lagom Documentation
Release 0.0.3

Xingdong Zuo

Nov 24, 2019

Installation

9

Setup environment

Installing lagom

lagom

lagom.envs

lagom.experiment

lagom.metric: Metrics
lagom.networks: Networks
lagom.transform: Transformations

lagom.utils: Utils

10 lagom.vis: Visualization

11 Indices and tables

Python Module Index

Index

15

17

21

23

31

39

43

45

47

49

lagom Documentation, Release 0.0.3

inte for mycket och inte for lite, enkelhet dr bast
not too much and not too little, simplicity is often the best

lagom is a light PyTorch infrastructure to quickly prototype reinforcement learning algorithms.

lagom balances between the flexibility and the userability when developing reinforcement learning (RL) algorithms.
The library is built on top of PyTorch and provides modular tools to quickly prototype RL algorithms. However, we
do not go overboard, because going too low level is rather time consuming and prone to potential bugs, while going
too high level degrades the flexibility which makes it difficult to try out some crazy ideas.

We are continuously making lagom more ‘self-contained’ to run experiments quickly. Now, it internally supports base
classes for multiprocessing (master-worker framework) to parallelize (e.g. experiments and evolution strategies). It
also supports hyperparameter search by defining configurations either as grid search or random search.

One of the main pipelines to use lagom can be done as following:
1. Define environment and RL agent
2. User runner to collect data for agent
3. Define algorithm to train agent
4. Define experiment and configurations.

A graphical illustration is coming soon.

Installation 1

https://pytorch.org/

lagom Documentation, Release 0.0.3

2 Installation

CHAPTER 1

Setup environment

lagom Documentation, Release 0.0.3

4 Chapter 1. Setup environment

CHAPTER 2

Installing lagom

lagom Documentation, Release 0.0.3

6 Chapter 2. Installing lagom

CHAPTER 3

lagom

3.1 Agent

class lagom.BaseAgent (config, env, device, **kwargs)
Base class for all agents.

The agent could select an action from some data (e.g. observation) and update itself by defining a certain
learning mechanism.

Any agent should subclass this class, e.g. policy-based or value-based.
Parameters
* config (dict) — adictionary of configurations
* env (Env) — environment object.
* device (Device) —a PyTorch device
* xxkwargs — keyword aguments used to specify the agent

choose_action (x, **kwargs)
Returns the selected action given the data.

Note: It’s recommended to handle all dtype/device conversions between CPU/GPU or Tensor/Numpy
here.

The output is a dictionary containing useful items,
Parameters

* obs (object) — batched observation returned from the environment. First dimension is
treated as batch dimension.

* xxkwargs — keyword arguments to specify action selection.

Returns

lagom Documentation, Release 0.0.3

a dictionary of action selection output. It contains all useful information (e.g. action,
action_logprob, state_value). This allows the API to be generic and compatible with
different kinds of runner and agents.

Return type dict

learn (D, **kwargs)
Defines learning mechanism to update the agent from a batched data.

Parameters

e D (1ist)—alistof batched data to train the agent e.g. in policy gradient, this can be a list
of Trajectory.

* xxkwargs — keyword arguments to specify learning mechanism
Returns a dictionary of learning output. This could contain the loss and other useful metrics.
Return type dict

class lagom.RandomAgent (config, env, device, **kwargs)
A random agent samples action uniformly from action space.

choose_action (x, **kwargs)
Returns the selected action given the data.

Note: It’s recommended to handle all dtype/device conversions between CPU/GPU or Tensor/Numpy
here.

The output is a dictionary containing useful items,
Parameters

e obs (object) — batched observation returned from the environment. First dimension is
treated as batch dimension.

* xxkwargs — keyword arguments to specify action selection.
Returns

a dictionary of action selection output. It contains all useful information (e.g. action,
action_logprob, state_value). This allows the API to be generic and compatible with
different kinds of runner and agents.

Return type dict

learn (D, **kwargs)
Defines learning mechanism to update the agent from a batched data.

Parameters

* D (1ist)— alist of batched data to train the agent e.g. in policy gradient, this can be a list
of Trajectory.

* xxkwargs — keyword arguments to specify learning mechanism
Returns a dictionary of learning output. This could contain the loss and other useful metrics.

Return type dict

8 Chapter 3. lagom

lagom Documentation, Release 0.0.3

3.2 Data

class lagom.StepType
An enumeration.

class lagom.TimeStep (step_type: lagom.data.StepType, observation: object, reward: float, done: bool,
info: dict)

class lagom.Trajectory

3.3 Logger

class lagom.Logger
Log the information in a dictionary.

If a key is logged more than once, then the new value will be appended to a list.

Note: It uses pickle to serialize the data. Empirically, pickle is 2x faster than numpy . save and other
alternatives like yam1 is too slow and JSON does not support numpy array.

Warning: It is discouraged to store hierarchical structure, e.g. list of dict of list of ndarray. Because
pickling such complex and large data structure is extremely slow. Put dictionary only at the topmost level.
Large numpy array should be saved separately.

Example:

o Default:

>>> logger = Logger ()
>>> logger
>>> logger
>>> logger
>>> logger
>>> logger
>>> logger

'iteration', 1)
'train_loss', 0.
'iteration', 2)
'train_loss', 0.11)
'iteration', 3)
'train_loss', O.

>>> logger
OrderedDict ([('iteration', [1, 2, 3]), ('train_loss', [0.12, 0.11, 0.09])]

>>> logger.dump ()
Iteration: [1, 2, 3]
Train Loss: [0.12, 0.11, 0.09]

With indentation:

>>> logger.dump (indent=1)
Iteration: [1, 2, 3]
Train Loss: [0.12, 0.11, 0.09]

With specific keys:

>>> logger.dump (keys=["'iteration'])
Iteration: [1, 2, 3]

3.2. Data 9

lagom Documentation, Release 0.0.3

* With specific index:

>>> logger.dump (index=0)
Iteration: 1
Train Loss: 0.12

L]

With specific list of indices:

>>> logger.dump (index=[0, 2])
Iteration: [1, 3]
Train Loss: [0.12, 0.09]

__call__ (key, value)
Log the information with given key and value.

Note: The key should be semantic and each word is separated by _.

Parameters

clear ()

key (str)—key of the information

value (object) — value to be logged

Remove all loggings in the dictionary.

dump (keys=None, index=None, indent=0, border="")
Dump the loggings to the screen.

Parameters

save (f)

keys (list, optional)-alistof selected keys. If None, then use all keys. Default:
None

index (int/list, optional) — the index of logged values. It has following use
cases:

— scalar: aspecific index. If -1, then use last element.

— list: alist of indicies.

— None: all indicies.

indent (int, optional)- the number of tab indentation. Default: 0

border (str, optional)-— the string to print as header and footer

Save loggings to a file.

Parameters £ (str) - file path

3.4 Engine

class lagom.BaseEngine (config, **kwargs)
Base class for all engines.

It defines the training and evaluation process.

10

Chapter 3. lagom

lagom Documentation, Release 0.0.3

eval (n=None, **kwargs)
Evaluation process for one iteration.

Note: It is recommended to use Logger to store loggings.

Note: All parameterized modules should be called .eval() to specify evaluation mode.

Parameters
* n(int, optional) - n-thiteration for evaluation.
* xxkwargs — keyword aguments used for logging.
Returns a dictionary of evluation output
Return type dict

train (n=None, **kwargs)
Training process for one iteration.

Note: It is recommended to use Logger to store loggings.

Note: All parameterized modules should be called .train() to specify training mode.

Parameters
* n(int, optional)- n-thiteration for training.
* xxkwargs — keyword aguments used for logging.
Returns a dictionary of training output

Return type dict

3.5 Runner

class lagom.BaseRunner
Base class for all runners.

A runner is a data collection interface between the agent and the environment.

__call__ (agent, env, **kwargs)
Defines data collection via interactions between the agent and the environment.

Parameters
* agent (BaseAgent) — agent
* env (Env) — environment
* xxkwargs — keyword arguments for more specifications.

class lagom.EpisodeRunner

3.5. Runner 11

lagom Documentation, Release 0.0.3

class lagom.StepRunner (reset_on_call=True)

3.6 Evolution Strategies

class lagom.BaseES

Base class for all evolution strategies.

Note: The optimization is treated as minimization. e.g. maximize rewards is equivalent to minimize negative
rewards.

Note: For painless parallelization, we highly recommend to use concurrent.futures.ProcessPoolExecutor with
a few practical tips.

» Set max_workers argument to control the max parallelization capacity.

* When execution get stuck, try to use CloudpickleWrapper to wrap the objective function e.g. partic-
ularly for lambda, class methods

» Use with ProcessPoolExecutor once to wrap entire iterative ES generations. Because using this internally
for each generation, it can slow down the parallelization dramatically due to overheads.

* To reduce overheads further (e.g. PyTorch models, gym environments)
— Recreate such models for each generation will be very expensive.

Use initializer function for ProcessPoolExecutor

Within initializer function, define PyTorch models and gym environments as global variables Note
that the global variables are defined to each worker independently

Don’t forget to use with torch.no_grad to increase forward pass speed.

ask ()
Sample a set of new candidate solutions.

Returns a list of sampled candidate solutions
Return type list

result
Return a namedtuple of all results for the optimization.

It contains: * xbest: best solution evaluated * fbest: objective function value of the best solution *
evals_best: evaluation count when xbest was evaluated * evaluations: evaluations overall done * iterations:
number of iterations * xfavorite: distribution mean in “phenotype” space, to be considered as current best
estimate of the optimum * stds: effective standard deviations

tell (solutions, function_values)
Update the parameters of the population for a new generation based on the values of the objective function
evaluated for sampled solutions.

Parameters
e solutions (Ilist/ndarray) - candidate solutions returned from ask ()

* function_values (1ist) — alist of objective function values evaluated for the sam-
pled solutions.

12

Chapter 3. lagom

lagom Documentation, Release 0.0.3

class lagom.CMAES (x0, sigma0, opts=None)
Implements CMA-ES algorithm.

Note: Itis a wrapper of the original CMA-ES implementation.

Parameters
e x0 (11ist) - initial solution
* sigma0 (Iist) - initial standard deviation
* opts (dict) - adictionary of options, e.g. [‘popsize’, ‘seed’]
ask ()
Sample a set of new candidate solutions.
Returns a list of sampled candidate solutions
Return type list

result
Return a namedtuple of all results for the optimization.

It contains: * xbest: best solution evaluated * fbest: objective function value of the best solution *
evals_best: evaluation count when xbest was evaluated * evaluations: evaluations overall done * iterations:
number of iterations * xfavorite: distribution mean in “phenotype” space, to be considered as current best
estimate of the optimum * stds: effective standard deviations

tell (solutions, function_values)
Update the parameters of the population for a new generation based on the values of the objective function
evaluated for sampled solutions.

Parameters
¢ solutions (I1ist/ndarray) - candidate solutions returned from ask ()

* function_values (1ist) — a list of objective function values evaluated for the sam-
pled solutions.

class lagom.CEM (x0, sigma0, opts=None)

ask ()
Sample a set of new candidate solutions.

Returns a list of sampled candidate solutions
Return type list

result
Return a namedtuple of all results for the optimization.

It contains: * xbest: best solution evaluated * fbest: objective function value of the best solution *
evals_best: evaluation count when xbest was evaluated * evaluations: evaluations overall done * iterations:
number of iterations * xfavorite: distribution mean in “phenotype” space, to be considered as current best
estimate of the optimum * stds: effective standard deviations

tell (solutions, function_values)
Update the parameters of the population for a new generation based on the values of the objective function
evaluated for sampled solutions.

Parameters

3.6. Evolution Strategies 13

https://github.com/CMA-ES/pycma

lagom Documentation, Release 0.0.3

¢ solutions (I1ist/ndarray) - candidate solutions returned from ask ()

e function_values (1ist) — alist of objective function values evaluated for the sam-
pled solutions.

14 Chapter 3. lagom

CHAPTER 4

lagom.envs

class lagom.envs.RecordEpisodeStatistics (env, deque_size=100)

reset (**kwargs)
Resets the state of the environment and returns an initial observation.

Returns the initial observation.
Return type observation (object)

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).
Parameters action (object)— an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

Return type observation (object)
class lagom.envs.NormalizeObservation (env, clip=5.0, constant_moments=None)

class lagom.envs.NormalizeReward (env, clip=10.0, gamma=0.99, constant_var=None)

reset ()
Resets the state of the environment and returns an initial observation.

Returns the initial observation.

Return type observation (object)

15

lagom Documentation, Release 0.0.3

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).
Parameters action (object) — an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

Return type observation (object)

class lagom.envs.TimeStepEnv (env)

reset (**kwargs)
Resets the state of the environment and returns an initial observation.

Returns the initial observation.
Return type observation (object)

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).
Parameters action (object) — an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

Return type observation (object)

16 Chapter 4. lagom.envs

CHAPTER B

lagom.experiment

5.1 Config

class lagom.experiment.Grid (values)
A grid search over a list of values.

class lagom.experiment.Sample (f)
class lagom.experiment.Condition (f)

class lagom.experiment.Config (items, num_sample=1, keep_dict_order=False)
Defines a set of configurations for the experiment.

The configuration includes the following possible items:
* Hyperparameters: learning rate, batch size etc.
» Experiment settings: training iterations, logging directory, environment name etc.

All items are stored in a dictionary. It is a good practice to semantically name each item e.g. network.lr indicates
the learning rate of the neural network.

For hyperparameter search, we support both grid search (Grid) and random search (Sample).
Call make_configs () to generate a list of all configurations, each is assigned with a unique ID.

note:

For random search over small positive float e.g. learning rate, it is recommended,
—to
use log-uniform distribution, i.e.
math::
\text{logU} (a, b) \sim \exp(U(\log(a), \log(b)))

An example: “np.exp (np.random.uniform(low=np.log(low), high=np.log(high)))"

Because direct uniform sampling is very “numerically unstable’ _

17

lagom Documentation, Release 0.0.3

Warning: The random seeds should not be set here. Instead, it should be handled by
BaseExperimentMaster and BaseExperimentWorker.

Example:
>>> config = Config({'log.dir': 'some path', 'network.lr': Grid([le-3, 5e-31]),
—'env.id': Grid(['CartPole-vl', '"Ant-v2'])}, num_sample=1, keep_dict_order=False)

>>> import pandas as pd
>>> print (pd.DataFrame (config.make_configs()))

D env.id log.dir network.lr
0 0 CartPole-vl some path 0.001
1 1 Ant-v2 some path 0.001
2 2 CartPole-vl some path 0.005
3 3 Ant-v2 some path 0.005
Parameters

* items (dict) - adictionary of all configuration items.

* num_sample (int)— number of samples for random configuration items. If grid search
is also provided, then the grid will be repeated num_sample of times.

* keep_dict_order (bool) —if True, then each generated configuration has the same
key ordering with items.
make_configs ()
Generate a list of all possible combinations of configurations, including grid search and random search.
Returns a list of all possible configurations

Return type list

5.2 Run experiment

lagom.experiment .run_experiment (run, config, seeds, log_dir, max_workers, chunksize=1,
use_gpu=False, gpu_ids=None)
A convenient function to parallelize the experiment (master-worker pipeline).

It is implemented by using concurrent.futures.ProcessPoolExecutor

It automatically creates all subfolders for each pair of configuration and random seed to store the loggings of
the experiment. The root folder is given by the user. Then all subfolders for each configuration are created with
the name of their job IDs. Under each configuration subfolder, a set subfolders are created for each random seed
(the random seed as folder name). Intuitively, an experiment could have following directory structure:

- logs
- 0 # ID number
- 123 # random seed
- 345
- 567

- 123
- 345
- 567

(continues on next page)

18 Chapter 5. lagom.experiment

lagom Documentation, Release 0.0.3

(continued from previous page)

- 123
- 345
- 567

- 123
- 345
- 567

- 123
- 345
- 567

Parameters

* run (function)— afunction that defines an algorithm, it must take the arguments (config,
seed, device, logdir)

* config (Config)—a Config object defining all configuration settings
e seeds (1ist)— alist of random seeds
* log_dir (str)— astring to indicate the path to store loggings.

* max_workers (int)— argument for ProcessPoolExecutor. if None, then all experiments
run serially.

* chunksize (int) - argument for Executor.map()
* use_gpu (bool) —if True, then use CUDA. Otherwise, use CPU.

* gpu_ids (1ist) — if None, then use all available GPUs. Otherwise, only use the GPU
device defined in the list.

5.2. Run experiment 19

lagom Documentation, Release 0.0.3

20

Chapter 5. lagom.experiment

CHAPTER O

lagom.metric: Metrics

lagom.metric.returns (gamma, rewards)

lagom.metric.bootstrapped_returns (gamma, rewards, last_V, reach_terminal)
Return (discounted) accumulated returns with bootstrapping for a batch of episodic transitions.

Formally, suppose we have all rewards (71, ..., 77), it computes

Qu=re+vri1 4+ e TV (s740)

Note: The state values for terminal states are masked out as zero !

lagom.metric.td0_target (gamma, rewards, Vs, last_V, reach_terminal)
Calculate TD(0) targets of a batch of episodic transitions.

Let 71,72,...,rr be a list of rewards and let V' (sg), V(s1),...,V(sr—1), V(sr) be a list of state values in-
cluding a last state value. Let v be a discounted factor, the TD(0) targets are calculated as follows

re +yV(s), ¥t =1,2,...,T

Note: The state values for terminal states are masked out as zero !

lagom.metric.td0_error (gamma, rewards, Vs, last_V, reach_terminal)
Calculate TD(0) errors of a batch of episodic transitions.

Let r1,79,..., 7 be a list of rewards and let V' (sg), V(s1),...,V(sr—1), V(sr) be a list of state values in-
cluding a last state value. Let y be a discounted factor, the TD(0) errors are calculated as follows

Ot = o1 + YV (se401) — V(se)

Note: The state values for terminal states are masked out as zero !

21

lagom Documentation, Release 0.0.3

lagom.metric.gae (gamma, lam, rewards, Vs, last_V, reach_terminal)
Calculate the Generalized Advantage Estimation (GAE) of a batch of episodic transitions.

Let &; be the TD(0) error at time step ¢, the GAE at time step ¢ is calculated as follows

AFAEOA) = D (A e
k=0

lagom.metric.vtrace (behavior_logprobs, target_logprobs, gamma, Rs, Vs, last_V, reach_terminal,
clip_rho=1.0, clip_pg_rho=1.0)

22 Chapter 6. lagom.metric: Metrics

CHAPTER /

lagom.networks: Networks

class lagom.networks.Module (**kwargs)
Wrap PyTorch nn.module to provide more helper functions.

from vec (x)
Set the network parameters from a single flattened vector.

Parameters x (Tensor) — A single flattened vector of the network parameters with consistent
size.

load (f)
Load the network parameters from a file.

It complies with the recommended approach for saving a model in PyTorch documentation.
Parameters £ (str)—file path.

num_params
Returns the total number of parameters in the neural network.

num_trainable_params
Returns the total number of trainable parameters in the neural network.

num_untrainable_params
Returns the total number of untrainable parameters in the neural network.

save (f)
Save the network parameters to a file.

It complies with the recommended approach for saving a model in PyTorch documentation.

Note: It uses the highest pickle protocol to serialize the network parameters.

Parameters £ (str) - file path.

to_vec ()
Returns the network parameters as a single flattened vector.

23

https://pytorch.org/docs/master/notes/serialization.html#best-practices
https://pytorch.org/docs/master/notes/serialization.html#best-practices

lagom Documentation, Release 0.0.3

lagom.networks.ortho_init (module, nonlinearity=None, weight_scale=1.0, constant_bias=0.0)
Applies orthogonal initialization for the parameters of a given module.

Parameters
* module (nn.Module)— A module to apply orthogonal initialization over its parameters.

* nonlinearity (str, optional) — Nonlinearity followed by forward pass of the
module. When nonlinearity is not None, the gain will be calculated and weight_scale
will be ignored. Default: None

* weight_scale (float, optional)— Scaling factor to initialize the weight. Ignored
when nonlinearity is not None. Default: 1.0

e constant_bias (float, optional)- Constant value to initialize the bias. Default:
0.0

Note: Currently, the only supported module are elementary neural network layers, e.g. nn.Linear, nn.Conv2d,
nn.LSTM. The submodules are not supported.

Example:

>>> a = nn.Linear (2, 3)
>>> ortho_init (a)

lagom.networks.linear lr_ scheduler (optimizer, N, min_Ir)
Defines a linear learning rate scheduler.

Parameters
* optimizer (Optimizer)— optimizer

* N (int)— maximum bounds for the scheduling iteration e.g. total number of epochs, itera-
tions or time steps.

* min_1r (float) - lower bound of learning rate

lagom.networks.make_£fc (input_dim, hidden_sizes)
Returns a ModuleList of fully connected layers.

Note: All submodules can be automatically tracked because it uses nn.ModuleList. One can use this function
to generate parameters in BaseNetwork.

Example:
>>> make_fc (3, [4, 5, 6])
ModuleList (
(0) : Linear (in_features=3, out_features=4, bias=True)
(1) : Linear (in_features=4, out_features=5, bias=True)
(2) : Linear (in_features=5, out_features=6, bias=True)
)
Parameters

* input_dim (int) - input dimension in the first fully connected layer.
* hidden_sizes (1ist)— alist of hidden sizes, each for one fully connected layer.

Returns A ModuleList of fully connected layers.

24 Chapter 7. lagom.networks: Networks

lagom Documentation, Release 0.0.3

Return type nn.ModuleList

lagom.networks.make_cnn (input_channel, channels, kernels, strides, paddings)
Returns a ModuleList of 2D convolution layers.

Note: All submodules can be automatically tracked because it uses nn.ModuleList. One can use this function
to generate parameters in BaseNetwork.

Example:

>>> make_cnn (input_channel=3, channels=[16, 32], kernels=[4, 3], strides=[2, 1],
—paddings=[1, 0])
ModulelList (

(0): Conv2d(3, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))

(1) : Conv2d(1l6, 32, kernel_size=(3, 3), stride=(1, 1))

Parameters
* input_channel (int) - input channel in the first convolution layer.
* channels (1ist)—alist of channels, each for one convolution layer.
* kernels (1ist)—alist of kernels, each for one convolution layer.
* strides (1ist)—alist of strides, each for one convolution layer.
* paddings (11ist) - alist of paddings, each for one convolution layer.

Returns A ModuleList of 2D convolution layers.

Return type nn.ModuleList

lagom.networks.make_transposed_cnn (input_channel, channels, kernels, strides, paddings, out-

put_paddings)
Returns a ModuleList of 2D transposed convolution layers.

Note: All submodules can be automatically tracked because it uses nn.ModuleList. One can use this function
to generate parameters in BaseNetwork.

Example:

make_transposed_cnn (input_channel=3,
channels=[16, 3217,
kernels=[4, 3],
strides=[2, 11,
paddings=[1, 0],
output_paddings=[1, 0])
ModulelList (
(0) : ConvIranspose2d(3, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1),
—output_padding=(1, 1))
(1) : ConvTranspose2d(l6, 32, kernel_size=(3, 3), stride=(1, 1))

Parameters

* input_channel (int) - input channel in the first transposed convolution layer.

25

lagom Documentation, Release 0.0.3

* channels (1ist)— alist of channels, each for one transposed convolution layer.
* kernels (1ist)— alist of kernels, each for one transposed convolution layer.
* strides (1ist)—alist of strides, each for one transposed convolution layer.
* paddings (11ist) - alist of paddings, each for one transposed convolution layer.

* output_paddings (11ist)— alist of output paddings, each for one transposed convolu-
tion layer.

Returns A ModuleList of 2D transposed convolution layers.

Return type nn.ModuleList

class lagom.networks.MDNHead (in_features, out_features, num_density, **kwargs)

forward (x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

loss (logit_pi, mean, std, target)
Calculate the MDN loss function.

The loss function (negative log-likelihood) is defined by:

K

1< N
L= _N Z In (Z H Wk(xmd)./\/‘ (Mk(xn,d)a O'k(xn,d)))
n=1

k=1d=1

For better numerical stability, we could use log-scale:

K D
(Z exp {Z In 7k (Zn,a) + N (g (@n.q), Jk(.’lin’d»})

1
n k=1 d=1

N
L:—me

N
1

Note: One should always use the second formula via log-sum-exp trick. The first formula is numerically
unstable resulting in +/- Inf and NaN error.

The log-sum-exp trick is defined by

N N
log Z exp(z;) = a + log Z exp(z; — a)
i=1 i=1

where a = max;(z;)
Parameters
* logit_pi (Tensor) — the logit of mixing coefficients, shape [N, K, D]
* mean (Tensor)— mean of Gaussian mixtures, shape [N, K, D]

* std (Tensor) — standard deviation of Gaussian mixtures, shape [N, K, D]

26 Chapter 7. lagom.networks: Networks

lagom Documentation, Release 0.0.3

* target (Tensor) — target tensor, shape [N, D]
Returns calculated loss
Return type Tensor

sample (logit_pi, mean, std, tau=1.0)
Sample from Gaussian mixtures using reparameterization trick.

» Firstly sample categorically over mixing coefficients to determine a specific Gaussian

* Then sample from selected Gaussian distribution

Parameters
* logit_pi (Tensor) — the logit of mixing coefficients, shape [N, K, D]
* mean (Tensor)— mean of Gaussian mixtures, shape [N, K, D]
* std (Tensor) — standard deviation of Gaussian mixtures, shape [N, K, D]

* tau (float) - temperature during sampling, it controls uncertainty. * If 7 > 1: increase
uncertainty * If 7 < 1: decrease uncertainty

Returns sampled data with shape [N, D]

Return type Tensor

7.1 Recurrent Neural Networks

class lagom.networks.LayerNormLSTMCell (input_size, hidden_size)

class lagom.networks.LSTMLayer (cell, *cell_args)

forward (input, state)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class lagom.networks.StackedLSTM (num_layers, layer, first_layer_args, other_layer_args)

forward (input, states)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

lagom.networks.make_lnlstm (input_size, hidden_size, num_layers=1)

7.1. Recurrent Neural Networks 27

lagom Documentation, Release 0.0.3

7.2 RL components

class lagom.networks.CategoricalHead (feature_dim, num_action, device, **kwargs)
Defines a module for a Categorical (discrete) action distribution.

Example

>>> import torch

>>> action_head = CategoricalHead (30, 4, 'cpu')
>>> action_head(torch.randn (2, 30))

Categorical (probs: torch.Size([2, 4]))

Parameters
* feature_dim (int) - number of input features
e num_action (int)— number of discrete actions
* device (torch.device)— PyTorch device
* xxkwargs — keyword arguments for more specifications.
forward (x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class lagom.networks.DiagGaussianHead (feature_dim, action_dim, device, std0, **kwargs)
Defines a module for a diagonal Gaussian (continuous) action distribution which the standard deviation is state
independent.

The network outputs the mean p(z) and the state independent logarithm of standard deviation log o (allowing
to optimize in log-space, i.e. both negative and positive).

The standard deviation is obtained by applying exponential function exp(x).

Example

>>> import torch
>>> action_head = DiagGaussianHead (10, 4, 'cpu', 0.45)
>>> action_dist = action_head(torch.randn (2, 10))
>>> action_dist.base_dist
Normal (loc: torch.Size([2, 4]), scale: torch.Size([2, 4]))
>>> action_dist.base_dist.stddev
tensor ([[0.4500, 0.4500, 0.4500, 0.45007,
[0.4500, 0.4500, 0.4500, 0.4500]1, grad_fn=<ExpBackward>)

Parameters

* feature_dim (int) - number of input features

28 Chapter 7. lagom.networks: Networks

lagom Documentation, Release 0.0.3

e action_dim (int) - flat dimension of actions

* device (torch.device)— PyTorch device

stdO0 (f1oat) — initial standard deviation
* xxkwargs — keyword arguments for more specifications.
forward (x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

7.2. RL components 29

lagom Documentation, Release 0.0.3

30

Chapter 7. lagom.networks: Networks

CHAPTER 8

lagom.transform: Transformations

class lagom.transform.Describe (count:
repr_indent: int = 0, repr_prefix: str = None)

lagom.transform.describe (x, axis=-1, repr_indent=0, repr_prefix=None)

lagom.transform.interp_curves (x,y)

int, mean: float, std: float, min: float, max: float,

Piecewise linear interpolation of a discrete set of data points and generate new = — y values from the interpolated

line.

It receives a batch of curves with — y values, a global min and max of the x-axis are calculated over the entire
batch and new x-axis values are generated to be applied to the interpolation function. Each interpolated curve

will share the same values in x-axis.

Note:

This is useful for plotting a set of curves with uncertainty bands where each curve has data points at

different x values. To generate such plot, we need the set of y values with consistent = values.

polynomial interpolation which the resulting curve can be extremely misleading.

Warning: Piecewise linear interpolation often can lead to more realistic uncertainty bands. Do not use

Example:

>>> import matplotlib.pyplot as plt

>>> x1 = [4, 5, 7, 13, 20]

>>> yl = [0.25, 0.22, 0.53, 0.37, 0.55]

>>> x2 = [2, 4, 6, 7, 9, 11, 15]

>>> y2 = [0.03, 0.12, 0.4, 0.2, 0.18, 0.32, 0.39]
>>> plt.scatter(xl, yl, c='blue')

>>> plt.scatter (x2, y2, c='red')

(continues on next page)

31

lagom Documentation, Release 0.0.3

(continued from previous page)

>>> new_x, new_y = interp_curves([x1l, x2], I[yl, y2], num_point=100)
>>> plt.plot(new_x[0], new_y[0], 'blue')
>>> plt.plot(new_x[1], new_y[1l], 'red')

Parameters

* x (1ist)— abatch of x values.

* y (1ist)—abatch of y values.

* num_point (int)— number of points to generate from the interpolated line.
Returns

a tuple of two lists. A list of interpolated x values (shared for the batch of curves) and fol-
lowed by a list of interpolated y values.

Return type tuple
lagom.transform.geometric_cumsum (alpha, x)
Calculate future accumulated sums for each element in a list with an exponential factor.

Given input data x4, ..., z, and exponential factor « € [0, 1], it returns an array y with the same length and
each element is calculated as following

n—i—1

) -
Yi =% Faxip1 QT+ Tn_1 +a" 'y,

Note: To gain the optimal runtime speed, we use scipy.signal.lfilter

Example

>>> geometric_cumsum(0.1,
array ([[1.234, 2.34 , 3.4 , 4. 11)

Parameters
* alpha (float) — exponential factor between zero and one.
* x (1ist)—input data
Returns calculated data
Return type ndarray
lagom.transform.explained_variance (y_true, y_pred, **kwargs)
Computes the explained variance regression score.
It involves a fraction of variance that the prediction explains about the ground truth.

Let ¢ be the predicted output and let y be the ground truth output. Then the explained variance is estimated as
follows:

~ Var(y —)

EV(ya g) =1 Var(y)

The best score is 1.0, and lower values are worse. A detailed interpretation is as following:

32 Chapter 8. lagom.transform: Transformations

lagom Documentation, Release 0.0.3

* EV = 1: perfect prediction
* EV = 0: might as well have predicted zero

* EV < 0: worse than just predicting zero

Note: It calls the function from scikit-1learn which handles exceptions better e.g. zero division, batch
size.

Example

>>> explained_variance(y_true=[3, -0.5, 2, 7], y_pred=[2.5, 0.0, 2, 8])
0.9571734475374732

>>> explained_variance(y_true=[[3, -0.5, 2, 7]], y_pred=[[2.5, 0.0, 2, 811)
0.9571734475374732

>>> explained_variance(y_true=[[0.5, 11, [-1, 11, [7, -6]], y_pred=[[0, 2], [-1
—2]1, [8, -511)
0.9838709677419355

>>> explained_variance(y_true=[[0.5, 11, [-1, 101, [7, -611, y_pred=[[0, 2], [-1
—0.000051, [8, =511)
0.6704023148857179

o

Parameters
* y_true (1ist) - ground truth output
* y_pred (1ist) - predicted output
* xxkwargs — keyword arguments to specify the estimation of the explained variance.
Returns estimated explained variance
Return type float
class lagom.transform.LinearSchedule (initial, final, N, start=0)

A linear scheduling from an initial to a final value over a certain timesteps, then the final value is fixed constantly
afterwards.

Note: This could be useful for following use cases:

* Decay of epsilon-greedy: initialized with 1.0 and keep with start time steps, then linearly decay to
final over N time steps, and then fixed constantly as final afterwards.

* Beta parameter in prioritized experience replay.

Note that for learning rate decay, one should use PyTorch optim.lr_scheduler instead.

33

lagom Documentation, Release 0.0.3

Example

>>> gscheduler = LinearSchedule (initial=1.0, final=0.1, N=3, start=0)
>>> [scheduler (i) for i in range(6)]
[1.0, 0.7, 0.4, 0.1, 0.1, 0.1]

Parameters
e initial (float) —initial value
e final (float) - final value
* N (int) - number of scheduling timesteps
* start (int, optional) - the timestep to start the scheduling. Default: 0
__call_(x)
Returns the current value of the scheduling.
Parameters x (int) — the current timestep.
Returns current value of the scheduling.
Return type float

lagom.transform.rank_transform (x, centered=True)
Rank transformation of a vector of values. The rank has the same dimensionality as the vector. Each element in
the rank indicates the index of the ascendingly sorted input. i.e. ranks[1i] = k, it means i-th element in the
input is k-th smallest value.

Rank transformation reduce sensitivity to outliers, e.g. in OpenAl ES, gradient computation involves fitness
values in the population, if there are outliers (too large fitness), it affects the gradient too much.

Note that a centered rank transformation to the range [-0.5, 0.5] is supported by an option.

Example

>>> rank_transform([3, 14, 1], centered=True)
array ([0. , 0.5, -0.51)

>>> rank_transform([3, 14, 1], centered=False)
array ([1, 2, 0])

Parameters
* x (list/ndarray)— a vector of values.

* centered (bool, optional) — if True, then centered the rank transformation to
[—0.5,0.5]. Defualt: True

Returns an numpy array of ranks of input data
Return type ndarray
class lagom.transform.PolyakAverage (alpha)
Keep a running average of a quantity via Polyak averaging.

Compared with estimating mean, it is more sentitive to recent changes.

34 Chapter 8. lagom.transform: Transformations

lagom Documentation, Release 0.0.3

Parameters alpha (float) — factor to control the sensitivity to recent changes, in the range [0,
1]. Zero is most sensitive to recent change.

__call_ (x)
Update the estimate.

Parameters x (object) — additional data to update the estimation of running average.

get_current ()
Return the current running average.

class lagom.transform.RunningMeanVar (shape)
Estimates sample mean and variance by using Chan’s method.

It supports for both scalar and multi-dimensional data, however, the input is expected to be batched. The first
dimension is always treated as batch dimension.

Note: For better precision, we handle the data with np.float64.

Warning: To use estimated moments for standardization, remember to keep the precision np.float64 and
calculated as ..math:frac{x - mu}{sqrt{sigma™2 + 10"{-8}}}.

Example

>>> f = RunningMeanVar (shape=())
>>> f£([1, 21)

>>> f£([3])

>>> f£([4])

>>> f.mean
2.499937501562461
>>> f.var
1.2501499923440393

__call_ (x)
Update the mean and variance given an additional batched data.

Parameters x (ob ject) — additional batched data.

Returns the total number of samples so far.

lagom.transform.smooth_f£filter (x, window_length, polyorder, **kwargs)
Smooth a sequence of noisy data points by applying Savitzky—Golay filter. It uses least squares to fit a poly-
nomial with a small sliding window and use this polynomial to estimate the point in the center of the sliding
window.

This is useful when a curve is highly noisy, smoothing it out leads to better visualization quality.

Example

>>> import matplotlib.pyplot as plt

35

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter

lagom Documentation, Release 0.0.3

>>> x = np.linspace (0, 4+2xnp.pi, num=100)
>>> y = x*x(np.sin(x) + np.random.random (100) «4)
>>> y2 = smooth_filter(y, window_length=31, polyorder=10)

>>> plt.plot(x, V)
>>> plt.plot(x, y2, 'red')

Parameters
* x (11ist) - one-dimensional vector of scalar data points of a curve.
* window_length (int) - the length of the filter window
* polyorder (int) — the order of the polynomial used to fit the samples
Returns an numpy array of smoothed curve data
Return type ndarray
class lagom.transform.SegmentTree (capacity, operation, identity_element)
Defines a segment tree data structure.
It can be regarded as regular array, but with two major differences
* Value modification is slower: O(In(capacity)) instead of O(1)

« Efficient reduce operation over contiguous subarray: O(In(segment size))

Parameters
* capacity (int) — total number of elements, it must be a power of two.
* operation (lambda) — binary operation forming a group, e.g. sum, min
* identity_element (object) —identity element in the group, e.g. O for sum
reduce (start=0, end=None)
Returns result of operation(A[start], operation(A[start+1], operation(... Afend - 1]))).
Parameters
e start (int) — start of segment
* end (int) - end of segment
Returns result of reduce operation
Return type object

class lagom.transform.SumTree (capacity)
Defines the sum tree for storing replay priorities.

Each leaf node contains priority value. Internal nodes maintain the sum of the priorities of all leaf nodes in their
subtrees.

find prefixsum_index (prefixsum)
Find the highest index i in the array such that sum(A[0] + A[1] +... + A[i - 1]) <= prefixsum

if array values are probabilities, this function efficiently sample indices according to the discrete probabil-
ity.
Parameters prefixsum (f1oat) — prefix sum.

Returns highest index satisfying the prefixsum constraint

36 Chapter 8. lagom.transform: Transformations

lagom Documentation, Release 0.0.3

Return type int

sum (start=0, end=None)
Return A[start] +... + Aflend - 1]

class lagom.transform.MinTree (capacity)

min (start=0, end=None)
Returns min(A[start], ..., A[lend])

37

lagom Documentation, Release 0.0.3

38

Chapter 8. lagom.transform: Transformations

CHAPTER 9

lagom.utils: Utils

lagom.utils.set_global_seeds (seed)

Set the seed for generating random numbers.

It sets the following dependencies with the given random seed:
1. PyTorch
2. Numpy

3. Python random

Parameters seed (int) — a given seed.

class lagom.utils.Seeder (init_seed=0)

A random seed generator.

Given an initial seed, the seeder can be called continuously to sample a single or a batch of random seeds.

Note: The seeder creates an independent RandomState to generate random numbers
RandomState in np . random.

. It does not affect the

Example:

>>> seeder = Seeder (init_seed=0)
>>> seeder (size=b5)
[209652396, 398764591, 924231285, 1478610112, 441365315]

__call (size=1)
Return the sampled random seeds according to the given size.

Parameters size (int or I1ist)- The size of random seeds to sample.
Returns a list of sampled random seeds.

Return type list

39

lagom Documentation, Release 0.0.3

9.1 Smart data type converter

lagom.utils.tensorify (x, device)

lagom.utils.numpify (x, dtype=None)

9.2 Use Python multiprocessing library

class lagom.utils.ProcessWorker (master_conn, worker_conn)
Base class for all workers implemented with Python multiprocessing.Process.

It communicates with master via a Pipe connection. The worker is stand-by infinitely waiting for task from
master, working and sending back result. When it receives a close command, it breaks the infinite loop and
close the connection.

work (task_id, task)
Work on the given task and return the result.

Parameters
e task_id (int) — the task ID.
* task (object)— a given task.
Returns working result.
Return type object

class lagom.utils.ProcessMaster (worker_class, num_worker)
Base class for all masters implemented with Python multiprocessing.Process.

It creates a number of workers each with an individual Process. The communication between master and each
worker is via independent Pipe connection. The master assigns tasks to workers. When all tasks are done, it
stops all workers and terminate all processes.

Note: If there are more tasks than workers, then tasks will be splitted into chunks. If there are less tasks than
workers, then we reduce the number of workers to the number of tasks.

assign_tasks (fasks)
Assign a given list of tasks to the workers and return the received results.

Parameters tasks (1ist)— alist of tasks
Returns received results
Return type object

close ()
Defines everything required after finishing all the works, e.g. stop all workers, clean up.

make_tasks ()
Returns a list of tasks.

Returns a list of tasks

Return type list

40 Chapter 9. lagom.utils: Utils

lagom Documentation, Release 0.0.3

9.3 Serialization

lagom.utils.pickle_dump (obj, f, ext=".pkl’")
Serialize an object using pickling and save in a file.

Note: It uses cloudpickle instead of pickle to support lambda function and multiprocessing. By default, the
highest protocol is used.

Note: Except for pure array object, it is not recommended to use np . save because it is often much slower.

Parameters
* obj (object) — a serializable object
* f (str/Path) —file path
* ext (str, optional)—file extension. Default: .pkl
lagom.utils.pickle_load (f)
Read a pickled data from a file.
Parameters £ (str/Path) — file path

lagom.utils.yaml_ dump (0bj, f, ext="-yml’)
Serialize a Python object using YAML and save in a file.

Note: YAML is recommended to use for a small dictionary and it is super human-readable. e.g. configuration
settings. For saving experiment metrics, it is better to use pickle dump ().

Note: Except for pure array object, it is not recommended to use np . 1oad because it is often much slower.

Parameters
* obj (object) — a serializable object
* f (str/Path) —file path
* ext (str, optional) - file extension. Default: .yml
lagom.utils.yaml_load (f)
Read the data from a YAML file.
Parameters £ (str/Path) — file path

class lagom.utils.CloudpickleWrapper (x)
Uses cloudpickle to serialize contents (multiprocessing uses pickle by default)

This is useful when passing lambda definition through Process arguments.

9.3. Serialization 41

lagom Documentation, Release 0.0.3

9.4 Misc

lagom.utils.color_str (string, color, bold=False)
Returns stylized string with coloring and bolding for printing.

Example:

>>> print (color_str('lagom', 'green', bold=True))

Parameters
* string (str) - input string
* color (str) - color name
* bold (bool, optional)-if True, then the string is bolded. Default: False
Returns stylized string
Return type out
lagom.utils.timed (color="green’, bold=False)
A decorator to print the total time of executing a body function.
Parameters
* color (str, optional)-color name. Default: ‘green’
* bold (bool, optional)-if True, then the verbose is bolded. Default: False
lagom.utils.timeit (_func=None, *, color="green’, bold=False)

lagom.utils.ask_yes_or_no (msg)
Ask user to enter yes or no to a given message.

Parameters msg (str)— a message
class lagom.utils.IntervalConditioner (interval, mode)

class lagom.utils.NConditioner (max_n, num_conditions, mode)

42 Chapter 9. lagom.utils: Utils

cHAaPTER 10

lagom.vis: Visualization

class lagom.vis.ImageViewer (max_width=500)
Display an image from an RGB array in an OpenGL window.

Example:

imageviewer = ImageViewer (max_width=500)
image = np.asarray(Image.open('x.jpg'))
imageviewer (image)

__call (x)
Create an image from the given RGB array and display to the window.

Parameters x (ndarray)— RGB array

close ()
Close the Window.

class lagom.vis.GridImage (ncol=38, padding=2, pad_value=0)
Generate a grid of images. The images can be iteratively added.

Example:

grid = GridImage (ncol=8, padding=5, pad_value=0)

a = np.random.randint (0, 255+1, size=[10, 3, 64, 64])
grid.add(a)
grid()

Reference:
* https://github.com/pytorch/vision/blob/master/torchvision/utils.py

* https://github.com/facebookresearch/visdom/blob/master/py/visdom/__init__.py

Parameters

43

https://github.com/pytorch/vision/blob/master/torchvision/utils.py
https://github.com/facebookresearch/visdom/blob/master/py/visdom/__init__.py

lagom Documentation, Release 0.0.3

* ncol (int, optional)-—Number of images to show in each row of the grid. Final grid
size is [N/ncol, ncol]. Default: 8.

* padding (int, optional)-— Number of paddings. Default: 2.
* pad_value (float, optional)-Padding value in the range [0, 255]. Black is 0 and
white 255. Default: 0
__call__ (**kwargs)
Make grid of images.

Parameters xxkwargs — keyword aguments used to specify the grid of images.

Returns a grid of image with shape [H, W, C] and dtype np.uint8

Return type Image

add (x)
Add a new data for making grid images.

Parameters x (1ist/ndarray) — a list or ndarray of images, with shape either [H, W], [C,
H, W]or [N, C, H, W]

lagom.vis.set_ticker (ax, axis="x’, num=None, KM_format=False, integer=False)

lagom.vis.read_xy (log_folder, file_name, get_x, get_y, smooth_out=False, smooth_kws=None,
point_step=1)

44 Chapter 10. lagom.vis: Visualization

cHAPTER 11

Indices and tables

* genindex
* modindex

e search

45

lagom Documentation, Release 0.0.3

46

Chapter 11. Indices and tables

Python Module Index

lagom, 7

lagom.
.experiment, 17
lagom.
.networks, 23
lagom.
lagom.
lagom.

lagom

lagom

envs, 15
metric, 21
transform, 31

utils, 39
vis, 43

47

lagom Documentation, Release 0.0.3

48

Python Module Index

Index

Symbols

__call__ () (lagom.BaseRunner method), 11

__call__ () (lagom.Logger method), 10

_call__ () (lagom.transform.LinearSchedule
method), 34

_call__ ()
method), 35

__call__ () (lagom.transform.RunningMeanVar
method), 35

__call__ () (lagom.utils.Seeder method), 39

__call__ () (lagom.vis.Gridlmage method), 44

__call__ () (lagom.vis.ImageViewer method), 43

A

add
ask
ask

(lagom.transform.PolyakAverage

) (lagom.vis.Gridlmage method), 44

) (lagom.BaseES method), 12

) (lagom.CEM method), 13

ask () (lagom.CMAES method), 13

ask_yes_or_no () (in module lagom.utils), 42
assign_tasks () (lagom.utils.ProcessMaster
method), 40

—~ o~ o~ —~

B

BaseAgent (class in lagom), 7
BaseEngine (class in lagom), 10
BaseES (class in lagom), 12
BaseRunner (class in lagom), 11
bootstrapped_returns ()
lagom.metric), 21

(in module

C

CategoricalHead (class in lagom.networks), 28
CEM (class in lagom), 13

choose_action () (lagom.BaseAgent method), 7
choose_action () (lagom.RandomAgent method), 8
clear () (lagom.Logger method), 10

close () (lagom.utils.ProcessMaster method), 40
close () (lagom.vis.ImageViewer method), 43
CloudpickleWrapper (class in lagom.utils), 41

CMAES (class in lagom), 12

color_str () (in module lagom.utils), 42
Condition (class in lagom.experiment), 17
Config (class in lagom.experiment), 17

D

Describe (class in lagom.transform), 31
describe () (in module lagom.transform), 31
DiagGaussianHead (class in lagom.networks), 28
dump () (lagom.Logger method), 10

E

EpisodeRunner (class in lagom), 11

eval () (lagom.BaseEngine method), 10

explained_variance () (in
lagom.transform), 32

module

F

find_prefixsum_index ()
(lagom.transform.SumTree method), 36

forward () (lagom.networks.CategoricalHead
method), 28

forward () (lagom.networks.DiagGaussianHead
method), 29

forward () (lagom.networks.LSTMLayer method), 27

forward () (lagom.networks. MDNHead method), 26

forward () (lagom.networks.StackedLSTM method),
27

from_vec () (lagom.networks.Module method), 23

G

gae () (in module lagom.metric), 21
geometric_cumsum () (in module lagom.transform),
32

get_current ()
method), 35

Grid (class in lagom.experiment), 17

GridImage (class in lagom.vis), 43

(lagom.transform. PolyakAverage

49

lagom Documentation, Release 0.0.3

ImageViewer (class in lagom.vis), 43
interp_curves () (in module lagom.transform), 31
IntervalConditioner (class in lagom.utils), 42

L

lagom (module), 7

lagom.envs (module), 15

lagom.experiment (module), 17

lagom.metric (module), 21

lagom.networks (module), 23

lagom.transform (module), 31

lagom.utils (module), 39

lagom.vis (module), 43

LayerNormLSTMCell (class in lagom.networks), 277

learn () (lagom.BaseAgent method), 8

learn () (lagom.RandomAgent method), 8

linear_lr_scheduler () (in
lagom.networks), 24

LinearSchedule (class in lagom.transform), 33

load () (lagom.networks.Module method), 23

Logger (class in lagom), 9

loss () (lagom.networks. MDNHead method), 26

LSTMLayer (class in lagom.networks), 27

M

make_cnn () (in module lagom.networks), 25
make_configs () (lagom.experiment.Config method),
18
make_fc () (in module lagom.networks), 24
make_1lnlstm () (in module lagom.networks), 27
make_tasks () (lagom.utils.ProcessMaster method),
40
make_transposed_cnn ()
lagom.networks), 25
MDNHead (class in lagom.networks), 26
min () (lagom.transform.MinTree method), 37
MinTree (class in lagom.transform), 37
Module (class in lagom.networks), 23

N

n (lagom.transform.RunningMeanVar attribute), 35
NConditioner (class in lagom.utils), 42
NormalizeObservation (class in lagom.envs), 15
NormalizeReward (class in lagom.envs), 15
num_params (lagom.networks.Module attribute), 23
(lagom.networks.Module

module

(in module

num_trainable_params
attribute), 23

num_untrainable_params
(lagom.networks.Module attribute), 23

numpify () (in module lagom.utils), 40

O

ortho_init () (in module lagom.networks), 24

P

pickle_dump () (in module lagom.utils), 41
pickle_load () (in module lagom.utils), 41
PolyakAverage (class in lagom.transform), 34
ProcessMaster (class in lagom.utils), 40
ProcessWorker (class in lagom.utils), 40

R

RandomAgent (class in lagom), 8

rank_transform () (in module lagom.transform), 34

read_xy () (in module lagom.vis), 44

RecordEpisodeStatistics (class in lagom.envs),
15

reduce () (lagom.transform.SegmentTree method), 36

reset () (lagom.envs.NormalizeReward method), 15

reset () (lagom.envs.RecordEpisodeStatistics method),
15

reset () (lagom.envs.TimeStepEnv method), 16

result (lagom.BaseES attribute), 12

result (lagom.CEM attribute), 13

result (lagom.CMAES attribute), 13

returns () (in module lagom.metric), 21

run_experiment () (in module lagom.experiment),
18

RunningMeanVar (class in lagom.transform), 35

S

Sample (class in lagom.experiment), 17

sample () (lagom.networks. MDNHead method), 27

save () (lagom.Logger method), 10

save () (lagom.networks.Module method), 23

Seeder (class in lagom.utils), 39

Segment Tree (class in lagom.transform), 36

set_global_seeds () (in module lagom.utils), 39

set_ticker () (in module lagom.vis), 44

smooth_filter () (in module lagom.transform), 35

StackedLSTM (class in lagom.networks), 27

step () (lagom.envs.NormalizeReward method), 15

step () (lagom.envs.RecordEpisodeStatistics method),
15

step () (lagom.envs.TimeStepEnv method), 16

StepRunner (class in lagom), 11

StepType (class in lagom), 9

sum () (lagom.transform.SumTree method), 37

SumTree (class in lagom.transform), 36

T

td0_error () (in module lagom.metric), 21
td0_target () (in module lagom.metric), 21
tell () (lagom.BaseES method), 12

tell () (lagom.CEM method), 13

tell () (lagom.CMAES method), 13
tensorify () (in module lagom.utils), 40

50

Index

lagom Documentation, Release 0.0.3

timed () (in module lagom.utils), 42

timeit () (in module lagom.utils), 42
TimeStep (class in lagom), 9

TimeStepEnv (class in lagom.envs), 16
to_vec () (lagom.networks.Module method), 23
train () (lagom.BaseEngine method), 11
Trajectory (class in lagom), 9

V

vtrace () (in module lagom.metric), 22

W

work () (lagom.utils.ProcessWorker method), 40

Y

yvaml_dump () (in module lagom.utils), 41
yvaml_load () (in module lagom.utils), 41

Index

51

	Setup environment
	Installing lagom
	lagom
	lagom.envs
	lagom.experiment
	lagom.metric: Metrics
	lagom.networks: Networks
	lagom.transform: Transformations
	lagom.utils: Utils
	lagom.vis: Visualization
	Indices and tables
	Python Module Index
	Index

