LPEP 001 contains micro-PEPs.
- Plotting
- Reverted to k=1 to correlate w/LT definitions in the paper.

0.4.4b1 continued...
- Initial implementation of case.plot()
- Using library from external notebook for 1st demo to prof.
- Worked through labeling keywords for plots
- _distribplot: halfplots, annotations, insets, extrema
- _multiplot: nrows, ncols, deletes empty axes, labels
- Added LAMANA_PALETTE
- Implemeentated Laminate.extrema
- Rewrote controls with new k algorithm
- Reorganized ToDo list: headings (functionalize, clarify, optimize).

0.4.4b2 continued...
- Final implementation of case.plot(), _distribplot() & _multiplot()
- Cleanup docstrings, move abstractions to beta, clean beta
- Implement Case.plot() multiplots
- Revise Demo notebook.

0.4.4b3 continued...
- Make Cases process cases
- Implement Cases.plot() multiplots
- LPEP 003 Pattern development and cases input standards.

0.4.5 Marked for release candidate 1
- Cleanup
- Refined exception handing of rollback; improved dormant tests
- Implemented lt_exceptions and IndeterminateError
- Register GitHub, pypitest and pypi
- prepare revised repo structure

0.4.5a1 BRCH: Refactor iteration in Geometry, distributions and Laminate.
- Refactored *.apply iter strings, not objects, cache ... 100s faster
- 198 tests ~300s, 200s faster since output_

124 Chapter 2. Community Benefits

LamAna Documentation, Release 0.4.11

- Coded is_valid() with regex
- Write References to utils
- Finalize stable release before pip and GitHub upload; old-sytle

0.4.5b1 First Fork from stable package.
- move is_valid to Beta-functionalize; cleanup Quick tests
- Use text editor, Atom, to rename lamana, sp check and remove tabs
- Make Main template for pull and push
- Repo redesign
- flake8

0.4.5b2 "Pull" from flake8'd core modules.
- Pulled updated modules
- Figure out __version__
- Suspended repo changes until official GitHub push.

===============
The Large Split
===============

Version Control, GitHub Upload, Open Source Tools, PyPI Releases, Separated Notebooks

0.4.6 Official GitHub release (usable; needs repo maintenace)
- Reflects suspended repo state as of 0.4.5b2
- Nearly equals 0.4.5b2 but cleaner directory, new repo tree
- Uses new templates to run code; clonable
- Minimal point releases allowed.
- Updated version number.

0.4.7 Initial PyPI release
- Rolled back due to pandas breaking

0.4.8 Pre-conda, gitflow, travis release: dev reliable
- Init gitflow
- Add Travis CI to install pinned dependencies and check builds
- Pass builds 2.7, 3.3, 3.4, 3.5, 3.5.1 on Linux
- Main deps matplotlib==1.4.3, numpy==1.9.2, pandas==0.16.2
- Reproducible builds with `pip freeze`, pinned deps (LPEP 001.14)
- Suggest "Hands-on/off" pip install options
- Update license info
- Update release workflow in tutorial

0.4.9 Flagship PyPI release
- Install with conda through pip
- Works with IPython/Jupyter
- Add `find_version()` to `setup.py`; confirm tarball url works
- Update source to use latest `pandas>=0.17.1` and `numpy`
- Fixed pandas issue (backwards compatible):

- replace `np.cumsum` with pandas `aggregate` method
- replace pandas `sort` with `sort_index`

0.4.10 Documentation Release
- flake8
- docs
- numpy docstrings
- Register readthedocs
- Initial codecov and coverage
- nb templates (main, doc-builder)
- Fix df.sort to address pandas API changes in 0.17.1

2.18. Version Log 125

LamAna Documentation, Release 0.4.11

0.4.11 Housekeeping - cross-platform stability, coverage and more
- Add environment.yaml files for 2.7 and 3.3
- Continuous Integration on Windows (using Appveyor); no 64x Py3.4 support
- Add negative index handling in Cases (not negative step)
- Deprecate __getslice__ in Cases(); affect Py < 2.6
- Improve coverage (+20%)
- Try logging
- Add dashboards; revamp export
- Speed up readthedocs
- Refactor BaseModel with abstract hook method
- Add warnings
- Deprecate warn util.write_csv, Cases.to_csv
- Add config file
- Add py35 environment yaml

'''
pass

126 Chapter 2. Community Benefits

CHAPTER 3

Indices and Tables

• genindex

• modindex

• search

127

	User Benefits
	Community Benefits
	Indices and Tables

